

Is Now Part of



# **ON Semiconductor**®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

# 100314 Low Power Quint Differential Line Receiver

#### **General Description**

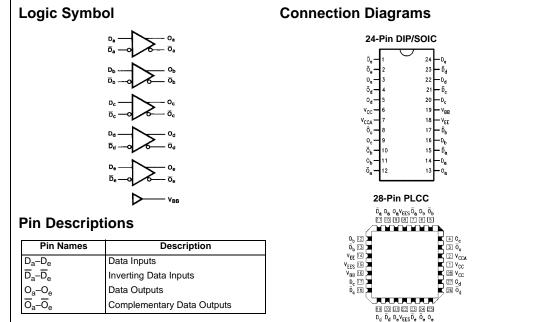
FAIRCHILD

SEMICONDUCTOR

The 100314 is a monolithic quint differential line receiver with emitter-follower outputs. An internal reference supply  $(V_{BB})$  is available for single-ended reception. When used in single-ended operation the apparent input threshold of the true inputs is 25 mV to 30 mV higher (positive) than the threshold of the complementary inputs. Unlike other F100K ECL devices, the inputs do not have input pull-down resistors.

Active current sources provide common-mode rejection of 1.0V in either the positive or negative direction. A defined output state exists if both inverting and non-inverting inputs are at the same potential between V<sub>EE</sub> and V<sub>CC</sub>. The defined state is logic HIGH on the  $\overline{O}_a - \overline{O}_e$  outputs.

#### Features


- 35% power reduction of the 100114
- 2000V ESD protection
- Pin/function compatible with 100114
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range (PLCC package only)

100314 Low Power Quint Differential Line Receiver

## Ordering Code:

| Order Number | Package Number | Package Description                                                                                                   |
|--------------|----------------|-----------------------------------------------------------------------------------------------------------------------|
| 100314SC     | M24B           | 24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide                                             |
| 100314PC     | N24E           | 24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide                                                 |
| 100314QC     | V28A           | 28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square                                                  |
| 100314QI     | V28A           | 28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square<br>Industrial Temperature Range (–40°C to +85°C) |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.



© 2000 Fairchild Semiconductor Corporation DS010260

www.fairchildsemi.com

100314

#### Absolute Maximum Ratings(Note 1)

 $-65^{\circ}C$  to  $+150^{\circ}C$  $+150^{\circ}C$ 

-7.0V to +0.5V

V<sub>EE</sub> to +0.5V

-50 mA

≥2000V

| Storage Temperature (T <sub>STG</sub> )        |
|------------------------------------------------|
| Maximum Junction Temperature (T <sub>J</sub> ) |
| Pin Potential to Ground Pin (V <sub>EE</sub> ) |
| Input Voltage (DC)                             |
| Output Current (DC Output HIGH)                |
| ESD (Note 2)                                   |

# Recommended Operating Conditions

| Case Temperature (T <sub>C</sub> ) |                |
|------------------------------------|----------------|
| Commercial                         | 0°C to +85°C   |
| Industrial                         | -40°C to +85°C |
| Supply Voltage (V <sub>EE</sub> )  | -5.7V to -4.2V |

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

## **Commercial Version**

#### **DC Electrical Characteristics** (Note 3) $V_{FF} = -4.2V$ to -5.7V V on $= V_{OOA} = GND$ To $= 0^{\circ}C$ to $+85^{\circ}C$

| Symbol            | Parameter                  | Min                   | Тур   | Max            | Units | Con                                                     | ditions                   |  |
|-------------------|----------------------------|-----------------------|-------|----------------|-------|---------------------------------------------------------|---------------------------|--|
| V <sub>OH</sub>   | Output HIGH Voltage        | -1025                 | -955  | -870           | mV    | $V_{IN} = V_{IH}$ (Max)                                 | Loading with              |  |
| V <sub>OL</sub>   | Output LOW Voltage         | -1830                 | -1705 | -1620          | mV    | or V <sub>IL</sub> (Min)                                | $50\Omega$ to $-2.0V$     |  |
| V <sub>онс</sub>  | Output HIGH Voltage        | -1035                 |       |                | mV    | $V_{IN} = V_{IH}$                                       | Loading with              |  |
| V <sub>OLC</sub>  | Output LOW Voltage         |                       |       | -1610          | mV    | or V <sub>IL</sub> (Max)                                | $50\Omega$ to $-2.0V$     |  |
| V <sub>BB</sub>   | Output Reference Voltage   | -1380                 | -1320 | -1260          | mV    | $I_{VBB} = -250 \ \mu A$                                |                           |  |
| V <sub>DIFF</sub> | Input Voltage Differential | 150                   |       |                | mV    | Required for Full Outp                                  | ut Swing                  |  |
| V <sub>CM</sub>   | Common Mode Voltage        | V <sub>CC</sub> - 2.0 |       | $V_{CC} - 0.5$ | V     |                                                         |                           |  |
| V <sub>IH</sub>   | Single-Ended               |                       |       |                |       | Guaranteed HIGH Signal for All                          |                           |  |
|                   | Input HIGH Voltage         | -1110                 |       | -870           | mV    | Inputs (with one input                                  | tied to V <sub>BB</sub> ) |  |
|                   |                            |                       |       |                |       | V <sub>BB</sub> (Max) + V <sub>DIFF</sub>               |                           |  |
| V <sub>IL</sub>   | Single-Ended               |                       |       |                |       | Guaranteed LOW Sigr                                     | nal for All               |  |
|                   | Input LOW Voltage          | -1830                 |       | -1530          | mV    | Inputs (with one input tied to $V_{BB}$ )               |                           |  |
|                   |                            |                       |       |                |       | V <sub>BB</sub> (Min) – V <sub>DIFF</sub>               |                           |  |
| IIL               | Input LOW Current          | 0.50                  |       |                | μA    | $V_{IN} = V_{IL}$ (Min)                                 |                           |  |
| I <sub>IH</sub>   | Input HIGH Current         |                       |       | 240            | μA    | $V_{IN} = V_{IH (Max)}, D_a - D_e$                      | = V <sub>BB</sub> ,       |  |
|                   |                            |                       |       |                |       | $\overline{D}_{a}-\overline{D}_{e} = V_{IL(Min)}$       |                           |  |
| I <sub>CBO</sub>  | Input Leakage Current      | -10                   |       |                | μA    | $V_{IN} = V_{EE}, D_a - D_e = V_E$                      | 3B,                       |  |
|                   |                            |                       |       |                |       | $\overline{D}_a - \overline{D}_e = V_{IL (Min)}$        |                           |  |
| I <sub>EE</sub>   | Power Supply Current       | -60                   |       | -30            | mA    | $D_a - D_e = V_{BB}, \overline{D}_a - \overline{D}_e =$ | VII (Min)                 |  |

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

#### Commercial Version (Continued) DIP AC Electrical Characteristics

#### $V_{FF} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

| - | -  |
|---|----|
| ¢ | D  |
| ¢ | 0  |
| Ć | ົ  |
| - | `` |
| J | 5  |

| Symbol                               | Parameter                                 | $\mathbf{T}_{\mathbf{C}} = 0^{\circ}\mathbf{C}$ |      | $T_C = +25^{\circ}C$ |      | T <sub>C</sub> = +85°C |      | Units | Conditions   |
|--------------------------------------|-------------------------------------------|-------------------------------------------------|------|----------------------|------|------------------------|------|-------|--------------|
|                                      |                                           | Min                                             | Max  | Min                  | Max  | Min                    | Max  | Units | Conditions   |
| f <sub>MAXFS</sub>                   | Toggle Frequency<br>(Full Swing)          | 250                                             |      | 250                  |      | 250                    |      | MHz   | (Note 2)     |
| fMAXRS                               | Toggle Frequency<br>(Reduced Swing)       | 700                                             |      | 700                  |      | 700                    |      | MHz   | (Note 3)     |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>Data to Output       | 0.65                                            | 1.90 | 0.65                 | 2.00 | 0.70                   | 2.00 | ns    | Figures 1, 2 |
| t <sub>TLH</sub><br>t <sub>THL</sub> | Transition Time<br>20% to 80%, 80% to 20% | 0.35                                            | 1.20 | 0.35                 | 1.20 | 0.35                   | 1.20 | ns    |              |

## **SOIC and PLCC AC Electrical Characteristics**

 $V_{EE} = -4.2V \text{ to } -5.7V, V_{CC} = V_{CCA} = \text{GND}$ 

| Symbol                               | Parameter                                                                       | T <sub>C</sub> = | = 0°C | $T_{C} = +25^{\circ}C$ |      | T <sub>C</sub> = | +85°C | Units | Conditions                    |
|--------------------------------------|---------------------------------------------------------------------------------|------------------|-------|------------------------|------|------------------|-------|-------|-------------------------------|
| Symbol                               |                                                                                 | Min              | Max   | Min                    | Max  | Min              | Max   | Units | Conditions                    |
| f <sub>MAXFS</sub>                   | Toggle Frequency<br>(Full Swing)                                                | 250              |       | 250                    |      | 250              |       | MHz   | (Note 4)                      |
| f <sub>MAXRS</sub>                   | Toggle Frequency<br>(Reduced Swing)                                             | 700              |       | 700                    |      | 700              |       | MHz   | (Note 5)                      |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>Data to Output                                             | 0.65             | 1.70  | 0.65                   | 1.80 | 0.70             | 1.80  | ns    | Figures 1, 2                  |
| t <sub>TLH</sub><br>t <sub>THL</sub> | Transition Time<br>20% to 80%, 80% to 20%                                       | 0.35             | 1.10  | 0.35                   | 1.10 | 0.35             | 1.10  | ns    |                               |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>Data to Output                                             | 0.70             | 1.50  | 0.80                   | 1.60 | 0.90             | 1.80  | ns    | PLCC only                     |
| t <sub>OSHL</sub>                    | Maximum Skew Common Edge<br>Output-to-Output Variation<br>Data to Output Path   |                  | 280   |                        | 280  |                  | 280   | ps    | PLCC only<br>(Note 6)(Note 7) |
| t <sub>OSLH</sub>                    | Maximum Skew Common Edge<br>Output-to-Output Variation<br>Data to Output Path   |                  | 330   |                        | 330  |                  | 330   | ps    | PLCC only<br>(Note 6)(Note 7) |
| t <sub>OST</sub>                     | Maximum Skew Opposite Edge<br>Output-to-Output Variation<br>Data to Output Path |                  | 330   |                        | 330  |                  | 330   | ps    | PLCC only<br>(Note 6)(Note 7) |
| t <sub>PS</sub>                      | Maximum Skew<br>Pin (Signal) Transition Variation<br>Data to Output Path        |                  | 320   |                        | 320  |                  | 320   | ps    | PLCC only<br>(Note 6)(Note 7) |

Note 4: Maximum toggle frequency at which V<sub>OH</sub> and V<sub>OL</sub> DC specifications are maintained.

Note 5: Maximum toggle frequency at which outputs maintain 150 mV swing.

Note 6: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW ( $t_{OSHL}$ ), or LOW-to-HIGH ( $t_{OSLH}$ ), or in opposite directions both HL and LH ( $t_{OST}$ ). Parameters  $t_{OST}$  and  $t_{PS}$  guaranteed by design.

Note 7: All skews calculated using input crossing point to output crossing point propagation delays.

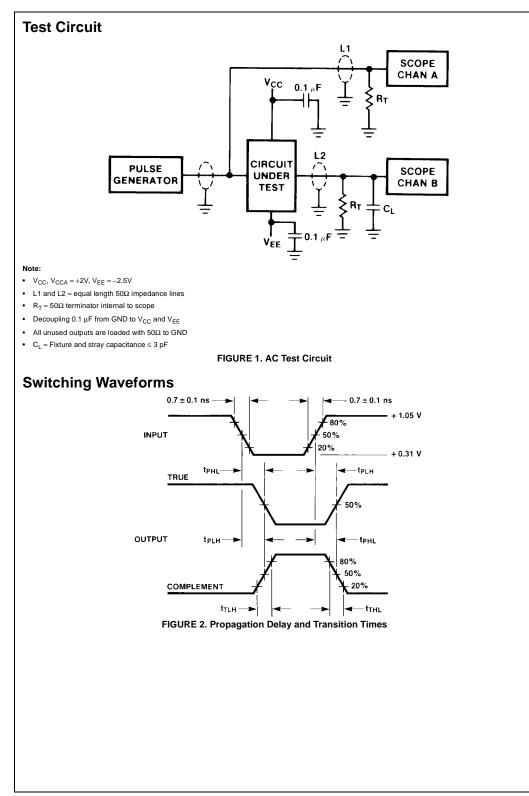
www.fairchildsemi.com

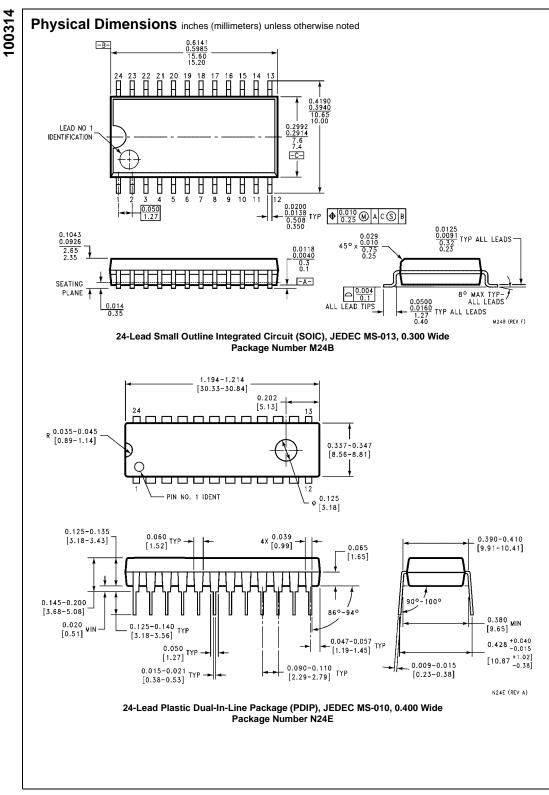
100314

#### **Industrial Version**

# PLCC DC Electrical Characteristics (Note 8) $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$ , $T_C = -40^{\circ}C$ to $+85^{\circ}C$

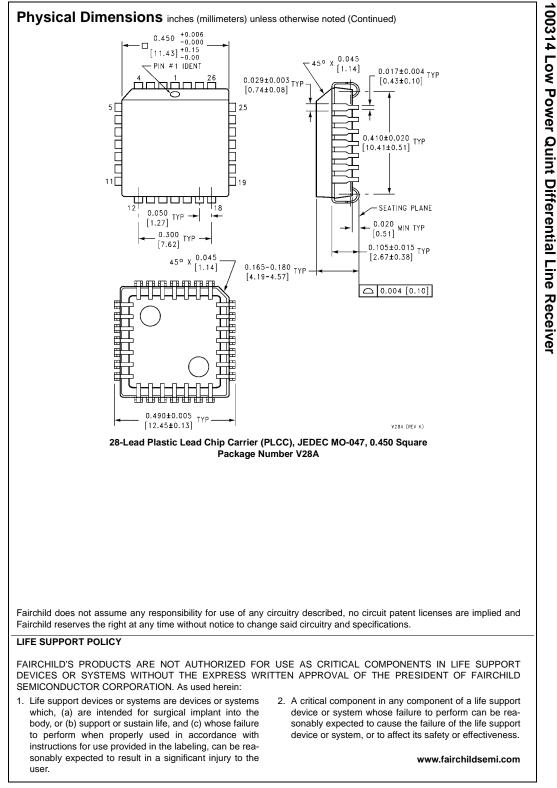
| Symbol            | Parameter                  | T <sub>C</sub> = -    | –40°C          | $T_C = 0^{\circ}C$    | to +85°C       | Units                                                       | Conditions                                               |                                   |  |
|-------------------|----------------------------|-----------------------|----------------|-----------------------|----------------|-------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|--|
| Symbol            |                            | Min                   | Max            | Min                   | Max            | Units                                                       |                                                          |                                   |  |
| V <sub>ОН</sub>   | Output HIGH Voltage        | -1085                 | -870           | -1025                 | -870           | mV                                                          | $V_{IN} = V_{IH}$ (Max)                                  | Loading with                      |  |
| V <sub>OL</sub>   | Output LOW Voltage         | -1830                 | -1575          | -1830                 | -1620          | mV                                                          | or V <sub>IL</sub> (Min)                                 | $50\Omega$ to $-2.0V$             |  |
| V <sub>онс</sub>  | Output HIGH Voltage        | -1095                 |                | -1035                 |                | mV                                                          | $V_{IN} = V_{IH}$                                        | Loading with                      |  |
| V <sub>OLC</sub>  | Output LOW Voltage         |                       | -1565          |                       | -1610          | mV                                                          | or V <sub>IL</sub> (Min)                                 | $50\Omega$ to $-2.0V$             |  |
| V <sub>BB</sub>   | Output Reference Voltage   | -1395                 | -1255          | -1380                 | -1260          | mV                                                          | $I_{VBB} = -250 \ \mu A$                                 |                                   |  |
| V <sub>DIFF</sub> | Input Voltage Differential | 150                   |                | 150                   |                | mV                                                          | Required for Full C                                      | Output Swing                      |  |
| V <sub>CM</sub>   | Common Mode Voltage        | V <sub>CC</sub> - 2.0 | $V_{CC} - 0.5$ | V <sub>CC</sub> - 2.0 | $V_{CC} - 0.5$ | V                                                           |                                                          |                                   |  |
| V <sub>IH</sub>   | Single-Ended               |                       |                |                       |                |                                                             | Guaranteed HIGH Signal for /                             |                                   |  |
|                   | Input HIGH Voltage         | -1115                 | -870           | 870 –1110 –870 mV     |                | Inputs (with one input tied to $\mathrm{V}_{\mathrm{BB}}$ ) |                                                          |                                   |  |
|                   |                            |                       |                |                       |                |                                                             | V <sub>BB</sub> (Max) + V <sub>DIFF</sub>                |                                   |  |
| V <sub>IL</sub>   | Single-Ended               |                       |                |                       |                |                                                             | Guaranteed LOW                                           | Signal for All                    |  |
|                   | Input LOW Voltage          | -1830                 | -1535          | -1830                 | -1530          | mV                                                          | Inputs (with one in                                      | put tied to V <sub>BB</sub> )     |  |
|                   |                            |                       |                |                       |                |                                                             | $V_{BB}$ (Min) – $V_{DIFF}$                              |                                   |  |
| IIL               | Input LOW Current          | 0.50                  |                | 0.50                  |                | μA                                                          | $V_{IN} = V_{IL (Min)}$                                  |                                   |  |
| I <sub>IH</sub>   | Input HIGH Current         |                       | 240            |                       | 240            | μA                                                          | V <sub>IN</sub> = V <sub>IH (Max)</sub> , D <sub>a</sub> | $-D_e = V_{BB},$                  |  |
|                   |                            |                       |                |                       |                |                                                             | $\overline{D}_a - \overline{D}_e = V_{IL (Min)}$         |                                   |  |
| I <sub>CBO</sub>  | Input Leakage Current      | -10                   |                | -10                   |                | μA                                                          | $V_{IN} = V_{EE}, D_a - D_e$                             | = V <sub>BB</sub>                 |  |
|                   |                            |                       |                |                       |                |                                                             | $\overline{D}_{a} - \overline{D}_{e} = V_{IL (Min)}$     |                                   |  |
| I <sub>EE</sub>   | Power Supply Current       | -60                   | -30            | -60                   | -30            | mA                                                          | $D_a - D_e = V_{BB}, \overline{D}_a - \overline{D}_a$    | $\overline{D}_{e} = V_{IL} (Min)$ |  |


Note 8: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.


## **PLCC AC Electrical Characteristics**

 $\mathsf{V}_{EE}$  = -4.2V to -5.7V,  $\mathsf{V}_{CC}$  =  $\mathsf{V}_{CCA}$  = GND

| Symbol                               | Parameter                                                                                                       | T <sub>C</sub> = - | $T_C = -40^{\circ}C$ |      | $T_C = +25^{\circ}C$ |      | $T_C = +85^{\circ}C$ |       | Conditions   |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|----------------------|------|----------------------|------|----------------------|-------|--------------|
| Cymbol                               |                                                                                                                 | Min                | Max                  | Min  | Max                  | Min  | Max                  | Units | Conditions   |
| f <sub>MAXFS</sub>                   | Toggle Frequency<br>(Full Swing)                                                                                | 250                |                      | 250  |                      | 250  |                      | MHz   | (Note 9)     |
| f <sub>MAXRS</sub>                   | Toggle Frequency<br>(Reduced Swing)                                                                             | 700                |                      | 700  |                      | 700  |                      | MHz   | (Note 10)    |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>Data to Output                                                                             | 0.65               | 1.70                 | 0.65 | 1.80                 | 0.70 | 1.80                 | ns    | Figures 1, 2 |
| t <sub>TLH</sub><br>t <sub>THL</sub> | Transition Time<br>20% to 80%, 80% to 20%                                                                       | 0.20               | 1.40                 | 0.35 | 1.10                 | 0.35 | 1.10                 | ns    |              |
| Note 9: Ma                           | Note 9: Maximum toggle frequency at which V <sub>OH</sub> and V <sub>OL</sub> DC specifications are maintained. |                    |                      |      |                      |      |                      |       |              |


Note 10: Maximum toggle frequency at which outputs maintain 150 mV swing.





www.fairchildsemi.com

6



7

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC