

SEMICONDUCTOR

100329 Low Power Octal ECL/TTL Bidirectional Translator with Register

General Description

The 100329 is an octal registered bidirectional translator designed to convert TTL logic levels to 100K ECL logic levels and vice versa. The direction of the translation is determined by the DIR input. A LOW on the output enable input (OE) holds the ECL outputs in a cut-off state and the TTL outputs at a high impedance level. The outputs change synchronously with the rising edge of the clock input (CP) even though only one output is enabled at the time.

The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0V, presenting a high impedance to the data bus. This high impedance reduces the termination power and prevents loss of low state noise margin when several loads share the bus.

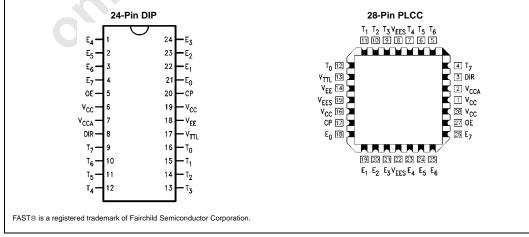
The 100329 is designed with FASTTM TTL output buffers, featuring optimal DC drive and capable of quickly charging and discharging highly capacitive loads. All inputs have 50 k Ω pull-down resistors.

Features

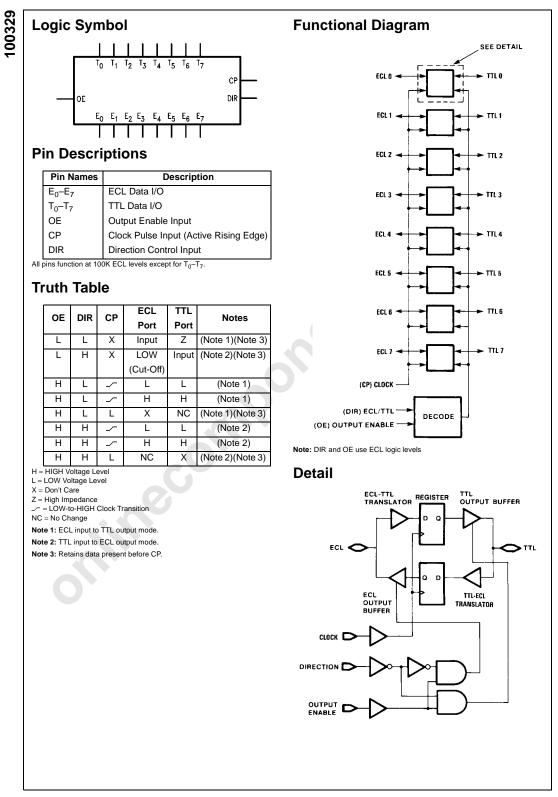
- Bidirectional translation
- ECL high impedance outputs
- Registered outputs
- FAST TTL outputs
- 3-STATE outputs
- Voltage compensated operating range = -4.2V to -5.7V

August 1989

Revised August 2000


High drive IOS

Ordering Code:


Order Number	Package Number	Package Description	
100329PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide	
100329QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square	
100329QI	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)	

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagrams

© 2000 Fairchild Semiconductor Corporation DS010583

Absolute Maximum Ratings(Note 4)

Recommended Operating Conditions

Storage Temperature (T _{STG})	-65°C to +150°C	Conditions	
Maximum Junction Temperature (T_j)	+150°C	Case Temperature (T _C)	0°C to +85°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V	ECL Supply Voltage (V _{EE})	-5.7V to -4.2V
V _{TTL} Pin Potential to Ground Pin	-0.5V to +6.0V	TTL Supply Voltage (V _{TTL})	+4.5V to +5.5V
ECL Input Voltage (DC)	V _{EE} to +0.5V		
ECL Output Current			
(DC Output HIGH)	–50 mA		
TTL Input Voltage (Note 6)	-0.5V to +6.0V		
TTL Input Current (Note 6)	-30 mA to +5.0 mA		
Voltage Applied to Output		Note 4: The "Absolute Maximum Ratings" are	
in HIGH State		the safety of the device cannot be guarantee operated at these limits. The parametric val	
3-STATE Output	-0.5V to +5.5V	Characteristics tables are not guaranteed at t	he absolute maximum rating.
Current Applied to TTL		The "Recommended Operating Conditions" ta for actual device operation.	able will define the conditions
Output in LOW State (Max)	twice the rated I_{OL} (mA)	Note 5: ESD testing conforms to MIL-STD-88	3, Method 3015.
ESD (Note 5)	≥2000V	Note 6: Either voltage limit or current limit is s	ufficient to protect inputs.

TTL-to-ECL DC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_C = 0^{\circ}C$ to $+85^{\circ}C$, $V_{TTL} = +4.5V$ to +5.5V (Note 7)

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$V_{IN} = V_{IH}$ (Max) or V_{IL} (Min)
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	Loading with 50Ω to $-2V$
	Cutoff Voltage		-2000	-1950	mV	$\label{eq:VIN} \begin{array}{l} \mbox{OE or DIR LOW,} \\ \mbox{V}_{IN} = \mbox{V}_{IH} \mbox{(Max) or V}_{IL} \mbox{(Min)} \\ \mbox{Loading with } 50\Omega \mbox{ to } -2 \mbox{V} \end{array}$
V _{OHC}	Output HIGH Voltage Corner Point HIGH	-1035			mV	$V_{IN} = V_{IH}$ (Min) or V_{IL} (Max)
V _{OLC}	Output LOW Voltage Corner Point LOW			-1610	mV	Loading with 50Ω to $-2V$
VIH	Input HIGH Voltage	2.0		5.0	V	Over V _{TTL} , V _{EE} , T _C Range
VIL	Input LOW Voltage	0		0.8	V	Over V _{TTL} , V _{EE} , T _C Range
I _{IH}	Input HIGH Current			70	μΑ	V _{IN} = +2.7V
	Breakdown Test			1.0	mA	$V_{IN} = +5.5V$
IIL	Input LOW Current	-700			μΑ	$V_{IN} = +0.5V$
V _{FCD}	Input Clamp Diode Voltage	-1.2			V	I _{IN} = -18 mA
IEE	V _{EE} Supply Current					LE LOW, OE and DIR HIGH Inputs Open
		-189		-94	mA	$V_{EE} = -4.2V$ to $-4.8V$
		-199		-94		$V_{EE} = -4.2V$ to $-5.7V$

Note 7: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

100329

100329

ECL-to-TTL DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{он}	Output HIGH Voltage	2.7	3.1		V	$I_{OH} = -3 \text{ mA}, V_{TTL} = 4.75 \text{ V}$
		2.4	2.9		V	$I_{OH} = -3$ mA, $V_{TTL} = 4.50$ V
/ _{OL}	Output LOW Voltage		0.3	0.5	V	I _{OL} = 24 mA, V _{TTL} = 4.50V
/ _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal
						for All Inputs
V _{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal
						for All Inputs
Ін	Input HIGH Current			350	μA	V _{IN} = V _{IH} (Max)
IL	Input LOW Current	0.50			μA	$V_{IN} = V_{IL}$ (Min)
OZHT	3-STATE Current			70	μΑ	V _{OUT} = +2.7V
	Output HIGH					
OZLT	3-STATE Current	-700			μΑ	$V_{OUT} = +0.5V$
	Output LOW					
os	Output Short-Circuit	-225		-100	mA	$V_{OUT} = 0.0V, V_{TTL} = +5.5V$
	Current					
TTL	V _{TTL} Supply Current			74	mA	TTL Outputs LOW
				49	mA	TTL Outputs HIGH
				67	mA	TTL Outputs in 3-STATE

Note 8: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP TTL-to-ECL AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{TTL} = +4.5V$ to +5.5V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	= 0°C	T _C =	25°C	T _C =	85°C	Units	Conditions
		Min	Max	Min	Max	Min	Max		
f _{MAX}	Max Toggle Frequency	350		350		350		MHz	
t _{PLH}	CP to E _n	1.7	3.6	1.7	3.7	1.9	3.9	ns	Figures 1, 2
t _{PHL}									
t _{PZH}	OE to E _n	1.3	4.2	1.5	4.4	1.7	4.8	ns	Figures 1, 2
	(Cutoff to HIGH)								
t _{PHZ}	OE to E _n	1.5	4.5	1.6	4.5	1.6	4.6	ns	Figures 1, 2
	(HIGH to Cutoff)								
t _{PHZ}	DIR to E _n	1.6	4.3	1.6	4.3	1.7	4.5	ns	Figures 1, 2
	(HIGH to Cutoff)								
t _{SET}	T _n to CP	1.1		1.1		1.1		ns	Figures 1, 2
t _{HOLD}	T _n to CP	1.7		1.7		1.9		ns	Figures 1, 2
t _{PW} (H)	Pulse Width CP	2.1		2.1		2.1		ns	Figures 1, 2
t _{TLH}	Transition Time	0.6	1.6	0.6	1.6	0.6	1.6	ns	Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%								

DIP ECL-to-TTL	AC Electrical	Characteristics
----------------	---------------	-----------------

Symbol	Parameter	T _C =	$T_C = 0^{\circ}C$		$T_C = 25^{\circ}C$		$T_C = 85^{\circ}C$		Conditions
Symbol	l'alameter	Min	Max	Min	Max	Min	Max	Units	Conditions
f _{MAX}	Max Toggle Frequency	125		125		125		MHz	
t _{PLH}	CP to T _n	3.1	7.2	3.1	7.2	3.3	7.7	ns	Figures 3, 4
t _{PHL}									
t _{PZH}	OE to T _n	3.4	8.45	3.7	8.95	4.0	9.7		Figures 3, 5
t _{PZL}	(Enable Time)	3.8	9.2	4.0	9.2	4.3	9.95	ns	
t _{PHZ}	OE to T _n	3.2	8.95	3.3	8.95	3.5	9.2	ns	Figures 3, 5
t _{PLZ}	(Disable Time)	3.0	7.7	3.4	8.7	4.1	9.95	115	
t _{PHZ}	DIR to T _n	2.7	8.2	2.8	8.7	3.1	8.95	ns	Figures 3, 6
t _{PLZ}	(Disable Time)	2.8	7.45	3.1	7.95	4.0	9.2	115	Figures 5, 6
t _{SET}	E _n to CP	1.1		1.1		1.1		ns	Figures 3, 4
t _{HOLD}	E _n to CP	2.1		2.1		2.6		ns	Figures 3, 4
t _{PW} (H)	Pulse Width CP	4.1		4.1		4.1		ns	Figures 3, 4

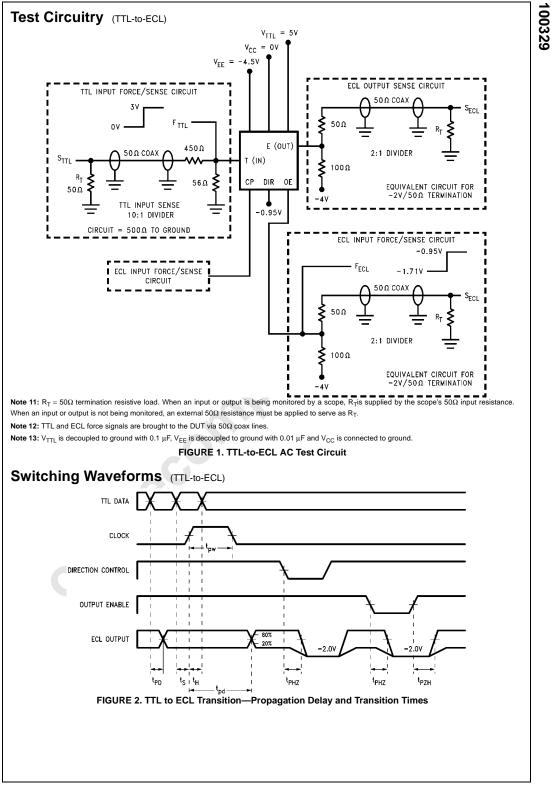
PLCC and TTL-to-ECL AC Electrical Characteristics $V_{re} = -4.2V$ to -5.7V $V_{rev} = -4.5V$ to +5.5V

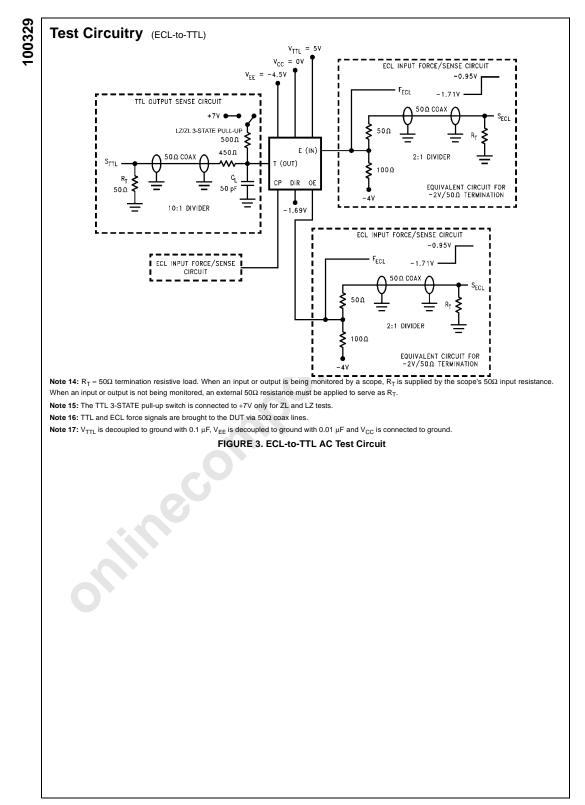
Symbol	Parameter	$\mathbf{T}_{\mathbf{C}} = 0^{\circ}\mathbf{C}$		$T_C = 25^{\circ}C$		$T_C = 85^\circ C$		Units	Conditions
Symbol	Farameter	Min	Max	Min	Max	Min	Max	Units	Conditions
f _{MAX}	Max Toggle Frequency	350		350		350		MHz	
t _{PLH}	CP to E _n	1.7	3.4	1.7	3.5	1.9	3.7	ns	Figures 1, 2
t _{PHL}									
t _{PZH}	OE to E _n	1.3	4.0	1.5	4.2	1.7	4.6	ns	Figures 1, 2
	(Cutoff to HIGH)								
t _{PHZ}	OE to E _n	1.5	4.3	1.6	4.3	1.6	4.4	ns	Figures 1, 2
	(HIGH to Cutoff)								
t _{PHZ}	DIR to E _n	1.6	4.1	1.6	4.1	1.7	4.3	ns	Figures 1, 2
	(HIGH to Cutoff)								
t _{SET}	T _n to CP	1.0		1.0		1.0		ns	Figures 1, 2
t _{HOLD}	T _n to CP	1.7		1.7		1.9		ns	Figures 1, 2
t _{PW} (H)	Pulse Width CP	2.0		2.0		2.0		ns	Figures 1, 2
t _{TLH}	Transition Time	0.6	1.6	0.6	1.6	0.6	1.6	ns	Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%								
t _{OSHL}	Maximum Skew Common Edge								PLCC Only
	Output-to-Output Variation		200		200		200	ps	(Note 9)
	Data to Output Path								
t _{OSLH}	Maximum Skew Common Edge								PLCC Only
	Output-to-Output Variation		200		200		200	ps	(Note 9)
	Data to Output Path								
t _{OST}	Maximum Skew Opposite Edge								PLCC Only
	Output-to-Output Variation		650		650		650	ps	(Note 9)
	Data to Output Path								
t _{PS}	Maximum Skew								PLCC Only
	Pin (Signal) Transition Variation		650		650		650	ps	(Note 9)
	Data to Output Path					I		1	

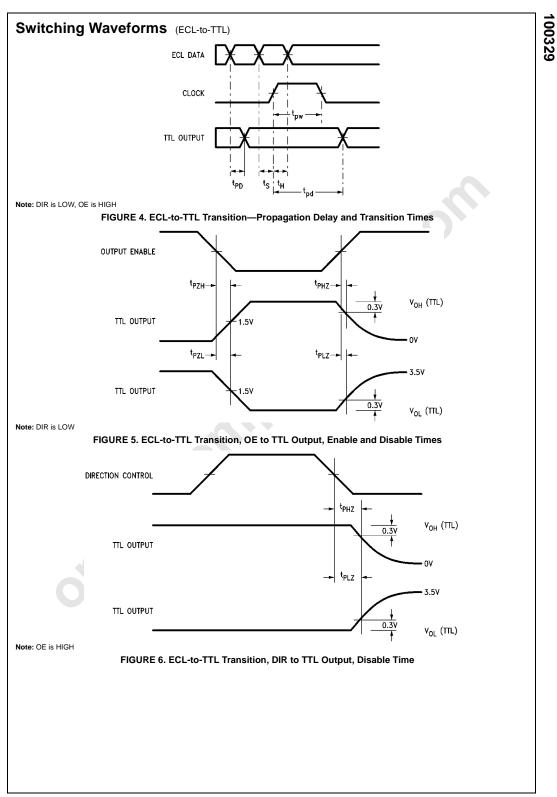
Note 9: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

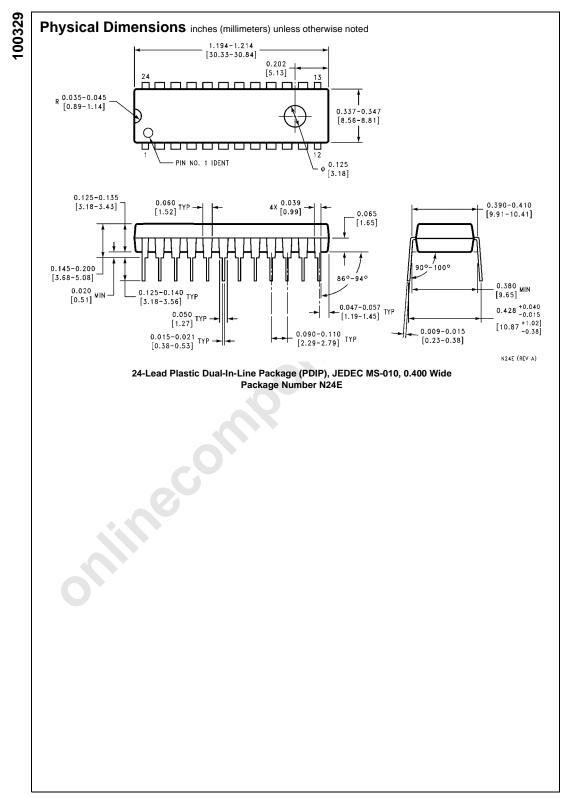
www.fairchildsemi.com

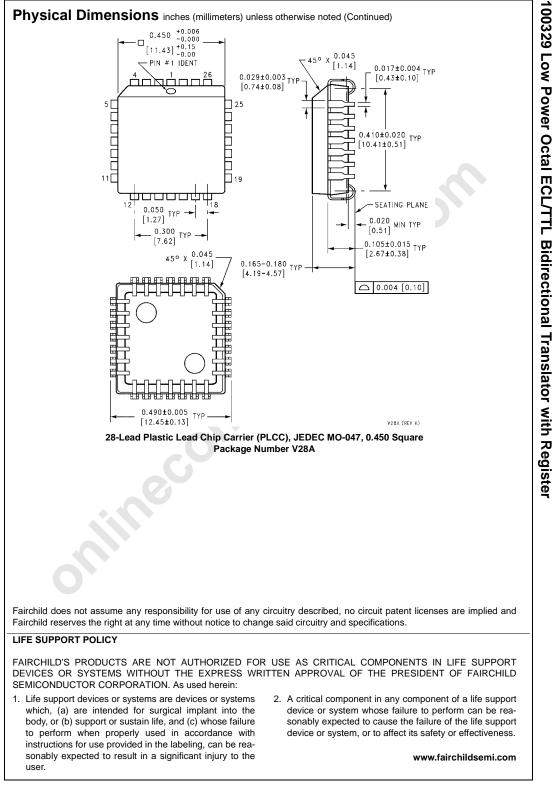
100329


ດ	
2	
က	
2	
0	
~	


PLCC and ECL-to-TTL AC Electrical Characteristics


Symbol	Parameter .	T _C =	= 0°C	T _C =	25°C	T _C =	85°C	Units	Conditions
Gymbol		Min	Max	Min	Max	Min	Max		Conditions
f _{MAX}	Max Toggle Frequency	125		125		125		MHz	
t _{PLH}	CP to T _n	3.1	7.0	3.1	7.0	3.3	7.5	ns	Figures 3, 4
t _{PHL}									
t _{PZH}	OE to T _n	3.4	8.25	3.7	8.75	4.0	9.5	ns	Figures 3, 5
t _{PZL}	(Enable Time)	3.8	9.0	4.0	9.0	4.3	9.75		
t _{PHZ}	OE to T _n	3.2	8.75	3.3	8.75	3.5	9.0	ns	Figures 3, 5
t _{PLZ}	(Disable Time)	3.0	7.5	3.4	8.5	4.1	9.75		
t _{PHZ}	DIR to T _n	2.7	8.0	2.8	8.5	3.1	8.75	ns	Figures 3, 6
t _{PLZ}	(Disable Time)	2.8	7.25	3.1	7.75	4.0	9.0		
t _{SET}	E _n to CP	1.0		1.0		1.0		ns	Figures 3, 4
t _{HOLD}	E _n to CP	2.0		2.0		2.5		ns	Figures 3, 4
t _{PW} (H)	Pulse Width CP	4.0		4.0		4.0		ns	Figures 3, 4
t _{OSHL}	Maximum Skew Common Edge								PLCC Only
	Output-to-Output Variation		600		600		600	ps	(Note 10)
	Data to Output Path								
t _{OSLH}	Maximum Skew Common Edge						7		PLCC Only
	Output-to-Output Variation		850		850		850	ps	(Note 10)
	Data to Output Path								
t _{OST}	Maximum Skew Opposite Edge								PLCC Only
	Output-to-Output Variation		1350		1350		1350	ps	(Note 10)
	Data to Output Path								
t _{PS}	Maximum Skew								PLCC Only
	Pin (Signal) Transition Variation		950		950		950	ps	(Note 10)
	Data to Output Path								1


Note 10: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.


onlinecol

