February 1990 Revised November 1999

FAIRCHILD

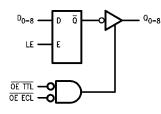
SEMICONDUCTOR

100393 Low Power 9-Bit ECL-to-TTL Translator with Latches

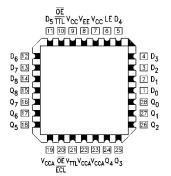
General Description

The 100393 is a 9-bit translator for converting F100K logic levels to TTL logic levels. A LOW on the latch enable (LE) latches the data at the input state. A HIGH on the LE makes the latches transparent. A HIGH on either the ECL or TTL output enable (\overline{OE} ECL or \overline{OE} TTL), holds the outputs in a high impedance state.

The 100393 is designed with TTL, 64 mA outputs for Bus Driving capability. All ECL inputs have 50 k Ω pull-down resistors. When the inputs are either unconnected or at the same potential, the outputs will go LOW.


Features

- 64 mA I_{OL} drive capability
- 2000V ESD protection
- -4.2V to -5.7V operating range
- Latched outputs
- TTL outputs


Ordering Code:

Order Number	Package Number	Package Description			
100393QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square			
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					

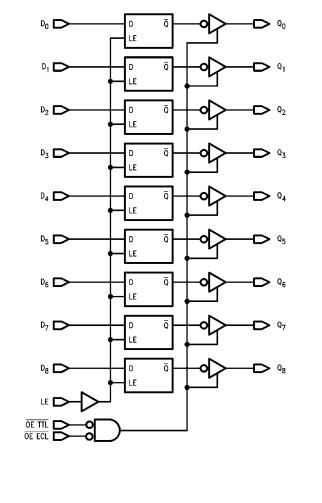
Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description				
D ₀ –D ₈	Data Inputs (ECL)				
Q ₀ -Q ₈	Data Outputs (TTL)				
LE	Latch Enable Input (ECL)				
OE TTL	Output Enable (TTL)				
OE ECL	Output Enable (ECL)				

© 1999 Fairchild Semiconductor Corporation DS010650


100393

Truth Table

	Outputs			
OE TTL	LE	D _N	Q _N	
L	L	Н	L	L
L	L	Н	Н	Н
L	L	L	Х	Latched
Н	Х	Х	Х	Z
Х	Н	Х	Х	Z

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care Z = High Impedance

Logic Diagram

Absolute Maximum Ratings(Note 1)

Storage Temperature (T _{STG})	–65°C to +150°C
Maximum Junction Temperature (T_J)	+150°C
Case Temperature under Bias (T_C)	0°C to +85°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V
V _{TTL} Pin Potential to Ground Pin	-0.5V to +6.0V
ECL Input Voltage (DC)	V _{EE} to +0.5V
TTL Input Voltage	-0.5V to +7.0V
Output Current (DC Output HIGH)	+130 mA
ESD (Note 2)	≥2000V

Recommended Operating Conditions

Case Temperature (T _C)	0°C to +85°C
Supply Voltage	
V _{EE}	-5.7V to -4.2V
V _{TTL}	+4.5V to +5.5V

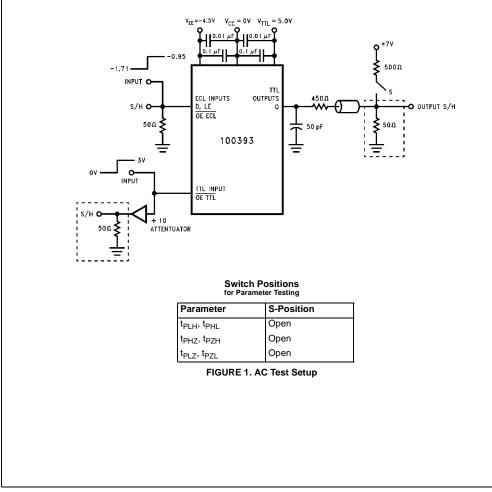
100393

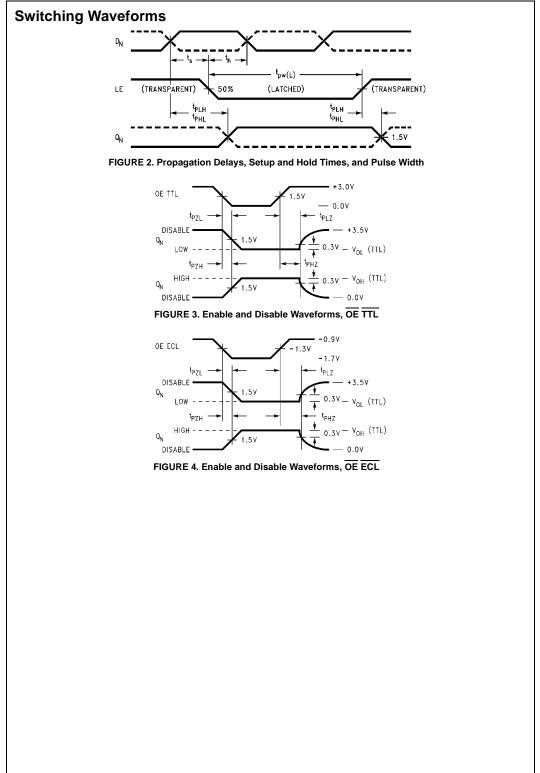
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

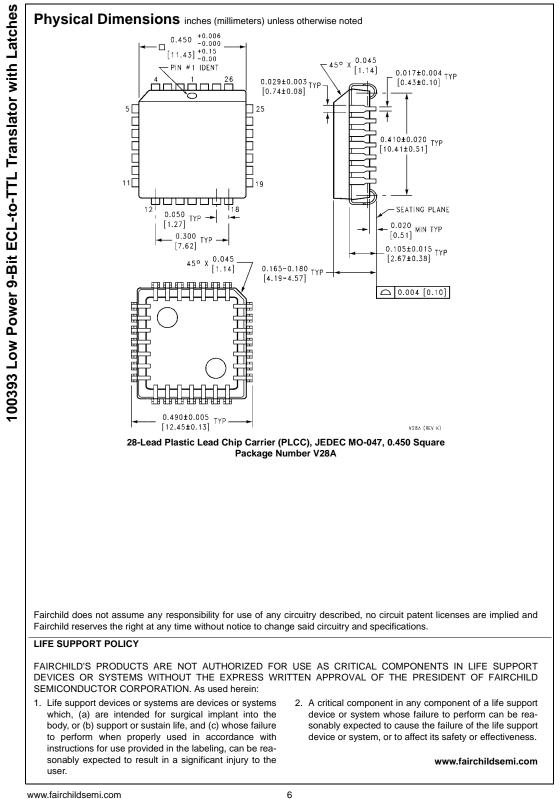
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

DC Electrical Characteristics (Note 3)

 V_{EE} = -4.2V to -5.7V; V_{CC} = V_{CCA} = GND, V_{TTL} = +4.5V to +5.5V, T_{C} = 0°C to +85°C


Symbol	Parameter		Min	Тур	Typ Max	Units	Conditions	
V _{OH}	Output HIGH Voltage		2.5 2.0			V	I _{OH} = -1 mA I _{OH} = -15 mA	V _{IN} = V _{IL} (Min) or V _{IH} (Max)
V _{OL}	Output LOW Voltage				0.55 0.50	V	I _{OL} = 64 mA I _{OL} = 24 mA	V _{IN} = V _{IL} (Min) or V _{IH} (Max)
V _{IH}	Input HIGH Voltage	ECL Inputs	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
		OE TTL	2.0			V	Guaranteeu HIGH 3	signal for All inputs
VIL	Input LOW Voltage	ECL Inputs	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
		OE TTL			0.8	V	Guaranteeu LOW 3	Ignal for All Inputs
I _{BVI}	Input Breakdown Current				10	μA	V _{BI} = 7.0V	
IIH	ECL Input HIGH Current	ECL Inputs			240		V _{IN} = V _{IH} (Max)	
		OE ECL			350	μA	VIN - VIH (Max)	
	TTL Input HIGH Current	OE TTL			5.0	μA	V _{IN} = 2.7V	
IIL	ECL Input LOW Current	ECL Inputs	0.5			μA	$V_{IN} = V_{IL}$ (Min)	
	TTL Input LOW Current	OE TTL			-50	μA	V _{IN} = 0.5V	
ICEX	Output HIGH Leakage Curr	ent			250	μA		
I _{OS}	Output Short-Circuit Curren	t	-100		-225	mA	$V_{OUT} = 0.0V, V_{TTL} =$: +5.5V
I _{OZH}	3-STATE Current Output HI	GH			+50	μΑ	$V_{OUT} = +2.7V$	
I _{OZL}	3-STATE Current Output LC	W			-50	μΑ	$V_{OUT} = 0.5V$	
V _{FCD}	Input Clamp Diode Voltage				-1.2	V	$I_{IN} = -18 \text{ mA}$	
IEE	V _{EE} Power Supply Current		-39		-18	mA	Inputs OPEN	
I _{CCH}	V _{TTL} Power Supply Current	HIGH			29	mA		
I _{CCL}	V _{TTL} Power Supply Current	LOW			65	mA		
I _{CCZ}	V _{TTL} Power Supply Current 3-STATE				49	mA		


Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.



LL	2V to $-5.7V$, V _{CC} = GND, V _{TTL} =								
Symbol	I Parameter	T _C ≡	$\mathbf{T_C} = 0^{\circ}\mathbf{C}$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Condition
Gymbol		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay	2.3	4.8	2.3	4.8	2.3	5.3	ns	Figures 1, 2
t _{PHL}	Data to Output	2.5	4.0	2.5	4.0	2.5	5.5	115	
t _{PLH}	Propagation Delay	2.3	5.6	2.3	5.6	2.3	6.4	ns	Figures 1, 2
t _{PHL}	LE to Output	2.3	5.0	2.3	5.0	2.3	0.4	115	
t _{PZH}	Output Enable Time	2.0	5.5	2.0	5.5	2.0	5.5	ns	Figure 3
t _{PZL}	$\overline{OE} \ \overline{TTL} \downarrow to \ Q_{N}$	3.5	8.0	3.5	8.0	3.5	8.0		
t _{PHZ}	Output Disable Time	2.0	6.0	2.0	6.0	2.0	6.0		Figure 3
t _{PLZ}	$\overline{OE} \overline{TTL} \uparrow to Q_N$	2.0	5.5	2.0	5.0	2.0	5.0	ns	
t _{PZH}	Output Enable Time	2.4	5.6	2.4	5.6	2.4	5.6		Figure 4
t _{PZL}	OE ECL ↑ to Q _N	3.2	8.5	3.2	8.5	3.2	8.5	ns	
t _{PHZ}	Output Disable Time	2.4	6.0	2.4	6.0	2.4	6.0	ns	Figure 4
t _{PLZ}	$\overline{\text{OE}} \text{ ECL} \downarrow \text{ to } Q_N$	3.2	7.6	3.2	7.6	3.2	7.6		
t _S	Setup Time, D _N to LE	0.7		0.7		0.7		ns	Figures 1, 2
t _H	Hold Time, D _N to LE	1.3		1.3		1.3		ns	Figures 1, 2
t _{PW} (L)	Pulse Width LOW, LE	2.0		2.0		2.0		ns	Figures 1Figu

Test Circuit

