Order Number		Package Number
29F52SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
29F52SPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
29F53SPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter " X " to the ordering code.
Logic Symbols

Connection Diagrams

Pin Assignment for DIP and SOIC
29F52

Pin Assignment for DIP

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I I}} / \mathbf{I}_{\mathbf{I L}}$ Output $\mathbf{I}_{\mathbf{O H}} / \mathbf{I}_{\mathbf{O L}}$
	A-Register Inputs/	$3.5 / 1.083$	$70 \mu \mathrm{~A} / 0.65 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B-Register 3-STATE Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
	B Register Inputs/	$3.5 / 1.083$	$70 \mu \mathrm{~A} / 0.65 \mathrm{~mA}$
$\overline{\mathrm{OEA}}$	A-Register 3-STATE Outputs	$600 / 106.6(80)$	$-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$
CPA	Output Enable A-Register	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { CEA }}$	A-Register Clock	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { OEB }}$	A-Register Clock Enable	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CPB	Output Enable B-Register	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{CEB}}$	B-Register Clock	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
	B-Register Clock Enable	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$

Output Control

OE	Internal Q	Y-Output		Function
		29 F 52	29F53	
H	X	Z	Z	Disable Outputs
L	L	L	H	Enable Outputs
L	H	H	L	Enable Outputs

L = LOW Voltage Level
$X=$ Immaterial
Z = HIGH Impedance
N = LOW-to-HIGH Transition
NC = No Change

Register Function Table (Applies to A or B Register)

Inputs			Internal	Function	
D	CP	CE	Q		
X	X	H	NC	Hold Data	
L	N	L	L	Load Data	
H	N	L	H		

Absolute Maximum Ratings（Note 1）

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage（Note 2）
Input Current（Note 2）
Voltage Applied to Output

in HIGH State（with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ ）	
Standard Output	-0.5 V to V_{CC}
3－STATE Output	-0.5 V to +5.5 V

-0.5 V to +5.5 V
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V -0.5 V to +7.0 V -30 mA to +5.0 mA

Recommended Operating

 Conditions| Free Air Ambient Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |

Note 1：Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired．Functional operation under these conditions is not implied．
Note 2：Either voltage limit or current limit is sufficient to protect inputs．

Current Applied to Output

$$
\text { twice the rated } \mathrm{I}_{\mathrm{OL}}(\mathrm{~mA})
$$

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			－1．2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$（Non I／O Pins）
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ $10 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(A_{n}\right) \\ & \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}, B_{n}\right) \\ & \mathrm{l}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(B_{n}\right) \\ & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(A_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}, B_{n}\right) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{gathered} \hline 0.5 \\ 0.55 \end{gathered}$	V	Min	$\begin{aligned} & \text { loL }=24 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}\right) \\ & \mathrm{lOL}=64 \mathrm{~mA}\left(\mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
IH	Input HIGH Current			20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$（Non－I／O Pins）
$\mathrm{I}_{\text {BVI }}$	Input HIGH Current Breakdown Test			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$（Non－I／O Pins）
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test（I／O）			1.0	mA	Max	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
IL	Input LOW Current			－0．6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$（ （Non－I／O Pins）
$\mathrm{I}_{\mathrm{IH}}+\mathrm{l}_{\text {OZH }}$	Output Leakage Current			70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Current			－650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
los	Output Short－Circuit Current	$\begin{gathered} \hline-60 \\ -100 \end{gathered}$		$\begin{aligned} & \hline-150 \\ & -225 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}\right) \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
${ }_{\text {cex }}$	Output HIGH Leakage Current			250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
Izz	Bus Drainage Test			500	$\mu \mathrm{A}$	0．0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current		130	190	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			190	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
$\mathrm{I}_{\text {ccz }}$	Power Supply Current			190	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		Units
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW A_{n} or B_{n} to CPA or CPB	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$				$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW A_{n} or B_{n} to CPA or CPB	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$				$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{S}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{CEA}}$ or $\overline{\mathrm{CEB}}$ to CPA or CPB	$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$				$\begin{aligned} & 1.5 \\ & 4.5 \end{aligned}$		ns
$\begin{aligned} & \hline t_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{CEA}}$ or $\overline{\mathrm{CEB}}$ to CPA or CPB	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$				$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		ns
$\begin{aligned} & \hline t_{w}(\mathrm{H}) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	$\begin{aligned} & \text { Pulse Width, HIGH or LOW } \\ & \text { CPA or CPB } \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$				$\begin{aligned} & \hline 3.5 \\ & 3.5 \end{aligned}$		ns

Physical Dimensions inches（millimeters）unless otherwise noted

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
