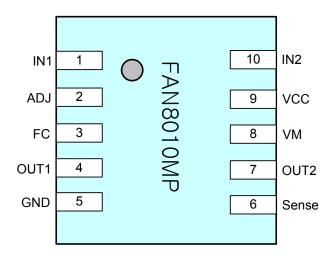

FAN8010MP1 Channel DC Motor Driver

Features

- · Current mode control
- High output current(Iomax 0.6A)
- Low saturation voltage(0.3V typ)
- Low voltage operation(2~6.5V)
- Very low standby current(< 1uA)
- Leadless miniature package(3*3*1mm³).
- Selectable output current level
- · Available saturation mode control
- · Built in brake function.
- · Built in TSD

Description

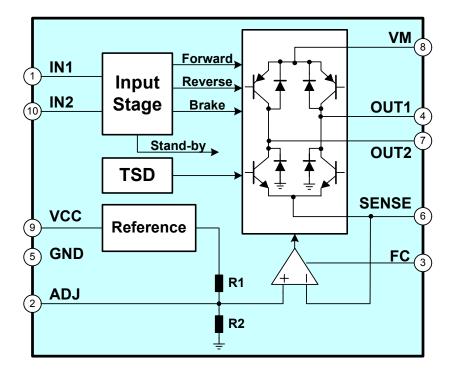
The FAN8010MP is designed for Mobile camera, Digital still camera, and portable equipment.


Typical Applications

- · General DC Motor
- · Digital Still Camera
- · Moblie Camera

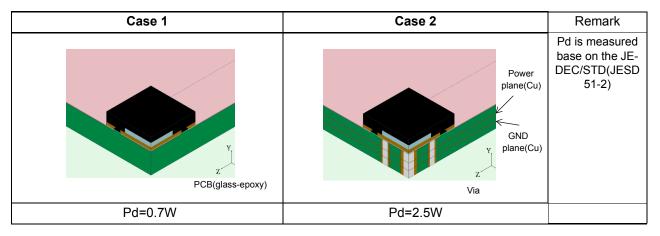
Ordering Information

Device	Package	Operating Temp.
FAN8010MPX	10MLP3X3	-30×C ~ +80×C

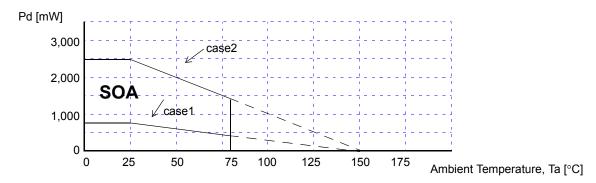

Pin Asignments

Pin Definitions

Pin Number	Pin Name	I/O	Pin Function Description	Remark
1	IN 1	I	Logic Input 1	-
2	ADJ	Α	Output Current Adjust	-
3	FC	Α	Compensation Capacitor	-
4	OUT1	Α	Motor Ouput1	-
5	GND	Р	Ground	-
6	SENSE	Α	Motor Current Sensing	-
7	OUT2	А	Motor Output2	-
8	VM	Р	Power Supply For Output Stage	-
9	VCC	Р	Power Supply For Signal Block -	
10	IN 2	I	Logic Input 2	-

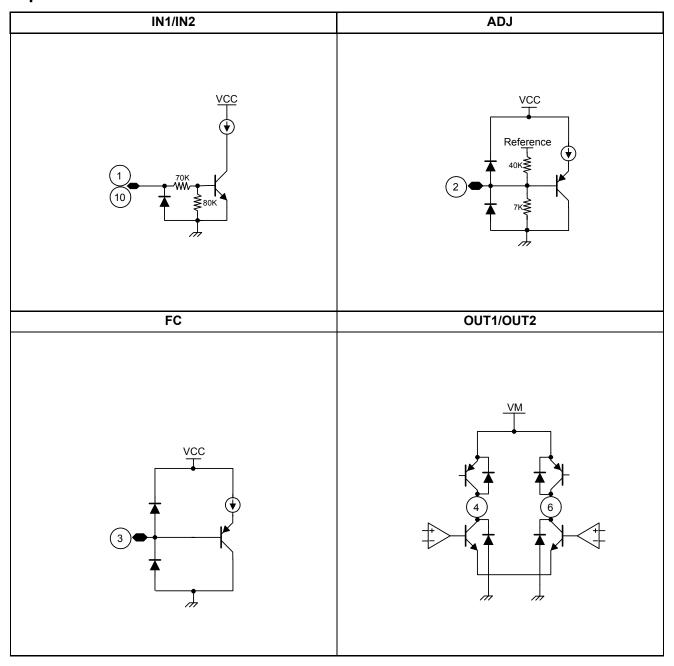

Internal Block Diagram

Absolute Maximum Ratings (Ta = 25°C)


Parameter	Symbol	Value	Unit
Maximum Power Supply Voltage	VMMAX	7.5	V
Maximum Power Supply VoNtage	VCCMAX	7.5	V
Maximum Power Supply Current	IOMAX	600	mA
Maximum Logic Input Voltage	VINMAX	7.5	V
Maximum Output Sustain Voltage	VOUTMAX	8.5	V
Maximum Power Dissipation	PdMAX ^{Note1}	0.7 / 2.5	W
Operating Temperature	TOPR	−30 ~ +80	°C
Storage Temperature	TSTG	−55 ~ +150	°C

Note:

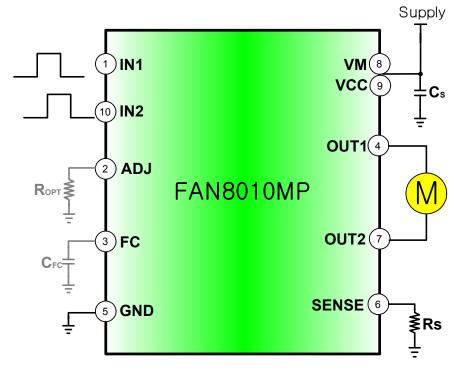
- 1. Refer: EIA/JESD 51-2 & EIA/JESD 51-3 & EIA/JESD 51-5 & EIA/JESD 51-7
- 2. Case 1: Single layer PCB with 1 signal plane only, PCB size $76mm \times 114mm \times 1.6mm$.
- 3. Case 2: Multi layer PCB with 1 signal, 1 power and 1 ground planes, PCB size $76\text{mm} \times 114\text{mm} \times 1.6\text{mm}$, Cu plane sizes for power and ground $74\text{mm} \times 74\text{mm} \times 0.035\text{mm}$, thermal via hole pitch 0.9mm, via hole ϕ size 0.3mm, 6 via hole.
- 4. Should not exceed PD or ASO value.


Power Dissipation Curve

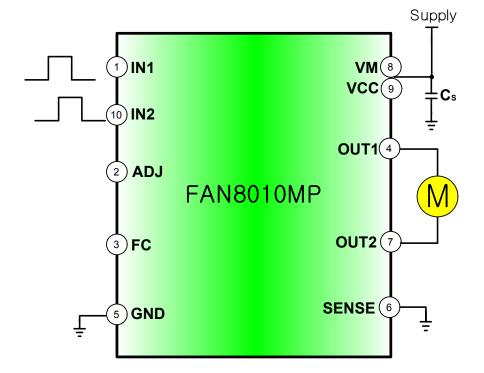
Recommended Operating Conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage For Signal Block	VCC	2.2	-	6.5	V
Supply Voltage For Power Stage	VM	2.2	-	6.5	V

Equivalent Circuit


Electrical Characteristics

(Ta= 25°C, VCC=3.3V, VM=3.3V unless otherwise specified)


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
COMMON BLOCK							
Standby Current	Іѕтв	VCC=7.5V, IN1=IN2=L	-	-	1.0	μА	
Operating Current1	Icc1	IN1=H or IN2 =H	-	6	11	mA	
Operating Current2	Icc2	IN1=IN2=H	-	16	25	mA	
LOGIC INPUTS	•			•		•	
Logic Input High Level Voltage	VH		1.8	-	VCC	V	
Logic Input Low Level Voltage	VL		-0.3	-	0.4	V	
Logic Input Current	Ін	VH=5.0V, IN1=H or IN2=H	-	60	90	μΑ	
OUTPUT STAGE							
Current Command	Vadj		0.19	0.2	0.21	V	
Output Current	Ю	RS=1.0Ω	180	200	220	mA	
Output Saturation Voltage (PNP+NPN)	Vsat	IO=200mA	-	0.3	0.45	V	

Typical Application Circuits

Constant Current Driver

Normal H-Bridge Driver

Application Informations

1. Logic Inputs and Outputs

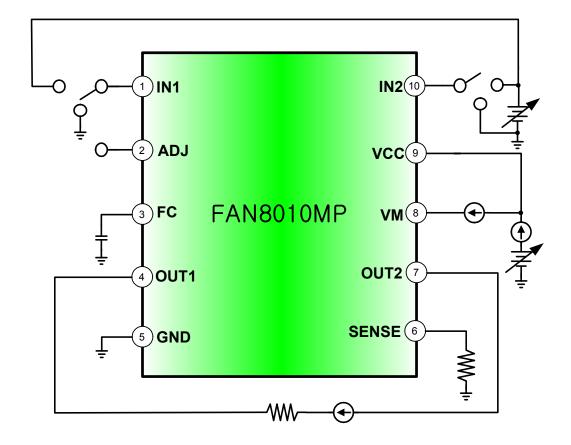
FAN8010MP has two input pins, IN1and IN2. The following truth table shows the relationship of the inputs and outputs.

IN1	IN2	OUT1	OUT2	Remark
L	L	Z	Z	Standby
Н	L	Н	L	Rotation
L	Н	L	Н	Rotation
Н	Н	Н	Н	Brake

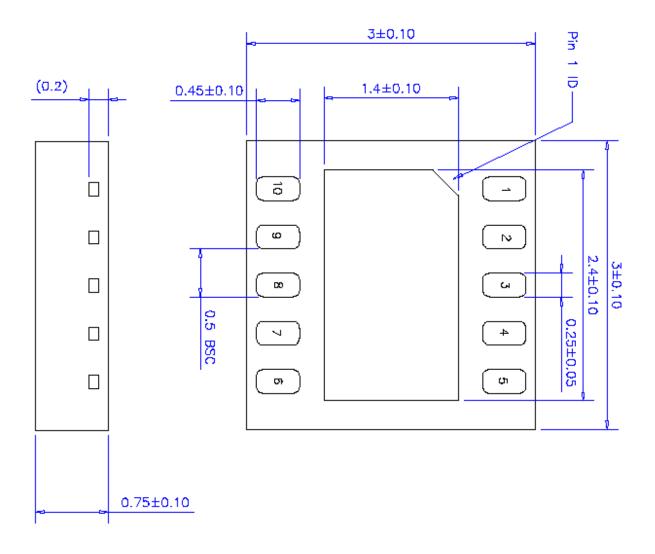
2. Constant Output Current Control

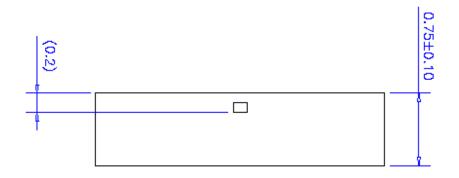
The voltage, VADJ pin is 0.2V typically which is obtained by a internal reference and a resistor divider as shown in the figure. The VADJ is used as the output current command and can be adjusted by the external resistor ROPT between ADJ and GND. The output current is converted to the voltage Vs through the current sense resistor Rs. By the negative feedback loop, the Vs is regulated to VADJ. Actually 50mW, which is the sum of the internal bonding resistance and internal metal resistance, should be added to the Rs. The output current is calculated as followings;

If oscillation or overshoot get loaded on the output current, they can be removed by connecting a ceramic capacitor ranged from 1nF to 10nF between the FC pin and GND. When a capacitor is used, output response time is delayed as the capacitance increases.


3. Unregulated Voltage Control

When the exact current control is not needed, the sense pin should be connected to the GND, and FAN8010MP is operated as a normal H-bridge driver.


4. Thermal Shutdown


Thermal Shutdown Circuit turns OFF all outputs when the junction temperature typically reaches 175°C. It is intended to protect the device from failures due to excessive junction temperature. The Thermal Shutdown has the hysteresis of 25°C approximately.

Test Circuits

Package Dimensions (Unit: mm)

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com