

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com/, use http://www.nexperia.com/

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

DATA SHEET

74ALVCH16601

18-bit universal bus transceiver (3-State)

Product specification
Supersedes data of 1998 Aug 31
IC24 Data Handbook

18-bit universal bus transceiver (3-State)

74ALVCH16601

FEATURES

- Complies with JEDEC standard no. 8-1A
- CMOS low power consumption
- Direct interface with TTL levels
- MULTIBYTETM flow-through standard pin-out architecture
- Low inductance multiple V_{CC} and ground pins for minimum noise and ground bounce
- Current drive ± 24 mA at 3.0 V
- All inputs have bus hold circuitry
- Output drive capability 50Ω transmission lines @ 85°C

DESCRIPTION

The 74ALVCH16601 is an 18-bit universal transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions. Data flow in each direction is controlled by output enable (\overline{OE}_{AB} and \overline{OE}_{BA}), latch enable (LE_{AB} and LE_{BA}), and clock (CP_{AB} and CP_{BA}) inputs. For A-to-B data flow, the device operates in the transparent mode when LE_{AB} is High. When LE_{AB} is Low, the A data is latched if CPAB is held at a High or Low logic level. If LEAB is Low, the A-bus data is stored in the latch/flip-flop on the Low-to-High transition of CP_{AB} . When \overline{OE}_{AB} is Low, the outputs are active. When $\overline{\text{OE}}_{AB}$ is High, the outputs are in the high-impedance state. The clocks can be controlled with the clock-enable inputs $(\overline{CE}_{BA}/\overline{CE}_{AB}).$

Data flow for B-to-A is similar to that of A-to-B but uses $\overline{\text{OE}}_{\text{BA}}$, LE_{BA} and CP_{BA}.

To ensure the high impedance state during power up or power down, \overline{OE}_{BA} and \overline{OE}_{AB} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

QUICK REFERENCE DATA

GND = 0V; $T_{amb} = 25^{\circ}C$; $t_r = t_f = 2.5 \text{ ns}$

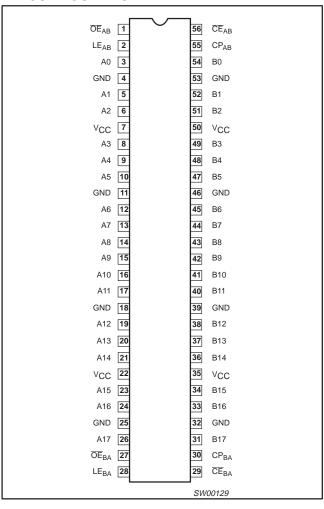
SYMBOL	PARAMETER	CONDITI	TYPICAL	UNIT	
t _{PHL} /t _{PLH}	Propagation delay An, Bn to Bn, An	V _{CC} = 2.5V, C _L = 30pF V _{CC} = 3.3V, C _L = 50pF	3.1 2.8	ns	
C _{I/O}	Input/Output capacitance		8.0	pF	
C _I	Input capacitance			4.0	pF
	Power dissipation capacitance per latch	$V_1 = GND \text{ to } V_{CC}^{-1}$	Outputs enabled	21	, r
C _{PD}	r ower dissipation capacitance per laten	AL = GIAD IO ACC.	Outputs disabled	3	pF

NOTES:

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	DWG NUMBER
56-Pin Plastic TSSOP Type II	−40°C to +85°C	74ALVCH16601 DGG	SOT364-1

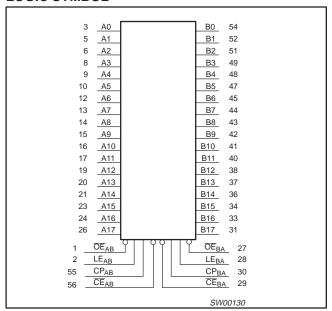
 C_{PD} is used to determine the dynamic power dissipation (P_D in μW):


 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz; C_L = output load capacity in pF; f_o = output frequency in MHz; V_{CC} = supply voltage in V;

 $[\]Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

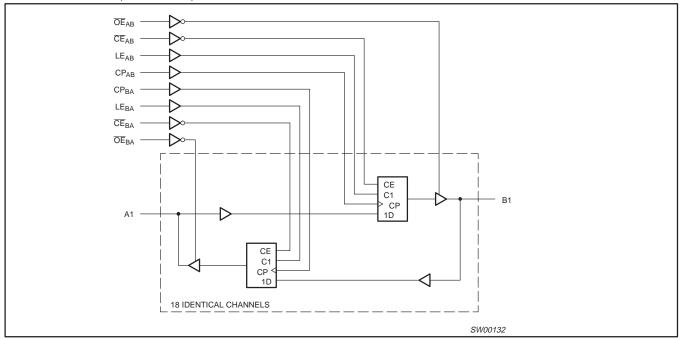
18-bit universal bus transceiver (3-State)

74ALVCH16601


PIN CONFIGURATION

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	ŌĒ _{AB}	Output enable A-to-B
2	LE _{AB}	Latch enable A-to-B
3, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26	A0 to A17	Data inputs/outputs
4, 11, 18, 25, 32, 39, 46, 53	GND	Ground (0V)
7, 22, 35, 50	V _{CC}	Positive supply voltage
27	OE _{BA}	Output enable B-to-A
28	LE _{BA}	Latch enable B-to-A
29	CE _{BA}	Clock enable B-to-A
30	CP _{BA}	Clock input B-to-A
54, 52, 51, 49, 48, 47, 45, 44, 43, 42, 41, 40, 38, 37, 36, 34, 33, 31	B0 to B17	Data inputs/outputs
55	CP _{AB}	Clock input A-to-B
56	CE _{AB}	Clock enable A-to-B


LOGIC SYMBOL

18-bit universal bus transceiver (3-State)

74ALVCH16601

LOGIC DIAGRAM (one section)

FUNCTION TABLE

		INPUTS			OUTPUTS	STATUS
CEXX	OE _{XX}	LE _{XX}	CP _{XX}	DATA	0011-013	314103
Х	Н	X	Х	Х	Z	Disabled
X	L L	H H	X X	H L	H L	Transparent
Н	L	L	Х	Х	NC	Hold
L L	L L	L L	↑	h I	H L	Clock + display
L	L L	L L	L H	X X	NC	Hold

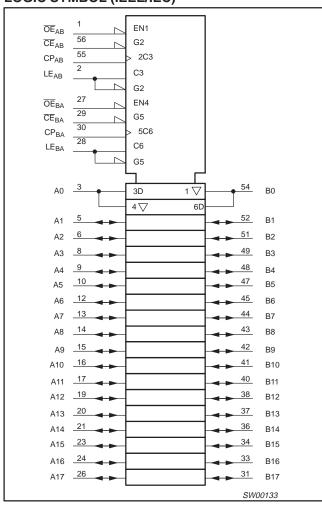
XX = AB for A-to-B direction, BA for B-to-A direction

H = HIGH voltage level L = LOW voltage level

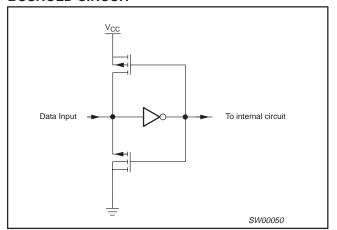
h = HIGH state must be present one setup time before the LOW-to-HIGH transition of CP_{XX} = LOW state must be present one setup time before the LOW-to-HIGH transition of CP_{XX}

X = Don't care

= LOW-to-HIGH level transition


NC = No change

Z = High impedance "off" state


18-bit universal bus transceiver (3-State)

74ALVCH16601

LOGIC SYMBOL (IEEE/IEC)

BUSHOLD CIRCUIT

18-bit universal bus transceiver (3-State)

74ALVCH16601

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIM	IITS	UNIT
STWIBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
V	DC supply voltage 2.5V range (for max. speed performance @ 30 pF output load)		2.3	2.7	V
V _{CC}	DC supply voltage 3.3V range (for max. speed performance @ 50 pF output load)		3.0	3.6	V
VI	DC Input voltage range		0	V _{CC}	V
Vo	DC output voltage range		0	V _{CC}	V
T _{amb}	Operating free-air temperature range		-40	+85	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 2.3 \text{ to } 3.0 \text{V}$ $V_{CC} = 3.0 \text{ to } 3.6 \text{V}$	0	20 10	ns/V

ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT	
V _{CC}	DC supply voltage		-0.5 to +4.6	V	
I _{IK}	DC input diode current	V ₁ < 0	- 50	mA	
\/	DC input voltage	For control pins ¹	-0.5 to +4.6	V	
VI	DC input voltage	For data inputs ¹	-0.5 to V _{CC} +0.5	1 `	
I _{OK}	DC output diode current	$V_{O} > V_{CC}$ or $V_{O} < 0$	±50	mA	
Vo	DC output voltage	Note 1	-0.5 to V _{CC} +0.5	V	
Io	DC output source or sink current	$V_O = 0$ to V_{CC}	±50	mA	
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA	
T _{stg}	Storage temperature range		-65 to +150	°C	
P _{TOT}	Power dissipation per package –plastic thin-medium-shrink (TSSOP)	For temperature range: –40 to +125 °C above +55°C derate linearly with 8 mW/K	600	mW	

NOTE:

^{1.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

18-bit universal bus transceiver (3-State)

74ALVCH16601

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltage are referenced to GND (ground = 0 V).

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Temp =	= -40°C to +8	5°C	UNIT
			MIN	MIN TYP ¹ MAX		
	LHOLLI Li t li	V _{CC} = 2.3 to 2.7V	1.7	1.2		.,
V_{IH}	HIGH level Input voltage	V _{CC} = 2.7 to 3.6V	2.0	1.5		'
	LOWING LINE TO THE TO	V _{CC} = 2.3 to 2.7V		1.2	0.7	V
V_{IL}	LOW level Input voltage	V _{CC} = 2.7 to 3.6V		1.5	0.8	1 '
		V_{CC} = 2.3 to 3.6V; V_I = V_{IH} or V_{IL} ; I_O = $-100\mu A$	V _{CC} -0.2	V _{CC}		
		$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -6mA$	V _{CC} -0.3	V _{CC} -0.08		1
V	LUCI Llaval autout valta sa	$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -12mA$	V _{CC} -0.6	V _{CC} - 0.26] ,
V _{OH}	HIGH level output voltage	$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -12mA$	V _{CC} -0.5	V _{CC} -0.14		1 °
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -12mA$	V _{CC} -0.6	V _{CC} -0.09		1
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -24$ mA		V _{CC} - 0.28		1
		V_{CC} = 2.3 to 3.6V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		GND	0.20	٧
	$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 6mA$			0.07	0.40	V
V_{OL}	LOW level output voltage	$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 12mA$		0.15	0.70	
		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 12mA$		0.14	0.40	V
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 24mA$		0.27	0.55	1
II	Input leakage current	$V_{CC} = 2.3 \text{ to } 3.6V;$ $V_{I} = V_{CC} \text{ or GND}$		0.1	5	μА
I _{OZ}	3-State output OFF-state current	V_{CC} = 2.7 to 3.6V; V_I = V_{IH} or V_{IL} ; V_O = V_{CC} or GND		0.1	10	μА
I _{CC}	Quiescent supply current	$V_{CC} = 2.3$ to 3.6V; $V_I = V_{CC}$ or GND; $I_O = 0$		0.2	40	μА
ΔI_{CC}	Additional quiescent supply current	$V_{CC} = 2.3V$ to 3.6V; $V_I = V_{CC} - 0.6V$; $I_O = 0$		150	750	μА
	Description of the second of t	$V_{CC} = 2.3V; V_I = 0.7V^2$	45	-		
I _{BHL}	Bus hold LOW sustaining current	$V_{CC} = 3.0V; V_1 = 0.8V^2$	75	150		μΑ
	Due held IIICH eveteining comme	$V_{CC} = 2.3V; V_I = 1.7V^2$	-45			
Івнн	Bus hold HIGH sustaining current	$V_{CC} = 3.0V; V_1 = 2.0V^2$	-75	-175		μΑ
I _{BHLO}	Bus hold LOW overdrive current	$V_{CC} = 3.6V^2$	500			μΑ
I _{BHHO}	Bus hold HIGH overdrive current	$V_{CC} = 3.6V^2$	-500			μА

All typical values are at T_{amb} = 25°C.
 Valid for data inputs of bus hold parts.

18-bit universal bus transceiver (3-State)

74ALVCH16601

AC CHARACTERISTICS FOR V_{CC} = 2.3V TO 2.7V RANGE GND = 0V; $t_f = t_f \le 2.0$ ns; $C_L = 30$ pF

				LIMITS		
SYMBOL	PARAMETER	WAVEFORM	\	$I_{CC} = 2.5 \text{V} \pm 0.2$	2V	UNIT
			MIN	TYP ¹	MAX	
	Propagation delay An, Bn to Bn, An		1.0	3.1	5.2	
t _{PHL} /t _{PLH}	Propagation delay LE _{AB,} LE _{BA} to Bn, An	1, 2	1.0	3.6	6.2	ns
	Propagation delay CP _{AB,} CP _{BA} to Bn, An		1.0	3.4	5.9	
t _{PZH} /t _{PZL}	3-State output enable time OE _{BA,} OE _{AB} to An,Bn	3	1.1	3.1	5.3	ns
t _{PHZ} /t _{PLZ}	3-State output enable time OE _{BA,} OE _{AB} to An,Bn	3	1.4	2.8	4.9	ns
	Pulse width HIGH LE _{AB} or LE _{BA}		3.3	1.6	-	
t _W	Pulse width HIGH or LOW CP _{AB} , CP _{BA}	2	3.3	2.0	-	ns
	Set-up time An _, Bn to CP _{AB} , CP _{BA}		2.3	-0.2	-	
t _{SU}	Set-up time An, Bn to LE _{AB,} LE _{BA}	4	1.3	0.1	-	ns
	Set-up time CE _{AB,} CE _{BA} to CP _{AB} , CP _{BA}		2.0	-0.4	-]
	Hold time An, Bn to CP _{AB} , CP _{BA}		1.2	0.3	-	
t _h	Hold time An, Bn to LE _{AB} , LE _{BA}	4	1.3	0.2	-	ns
	Hold time CE _{AB,} CE _{BA} to CP _{AB} , CP _{BA}		1.1	0.4	-]
f _{MAX}	Maximum clock frequency		150	390	-	MHz

^{1.} All typical values are at V_{CC} = 2.5V and T_{amb} = 25°C.

18-bit universal bus transceiver (3-State)

74ALVCH16601

AC CHARACTERISTICS FOR V_{CC} = 3.0V TO 3.6V RANGE AND V_{CC} = 2.7V GND = 0V; t_r = t_f = 2.5ns; C_L = 50pF

				LIMITS					
SYMBOL	PARAMETER	WAVEFORM	V _{CC}	= 3.3V ±	0.3V	\	/ _{CC} = 2.7	V	UNIT
			MIN	TYP ¹	MAX	MIN	TYP	MAX	1
	Propagation delay An, Bn to Bn, An		1.0	2.8	4.2		3.1	4.7	
t _{PHL} /t _{PLH}	Propagation delay LE _{AB} , LE _{BA} to Bn, An	1, 2	1.0	3.1	4.9		3.4	5.4	ns
	Propagation delay CP _{AB} , CP _{BA} to Bn, An		1.3	3.1	5.0		3.5	5.8	
t _{PZH} /t _{PZL}	3-State output enable time OE_{BA} to An	3	1.1	2.8	5.2		3.3	6.1	ns
t _{PHZ} /t _{PLZ}	3-State output disable time OE_{BA} to An	3	1.2	3.2	4.4		3.3	4.8	ns
	LE pulse width LE _{AB} , LE _{BA} to CP _{AB} , CP _{BA}	2	3.3	0.9		3.3	0.7		
t _W	LE pulse width HIGH or LOW CP _{AB} , CP _{BA}	2	3.3	0.9		3.3	1.2		ns
	Set-up time An, Bn to CP _{AB} , CP _{BA}		2.1	-0.2		2.4	0.0		
t _{SU}	Set-up time An, Bn to LE _{AB} , LE _{BA}	4	1.1	0.3		1.2	-0.2		ns
	Set-up time CE _{AB} , CE _{BA} to CP _{AB} , CP _{BA}		1.7	-0.2		2.0	-0.7		
	Hold time An, Bn to CP _{AB} , CP _{BA}		1.0	-0.1		1.1	0.3		
t _h	Hold time An, Bn to LE _{AB} , LE _{BA}	4	1.4	0.1		1.6	0.1		ns
	Hold time CE _{AB} , CE _{BA} to CP _{AB} , CP _{BA}	7	1.1	0.4		1.2	0.6		
f _{MAX}	Maximum clock frequency		150	340	İ	150	333		MHz

9

^{1.} All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

18-bit universal bus transceiver (3-State)

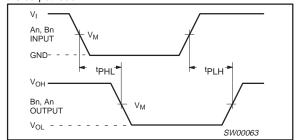
74ALVCH16601

AC WAVEFORMS

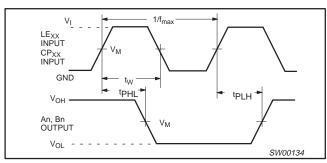
 V_{CC} = 2.3 TO 2.7 V RANGE

 $V_{M} = 0.5 V$

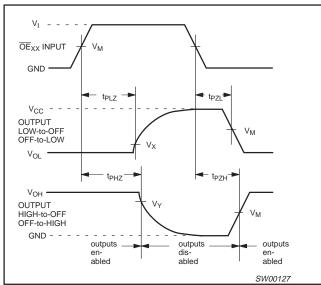
2. $V_X = V_{OL} + 0.15V$

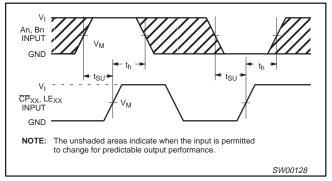

3. $V_Y = V_{OH} - 0.15V$

4. V_I = V_{CC}

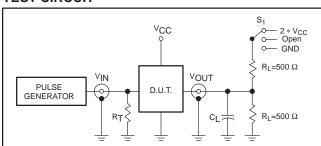

5. V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

V_{CC} = 3.0 TO 3.6 V RANGE AND V_{CC} = 2.7 V 1. V_{M} = 1.5 V


- 2. $V_X = V_{OL} + 0.3V$
- 3. $V_Y = V_{OH} 0.3V$ 4. $V_I = 2.7 V$
- 5. $\dot{V_{OL}}$ and V_{OH} are the typical output voltage drop that occur with


Waveform 1. Input (An, Bn) to output (Bn, An) propagation delays

Waveform 2. Latch enable input (LEAB, LEBA) and clock pulse input (CPAB, CPBA) to output propagation delays and their pulse width



Waveform 3. 3-State enable and disable times

Waveform 4. Data set-up and hold times for the An and Bn inputs to the LEAB, LEBA, CPAB and CPBA inputs

TEST CIRCUIT

Test Circuit for 3-State Outputs

SWITCH POSITION

TEST	SWITCH
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	2 * V _{CC}
t _{PHZ} /t _{PZH}	GND

V _{CC}	V_{IN}
< 2.7V 2.7 – 3.6V	V _{CC} 2.7V

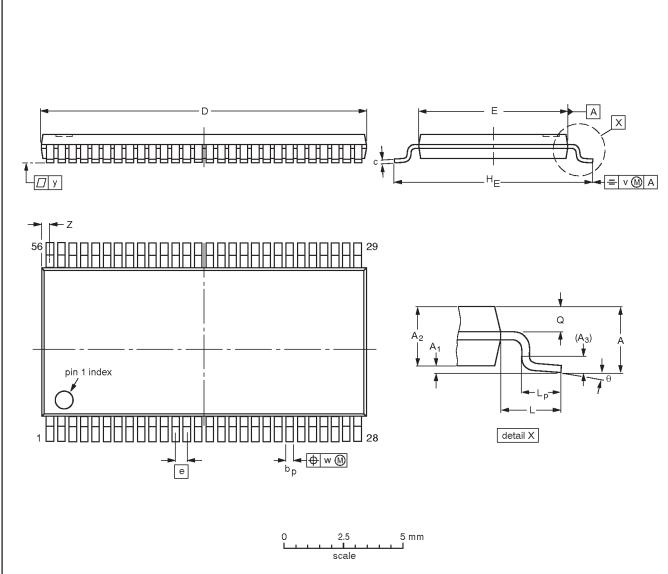
DEFINITIONS

R_L = Load resistor

C_L = Load capacitance includes jig and probe capacitance

 R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.

SW00047


Load circuitry for switching times

18-bit universal bus transceiver (3-State)

74ALVCH16601

TSSOP56: plastic thin shrink small outline package; 56 leads; body width 6.1mm

SOT364-1

DIMENSIONS (mm are the original dimensions).

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	z	θ
mm	1.2	0.15 0.05	1.05 0.85	0.25	0.28 0.17	0.2 0.1	14.1 13.9	6.2 6.0	0.5	8.3 7.9	1.0	0.8 0.4	0.50 0.35	0.25	0.08	0.1	0.5 0.1	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ		PROJECTION	1330E DATE
SOT364-1		MO-153EE				-93-02-03 95-02-10

18-bit universal bus transceiver (3-State)

74ALVCH16601

DEFINITIONS					
Data Sheet Identification	Product Status	Definition			
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.			
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.			
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.			

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

Date of release: 06-98

Document order number: 9397–750–04798

Let's make things better.

Philips Semiconductors

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

74ALVCH16601DGG,11 74ALVCH16601DGG:11 74ALVCH16601DGGY 74ALVCH16601DGGS