Dual 3-channel analog multiplexer/demultiplexer with supplementary switches
Rev. 03 - 16 December 2009
Product data sheet

## 1. General description

The HEF4952B is a dual 3-channel analog multiplexer/demultiplexer with supplementary switches and common select logic. Each switch features three independent inputs/outputs (pins $\mathrm{nY} 0, \mathrm{nY} 1$ and nY 2 ) an input/output nY 3 that can be connected to nY 2 or $\mathrm{V}_{\mathrm{SS}}$ and an input/output (nZ) common to nY0, nY1 and nY2. Three digital select inputs (S1, S2 and S3) are common to both switches. Inputs include clamp diodes, this enables the use of current limiting resistors to interface inputs in excess of $\mathrm{V}_{\mathrm{DD}}$.
$\mathrm{V}_{\mathrm{SS}}$ and $\mathrm{V}_{\mathrm{DD}}$ are the digital control supply pins.
The HEF4952B is suitable for use over the full industrial ( $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ) temperature range.
2. Features

- Fully static operation
- $5 \mathrm{~V}, 10 \mathrm{~V}$, and 15 V parametric ratings
- Schmitt-trigger action at control inputs
- Small signal switch

■ Standardized symmetrical output characteristics

- Operates across the full industrial temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Complies with JEDEC standard JESD 13-B


## 3. Applications

- Industrial
- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating


## 4. Ordering information

Table 1. Ordering information
All types operate from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

| Type number | Package |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Name | Description | Version |
| HEF4952BT | SO16 | plastic small outline package; 16 leads; body width 3.9 mm | SOT109-1 |

## 5. Functional diagram



Fig 1. Functional diagram


Fig 2. Logic diagram

## 6. Pinning information

### 6.1 Pinning

|  |  |
| :---: | :---: |
| 2 YO 1 | 16 1Y0 |
|  |  |
| $23 \quad 2$ | 151 z |
| $2 \mathrm{Y} 1 \bigcirc$ | 14 Y 1 |
| $\mathrm{V}_{\text {EE }} 4$ | 13 VDD |
| 2 Y 25 | 12 TY 2 |
| 2 Y 36 | 11 1Y3 |
| S1 7 | 10 S3 |
| $v_{\text {Ss }} 8$ |  |

Fig 3. Pin configuration

### 6.2 Pin description

Table 2. Pin description

| Symbol | Pin | Description |
| :--- | :--- | :--- |
| $V_{\text {EE }}$ | 4 | supply voltage |
| $V_{S S}$ | 8 | ground supply voltage |
| $S 1, S 2, S 3$ | $7,9,10$ | select input |
| $1 Y 0,1 Y 1,1 Y 2,1 Y 3,2 Y 0,2 Y 1,2 Y 2,2 Y 3$ | $16,14,12,11,1,3,5,6$ | independent input or output |
| $1 Z, 2 Z$ | 15,2 | common output or input |
| $V_{D D}$ | 13 | supply voltage |

## 7. Functional description

### 7.1 Function table

Table 3. Function table

| Input |  |  | Switch |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S3 | S2 | S1 | nSY0 | nSY1 | nSY2 | nSY3 | nSY4 |
| L | L | L | open | nY 1 to nZ | open | open | nY 3 to $\mathrm{V}_{\text {S }}$ |
| L | L | H | $\mathrm{nY0}$ to nZ | open | open | open | $n Y 3$ to $V_{S S}$ |
| L | H | L | open | open | nY 2 to nZ | open | $n Y 3$ to $V_{S S}$ |
| L | H | H | nYO to nZ | open | nY 2 to nZ | open | $n Y 3$ to $V_{\text {SS }}$ |
| H | L | L | open | $n \mathrm{Y} 1$ to nZ | open | nY 2 to nY3 | open |
| H | L | H | nY0 to nZ | open | open | nY 2 to nY3 | open |
| H | H | L | open | open | nY 2 to nZ | nY 2 to nY3 | open |
| H | H | H | open | open | open | nY 2 to nY3 | open |

[1] $\mathrm{H}=$ HIGH voltage level;
L = LOW voltage level.

## 8. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{S S}=0 \mathrm{~V}$ (ground).

| Symbol | Parameter | Conditions | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{D D}$ | supply voltage |  | -0.5 | +18 | V |
| $V_{\text {EE }}$ | supply voltage | referenced to $V_{\text {DD }}$ | [1] -18 | +0.5 | V |
| $\mathrm{I}_{\mathrm{IK}}$ | input clamping current | pins Sn ; $V_{1}<-0.5 \mathrm{~V} \text { or } \mathrm{V}_{1}>\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$ | - | $\pm 10$ | mA |
| $V_{1}$ | input voltage |  | -0.5 | $V_{D D}+0.5$ | V |
| $I_{\text {I/O }}$ | input/output current |  | - | $\pm 10$ | mA |
| $\mathrm{I}_{\mathrm{DD}}$ | supply current |  | - | 50 | mA |
| $\mathrm{T}_{\text {stg }}$ | storage temperature |  | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {amb }}$ | ambient temperature |  | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{P}_{\text {tot }}$ | total power dissipation | $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | [2] - | 500 | mW |
| P | power dissipation | per output | - | 100 | mW |

[1] To avoid drawing $\mathrm{V}_{\mathrm{DD}}$ current out of terminal Z , when switch current flows into terminals Y , the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal Z , no $\mathrm{V}_{\mathrm{DD}}$ current will flow out of terminals Y , and in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not exceed $\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{EE}}$.
[2] For SO16 package: $P_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.

## 9. Recommended operating conditions

Table 5. Recommended operating conditions

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $V_{D D}$ | supply voltage | see Figure 4 | 5 | - | 15 | V |
| $V_{E E}$ | supply voltage | see Figure 4 | -15 | - | 0 | $V$ |
| $V_{1}$ | input voltage |  | 0 | - | $V_{D D}$ | $V$ |
| $T_{\text {amb }}$ | ambient temperature | in free air | -40 | - | +85 | ${ }^{\circ} \mathrm{C}$ |



Fig 4. Operating area as a function of the supply voltages

## 10. Static characteristics

Table 6. Static characteristics
$V_{S S}=V_{E E}=0 V ; V_{I}=V_{S S}$ or $V_{D D}$ unless otherwise specified.

| Symbol | Parameter | Conditions | VD | $\mathrm{T}_{\mathrm{amb}}=-40{ }^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max | Min | Max |  |
| 1 | input leakage current |  | 15 V | - | $\pm 0.3$ | - | $\pm 0.3$ | - | $\pm 1.0$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {S(OFF) }}$ | OFF-state leakage current | Y port; per channel; see Figure 5 | 15 V | - | - | - | 200 | - | - | nA |
| IDD | supply current | $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$ | 5 V | - | 20 | - | 20 | - | 150 | $\mu \mathrm{A}$ |
|  |  |  | 10 V | - | 40 | - | 40 | - | 300 | $\mu \mathrm{A}$ |
|  |  |  | 15 V | - | 80 | - | 80 | - | 600 | $\mu \mathrm{A}$ |
| $\mathrm{Cl}_{1}$ | input capacitance | Sn inputs | - | - | - | - | 7.5 | - | - | pF |

### 10.1 Test circuits



Fig 5. Test circuit for measuring OFF-state leakage current $\mathrm{n} Y \mathrm{n}$ port

### 10.2 On resistance

Table 7. ON resistance
$T_{a m b}=25^{\circ} \mathrm{C} ; I_{S W}=200 \mu \mathrm{~A} ; V_{S S}=V_{E E}=0 \mathrm{~V}$.

| Symbol | Parameter | Conditions | $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$ | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\mathrm{ON}}$ | ON resistance | $\mathrm{V}_{1}=0 \mathrm{~V}$; see Figure 6 and Figure 7 | 10 V | 45 | 150 | $\Omega$ |
|  |  | $V_{1}=2.5 \mathrm{~V}$; see Figure 6 and Figure 7 | 10 V | 65 | 365 | $\Omega$ |
|  |  | $V_{1}=5.0 \mathrm{~V}$; see Figure 6 and Figure 7 | 10 V | 110 | 360 | $\Omega$ |
| $\Delta \mathrm{R}_{\mathrm{ON}}$ | ON resistance mismatch between channels | $\mathrm{V}_{1}=2.5 \mathrm{~V}$; see Figure 6 | 10 V | 10 | - | $\Omega$ |

### 10.2.1 On resistance waveform and test circuit



$$
\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{SW}} / \mathrm{I}_{\mathrm{SW}}
$$

Fig 6. Test circuit for measuring $\mathrm{R}_{\mathrm{ON}}$


Fig 7. Typical $R_{\mathrm{ON}}$ as a function of input voltage

## 11. Dynamic characteristics

Table 8. Dynamic characteristics
$T_{\text {amb }}=25^{\circ} \mathrm{C}$; $V_{S S}=V_{E E}=0 \mathrm{~V}$; for test circuit see Figure 10.

| Symbol | Parameter | Conditions | $\mathrm{V}_{\mathrm{DD}}$ | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {PHL }}$ | HIGH to LOW propagation delay | $n Y n, n Z$ to $n Z, n Y n ; V_{1}=1.0 \mathrm{~V}$; see Figure 8 | 5 V | 5 | - | ns |
|  |  |  | 10 V | 3 | 6 | ns |
|  |  |  | 15 V | 2 | - | ns |
| $\mathrm{t}_{\text {PLH }}$ | LOW to HIGH propagation delay | $n Y n, n Z$ to $n Z, n Y n ; V_{1}=1.0 \mathrm{~V}$; see Figure 8 | 5 V | 5 | - | ns |
|  |  |  | 10 V | 3 | 6 | ns |
|  |  |  | 15 V | 2 | - | ns |
| $t_{\text {PZL }}$ | OFF-state to LOW propagation delay | Sn to $\mathrm{nYn}, \mathrm{nZ} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{EE}}$; see Figure 9 | 5 V | 125 | - | ns |
|  |  |  | 10 V | 50 | 100 | ns |
|  |  |  | 15 V | 35 | - | ns |
| $\mathrm{t}_{\text {PZH }}$ | OFF-state to HIGH propagation delay | Sn to $\mathrm{nYn}, \mathrm{nZ} ; \mathrm{V}_{\mathrm{I}}=1.0 \mathrm{~V}$; see Figure 9 | 5 V | 125 | - | ns |
|  |  |  | 10 V | 50 | 100 | ns |
|  |  |  | 15 V | 35 | - | ns |

### 11.1 Waveforms and test circuit



Measurement points are given in Table 9.
Fig 8. $n Y n, n Z$ to $n Z, n Y n$ propagation delays


Measurement points are given in Table 9.
Fig 9. Enable and disable times

Table 9. Measurement points

| Supply voltage | Input | Output |
| :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{DD}}$ | $\mathrm{V}_{\mathbf{M}}$ | $\mathrm{V}_{\mathbf{M}}$ |
| 5 V to 15 V | $0.5 \mathrm{~V}_{\mathrm{DD}}$ | $0.5 \mathrm{~V}_{\mathrm{DD}}$ |



Test data is given in Table 10.
Definitions:
DUT = Device Under Test.
$R_{T}=$ Termination resistance should be equal to output impedance $Z_{o}$ of the pulse generator.
$C_{L}=$ Load capacitance including test jig and probe.
$\mathrm{R}_{\mathrm{L}}=$ Load resistance .
Fig 10. Test circuit for measuring switching times

Table 10. Test data

| Input |  |  |  | Load |  | S1 position |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| nYn, nZ | Sn | $t_{r}, t_{\text {f }}$ | $\mathrm{V}_{\mathrm{M}}$ | $\mathrm{C}_{\mathrm{L}}$ | $\mathbf{R}_{\mathrm{L}}$ | $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ | $\mathrm{t}_{\text {PZH }}$ | $\mathrm{t}_{\text {PZL }}$ | Other |
| $\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\text {EE }}$ | $V_{\text {DD }}$ or $V_{S S}$ | $\leq 20 \mathrm{~ns}$ | $0.5 \mathrm{~V}_{\mathrm{DD}}$ | 50 pF | $10 \mathrm{k} \Omega$ | $V_{\text {EE }}$ | $V_{\text {EE }}$ | 1.0 V | $V_{\text {EE }}$ |

Table 11. Dynamic power dissipation $P_{D}$
$P_{D}$ can be calculated from the formulas shown; $V_{E E}=V_{S S}=0 \mathrm{~V} ; t_{r}=t_{f} \leq 20 \mathrm{~ns} ; T_{a m b}=25{ }^{\circ} \mathrm{C}$.

| Symbol | Parameter | $V_{D D}$ | Typical formula for $P_{D}(\mu \mathrm{~W})$ | Where: |
| :--- | :--- | :--- | :--- | :--- |
| $P_{D}$ | dynamic power <br> dissipation | 5 V | $P_{D}=1300 \times f_{i}+\Sigma\left(f_{o} \times C_{L}\right) \times V_{D D^{2}}$ | $f_{i}=$ input frequency in $M H z ;$ |
|  | 10 V | $P_{D}=6100 \times f_{i}+\Sigma\left(f_{o} \times C_{L}\right) \times V_{D D^{2}}$ | $f_{o}=$ output frequency in $M H z ;$ |  |
|  | 15 V | $P_{D}=15600 \times f_{i}+\Sigma\left(f_{o} \times C_{L}\right) \times V_{D D^{2}}$ | $C_{L}=$ output load capacitance in $p F ;$ |  |
|  |  |  | $V_{D D}=$ supply voltage in $V ;$ |  |
|  |  |  | $\Sigma\left(f_{o} \times C_{L}\right)=$ sum of the outputs. |  |

### 11.2 Transfer characteristics

Table 12. Control input characteristics
$V_{S S}=V_{E E}=0 \mathrm{~V}$ unless otherwise specified.

| Symbol | Parameter | Conditions | $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |
| $\mathrm{V}_{\text {T+ }}$ | positive-going threshold voltage | $V_{D D}=5 \mathrm{~V}$ | - | 2.90 | - | 3.00 | V |
|  |  | $V_{D D}=10 \mathrm{~V}$ | - | 4.37 | - | 4.50 | V |
| $\mathrm{V}_{\text {T- }}$ | negative-going threshold voltage | $V_{D D}=5 \mathrm{~V}$ | 1.03 | - | 1.00 | - | V |
|  |  | $V_{D D}=10 \mathrm{~V}$ | 2.10 | - | 2.00 | - | V |
| $\mathrm{V}_{\mathrm{H}}$ | hysteresis voltage | $V_{D D}=5 \mathrm{~V}$ | 0.16 | - | 0.10 | - | V |
|  |  | $V_{D D}=10 \mathrm{~V}$ | 0.11 | - | 0.10 | - | V |

## 12. Package outline



DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | $\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | c | $D^{(1)}$ | $E^{(1)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $L_{p}$ | Q | v | w | y | $Z^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.75 | $\begin{aligned} & \hline 0.25 \\ & 0.10 \end{aligned}$ | $\begin{aligned} & \hline 1.45 \\ & 1.25 \end{aligned}$ | 0.25 | $\begin{aligned} & \hline 0.49 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$ | $\begin{gathered} \hline 10.0 \\ 9.8 \end{gathered}$ | $\begin{aligned} & \hline 4.0 \\ & 3.8 \end{aligned}$ | 1.27 | $\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$ | 1.05 | $\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$ | 0.25 | 0.25 | 0.1 | $\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$ | $\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$ |
| inches | 0.069 | $\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$ | 0.01 | $\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$ | $\begin{aligned} & 0.0100 \\ & 0.0075 \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$ | 0.05 | $\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$ | 0.041 | $\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$ | $\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$ | 0.01 | 0.01 | 0.004 | $\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$ |  |

Note

1. Plastic or metal protrusions of 0.15 mm ( 0.006 inch) maximum per side are not included.

| OUTLINE VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  |
| SOT109-1 | 076E07 | MS-012 |  | $\pm$ + | $\begin{aligned} & -99-12-27 \\ & 03-02-19 \end{aligned}$ |

Fig 11. Package outline SOT109-1 (SO16)

## 13. Revision history

Table 13. Revision history

| Document ID | Release date | Data sheet status | Change notice | Supersedes |
| :---: | :---: | :---: | :---: | :---: |
| HEF4952B_3 | 20091216 | Product data sheet | - | HEF4952B_2 |
| Modifications: | - Title changed from 8-channel analog multiplexer/demultiplexer. <br> - Section 1 "General description" modified. <br> - Section 8 "Limiting values" $I_{\text {IK }}$ conditions updated. <br> - Abbreviations section removed. |  |  |  |
| HEF4952B_2 | 20091002 | Product data sheet | - | HEF4952B_1 |
| HEF4952B_1 | 20060320 | Product data sheet | - | - |

## 14. Legal information

### 14.1 Data sheet status

| Document status $\underline{[1][2]}$ | Product status $\underline{[3]}$ | Definition |
| :--- | :--- | :--- |
| Objective [short] data sheet | Development | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. |
| Product [short] data sheet | Production | This document contains the product specification. |

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

### 14.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.
Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

### 14.3 Disclaimers

General - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.
Terms and conditions of sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.
No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

### 14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

## 15. Contact information

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
16. Contents
1 General description ..... 1
2 Features ..... 1
3 Applications ..... 1
4 Ordering information ..... 1
5 Functional diagram ..... 2
6 Pinning information. ..... 4
6.1 Pinning ..... 4
6.2 Pin description ..... 4
7 Functional description ..... 5
7.1 Function table ..... 5
8 Limiting values ..... 5
9 Recommended operating conditions ..... 6
10 Static characteristics ..... 6
10.1 Test circuits ..... 7
10.2 On resistance ..... 7
10.2.1 On resistance waveform and test circuit. ..... 7
11 Dynamic characteristics ..... 8
11.1 Waveforms and test circuit ..... 9
11.2 Transfer characteristics ..... 11
12 Package outline ..... 12
13 Revision history ..... 13
14 Legal information ..... 14
14.1 Data sheet status ..... 14
14.2 Definitions ..... 14
14.3 Disclaimers ..... 14
14.4 Trademarks. ..... 14
15 Contact information ..... 14
16 Contents ..... 15

## Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

NXP:
HEF4952BT,112 HEF4952BT,118

