
Freescale USB Device Stack
Users Guide

Document Number:USBUG
Rev. 12
05/2012

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property of their
respective owners.

© 1994-2008 ARC™ International. All rights reserved.

© Freescale Semiconductor, Inc. 2010–2012. All rights reserved.

Document Number: USBUG
Rev. 12
05/2012

USB Users Guide, Rev. 12

Freescale Semiconductor iii

Revision history

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be
the most current. Your printed copy may be an earlier revision. To verify you have the latest information
available, refer to:

http://www.freescale.com

The following revision history table summarizes changes contained in this document.

Revision
Number

Revision
Date Description of Changes

Rev. 1 05/2009 Alpha Customer Release.

Rev. 2 05/2009 Added CDC feature description.

Rev. 3 06/2009

• Added ColdFire V1 support and PHDC Multi-Specialization Device Demo
application.

• Changed USB to Serial Demo name to Virtual Communication (COM)
Demo.

Rev. 4 09/2009 Launch release. Customized for Medical Applications.

Rev. 5 10/2009 Added SD Card demo application.

Rev. 6 04/2010
Updated USB Stack installation and uninstallation and Medical Applications
USB Stack directory structure diagram to add support for S08MM128,
S08JE128, MCF51MM256, and MCF51JE256 devices.

Rev. 7 06/2010
• Added support for CFV2 devices.
• Rebranded Medical Applications USB Stack to Freescale USB Stack with

PHDC.

Rev. 8 09/2010
• Added support for CodeWarrior 10
• Added USB audio demo application
• Fig 2-1:Freescale USB stack with PHDC Directory Structure updated

Rev. 9 01/2011
• Added USB DFU demo application
• Update images in various demo application
• Minor editorial changes

Rev. 10 07/2011
• Added battery charging demo application
• USB FATFS User Guide incorporated in the USB User Guide

Rev. 11 03/2012

• Deleted chapters “FAT File System” and “AppendixJ_FATFS_Demo_Test”
• Replaced the term "Freescale USB Stack with PHDC" with "Freescale USB

Stack"
• Updated Installer screenshots
• Editorial Changes

http://www.freescale.com

USB Users Guide, Rev. 12

iv Freescale Semiconductor

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
© Freescale Semiconductor, Inc., 2010–2012. All rights reserved.

Rev. 12 05/2012

Added
• Appendix J: Video Device Class Demo Applications
• Appendix K: MSD and CDC Composite Demo
• Appendix L: HID Audio Video Composite Demo

Revision
Number

Revision
Date Description of Changes

USB Users Guide, Rev. 12

Freescale Semiconductor v

Chapter 1
Before You Begin

1.1 About Freescale USB Stack .1
1.2 About this book .1
1.3 Reference material .3
1.4 Acronyms and abbreviations .3
1.5 Important terms .4

Chapter 2
Getting Familiar

2.1 Introduction .7
2.2 Software suite .7
2.3 Directory structure .7

Chapter 3
Freescale USB Stack Architecture

3.1 Architecture overview .9
3.2 Software flows .10

3.2.1 Initialization flow .10
3.2.2 De-initialization flow .12
3.2.3 Transmission flow .12
3.2.4 Reception flow .14

Chapter 4
Developing New Class Drivers

4.1 Introduction .17
4.2 Steps for developing new class drivers .18

4.2.1 Directory structure .18
4.2.2 Class initialization .18
4.2.3 Class callback routine .20
4.2.4 Class request routine .22

4.2.4.1 Endpoint service routine .23

Chapter 5
Developing Applications

5.1 Introduction .25
5.2 Application interfaces .25
5.3 Developing an Application .25
5.4 Application design .38

5.4.1 Main Application Function .39
5.4.2 Callback Function .39

USB Users Guide, Rev. 12

vi Freescale Semiconductor

Appendix A
Working with the Software

A.1 Introduction .41
A.1.1 Preparing the setup .41

A.1.1.1Software setup .41
A.1.1.2Hardware setup .45

A.1.2 Building the Application with CodeWarrior 6 and CodeWarrior 746
A.1.3 Running the Application with CodeWarrior 6 and CodeWarrior 747
A.1.4 Building and Running the Application with CodeWarrior 1050

A.2 Uninstall Freescale USB Stack Software .56
A.3 Important files .58

Appendix B
Human Interface Device (HID) Demo

B.1 Setting up the demo .59
B.2 Running the demo .59

Appendix C
Personal Healthcare — Multi-Specialization Device Demo

C.1 Setting up the demo .61
C.2 Running the demo .61

Appendix D
Human Interface Device (HID) Demo

D.1 Setting up the demo .71
D.2 Running the demo .71

Appendix E
Personal Healthcare – Weigh Scale Device Demo

E.1 Setting up the demo .73
E.2 Running the demo .73

Appendix F
SD Card Demo

F.1 Setting up the demo .79
F.2 Running the demo .79

Appendix G
USB Audio Demo

G.1 Audio speaker demo .81
G.1.1 Setting up the demo .81
G.1.2 Running the demo .82

G.2 Audio generator demo .90

USB Users Guide, Rev. 12

Freescale Semiconductor vii

G.2.1 Setting up the demo .90
G.2.2 Running the demo .91

Appendix H
DFU Class Demo

H.1 Setting up the demo .93
H.2 Running the demo .94

H.2.1 Driver installation .94
H.2.2 Downloading firmware .101
H.2.3 Upload firmware .107

Appendix I
Battery Charging Device Demo Application

I.1 Setting up the demo .109
I.2 Running the demo .110

Appendix J
Video Device Class Demo Applications

J.1 Introduction .113
J.1.1 About Video Class demo .113

J.2 USB Video Demo – Internal Flash .113
J.2.1 Overview .113
J.2.2 Setting up the demo .113
J.2.3 Running the demo .114

J.2.3.1Preparing .114
J.3 USB Video Demo — SD card .116

J.3.1 Overview .116
J.3.2 Setting up the demo .116
J.3.3 Running the demo .117
J.3.4 Preparing video data .117

J.3.4.1Running video demo application .121

Appendix K
MSD and CDC Composite Demo

K.1 Introduction .123
K.1.1 About MSD and CDC demo .123
K.1.2 Reference material .123
K.1.3 Acronyms and Abbreviations .123

K.2 Setting up the demo .124
K.3 . Running the demo 125

Appendix L
HID Audio Video Composite Demo

L.1 Introduction .143

USB Users Guide, Rev. 12

viii Freescale Semiconductor

L.1.1 About HID_Audio_Video demo .143
L.1.2 Reference material .143
L.1.3 Acronyms and Abbreviations .143

L.2 Setting up the demo .144
L.3 Running the demo .145
L.4 Video virtual camera feature demo .147
L.5 Audio speaker feature demo .149
L.6 HID mouse feature demo .152

USB Users Guide, Rev. 12

Freescale Semiconductor 1

Chapter 1 Before You Begin

1.1 About Freescale USB Stack
Universal Serial Bus commonly known as USB is a serial bus protocol that can be used to connect external
devices to the host computer. In today's world, it is one of the most popular interfaces connecting devices
such as microphone, keyboards, storage devices, cameras, printers, and many more. USB interconnects are
also getting more and more popular in the medical segments. The Freescale USB Stack enables you to use
Freescale 8-bit, 16-bit, and 32-bit MCUs (for example: Kinetis k40, S08, CFV1, and so on) silicon to make
the devices listed above.

It abstracts the details of Kinetis k40, S08, CFV1, and CFV2 devices, and the USB IP used. It provides a
higher level interface to the application. The application developers only need to concentrate on the
application in hand without worrying about the USB details.

1.2 About this book
This book describes the Freescale USB Stack architecture. Table 1-1 shows the summary of chapters
included in this book.

Table 1-1. USBUG summary

Chapter Title Description

Before you begin This chapter provides the prerequisites of reading this book.

Getting Familiar This chapter provides the information about the Freescale USB Stack software suite.

USB Stack Architecture This chapter discusses the architecture design of the Freescale USB suite.

Working with the Software This chapter provides information on how to build, run, and debug drivers and
applications.

Developing Class Drivers This chapter discusses the steps a developer must take to develop applications on top of
the pre developed classes.

Human Interface Device
(HID) Demo

This chapter provides the setup and running HID demo using USB stack – Kinetis k40,
S08, CFV1, and CFV2 devices are used as examples.

Personal Healthcare – Weigh
Scale Device Demo

This chapter provides the setup and running Personal Healthcare – Weigh Scale device
demo using USB stack – Kinetis k40, S08, CFV1, and CFV2 devices are used as
examples.

Virtual Communication
(COM) Demo

This chapter provides the setup and running Communication Device Class (CDC) demo
using USB stack – Kinetis k40, S08, CFV1, and CFV2 devices are used as examples.

Personal Healthcare –
Multi-Specialization Device
Demo

This chapter provides the setup and running Personal Healthcare – Multi-Specialization
device demo using USB stack – Kinetis k40, S08, CFV1, and CFV2 devices are used as
examples.

Before You Begin

USB Users Guide, Rev. 12

2 Freescale Semiconductor

SD Card Demo This chapter provides the setup and running Mass Storage Class (MSC) demo using USB
stack – Kinetis k40, S08, CFV1, and CFV2 devices are used as examples.

USB Audio Demo This chapter provides information about Audio Demos – how to run Audio Speaker Demo
and Audio Generator Demo.

DFU Class Demo This chapter provides information about DFU Class Demo – how to setup the DFU Class
Demo and how to run the DFU Class Demo.

Battery Charging Demo
Application

This chapter provides the setup and running the Battery Charging Demo Application using
USB stack – Kinetis K40, K53 and K60, CF+

FATFS Demo and Test
application

This chapter provides the setup and running USB FATFS demo example and USB FATFS
test example for CFV1 processors.

Before You Begin

USB Users Guide, Rev. 12

Freescale Semiconductor 3

1.3 Reference material
Use this book in conjunction with:

• Freescale USB Stack Device API Reference Manual (document USBAPIRM)

• Freescale USB Stack Host Users Guide (document USBHOSTUG)

• S08 USB Device Source Code

• ColdFire V1 USB Device Source Code

• ColdFire V2 USB Device Source Code

• USB Audio Class API Reference Manual

• USB Video Class API Reference Manual

• USB MCD Class API Reference Manual

• USB CDC Class API Reference Manual

• USB BM device stack source

• Application Note: Audio Reproduction on HCS12 Microcontrollers (AN2250), Rev. 0, 2002

• File Allocation Table information at http://en.wikipedia.org/wiki/File_Allocation_Table

• FATFS Module Application Note at http://elm-chan.org/fsw/ff/en/appnote.html

• USB Host source code.

• USB FATFS source code

• USB HID Class API Reference Manual

• USB BM device stack source code

For better understanding, refer to the following documents:

• USB Specification Revision 1.1

• USB Specification Revision 2.0

• USB Device Class Definition for Audio Devices Revision 1.1

• USB Device Class Definition for Video Devices Revision 1.0a

• S08 Core Reference

• ColdFire V2 Core Reference

• ColdFire V1 Core Reference

• CodeWarrior Help

• MCF51JM128 Reference Manual

• USB Device Class Definition for DFU Devices Revision 1.1 (also called DFU class specificatio).

• MCF52259 Reference Manual

• Battery Charging Specification Rev 1.1

• K60 Sub-Family Reference Manual

http://en.wikipedia.org/wiki/File_Allocation_Table
http://en.wikipedia.org/wiki/File_Allocation_Table
http://elm-chan.org/fsw/ff/en/appnote.html
http://elm-chan.org/fsw/ff/en/appnote.html
http://elm-chan.org/fsw/ff/en/appnote.html

Before You Begin

USB Users Guide, Rev. 12

4 Freescale Semiconductor

1.4 Acronyms and abbreviations

API Application programming Interface

CDC Communication Device Class

CDP Charging Downstream Port

CFV1 ColdFire V1 (MCF51JM128 CFV1 device is used in this document)

CFV2 ColdFire V2 (MCF52221, MCF52259, and MCF52277 CFV2 device is
used in this document)

COM Communication

DBCS Double-Byte Character Set

DCP Dedicated Charging Port

EVB Evaluation

DFU Device Firmware Upgrade

FAT File Allocation Table

FATFS File Allocation Table file system

HCI Host Controller Interface

HID Human Interface Device

IDE Integrated Development Environment

JM60 MC9S08JM60 Device

JM16 MC9S08JM16 Device

JM128 MCFJM128 Device

JS16 MC9S08JS16 Device

K60 MK60N512VMD Device

MBR Master Boot Record

MSD Mass Storage Device

MSC Mass Storage Class

M52259 MCF52259 Device

OEM Original Equipment Manufacturer

PC Personal Computer

PD Portable Device

PHD Personal Healthcare Device

PHDC Personal Healthcare Device Class

SCSI Small Computer System Interface

SDP Standard Downstream Port

USB Universal Serial Bus

Before You Begin

USB Users Guide, Rev. 12

Freescale Semiconductor 5

1.5 Important terms
Table 1-2 shows the terms used throughout the book.

Table 1-2. Important terms

Term Description

Class Driver These are the high level function specific drivers that can control
large number of different devices of a similar type.

Code Page Code page is another name for character encoding. It consists of
a table of values that describes the character set for a particular
language.

Cluster To reduce the overhead of managing on-disk data structures, the
file system does not allocate individual sectors, but contiguous
groups of sectors, called clusters.

Continua Alliance This is a consortium of companies to establish standards for the
medical segment devices.

Expansion Card This is the card where the silicon is embedded and can be loaded
on to the hardware board.

DemoJM This is the physical hardware where the expansion card with the
silicon is mounted.

Enumeration It is a process in the USB protocol by which the host identifies the
devices connected to it.

FAT12 A type of FAT file system that uses 12 bits value to address
clusters.

FAT16 A type of FAT file system that uses 16 bits value to address
clusters.

FAT32 A type of FAT file system that uses 32 bits value (in which 4 bits
are reserved) to address clusters.

Kinetis k40, S08, CFV1,
and CFV2 Processors

These are low-end family of processors provided by the Freescale.

Long File Name In a file system that supports long file names, a file or directory
name can be as long as 255 characters including one or more dots
and extensions. A complete path of the file has a maximum of 260
characters, so volumes with many levels of directories must use
shorter names.

USB Low Level Drivers USB low level drivers are the driver software layers that interface
the hardware and abstracts them for the class drivers.

USB Chapter 9
Requests

These are the framework requests made by the host to the device
that the device must respond to. These are defined in Chapter 9 of
the USB specification document.

/wiki/Character_encoding
/wiki/Disk_sector

Before You Begin

USB Users Guide, Rev. 12

6 Freescale Semiconductor

Attach versus Connect A downstream device is considered to be attached to an upstream
port when there is a physical USB cable between them.
A downstream device is considered to be connected to an
upstream port when there is attached to the upstream port and
when the downstream device has pulled either the D+ or D- data
line high through a 1.5 K resistor in oeder to operate either as a low
or full speed device.

Downstream Port A Downstream Port refers to either a Standard Downstream Port
(SDP) or a Charging Downstream Port (CDP).

USB Charger A USB Charger is a device with Dedicated Charging Port, such as
a wall adapter or car power adapter.

Portable Device A Portable Device is considered to be any USB or OTG device that
is capable of operating from its own battery and it also capable of
drawing current from the USB port for its purposes of operating
and/or charging its battery.

Weak Battery
Threshold

Minimum voltage charge level of a battery such that above this
threshold the device is considered to function normally.

Dead Battery
Threshold

Maximum charge level of a battery such that below this threshold
the device is assumed to not been able to function anymore.

Sector Sector is the smallest storage unit in a mass storage medium.
Typically, a sector holds 512 bytes of information. However, some
medium can have sector size more than 512 bytes.

Partition A partition is a logical division on mass storage device. The term
is also known as Volume or Logical Disk.

Table 1-2. Important terms (continued)

Term Description

USB Users Guide, Rev. 12

Freescale Semiconductor 7

Chapter 2 Getting Familiar

2.1 Introduction
The Freescale USB Stack device contains the low level driver code, commonly used class drivers, and
some basic applications. This document intends to help you develop an understanding of the stack and to
assist you in developing more classes and applications. The document is targeted for firmware application
developers who would like to develop the applications using USB as the transport.

2.2 Software suite
The software suite comprises of the USB low level drivers for the Kinetis k40, S08, CFV1, and CFV2
families, generic class drivers, and applications. The class drivers are programmed with generic code, so
they can be used with other processors like CFV1 and CFV2 without a line of code change if the low level
drivers comply with the driver interface.

2.3 Directory structure
The software suite has a standard directory structure. You can extend it easily to accommodate more
applications, classes, and low level drivers for different processor families.

Figure 2-1 shows the directory structure.

Getting Familiar

USB Users Guide, Rev. 12

8 Freescale Semiconductor

Figure 2-1. Freescale USB Stack directory structure

USB Users Guide, Rev. 12

Freescale Semiconductor 9

Chapter 3 Freescale USB Stack Architecture

3.1 Architecture overview
Figure 3-1 shows the Freescale USB Stack architecture.

Figure 3-1. Freescale USB Stack Architecture

The USB stack is mainly divided into three layers with the applications being developed on top of them.
The layered architecture helps the application developers concentrate on developing the application
without being concerned about the other layers. The applications can also be seamlessly ported over to
other cores after the low level driver for that core is available.

The class driver layers implement various class drivers that have different functions. The USB chapter 9
requests are also part of the functionality of the class driver layer. These are implemented as common
module and can be used as is to develop new classes. Some of the examples here are storage, human
interface device, personal healthcare device, and so on.

This driver interfaces with the device layer for its lower layer functions. For some functions, the device
layers do not provide additional functionality and call the lower layer functions. Most of the validation for
parameters is done in this layer. This layer must be independent of any underlying hardware and therefore
can be ported on the different hardware platform with minimal changes.

Application Application

Class Driver Class Driver

Device Layer

Device API

Controller API

Hardware Register Interface

Controller Controller Controller

USB Hardware USB Hardware USB Hardware

Freescale USB Stack Architecture

USB Users Guide, Rev. 12

10 Freescale Semiconductor

The device layer can sit on top of the controller layer that is the hardware dependent layer and interfaces
the hardware registers.

As stated earlier, the layered architecture helps the application developers to develop applications.
However, it does not limit the developer to interface lower layer APIs if they prefer to.

Figure 3-2. Kinetis k40, S08, CFV1, and CFV2 USB Stack Architecture Layers

CAUTION
Simultaneous use of driver APIs and class APIs may have undefined
behavior. In this case, the driver functionality will not work as defined in
this document.

3.2 Software flows
This section describes the execution flow of the stack across various layers and modules.

3.2.1 Initialization flow

Figure 3-3 describes stack initialization flow.

Application

Class Driver

Low Level Driver

Freescale USB Stack Architecture

USB Users Guide, Rev. 12

Freescale Semiconductor 11

Figure 3-3. Sequence diagram for stack initiation

Application

Class

Functional Common

Driver

Class Initialization

Initialize the controller

Initialize common part

Initialize control end-point

Register
callback

Setup packet
received

Read setup packet

Send description

Transport connected
Enumeration complete

Set configuration

Get descriptor for device, configurator, and string

Enumeration

Freescale USB Stack Architecture

USB Users Guide, Rev. 12

12 Freescale Semiconductor

The initialization flow starts when the application initializes the class driver that in turn initializes the low
level driver and the controller. The class driver also registers the callbacks it requires for events occurring
in the USB bus. Sometime after this, the host starts the enumeration process by sending the setup packet
to get descriptors for device, configuration, and string. These requests are handled by the class driver that
uses the descriptors defined by the application. The enumeration finally ends when the host sets the device
configuration. At this point, the class driver notifies the application that the connection has been
established.

3.2.2 De-initialization flow

Figure 3-4. Sequence diagram for stack de-initiation

3.2.3 Transmission flow

Figure 3-5 describes stack transmission flow.

App
Other
Class

Common
Class

FrameWork

USB_Class_HID_DeInit

USB_Class_DeInit

USB_Framework_DeInit

Freescale USB Stack Architecture

USB Users Guide, Rev. 12

Freescale Semiconductor 13

Figure 3-5. Sequence diagram for stack transmission

Application

Class

Functional Common

Driver

If any queue
is neither full nor
empty, then
queue request

Send application data

If bus is
suspended? Resume the bus

Send data to
controller

Send completed

Remove request
from queue

If requests are in
queue?

Send complete
event to application

is initiated.

If queue is empty?

Otherwise

Freescale USB Stack Architecture

USB Users Guide, Rev. 12

14 Freescale Semiconductor

The application transmits data to the USB host by calling the class driver specific send API. The class
driver checks for the current status of the queue. If the queue is full then the function returns with a BUSY
status, if there is already an outstanding request that has not been completed yet, it queues the request
unless the queue is empty, it prepares to pass the request to the low level driver. As part of the preparation,
it checks whether the bus is suspended or not. Incase the bus is suspended, it wakes the bus and the bus
then sends the request to the lower layer driver. When the send API operation is completed, the class driver
removes the request from the queue and sends the next in queue if it exists.

3.2.4 Reception flow

Figure 3-6 below describes stack reception flow.

Figure 3-6. Sequence diagram for stack reception

Application

Class

Functional Common

Driver

If packet size
of complete
packet is less
than the maximum

Event stating data received

Call receive data function of
controller to receive complete packet

buffer size?

Process the packet

Event stating data received

Process the packet

Freescale USB Stack Architecture

USB Users Guide, Rev. 12

Freescale Semiconductor 15

When the controller receives the data on its receiver port, the low level driver sends an event to the class
driver. The class driver calls the low level driver to receive the packet in its buffers. If the size of the packet
is smaller than the size of the end-point buffer, then the class driver processes the packet immediately. If
the size of the packet is greater than the endpoint buffer size, the class driver waits for an event from the
low level driver with the complete packet. The class driver processes the packet after it is received.

Freescale USB Stack Architecture

USB Users Guide, Rev. 12

16 Freescale Semiconductor

USB Users Guide, Rev. 12

Freescale Semiconductor 17

Chapter 4 Developing New Class Drivers

4.1 Introduction
This chapter provides user methodology for developing new applications based on existing available class
drivers. It also describes how a user can develop a new class driver and application using USB low level
stack framework.

Support for HID, CDC, and PHDC class drivers is already implemented in the package. Refer Freescale
USB Stack Device API Reference Manual (document USBAPIRM.pdf).

Before starting with developing the class drivers, Figure 4-1 shows the current design of the class drivers.

Figure 4-1. Current design of class drivers

The class drivers are divided into three modules.

• Framework Module—The framework module handles all requests to the control end point. It
implements all responses to the USB Chapter 9 requests. It interacts with the application to get the
USB descriptor information.

• Common Class Module—The common class module contains implementation independent to
application specific classes. It handles functions like suspend/resume, reset, stall, and SOF that
needs to be present for all classes.

• Class Specific Module—This module implements class specific functionality. It implements all
interactions with non control end points. The data sent and received on these end points are class
specific. This module also implements the class specific requests on the control end point.

Application

Class Specific
Module

Common Class
Module

Framework
Module

Low Level Driver

Class
API

Device
API

Developing New Class Drivers

USB Users Guide, Rev. 12

18 Freescale Semiconductor

Although, a developer could start developing a new class by using the device API and implementing
complete functionality. However, it is recommended to use a similar design like the existing classes and
reusing some pre-existing common modules like the common class module and the framework module.

4.2 Steps for developing new class drivers
This section explains how a user can develop new class drivers based on an existing USB low level device
framework and common class specific module.

4.2.1 Directory structure

Define the class API as shown in Figure 4-1. The application must use this interface to call the class driver.
These can be similarly defined like the pre-existing hid and phdc classes. The interface definitions are in
usb_hid.h and usb_phdc.h and so on in the /source/class directory.

Figure 4-2. Class Directory Structure

Staying in the same directory creates a class specific module as shown in Figure 4-1. This can be done by
creating two files namely usb_<newclass>.c and usb_<newclass>.h. Implement the class specific code in
the .c file and put the interface definition in the .h file.

4.2.2 Class initialization

Implement class initialization function. This function initializes class specific data structures. This
function also initializes USB Common Class Module and USB Device Framework through
USB_Class_Init() and USB_Device_Init() respectively.

Typically, three callbacks are provided by an application for interfacing with class driver.

• Class callback (to receive various USB bus events)

• To support vendor specific requests.

• To handle class specific requests (application specific like string descriptor handling etc.)

Developing New Class Drivers

USB Users Guide, Rev. 12

Freescale Semiconductor 19

Pseudo Code:
uint_8 USB_Class_XYZ_Init (

uint_8 controller_ID, /* [IN] Controller ID */
USB_CLASS_CALLBACK class_callback, /* [IN] Class Callback */
USB_REQ_FUNC vendor_req_callback, /* [IN] Vendor Request Callback */
USB_CLASS_SPECIFIC_HANDLER_FUNC param_callback /* [IN] Class Specific requests Callback
*/

)
{

uint_8 index;
USB_ENDPOINTS *ep_desc_data = (USB_ENDPOINTS *)

USB_Desc_Get_Endpoints(controller_ID);

/* Initialize the device layer*/
USB_Device_Init(controller_ID, ep_desc_data->count+1);
/* Initialize the generic class functions */
USB_Class_Init(controller_ID,

USB_Class_XYZ_Event, USB_Class_XYZ_Requests);

<Class Specific Initialization code goes here >

/* save the XYZ class callback pointer */
g_class_callback = class_callback;

/* save the vendor request callback pointer */
g_vendor_req_callback = vendor_req_callback;

/* Save the callback to ask application for class specific
 params*/
g_param_callback = param_callback;

}

Developing New Class Drivers

USB Users Guide, Rev. 12

20 Freescale Semiconductor

4.2.3 Class callback routine

This routine is called by USB Common Class Module to notify class driver about various USB events. The
following events are notified:

• USB Bus Reset

This event is notified when USB Bus Reset is detected by Device Controller. The class driver
should reset its data structure after receiving this event. Depending on the class requirement, the
event can be propagated to application through a callback.

• Enumeration Complete

This event is notified when USB Bus Enumeration is completed and Set Configuration call is
received from USB host. Class driver should now initialize all the endpoints
(USB_Device_Init_EndPoint()) other than control endpoint. It should also register callback
functions (USB_Device_Register_Service()) to handle endpoint events and set Endpoint Status as
“idle” (USB_Device_Set_Status()).

• Configuration Change

This event is notified when SET CONFIGURATION call is received from USB host.

Once this event is received, Enumeration Complete event is notified to the class driver.

• Data Send Complete

This event is notified when data is sent through an endpoint.

• Data Received

This event is notified when data is received on an endpoint.

Developing New Class Drivers

USB Users Guide, Rev. 12

Freescale Semiconductor 21

Pseudo Code:
static void USB_Class_XYZ_Event (

uint_8 controller_ID, /* [IN] Controller ID */
uint_8 event, /* [IN] Event Type */
void* val /* [IN] Pointer to configuration Value */

)
{

uint_8 index;

if(event == USB_APP_ENUM_COMPLETE)
{

uint_8 count = 0;
/* get the endpoints from the descriptor module */
USB_ENDPOINTS *ep_desc_data = (USB_ENDPOINTS *)
USB_Desc_Get_Endpoints(controller_ID);

/* intialize all non control endpoints */
while(count < ep_desc_data->count)
{

USB_EP_STRUCT_PTR ep_struct=
(USB_EP_STRUCT_PTR)&ep_desc_data->ep[count];

(void)USB_Device_Init_EndPoint(controller_ID,
ep_struct, TRUE);

/* register callback service for the endpoint */
(void)USB_Device_Register_Service(controller_ID,
(uint_8)(USB_SERVICE_EP0+ep_struct->ep_num),
USB_Class_XYZ_Service_Endpoint);

/* set the EndPoint Status as Idle in the device layer */
(void)USB_Device_Set_Status(controller_ID,
(uint_8)(USB_STATUS_ENDPOINT | <ENDPOINT NUMBER> |
(ep_struct->direction << USB_COMPONENT_DIRECTION_SHIFT)),
USB_STATUS_IDLE);

count++;
}

}
else if(event == USB_APP_BUS_RESET)
{

<Re-Initialize Class Specific Data Structure >
}
if(g_class_callback != NULL)
{

/* notify the application of the event */
g_class_callback(controller_ID, event, val);

}
}

Developing New Class Drivers

USB Users Guide, Rev. 12

22 Freescale Semiconductor

4.2.4 Class request routine

This routine is called by USB Common Class Module. It handles class specific and vendor specific
requests received from USB host. Vendor Specific requests are sent to Application using Vendor Specific
application callback function already initialized with the class driver.

Pseudo Code:
static uint_8 USB_Class_XYZ_Requests (

uint_8 controller_ID, /* [IN] Controller ID */
USB_SETUP_STRUCT * setup_packet, /*[IN] Setup packet */
uint_8_ptr *data, /* [OUT] Data to be send back */
USB_PACKET_SIZE *size /* [OUT] Size to be returned*/

)
{

uint_8 index;
uint_8 status = USBERR_INVALID_REQ_TYPE;
uint_8 rpt_buf[REPORT_SIZE];/* buffer to send in case of get report req */
*((uint_32_ptr)rpt_buf) = 0;

if((setup_packet->request_type & USB_REQUEST_CLASS_MASK) ==
USB_REQUEST_CLASS_CLASS)

{
/* class request so handle it here */
<Class Specific Code goes here>
if(g_param_callback != NULL)
{

/* notify the application of the class request.
Give control to the application */

status = g_param_callback(setup_packet->request,
setup_packet->value,
data,
size);

}
}
else if((setup_packet->request_type &

USB_REQUEST_CLASS_MASK) ==
USB_REQUEST_CLASS_VENDOR)

{
/* vendor specific request */
if(g_vendor_req_callback != NULL)
{

status = g_vendor_req_callback(controller_ID,
setup_packet,data, size);

}
}
return status;

}

Developing New Class Drivers

USB Users Guide, Rev. 12

Freescale Semiconductor 23

4.2.4.1 Endpoint service routine

This routine is called by USB Low Level Device Framework when data is sent or received on an endpoint.
This routine is registered with the Low Level Device Framework by Class Driver during endpoint
initialization.

Pseudo Code:
static void USB_Class_XYZ_Service_Endpoint (

PTR_USB_EVENT_STRUCT event /* [IN] Pointer to USB Event
 Structure */

)
{

APP_DATA_STRUCT bulk_data;

bulk_data.data_ptr = event->buffer_ptr;
bulk_data.data_size = event->len;

if(g_class_callback != NULL)
{

if(event->errors != 0)
{

<Class Specific Error Handling Code goes here>
g_class_callback(event->controller_ID,

USB_APP_ERROR, (uint_8*)(&(event->errors)));
}
else
{

if(event->direction == USB_RECV)
{

< Class Specific Data Receive Handling Code goes here>
 g_class_callback(event->controller_ID,
 USB_APP_DATA_RECEIVED,

(void*)&bulk_data);
}
else
{

< Class Specific Data Send Complete Handling Code goes here>
 g_class_callback(event->controller_ID,
 USB_APP_DATA_SEND_COMPLETE,
 (void*)&bulk_data);
}

}
}

}

Developing New Class Drivers

USB Users Guide, Rev. 12

24 Freescale Semiconductor

USB Users Guide, Rev. 12

Freescale Semiconductor 25

Chapter 5 Developing Applications

5.1 Introduction
This chapter discusses the functions used to develop applications based on the existing classes.

5.2 Application interfaces
The interfaces of the existing classes are defined keeping in mind that the application must be kept as
independent as possible from the lower layer class drivers as well as drivers.

The interface definition between the application and classes is made up of the calls shown in Table 5-1.

5.3 Developing an Application
Perform these steps to develop a new application:

1. Make a new application directory under /device/app directory. The new application directory is
made to make the new application.

2. Copy the following files from the similar pre-existing applications.

— main.c

— usb_descriptor.c

— usb_descriptor.h

— user_config.h

Table 5-1. API calls

API Call Description

Class Initialize This API is used to initialize the class that in turn initializes not only
the class but also initializes the lower driver layers.

Send Data This API is used by the application to send the data to the host
system. It is not recommended to make this call in a non-interrupt
context.

Event Callback All events on the bus are propagated to the application using the
event callback. The data received on the bus is also propagated to
the application using the event callback.

USB Vendor Specific
Callback

This is an optional callback and is not mandatory for the
application to support it. This callback is used to propagate any
vendor specific request that the host system might have sent.

Periodic Task This is an API call by the application to the class, so that it can
complete some tasks that it may want to execute in non-interrupt
context.

Developing Applications

USB Users Guide, Rev. 12

26 Freescale Semiconductor

Change these files to suit your application. The usb_descriptor.c and usb_descriptor.h files contain
the descriptors for USB that are dependent on the application and the class driver. The
user_config.h contains configuration options. The main.c file contains the initial code for the
device. If the device is changed, this file must also be modified accordingly.

3. Create the CodeWarrior directory where the project files for the new application can be created.

4. Create a new file for creating the main application function and the callback function as defined
above. In Figure 5-1, the new_app.c and new_app.h are used for the same purpose.

Figure 5-1. New application directory

• usb_descriptor.c

This file contains USB Framework Module interface. It also contains various descriptors defined
by USB Standards like, device descriptor, configuration descriptor, string descriptor and other class
specific descriptors that are provided to Framework Module when requested. For customization,
user can modify these variables and function implementations to suit the requirement.

a) Variables

The list below shows user modifiable variables for an already implemented class driver. The
user should also modify corresponding MACROs defined in usb_descriptor.h file. For
example, to save precious RAM space in S08 devices, constant variables are stored in ROM.

– usb_desc_ep

This is an array of endpoint structures. Endpoint structure describes the property of endpoint
like, endpoint number, size, direction, type, and so on. This array should contain all the
mandatory endpoints defined by USB class specifications.

Sample code implementation of usb_desc_ep for HID class is given below:
const USB_ENDPOINTS usb_desc_ep =

 {
 HID_DESC_ENDPOINT_COUNT,
 {
 HID_ENDPOINT,
 USB_INTERRUPT_PIPE,
 USB_SEND,
 HID_ENDPOINT_PACKET_SIZE,<---User Modifiable
 }
 < User can add other endpoints depending on class
 requirement >
 };

Developing Applications

USB Users Guide, Rev. 12

Freescale Semiconductor 27

– g_device_descriptor

This variable contains USB Device Descriptor.

Sample code implementation of device descriptor for HID class is given below:
uint_8 const g_device_descriptor[DEVICE_DESCRIPTOR_SIZE] =
{

 DEVICE_DESCRIPTOR_SIZE, /* "Device Descriptor Size */
 USB_DEVICE_DESCRIPTOR, /* "Device" Type of descriptor */
 0x00, 0x02, /* BCD USB version */
 0x00, /* Device Class is indicated in the
 interface descriptors */
 0x00, /* Device Subclass is indicated in
 the interface descriptors */
 0x00, /* Device Protocol */
 CONTROL_MAX_PACKET_SIZE, /* Max Packet size */
 0x04,0x25, <---User Modifiable /* Vendor ID */
 0x00,0x01, <---User Modifiable /* Product ID */
 0x02,0x00, /* BCD Device version */
 0x01, <---User Modifiable /* Manufacturer string index */
 0x02, <---User Modifiable /* Product string index */
 0x00, <---User Modifiable /* Serial number string index */
 0x01 /* Number of configurations */

};

– g_config_descriptor

This variable contains USB Configuration Descriptor.

Sample code implementation of configuration descriptor for HID class is given below:
uint_8 const g_config_descriptor[CONFIG_DESC_SIZE] =
{

 CONFIG_ONLY_DESC_SIZE, /* Configuration Descriptor Size - always 9
 bytes */
 USB_CONFIG_DESCRIPTOR, /* "Configuration" type of descriptor */
 CONFIG_DESC_SIZE, 0x00, /* Total length of the
 Configuration descriptor */
 1, /* NumInterfaces */
 1, /* Configuration Value */
 0, /* Configuration Description String Index*/
 BUS_POWERED|SELF_POWERED|

(REMOTE_WAKEUP_SUPPORT<<REMOTE_WAKEUP_SHIFT),
 /* S08/CFV1/CFV2 are both self powered (its compulsory to set bus powered)*/
 /*Attributes.support RemoteWakeup and self power*/
 0x32, <---User Modifiable /* Current draw from bus */

 /* Interface Descriptor */
 IFACE_ONLY_DESC_SIZE,
 USB_IFACE_DESCRIPTOR,
 0x00,
 0x00,
 HID_DESC_ENDPOINT_COUNT,
 0x03,
 0x01,
 0x02,
 0x00,

 /* HID descriptor */
 HID_ONLY_DESC_SIZE,

Developing Applications

USB Users Guide, Rev. 12

28 Freescale Semiconductor

 USB_HID_DESCRIPTOR,
 0x00,0x01,
 0x00,
 0x01,
 0x22,
 0x34,0x00,

 /*Endpoint descriptor */
 ENDP_ONLY_DESC_SIZE,
 USB_ENDPOINT_DESCRIPTOR,
 HID_ENDPOINT|(USB_SEND << 7),
 USB_INTERRUPT_PIPE,
 HID_ENDPOINT_PACKET_SIZE, 0x00, <---User Modifiable
 0x0A

};

– String Descriptors

Users can modify string descriptors to customize their product. String descriptors are written
in UNICODE format. An appropriate language identification number is specified in
USB_STR_0. Multiple language support can also be added.

Sample code implementation of string descriptors for HID class application is given below:
uint_8 const USB_STR_0[USB_STR_0_SIZE+USB_STR_DESC_SIZE] =
{

sizeof(USB_STR_0),
USB_STRING_DESCRIPTOR,
0x09,
0x04/*equiavlent to 0x0409*/
<User can add other language support descriptor here>

};

uint_8 const USB_STR_1[USB_STR_1_SIZE+USB_STR_DESC_SIZE] =
{

sizeof(USB_STR_1),
USB_STRING_DESCRIPTOR,
<User Modifiable Manufacturer Name in UNICODE>
'F',0,
'R',0,
'E',0,
'E',0,
'S',0,
'C',0,
'A',0,
'L',0,
'E',0,
' ',0,
'S',0,
'E',0,
'M',0,
'I',0,
'C',0,
'O',0,
'N',0,
'D',0,
'U',0,
'C',0,
'T',0,

Developing Applications

USB Users Guide, Rev. 12

Freescale Semiconductor 29

'O',0,
'R',0,
' ',0,
'I',0,
'N',0,
'C',0,
'.',0

};

uint_8 const USB_STR_2[USB_STR_2_SIZE+USB_STR_DESC_SIZE] =
{

sizeof(USB_STR_2),
USB_STRING_DESCRIPTOR,

 <User Modifiable Product Name in UNICODE>
' ',0,
' ',0,
'J',0,
'M',0,
' ',0,
'H',0,
'I',0,
'D',0,
' ',0,
'D',0,
'E',0,
'M',0,
'O',0,
' ',0

};

uint_8 const USB_STR_n[USB_STR_n_SIZE+USB_STR_DESC_SIZE] =
{

sizeof(USB_STR_n),
USB_STRING_DESCRIPTOR,
'B',0,
'A',0,
'D',0,
' ',0,
'S',0,
'T',0,
'R',0,
'I',0,
'N',0,
'G',0,
' ',0,
'I',0,
'N',0,
'D',0,
'E',0,
'X',0

};

uint_8 const g_string_desc_size[USB_MAX_STRING_DESCRIPTORS+1] =
{

sizeof(USB_STR_0),
sizeof(USB_STR_1),
sizeof(USB_STR_2),

Developing Applications

USB Users Guide, Rev. 12

30 Freescale Semiconductor

<User can add other string descriptors sizes here>
sizeof(USB_STR_n)

};

uint_8_ptr const g_string_descriptors[USB_MAX_STRING_DESCRIPTORS+1] =
{

(uint_8_ptr const) USB_STR_0,
(uint_8_ptr const) USB_STR_1,
(uint_8_ptr const) USB_STR_2,
<User can add other string descriptors here>
(uint_8_ptr const) USB_STR_n

};

USB_ALL_LANGUAGES g_languages =
{

USB_STR_0, sizeof(USB_STR_0),
{

(uint_16 const)0x0409,
(const uint_8 **)g_string_descriptors,
g_string_desc_size

}
<User can add other language string descriptors here>

};

– Standard Descriptor Table

Users can modify standard descriptor table to support additional class specific descriptors
and vendor specific descriptors.

Sample implementation below is shown for HID Class application.
USB_PACKET_SIZE const g_std_desc_size[USB_MAX_STD_DESCRIPTORS+1] =
{

0,
DEVICE_DESCRIPTOR_SIZE,
CONFIG_DESC_SIZE,
0, /* string */
0, /* Interface */
0, /* Endpoint */
0, /* Device Qualifier */
0, /* other speed config */
<Other Descriptor Sizes goes here>
REPORT_DESC_SIZE

};

uint_8_ptr const g_std_descriptors[USB_MAX_STD_DESCRIPTORS+1] =
{

NULL,
(uint_8_ptr)g_device_descriptor,
(uint_8_ptr)g_config_descriptor,
NULL, /* string */
NULL, /* Interface */
NULL, /* Endpoint */
NULL, /* Device Qualifier */
NULL, /* other speed config*/
<Other Descriptor pointers go here>

 Sample HID Class Report Desc->
(uint_8_ptr)g_report_descriptor

};

Developing Applications

USB Users Guide, Rev. 12

Freescale Semiconductor 31

– g_valid_config_values

This variable contains valid configurations for a device. This value remains fixed for a
device.

uint_8 const g_valid_config_values[USB_MAX_CONFIG_SUPPORTED+1]={0,1};

– g_alternate_interface

This variable contains valid alternate interfaces for a given configuration. Sample
implementation uses a single configuration. If user is implementing additional alternate
interfaces then USB_MAX_SUPPORTED_INTERFACES macro (usb_descriptor.h)
should be changed accordingly.

static uint_8 g_alternate_interface[USB_MAX_SUPPORTED_INTERFACES];

b) Interfaces

The following interfaces are required to be implemented by Application in usb_descriptor.c.
These interfaces are called by low level USB stack and class drivers. Refer to Freescale USB
Stack Device API Reference Manual (document USBAPIRM.pdf) for details regarding interface
functions along with sample implementation. Also, refer to usb_descriptor.c and
usb_descriptor.h files in device\app\hid for reference.

– USB_Desc_Get_Descriptor

This interface function is invoked by USB Framework. This call is made when Framework
receives GET_DESCRIPTOR call from Host. Mandatory descriptors that an application is
required to implement are:

– Device Descriptor

– Configuration Descriptor

– Class Specific Descriptors (For example, for HID class implementation, Report
Descriptor and HID Descriptor)

Apart from the mandatory descriptors, an application should also implement various string
descriptors as specified by the Device Descriptor and other configuration descriptors.

Sample code for HID class application is given below.
uint_8 USB_Desc_Get_Descriptor(
 uint_8 controller_ID, /* [IN] Controller ID */
 uint_8 type, /* [IN] Type of descriptor requested */
 uint_8 str_num, /* [IN] String index for string descriptor */
 uint_16 index, /* [IN] String descriptor language Id */
 uint_8_ptr *descriptor, /* [OUT] Output descriptor pointer */
 USB_PACKET_SIZE *size /* [OUT] Size of descriptor returned */
)
{
 #pragma unused (controller_ID)
 switch(type)
 {
 <Class Specific Descriptor code goes here >
 case USB_REPORT_DESCRIPTOR:
 {
 type = USB_MAX_STD_DESCRIPTORS;
 *descriptor = (uint_8_ptr)g_std_descriptors [type];
 *size = g_std_desc_size[type];

Developing Applications

USB Users Guide, Rev. 12

32 Freescale Semiconductor

 }
 break;
 case USB_HID_DESCRIPTOR:
 {
 type = USB_CONFIG_DESCRIPTOR ;
 *descriptor = (uint_8_ptr)(g_std_descriptors [type]+
 CONFIG_ONLY_DESC_SIZE+IFACE_ONLY_DESC_SIZE);
 *size = HID_ONLY_DESC_SIZE;
 }
 break;
 case USB_STRING_DESCRIPTOR:
 {
 if(index == 0)
 {
 /* return the string and size of all languages */
 *descriptor = (uint_8_ptr)g_languages.
 languages_supported_string;
 *size = g_languages.languages_supported_size;
 }
 else
 {
 uint_8 lang_id = 0;
 uint_8 lang_index = USB_MAX_LANGUAGES_SUPPORTED;

 for(;lang_id < USB_MAX_LANGUAGES_SUPPORTED; lang_id++)
 {
 /* check whether we have a string for this language
 */
 if(index ==
 g_languages.usb_language[lang_id].language_id)
 {
 /* check for max descriptors */
 if(str_num < USB_MAX_STRING_DESCRIPTORS)
 {
 /* setup index for the string to be
 returned */
 lang_index = str_num;
 }
 break;
 }
 }

 /* set return val for descriptor and size */
 *descriptor =
 (uint_8_ptr)g_languages.usb_language[lang_id].
 lang_desc[lang_index];
 *size = g_languages.usb_language[lang_id].
 lang_desc_size[lang_index];
 }
 }
 break;
 default :
 if (type < USB_MAX_STD_DESCRIPTORS)
 {
 /* set return val for descriptor and size*/
 *descriptor = (uint_8_ptr)g_std_descriptors [type];

Developing Applications

USB Users Guide, Rev. 12

Freescale Semiconductor 33

 /* if there is no descriptor then return error */
 if(*descriptor == NULL)
 {
 return USBERR_INVALID_REQ_TYPE;
 }

 *size = g_std_desc_size[type];
 }
 else /* invalid descriptor */
 {
 return USBERR_INVALID_REQ_TYPE;
 }
 break;
 }
 return USB_OK;
}

– USB_Desc_Get_Endpoints

This interface function is called from class driver. This function returns a pointer to
USB_ENDPOINT structure. This structure describes the characteristics of Non Control
Endpoint, for example. endpoint number, type, direction, and size or any other endpoint
characteristic required by class driver implementation.

Sample implementation is given below.
void* USB_Desc_Get_Endpoints
(

 uint_8 controller_ID /* [IN] Controller ID */
)
{

 #pragma unused (controller_ID)
return (void*)&usb_desc_ep;

}

– USB_Desc_Get_Interface

This interface function invoked by USB Framework. This function returns a pointer to
alternate interface for the specified interface. This routine is called when USB Framework
receives GET_INTERFACE request from Host.

Sample code for single configuration HID class is given below.
uint_8 USB_Desc_Get_Interface
(

 uint_8 controller_ID, /* [IN] Controller ID */
 uint_8 interface, /* [IN] Interface number */
 uint_8_ptr alt_interface /* [OUT] Output alternate interface */

)
{

 #pragma unused (controller_ID)
 /* if interface valid */
 if(interface < USB_MAX_SUPPORTED_INTERFACES)
 {

 <User can modify this to support multiple configurations>
 /* get alternate interface*/
 *alt_interface = g_alternate_interface[interface];
 return USB_OK;
 }

Developing Applications

USB Users Guide, Rev. 12

34 Freescale Semiconductor

 return USBERR_INVALID_REQ_TYPE;
}

– USB_Desc_Remote_Wakeup

This interface function invoked by USB Framework. If the application supports remote
wakeup then this function return TRUE otherwise FALSE. If the application supports
remote wakeup, then USB Device Descriptor should support this capability. If user does not
support remote wakeup, then set REMOTE_WAKEUP_SUPPORT should be set to 0 in
usb_descriptor.h.

Sample code is given below.
boolean USB_Desc_Remote_Wakeup
(

 uint_8 controller_ID /* [IN] Controller ID */
)
{

 #pragma unused (controller_ID)
 return REMOTE_WAKEUP_SUPPORT;

}

– USB_Desc_Set_Interface

This interface function is called from USB Framework. This function sets an alternate
interface for specified interface. This routine is called when USB Framework receives
SET_INTERFACE request from the host.

Sample code for single configuration HID class is given below.
uint_8 USB_Desc_Set_Interface
(

uint_8 controller_ID, /* [IN] Controller ID */
uint_8 interface, /* [IN] Interface number */
uint_8 alt_interface /* [IN] Input alternate interface */

)
{

#pragma unused (controller_ID)
/* if interface valid */
if(interface < USB_MAX_SUPPORTED_INTERFACES)
{

<User can modify this to support multiple configurations>
/* set alternate interface*/
g_alternate_interface[interface] = alt_interface;
return USB_OK;

}

return USBERR_INVALID_REQ_TYPE;
}

– USB_Desc_Valid_Configation

This interface function is called from USB Framework. This function returns if the
configuration is valid or not. This routine is called when USB Framework receives
SET_CONFIGURATION request from the host.

Sample code for single configuration HID class is given below.

Developing Applications

USB Users Guide, Rev. 12

Freescale Semiconductor 35

boolean USB_Desc_Valid_Configation(
(

 uint_8 controller_ID, /*[IN] Controller ID */
 uint_16 config_val /*[IN] Configuration value */

)
{

 #pragma unused (controller_ID)
 uint_8 loop_index=0;
 /* check with only supported val right now */
 while(loop_index < (USB_MAX_CONFIG_SUPPORTED+1))
 {
 if(config_val == g_valid_config_values[loop_index])
 {
 return TRUE;
 }
 loop_index++;
 }
 return FALSE;

}

– USB_Desc_Valid_Interface

This interface function is called from class driver to validate if the interface is valid or not.
This function returns TRUE if interface is valid, otherwise FALSE.

Sample code for single configuration HID class is given below.
boolean USB_Desc_Valid_Interface
(

 uint_8 controller_ID, /*[IN] Controller ID */
 uint_8 interface /*[IN] Target interface */

)
{

 #pragma unused (controller_ID)
 uint_8 loop_index=0;
 <User can modify this to support multiple configurations>
 /* check with only supported val right now */
 while(loop_index < USB_MAX_SUPPORTED_INTERFACES)
 {
 if(interface == g_alternate_interface[loop_index])
 {
 return TRUE;
 }
 loop_index++;
 }
 return FALSE;

}

Apart from above interfaces mandated by USB Low Level Framework, the application must also
implement various callback functions to receive events from USB class driver. These interface
functions are implemented in new_app.c file.

— Class Callback function

This function is used by class driver to inform application about various USB Bus Events. The
application can use these events to perform event specific functionalities. The implementation
of this callback function is governed by class driver specification.

Developing Applications

USB Users Guide, Rev. 12

36 Freescale Semiconductor

Pseudo Code:
void USB_App_Class_Callback
(

uint_8 controller_ID,/* [IN] Controller ID */
uint_8 event_type, /* [IN] value of the event*/
void* val /* [IN] gives the configuration value*/

)
{

if(event_type == USB_APP_BUS_RESET)
{

/* USB Bus Reset */
<Application Specific Code goes here>

}
else if(event_type == USB_APP_ENUM_COMPLETE)
{

/* Enumeration is complete */
<Application Specific Code goes here>

}
return;

}

— Vendor Request Callback

This optional argument allows application to support any vendor specific USB requests
received from USB host. This function allows application developer to enhance existing class
implementation by adding vendor specific functionality.

Pseudo Code:
uint_8 USB_App_Vendor_Request_Callback
(

 uint_8 request, /* [IN] request type */
/* [IN] Pointer to Setup Packet */

 USB_SETUP_STRUCT *setup,
 uint_8_ptr* data, /* [OUT] pointer to the data */
 USB_PACKET_SIZE* size/* [OUT] size of the transfer */

)
{

 uint_8 status = USB_OK;
 uint_8 request = setup-> request;
 switch(request)
 {
 < Vendor Specific Requests are handled here >
 case <VENDOR_REQUEST1> :
 *data = <Pointer to Data to be sent>
 *size = <size of Data to be sent>
 break;

 case <VENDOR_REQUEST2>:
 *data = <Pointer to Data to be sent>
 *size = <size of Data to be sent>
 break;

:
:
:

 default:
< UNHANDLED Vendor Specific Requests

 Application code goes here>
status = USBERR_INVALID_REQ_TYPE;

Developing Applications

USB Users Guide, Rev. 12

Freescale Semiconductor 37

break;
 }
 return status;

}

— Class Specific Request Callback

Implementation of this function is governed by Class Driver Design. The design and
implementation details are however beyond the scope.

Pseudo Code:
uint_8 USB_App_Class_Spec_Request_Callback
(

uint_8 request, /* [IN] request type */
uint_16 value, /* [IN] report type and ID */
uint_8_ptr* data, /* [OUT] pointer to the data */
USB_PACKET_SIZE* size/* [OUT] size of the transfer */

)
{

uint_8 status = USB_OK;
 *size = 0;
/* handle the class request */
switch(request)
{

< Class Specific Requests are handled here >
case <REQUEST1>:

 *data = <Pointer to Data to be sent>
 *size = <size of Data to be sent>
 break;

 case <REQUEST2>:
 *data = <Pointer to Data to be sent>
 *size = <size of Data to be sent>
 break;

:
:
:

 default:
< UNHANDLED Class Specific Requests

 Application code goes here>
status = USBERR_INVALID_REQ_TYPE;
break;

 }
 return status;

}

• usb_descriptor.h

This file is mandatory for the application to implement. Framework and class drivers include this
file for function prototype definitions and data structures described in usb_descriptor.c. User
modifying usb_descriptor.c should also modify MACROs in this file as well.

• user_config.h

This file is required to define various compile time macros. These parameters are essential for
successful compilation of source code.

Madatory macros that need to be defined are:

Developing Applications

USB Users Guide, Rev. 12

38 Freescale Semiconductor

– LONG_SEND_TRANSACTION — This macro is defined for classes that have to send data
more than the endpoint size over USB bus. It allows Low Level Device Framework to use
split transaction for sending data over USB bus.

– LONG_RECIEVE_TRANSACTION — This macro is defined for classes that have to
receive data more than the endpoint size over USB bus. It allows Low Level Device
Framework to use split transaction for receiving data over USB bus.

– USB_PACKET_SIZE — This macro defines maximum transfer packet size of USB Data
Transaction.

– MAX_TIMER_OBJECTS — This macro defines number of timer objects required by
application.

– TIMER_CALLBACK_ARG — This macro if defined invokes timer callbacks with an
application specified argument.

– DOUBLE_BUFFERING_USED — For S08 devices, if application is making use of
endpoint 5 and 6 (Double Buffered) then this macro has to be defined. For CFV1 and CFV2
devices, this macro is not required, as all the endpoints are double buffered.

5. After the functionality has been implemented, use the steps defined in A.1.2, “Building the
Application with CodeWarrior 6 and CodeWarrior 7” and A.1.3, “Running the Application with
CodeWarrior 6 and CodeWarrior 7” to build and run the application.

5.4 Application design
This section discusses the application design. The application is made up of the main application function
and the callback function.

Developing Applications

USB Users Guide, Rev. 12

Freescale Semiconductor 39

5.4.1 Main Application Function

The main application function uses the following C code:
void TestApp_Init(void)
{
 uint_8 error;
 DisableInterrupts;

 <Application Specific Initialization Code goes here>
 /* Initialize the USB Class Driver interface */
 <USB Class Initialization Call>
 error =
 USB_Class_XYZ_Init(0, USB_App_Callback,
 NULL, USB_App_Param_Callback);

 EnableInterrupts;
 while (TRUE)
 {
 __RESET_WATCHDOG();
 <Application Specific Code goes here>

 new_app_task();
 }/* Endwhile */
}

5.4.2 Callback Function

The callback function uses the following C code:
void USB_App_Callback(uint_8 controller_ID, uint_8 event_type, void* val)
{
 if(event_type == USB_APP_BUS_RESET)
 {
 <Application Specific Code goes here>
 }
 else if(event_type == USB_APP_ENUM_COMPLETE)
 {
 /* if enumeration is complete */
 <Application Specific Code goes here>
 }
 else if(event_type == USB_APP_ENUM_ERROR)
 {
 <Application Specific Code goes here>
 }
 return;
}

Developing Applications

USB Users Guide, Rev. 12

40 Freescale Semiconductor

USB Users Guide, Rev. 12

Freescale Semiconductor 41

Appendix A Working with the Software

A.1 Introduction
This chapter gives you insight on how to use the Freescale USB Stack software. The following sections
are described in this chapter:

• Preparing the setup

• Building the application

• Running the application

Knowledge of CodeWarrior IDE will be helpful to understand this section. While reading this chapter,
practice the steps mentioned.

To take you through this chapter, the HID mouse application for the MC9S08JM60 is used as an example.
For preparing the setup, building the application, and running the application the following devices—
Kinetis, HC(S)08, ColdFire v1, and ColdFire V2—are used as an example.

A.1.1 Preparing the setup

A.1.1.1 Software setup

1. Double-click the Freescale_USB_Stack_v[current version].exe installer executable file.

2. The Freescale USB Stack Setup window appears. The following example shows the demonstration
for USB Stack installation. You can follow the same instructions for new versions.

Example:

1. Click on the Next button to continue with Freescale USB Stack Setup installation.

Working with the Software

USB Users Guide, Rev. 12

42 Freescale Semiconductor

Figure A-1. Freescale USB Stack setup wizard

2. In Figure A-2, click on the I Agree button to accept the license agreement.

Figure A-2. Freescale USB Stack setup license agreement

3. In Figure A-3, select USB low level stack and other class components to install and click on the
Next button.

Working with the Software

USB Users Guide, Rev. 12

Freescale Semiconductor 43

Figure A-3. Freescale USB Stack components

4. In Figure A-4, select the location of the folder where you require to install the Freescale USB Stack
software and click on the Install button.

Working with the Software

USB Users Guide, Rev. 12

44 Freescale Semiconductor

Figure A-4. Freescale USB Stack installation folder location

5. Click on the Finish button to successfully complete the Freescale USB Stack Setup Wizard.

Figure A-5. Freescale USB Stack installation finish

Working with the Software

USB Users Guide, Rev. 12

Freescale Semiconductor 45

Launching Freescale USB Stack project

Click Start > Programs > Freescale USB Stack > Source to launch the project.

Figure A-6. Freescale USB Stack source program for launch

A.1.1.2 Hardware setup

• Make the connections as shown in Figure A-7. Here for hardware setup S08 is used as an example.

Figure A-7. S08 USB setup

Host Systems
running Windows XP

Host System running
CodeWarrior

USB for
Power and
CodeWarrior

Demo JM
boardUSB Demo

Connection

Working with the Software

USB Users Guide, Rev. 12

46 Freescale Semiconductor

— Make the first USB connection between the personal computer where the software is installed
and the DemoJM board where the silicon is mounted. This connection is required to provide
power to the board and downloading image to the flash.

— Make the second connection between the DemoJM board and the personal computer where
the demo is run.

NOTE
Although, we have used two personal computers in Figure A-7, in reality
you may achieve the same result by a single personal computer with two or
more USB ports.

A.1.2 Building the Application with CodeWarrior 6 and CodeWarrior 7

The software for S08 and CFV1 is built with CodeWarrior 6.3. In addition, the software for CFV2 is built
with CodeWarrior 7.2. Therefore, it contains application project files that can be used to build the project.

Before starting the process of building the project, make sure CodeWarrior 6.3 is installed on your
computer.

To build the S08 project:

1. Navigate to the project file and open the s08usbjm60.mcp project file in CodeWarrior IDE.

Figure A-8. Open s08usbjm60.mcp project file

2. After you have opened the project, the following window appears. To build the project, click the
button as shown in Figure A-9.

Code Warrior
HID JM60
project file

Working with the Software

USB Users Guide, Rev. 12

Freescale Semiconductor 47

Figure A-9. Build s08usbjm60.mcp project

3. After the project is built, the code and data columns must appear filled across the files.

NOTE
The above procedure can be used to build CFV1 and CFV2 projects also.

A.1.3 Running the Application with CodeWarrior 6 and CodeWarrior 7

Refer to the board documentation and CodeWarrior manual for details on how to program the flash
memory on the evaluation board used. The following steps are presented as an example about how to run
the HID mouse application with DemoJM60 board using a P&E-micro debugger.

1. To run the application, click the button as shown in Figure A-10.

Click to build the project

Working with the Software

USB Users Guide, Rev. 12

48 Freescale Semiconductor

Figure A-10. Running the application

2. The dialog box in Figure A-11 appears. Click on the Connect (Reset) button to connect to
hardware as shown in Figure A-11.

Click to run the project

Working with the Software

USB Users Guide, Rev. 12

Freescale Semiconductor 49

Figure A-11. Connection Manager

3. The pop-up in Figure A-12 appears. Click on the Yes button to load the built image to the JM60
flash.

Figure A-12. Erase and Program Flash pop-up

4. The pop-up in Figure A-13 appears to erase and program the built image to the JM60 flash.

Click to
connect to
DemoJM

Working with the Software

USB Users Guide, Rev. 12

50 Freescale Semiconductor

Figure A-13. Image Programmed in Flash

5. After the image is programmed in the flash, the debugger window as shown in Figure A-14
appears. Click on the Green Arrow as shown in Figure A-14 to run the programmed image.

Figure A-14. Simulator and Real-Time Debugger

A.1.4 Building and Running the Application with CodeWarrior 10

The software for Kinetis k40, S08, CFV1 and CFV2 targets is available to be build, download and debug
using the CodeWarrior 10 MCU.

Before starting the process of building the project, make sure CodeWarrior 10 MCU is installed on your
computer.

Working with the Software

USB Users Guide, Rev. 12

Freescale Semiconductor 51

To build the (for example Kinetis k40/S08/CFV1/CFV2) project:

1. Navigate to the project folder (s08usbjm60) and locate the CodeWwarrior10 project file (.project).

Working with the Software

USB Users Guide, Rev. 12

52 Freescale Semiconductor

2. Open the project by dragging the .project file and dropping it into the CodeWarrior 10 project
space.

Working with the Software

USB Users Guide, Rev. 12

Freescale Semiconductor 53

3. After you have opened the project, the following window appears. To build the project choose
"Build Project" from the Project menu.

Working with the Software

USB Users Guide, Rev. 12

54 Freescale Semiconductor

4. To run the application, first locate the S08USBJM60 Flash.launch conficuration in the current
project space. Right-click it and choose Debug As > 1 S08USBJM60 Flash as in the window below.

Working with the Software

USB Users Guide, Rev. 12

Freescale Semiconductor 55

5. After the image is programmed in the flash, the debugger window as shown in the next figure
appears. Click on the Green arrow in the Debug tab to run the image.

Working with the Software

USB Users Guide, Rev. 12

56 Freescale Semiconductor

A.2 Uninstall Freescale USB Stack Software
1. From your computer, click Start > Settings > Control Panel > Add or Remove Programs.

Figure 5-2. Add or Remove Programs launch from Control Panel

2. The following example shows the demonstration for uninstalling Freescale USB Stack. You can
follow the same instructions for new versions.

Example:

1. In the Windows Control Panel “Add/Remove Programs Tool, select Freescale USB Stack and click
on the Change/Remove button.

2. The uninstall confirmation message appears. Click on the Yes button to uninstall.

Figure A-15. Freescale USB Stack Uninstall confirmation message

3. A message box appears. Click on the Ok button to complete the uninstall operation.

Working with the Software

USB Users Guide, Rev. 12

Freescale Semiconductor 57

Figure A-16. Freescale USB Stack Uninstall completion message

Working with the Software

USB Users Guide, Rev. 12

58 Freescale Semiconductor

A.3 Important files
Table A-1 shows the programming files that contain source code for classes.

Table A-1. Important files

Files Description

device\source\class\usb_cdc.c This is communication device functionality specific device class source code file.

device\source\class\usb_cdc.h This is communication device functionality specific device class header file.

device\source\class\usb_cdc_pstn.c This is communication PSTN sub-class source code file

device\source\class\usb_cdc_pstn.h This is communication PSTN sub-class header file

device\source\class\usb_hid.c This is human interface device functionality specific device class source code file.

device\source\class\usb_hid.h This is human interface device functionality specific device class header file.

device\source\class\usb_phdc.c This is personal healthcare device functionality specific device class source code
file.

device\source\class\usb_phdc.h This is personal healthcare device functionality specific device class header file.

device\source\common\usb_class.c This is class independent source code file.

device\source\common\usb_class.h This is class independent header file.

device\source\common\usb_framework.c This is USB specification chapter 9 request handing source code file.

device\source\common\usb_framework.h This is USB specification chapter 9 request handing header file.

device\source\driver\cfv1\usb_bdt.h This is controller specific header file containing buffer descriptor table structure for
CFV1 devices.

device\source\driver\cfv1\usb_dci.c This is controller specific low-level driver source code file for CFV1 devices.

device\source\driver\cfv1\usb_dci.h This is controller specific low level driver header file for CFV1 devices.

device\source\driver\cfv1\usb_dciapi.h This file contains DCI API function definitions for CFV1 devices.

device\source\driver\s08\usb_bdt.h This is controller specific header file containing buffer descriptor table structure for
S08 devices.

device\source\driver\s08\usb_dci.c This is controller specific low-level driver source code file for S08 devices.

device\source\driver\s08\usb_dci.h This is controller specific low level driver header file for S08 devices.

device\source\driver\s08\usb_dciapi.h The file contains DCI API function definitions for S08 devices.

device\source\driver\usb_devapi.h This is the header file defining low-level driver interfaces.

device\source\driver\usb_driver.c This is the USB stack driver interface source code file.

device\source\class\ usb_msc.c This is mass storage device functionality specific device class source code file.

device\source\class\ usb_msc.h This is mass storage device functionality specific device class header file.

device\source\class\ usb_msc_scsi.c This is mass storage SCSI sub-class source code file.

device\source\class\ usb_msc_scsi.h This is mass storage SCSI sub-class header file.

USB Users Guide, Rev. 12

Freescale Semiconductor 59

Appendix B Human Interface Device (HID) Demo

B.1 Setting up the demo

Figure B-1. HID demo setup

Figure B-1 describes the demo setup. DemoJM is connected to two personal computers using USB cables.
The first computer is used to supply power to the board and is used to program the image to the flash. The
second computer is used as the host system where the USB host driver resides. Although, Figure B-1
shows two computers, the connection can also be achieved using one computer with two USB ports.

B.2 Running the demo
After the HID application is programmed into the silicon flash, the demo can be run using the following
procedure.

1. Connect the hardware to the Windows host computer. As soon as you turn on the device, the HID
device gets installed onto the Windows host computer. You must see the callout as shown in
Figure B-2 on the right bottom corner of your screen. At this point, the windows installs the host
driver for the device.

Figure B-2. Find New Hardware callout

Host Systems
running Windows XP

Host System running
CodeWarrior

USB for
Power and
CodeWarrior

Demo JM
boardUSB Demo

Connection

Human Interface Device (HID) Demo

USB Users Guide, Rev. 12

60 Freescale Semiconductor

2. To verify whether the mouse has been properly installed or not, you must see the JM device entry
in the device manager.

Figure B-3. JM device entry

3. After the HID device is installed, it can be moved on the host computer screen by pressing the push
buttons. Figure B-4 shows the function of these buttons.

Figure B-4. HID device push buttons

NOTE
For JS16, Left Click (PTG0) push button is not avaialble for use.

JM Device entry

Down (PTG3)

Right (PTG2)

Right Click (PTG1)

Left Click (PTG0)

USB Users Guide, Rev. 12

Freescale Semiconductor 61

Appendix C Personal Healthcare — Multi-Specialization
Device Demo
Personal healthcare application interacts with the host system using IEEE-11073 – 20601 and
(IEEE-11073 – 10415 (weigh scale), IEEE-11073 – 10407 (Blood Pressure Monitor), IEEE-11073 –
10417 (Glucose Meter), and IEEE-11073 – 10408 (Thermometer) protocol. To run this demo, a host
system is required that runs the same IEEE-11073 protocols. One example of such implementation is done
by Continua Alliance. In this demo, Continua Manager is used on the host system.

C.1 Setting up the demo
Set the systems as described in the previous section (HID demo).

1. Get the Continua Alliance (www.continuaalliance.org) CESL Reference Software V1.0 RC1.

2. Install the software on a host system

3. Program the JM60 flash with the PHDC multi-specialization application using CodeWarrior IDE.

NOTE
CESL reference software is not provided as part of the suite. You will have
to get this software independently from Continua Alliance.

C.2 Running the demo
After the system has been set, you must follow these steps to run the demo:

1. Turn on the DemoJM board. Found New Hardware window appears.

www.continuaalliance.org
www.continuaalliance.org

Personal Healthcare — Multi-Specialization Device Demo

USB Users Guide, Rev. 12

62 Freescale Semiconductor

Figure C-1. Found New Hardware window

2. Select Install from a list or specific location (Advanced) option as shown in Figure C-1, and
click on the Next button. Search and installation options window appears as shown in Figure C-2.

Personal Healthcare — Multi-Specialization Device Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 63

Figure C-2. Search and installation options

Point the search path to the bin directory where the Continua CESL software was installed and
click on the Next button. The driver for the device will get installed.

To verify the installation, open the device manager. You must see the Continua USB Interface
device entries.

Figure C-3. Continua USB PHDC Device Entry in Device Manager

3. Launch the Continua Manager from Start > All Programs menu as shown in Figure C-4.

Figure C-4. Launch Continua Manager

4. The Continua Manager GUI opens as shown in Figure C-5. Enter the name of the skim directory
and click on the Start Transport button.

USB PHDC device
shows up

Personal Healthcare — Multi-Specialization Device Demo

USB Users Guide, Rev. 12

64 Freescale Semiconductor

Figure C-5. Continua Manager window

5. S 3 Medic Event connection confirmation pop-up appears as shown in the Figure C-6. Click on the
Yes button to continue.

Figure C-6. Connect to S3 Medic Agent

6. The Continua Manager now enters the Operating State using default specialization (weigh scale).
The Continua application window appears as shown in Figure C-7.

Click
Start Transport

Personal Healthcare — Multi-Specialization Device Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 65

Figure C-7. Host entering operating state

7. After the host device is in operating state, Push Buttons on the device can be used to send weight
measurements to the host. Figure C-8 shows the function of these buttons.

Figure C-8. DemoJM push button panel

8. When the push button to send the measurement is pressed, measurements are sent to the Continua
Host Manager as shown in Figure C-9.

Host
enters
Operating
State

Select Config (PTG3)

Disconnect (PTG2)

Send Measurements (PTG1)

Personal Healthcare — Multi-Specialization Device Demo

USB Users Guide, Rev. 12

66 Freescale Semiconductor

Figure C-9. Weigh scale device detection with Continua Host

9. When Select Config (PTG3) push button is pressed, device specialization changes. The device
reconnects with the Continua host with a new specialization. Selected specialization is displayed
on LED panel on DemoJM board. The device initiates connection sequence with Continua Host
using new specialization after 3 seconds.

The device specializations are preprogrammed in the device in the following order:

Figure C-10 shows the DemoJM LED panel.

Figure C-10. DemoJM LED display panel

Selection ID Configuration

0 Weigh Scale (Default)

1 Glucose Meter

2 Blood Pressure Monitor

3 Thermometer

Personal Healthcare — Multi-Specialization Device Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 67

For JS16 board, only PTE2 and PTE3 are available for use. PTE2 and PTE3 LED display for
different specializations are:

For JM16, JM60, and MCF51JM128, all LEDs on DemoJM board are available for use. PTD2,
PTF5, PTC4, and PTC2 LED display for different specializations are:

10. When a particular Configuration is selected, and the Continua host comes to an Operating State,
measurements can be sent using Send Measurement (PTG1) push button.

Figure C-11, Figure C-12, Figure C-13, and Figure C-14 show various device specializations detected on
Continua host:

Figure C-11. Weigh scale device detection with Continua Host

Configuration PTE2 PTE3

Weigh Scale OFF OFF

Glucose Meter OFF ON

Blood Pressure Meter ON OFF

Thermometer ON ON

Configuration PTD2 PTF5 PTC4 PTC2

Weigh Scale ON OFF OFF OFF

Glucose Meter OFF ON OFF OFF

Blood Pressure Meter OFF OFF ON OFF

Thermometer OFF OFF OFF ON

Weight

Measurement

Personal Healthcare — Multi-Specialization Device Demo

USB Users Guide, Rev. 12

68 Freescale Semiconductor

Figure C-12. Glucose meter device detection with Continua Host

Figure C-13. Blood Pressure monitor device detection with Continua Host

Gluco Meter

Measurement

Blood Pressure

Measurement

Personal Healthcare — Multi-Specialization Device Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 69

Figure C-14. Thermometer device detection with Continua Host

Thermometer

Measurement

Personal Healthcare — Multi-Specialization Device Demo

USB Users Guide, Rev. 12

70 Freescale Semiconductor

USB Users Guide, Rev. 12

Freescale Semiconductor 71

Appendix D Human Interface Device (HID) Demo

D.1 Setting up the demo

Figure D-1. HID demo setup

Figure D-1 describes the demo setup. DemoJM is connected to two personal computers using USB cables.
The first computer is used to supply power to the board and is used to program the image to the flash. The
second computer is used as the host system where the USB host driver resides. Although, Figure D-1
shows two computers, the connection can also be achieved using one computer with two USB ports.

D.2 Running the demo
After the HID application is programmed into the silicon flash, the demo can be run using the following
procedure.

1. Connect the hardware to the Windows host computer. As soon as you turn on the device, the HID
device gets installed onto the Windows host computer. You must see the callout as shown in
Figure D-2 on the right bottom corner of your screen. At this point, the windows installs the host
driver for the device.

Figure D-2. Find New Hardware callout

Host Systems
running Windows XP

Host System running
CodeWarrior

USB for
Power and
CodeWarrior

Demo JM
boardUSB Demo

Connection

Human Interface Device (HID) Demo

USB Users Guide, Rev. 12

72 Freescale Semiconductor

2. To verify whether the mouse has been properly installed or not, you must see the JM device entry
in the device manager.

Figure D-3. JM device entry

3. After the HID device is installed, it can be moved on the host computer screen by pressing the push
buttons. Figure D-4 shows the function of these buttons.

Figure D-4. HID device push buttons

NOTE
For JS16, Left Click (PTG0) push button is not avaialble for use.

JM Device entry

Down (PTG3)

Right (PTG2)

Right Click (PTG1)

Left Click (PTG0)

USB Users Guide, Rev. 12

Freescale Semiconductor 73

Appendix E Personal Healthcare – Weigh Scale Device
Demo
Personal healthcare application interacts with the host computer using IEEE-11073 – 20601 and
IEEE-11073 – 10415 (weigh scale) protocols. To run the demo, the host computer runs the same
IEEE-11073 protocols. One example of such implementation is covered by Continua Alliance. In our
demo, we have used Continua Manager on the host computer.

E.1 Setting up the demo
Set the systems as described in the Appendix D, “Human Interface Device (HID) Demo.”

1. Install Continua Alliance (www.continuaalliance.org) enabled PC software such as the Lamprey
Networks Inc. CESL or HealthLink

2. Install the software on the host computer.

3. Program the microcontroller flash with the PHDC application using CodeWarrior IDE.

NOTE
Continua Alliance enabled PC software is not provided as part of the suite.
You will have to get this software independently from LNI.

E.2 Running the demo
After the system has been set, you must follow these steps to run the demo:

1. Turn on the DemoJM board. Found New Hardware window appears.

Figure E-1. Found New Hardware window

http://www.continuaalliance.org

Personal Healthcare – Weigh Scale Device Demo

USB Users Guide, Rev. 12

74 Freescale Semiconductor

2. Select Install from a list or specific location (Advanced) option as shown in Figure E-1, and click
on the Next button. Search and installation options window appears as shown in Figure E-2.

Figure E-2. Search and Installation options

Point the search path to the bin directory where the Continua CESL software was installed and
click on the Next button. The driver for the device will get installed.

To verify the installation, open the device manager. You must see the USB PHDC device entries.

Figure E-3. USB PHDC Device Entry in Device Manager

3. Launch the Continua Manager from the Start > All Programs menu towards the left-bottom side
of your computer.

Figure E-4. Launch Continua Manager

You must see the following application window.

USB PHDC device
shows up

Personal Healthcare – Weigh Scale Device Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 75

Figure E-5. Continua Manager window

4. Click on the Start Transport button. S 3 Madic Event connection confirmation pop-up appears as
shown in Figure E-6. Click on the Yes button to continue.

Figure E-6. Continua Manager GUI

5. The Continua Manager now enters the operating state. The Continua application window appears
as shown in Figure E-7.

Personal Healthcare – Weigh Scale Device Demo

USB Users Guide, Rev. 12

76 Freescale Semiconductor

Figure E-7. Continua Application

6. After the host device is in operating state, the push buttons on the device can be used to send weight
measurements to the host. Figure E-8 shows the function of these buttons.

Figure E-8. PHCD push buttons

7. When the push button to send the measurement is pressed, the measurements are sent to the
Continua Host Manager.

Host enters
operating state

Disconnect (PTG2)

Send Weight
Measurements (PTG1)

Personal Healthcare – Weigh Scale Device Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 77

Figure E-9. Continua Manager

Window
Measurements

Personal Healthcare – Weigh Scale Device Demo

USB Users Guide, Rev. 12

78 Freescale Semiconductor

USB Users Guide, Rev. 12

Freescale Semiconductor 79

Appendix F SD Card Demo
The SD Card demo implements the SCSI subclass of the USB MSC class. SD Card is attached to
DEMOFLEXISJMSD board (board maps SD interface to SPI and is specially designed for this purpose).
On running the application, SD Card is available as removable disk in Windows.

To select SD Card Application, set SD_CARD_APP macro in user_config.h to 1 and RAM_DISK_APP
to 0.

F.1 Setting up the demo
Set the systems as described in the Appendix D, “Human Interface Device (HID) Demo.”

F.2 Running the demo
After the SD Card application is programmed into the silicon flash, you must follow these steps to run the
demo:

1. Connect the hardware to Microsoft Windows host computer. As soon as you turn on the device, the
MSD device gets installed onto the host computer. You must see the callout as shown in Figure F-1
on the right bottom corner of your screen. At this point, Microsoft Windows installs the host driver
for the device.

Figure F-1. Found New Hardware callout

2. To verify whether the SD Card has been properly installed (or detected by Microsoft Windows),
you must see the JM device entry in the device manager.

Figure F-2. JM device entry

3. After the MSD device is installed, you can perform read, write, and format operations on SD Card.

SD Card Demo

USB Users Guide, Rev. 12

80 Freescale Semiconductor

Figure F-3. Option to format the SD card

NOTE
Because of SPI interface, all operations on SD Card are very slow for this
demo application.

USB Users Guide, Rev. 12

Freescale Semiconductor 81

Appendix G USB Audio Demo
This section explains how to use the USB Audio demo software package. The USB Audio demo is
developed based on USB audio class consisting of two different applications:

• USB audio speaker—Receives audio stream data from host and plays it

• USB audio generator—Sends audio data stream to the host

Both of these applications also support specific requests from host such as Mute Control, Volume Control,
and many more. The demo board used is DemoJM board (DemoJM128).

G.1 Audio speaker demo

G.1.1 Setting up the demo

Figure G-1 describes the demo setup. The DemoJM board is connected to a PC (host) using two USB
cables and one speaker through an external circuit. The PC uses one USB cable to supply power to the
board and program the image to the flash. The PC also acts as the host system and the DemoJM board acts
as the USB device. They are connected by the second USB cable. A COM connection is also established
to display the log of the DemoJM application.

The external circuit (Figure G-2) is connected to the pin PTF0/TPM1CH2 of DemoJM board (it
corresponds to pin 25 on DemoJM128) and is used to filter the audio signal before entering the speaker.

Figure G-1. Audio speaker demo setup

USB Audio Demo

USB Users Guide, Rev. 12

82 Freescale Semiconductor

Figure G-2. External circuit

G.1.2 Running the demo

After the system has been set, you must follow these steps to run the demo:

1. Plug USB Audio Device in to the PC. As soon as you turn on the device, it is recognized by the
host and is installed automatically. You must see the callout as shown in Figure G-3 on the right
bottom corner of your screen.

Figure G-3. Find New Hardware Callout

2. After successful installation, the host indicates that the device is ready to use as shown in
Figure G-4

Figure G-4. Installation of USB Audio Device

USB Audio Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 83

3. To verify whether the USB Audio Device has been installed properly or not, you must see the
device entry in the device manager as shown in Figure G-5.

Figure G-5. Device manager dialog

USB Audio Demo

USB Users Guide, Rev. 12

84 Freescale Semiconductor

4. Double-click on the USB Audio Device icon, USB Audio Device Properties dialog appears as
shown in Figure G-6

Figure G-6. USB Audio Device Properties dialog

USB Audio Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 85

5. To verify whether the USB Audio Device has been selected as the default device or not, you must
right-click on master volume icon. Master volume dialog appears as shown in Figure G-7.

Figure G-7. Master volume

6. After the installation, the device works as a sound driver and PC can control it. To show that the
value is already adjusted, the application sends the received data back to PC via UART. On PC side,
the data is captured by using HyperTerminal software.

a) Open the HyperTerminal application as shown in Figure G-8.

Figure G-8. Launch HyperTerminal application

USB Audio Demo

USB Users Guide, Rev. 12

86 Freescale Semiconductor

b) The HyperTerminal application is shown in Figure G-9. Enter the name of the connection and
click OK button.

Figure G-9. HyperTerminal startup

USB Audio Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 87

c) After selecting the COM port, configure baud rate and other properties as shown in
Figure G-10 (Baud rate: 115200, Data bits: 8, Parity: None, Stop bits: 1, Flow control: None).

Figure G-10. COM properties

USB Audio Demo

USB Users Guide, Rev. 12

88 Freescale Semiconductor

d) The HyperTerminal is configured now as shown in Figure G-11.

Figure G-11. HyperTerminal

USB Audio Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 89

e) Adjust master volume (volume, on/off/ Mute); the changed values are displayed on the
HyperTerminal screen (Figure G-12).

Figure G-12. Volume and mute control

USB Audio Demo

USB Users Guide, Rev. 12

90 Freescale Semiconductor

f) Open the Window Media Player application Figure G-13 and then select and listen to your
favorite audio; you can hear the song clearly.

Figure G-13. Window Media Player

G.2 Audio generator demo

G.2.1 Setting up the demo
Figure G-1 describes the demo setup. DemoJM is connected to a PC using two USB cables and one
speaker through an external circuit. The PC uses one USB cable to supply power to the board and program
the image to the flash. The PC also acts as the host system and the DemoJM board acts as the USB device.
They are connected by the second cable. A COM connection is also established to display the log of
DemoJM.

USB Audio Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 91

Figure G-14. Audio speaker demo setup

An audio data file (.wav file) which was converted to data arrays using the audio reproduction technique
is stored in the device memory to transfer to the host.

G.2.2 Running the demo
1. Follow the steps from 1 to 8 in Section G.1.2, “Running the demo” to completely install the demo.

Once installed, the demo can adjust the volume and mute.

2. Open the Sound Recorder application as shown in Figure G-15.

Figure G-15. Launch Sound Recorder application

3. Turn on demo board. The data of sound stored in the DemoJM memory will be sent to the host. It
acts as a generator sending audio data to the host.

USB Audio Demo

USB Users Guide, Rev. 12

92 Freescale Semiconductor

4. The sound is recorded by sound recorder application as shown in Figure G-16.

Figure G-16. Sound recorder

5. After recording, click on the Play button to listen the recorded sound. The sound that you can listen
now is identical to the instance sound located in the memory.

USB Users Guide, Rev. 12

Freescale Semiconductor 93

Appendix H DFU Class Demo
This chapter explains how to use DFU Class Demo. It illustrates features of DFU Class and the Demo
consists of two applications:

• DFU device application—An application developed based on the DFU class.

• DFU PC host application—A PC application developed to support download and upload
firmware.

Download and upload processes are implemented through specific requests. The details of these requests
are described in the DFU Class Specification. To take you through this chapter, the DFU device demo is
illustrated by using a Demo JM board (DemoJM128).

H.1 Setting up the demo
Figure H-1 describes the Demo setup. The DemoJM board is connected to a PC (host) using two USB
cables. One USB cable is used for powering the board and download the software image via BDM and
must be connected between PC and USB P&E multilink port (J1000). The second cable must be conected
between the mini AB port (J9) and PC which is considered HOST. The J11 jumper on the DEMOJM board
must be set on the OFF position (in this case the board is DEVICE)

Figure H-1. DFU class demo setup

DFU Class Demo

USB Users Guide, Rev. 12

94 Freescale Semiconductor

H.2 Running the demo

H.2.1 Driver installation

After the system has been set, you must follow these steps to run the demo:

1. Turn on DemoJM board, as soon as you turn on the device, it is recognized by the host and a callout
as Figure H-2 appears on the right bottom corner of your screen. A Found New Hardware Window
appears as shown in Figure H-3.

Figure H-2. Find New Hardware callout

Figure H-3. Found New Hardware

DFU Class Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 95

2. Select Install from a list or specific location (Advanced) option and click on the Next button.
Search and installation options window appears as shown in Figure H-4. Select “Don’t search, I
will choose the driver to install” option and click Next.

Figure H-4. Search and installation options

DFU Class Demo

USB Users Guide, Rev. 12

96 Freescale Semiconductor

3. Hardware Type Window appears, Select Show All Devices option, and click Next button. Click
Have Disk button when Select device driver window appears (Figure H-6).

Figure H-5. Hardware type window

Figure H-6. Select device driver window

DFU Class Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 97

4. Navigate to the INF file location to choose an .INF file and click Open (Figure H-7). After that
click Next when the next window appears to install driver.

Figure H-7. Location to the driver

Once the driver is installed, Windows now recognizes it is a DFU device. But now it is in run-time mode
so that HID mouse application is running on it.

To verify the installation, open the Device manager. You will see the Device firmware upgrade (DFU) and
USB Human Interface Device entry (Figure H-8).

Figure H-8. DFU Device and Human Interface device in Device Manager

DFU Class Demo

USB Users Guide, Rev. 12

98 Freescale Semiconductor

5. Launch DFU PC host application. The PC host application also recognizes RUNTIME mode is
running as shown in Figure H-9. Click “Enter DFU mode” to switch the device to DFU mode.

‘

Figure H-9. Device firmware upgrade - Runtime mode

Once DFU mode is entered, the windows will ask for driver again. Follow Step 2 to Step 4 to install driver
again (but driver for DFU mode as shown in Figure H-10).

DFU Class Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 99

Figure H-10. Install driver for DFU mode

DFU Class Demo

USB Users Guide, Rev. 12

100 Freescale Semiconductor

Once driver for DFU mode is been installed successfully, DFU device demo is in DFU mode and ready to
use (Figure H-11).

Figure H-11. DFU device demo in DFU mode

DFU Class Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 101

H.2.2 Downloading firmware

When the driver is installed completely, choose a firmware file to download to the device as shown in
Figure H-12.

Figure H-12. Choosing the firmware file

DFU Class Demo

USB Users Guide, Rev. 12

102 Freescale Semiconductor

The content of the firmware file will be displayed in ASCII and HEX as shown below (Figure H-13).

Figure H-13. Firmware contents

DFU Class Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 103

Click Download Firmware button, the firmware will be downloaded to the device (Figure H-14).

Figure H-14. The firmware is ready to download

DFU Class Demo

USB Users Guide, Rev. 12

104 Freescale Semiconductor

Figure H-15. Firmware is downloading

DFU Class Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 105

Once the download firmware process is finished, the PC host informs to you that the firmware was updated
successfully as given in (Figure H-16).

Figure H-16. Download is complete

To verify states of the device while in download firmware process:

• Open the log file in C:\ (this is default location for log file, you also can choose another place to
store log file by clicking the choose log file path button).

Figure H-17. Content of log file

DFU Class Demo

USB Users Guide, Rev. 12

106 Freescale Semiconductor

NOTE
If the USB cable is unplugged during the download process, the DFU PC
host will ask to continue download whenever the USB cable is plugged,
again (Figure H-18).

.

Figure H-18. Resume downloading

DFU Class Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 107

H.2.3 Upload firmware

Whenever you want to upload firmware, click Upload firmware button on DFU PC host application. The
application will ask for file name, type the file name and click Save button. After that device firmware will
be uploaded, immediately.

Figure H-19. Save the uploaded firmware file

When the upload process is finished, the data received is displayed in two text boxes because the upload
function reads total 256 bytes of device’s firmware, so some bytes in flash memory which that were not
written be read like 0xFF.

DFU Class Demo

USB Users Guide, Rev. 12

108 Freescale Semiconductor

USB Users Guide, Rev. 12

Freescale Semiconductor 109

Appendix I Battery Charging Device Demo Application

I.1 Setting up the demo
Figure I.1 describes a typical connection for battery charging demo application.

Figure I-1. Battery charging demo setup

The target board is a modular Tower system composed of two elevators (primary board elevator used for
power supply with the second which is a dummy board used for mechanical stability), one serial board
(TWR-SER) handling the communication over the RS232 and/or USB and the microcontroller module
(eg: TWR-K40N512 for a K40 processor, TWR-K60N512 for a K60 processor a.s.o.)

The Host PC is running the Code Warrior for build, download and debug purpose; the application
functionality can be monitored through a serial terminal such as the Microsoft Windows HyperTerminal.
The Host PC is connected via a RS232 cable (3-pin null modem type) to the serial port of the TWR-SER
board.

The mini-AB port of the TWR-SER from the Target Board may be connected to either a PC type A USB
port, or to a wall USB charger.

The jumper setting for the serial board (TWR-SER) of the Target board shall be as below:

• USB settings:
— J16 (USB Mode Select): 5-6 OTG Mode (need the OTG mode for VBUS detection)

— J11 USB OTG Interrupt select (1-2: IRQ_H, 3-4: IRQ_F, 5-6: IRQ_D, 7-8: IRQ_B)

Battery Charging Device Demo Application

USB Users Guide, Rev. 12

110 Freescale Semiconductor

— J10 (USB VBUS Select): 2-3 BUS powered device (source 5V from USB)

• Serial communication settings:
— J15 (RS232/RS485 Select): 1-2 RS232

— J19 (Tx Select): 1-2

— J17 (Rx Select): 1-2

The Figure H-2 shows the location of each header mentioned above, for an easily identification on the
communication board.

Figure I-2. Battery cahrging related board jumpers

I.2 Running the demo
For the battery charging class, the demo application is located in \Device\app\batt_chg\ path. Perform the
following steps to run the demo application:

1. Open the project and load the images on the flash of the board controller.

2. Open a serial terminal performing the setting steps already presented; starting the demo
application, and with USB cable left unconnected, the terminal shows a message requesting the
user to connect the device to a charging port.

Battery Charging Device Demo Application

USB Users Guide, Rev. 12

Freescale Semiconductor 111

Figure I-3. USB Battery Charging Demo App – after initialization

3. Connect the USB cable to a PC; in this case the application detects that it has been connected to a
Standard Downstream Port (SDP) and it also indicates the maximum allowable current to be used
for battery charging process, as it is shown in the next screenshot.

Battery Charging Device Demo Application

USB Users Guide, Rev. 12

112 Freescale Semiconductor

Figure I-4. USB Battery Charging Demo App – SDP connect detection

4. If instead, a wall charger via USB cable is connected to the target board the application recognizes
this as a Dedicated Charging Port (DCP) type and the maximum allowable current is indicated as
well.

NOTE
The wall USB Charger should be according to the Battery Charging
Specification rev. 1.1, therefore the data lines D+ and D- should be shorted
together via a resistance, RDCHG_DAT (less than 200 ohm) otherwise the
USB port is not properly recognized as a DCP type.

USB Users Guide, Rev. 12

Freescale Semiconductor 113

Appendix J Video Device Class Demo Applications

J.1 Introduction

J.1.1 About Video Class demo

This section gives a quick overview on how to use the USB Video demo software package. The USB Video
demo is developed base on USB Video Class. It demonstrates sending video data stream to the host like
an USB Video Camera. It is called Virtual Camera application. The application also support specific
requests from host such as Brightness control and so on.

To take you through this guide, the demo is illustrated by using a TWR-M5225X board.

J.2 USB Video Demo – Internal Flash

J.2.1 Overview

In this demo, the video data is stored in internal flash memory. The Virtual camera application will read
video data from the memory and transfer it to computer through USB connection. Because of memory
limitation, the video size is not too large. This application supports videos whose solutions are 176 x 144.

J.2.2 Setting up the demo

Figure J-1 describes the demo setup. TWR-M5225X board is connected to a PC using two USB. The
computer uses one USB cable to supply power to the board and program the image to the flash. The
computer also acts as the host system and the TWR-M5225X board acts as the USB device by using the
second cable.

Figure J-1. Video demo setup

Video Device Class Demo Applications

USB Users Guide, Rev. 12

114 Freescale Semiconductor

J.2.3 Running the demo

After the system has been set, you must follow these steps to run the demo:

J.2.3.1 Preparing

1. Run internal flash demo from folder app\virtual_camera. Video data is included in code and
download to chip when running the application.

2. Plug USB Video device in to the PC (host). As soon as you turn on the device, it is recognized by
the host and is installed automatically. You must see the callout as shown in on the right bottom
corner of your screen as shown in Figure J-2.

Figure J-2. Find New Hardware callout

3. After successful installation, the host indicates that the device is ready to use as shown in Figure J-3

Figure J-3. Installation of USB Video device

4. To verify whether the USB Video Device has been installed properly or not, you must see the
device entry in the device manager as shown in Figure J-4.

Video Device Class Demo Applications

USB Users Guide, Rev. 12

Freescale Semiconductor 115

Figure J-4. Device manager dialog

5. Double-click on My Computer icon, USB Video device icon is also appeared as shown in
Figure J-5

Figure J-5. USB video device entry

Video Device Class Demo Applications

USB Users Guide, Rev. 12

116 Freescale Semiconductor

6. By Double-clicking on the USB Video Device icon, video is displayed as shown as shown in
Figure J-6

Figure J-6. Video is displayed

J.3 USB Video Demo — SD card

J.3.1 Overview

Internal flash memory isn’t enough for big video, so we use a SDSC(Security Digital Standard Capacity
card) to store video data. An application is called sd_loader is necessary to download video data from
computer and write it into SDSC. The Virtual camera SD application will read video data from SDSC and
transfer it to computer via USB connection. This application supports videos whose solutions are 320 x
240.

J.3.2 Setting up the demo

Figure J-7 describes the demo setup. TWR-M5225X board is connected to a PC using one USB cable. The
cable is used by computer to supply power to the board. The computer also acts as the host system and
the TWR-K60N512 board acts as the USB device by using the cable. You use PnE debugger to program

Video Device Class Demo Applications

USB Users Guide, Rev. 12

Freescale Semiconductor 117

chip MK60N512VMD. Video data is downloaded from computer and stored in a SD card. Sections below
will describe how to load a video to SD card by using sd_loader application and run video application.

Figure J-7. Video demo setup

J.3.3 Running the demo

After the system has been set, you must follow these steps to run the demo:

J.3.4 Preparing video data
1. Running SD loader project from folder app\sd_loader.

2. Plug USB loader device in to the PC (host). As soon as, you turn on the device, it is recognized by
the host and is installed automatically. You must see the callout as shown on the right bottom corner
of your screen as shown in Figure J-8.

Figure J-8. Find new hardware callout

3. After successful installation, the host indicates that the device is ready to use as shown in
Figure J-9.

Figure J-9. Installation of USB video device

4. Double-click on My Computer icon, USB Video device icon is also appeared as shown in
Figure J-10

Video Device Class Demo Applications

USB Users Guide, Rev. 12

118 Freescale Semiconductor

Figure J-10. SD loader

5. To verify whether the USB Video Device has been installed properly or not, you must see a
“READY.TXT” file, after double-click on SD LOADER icon

Video Device Class Demo Applications

USB Users Guide, Rev. 12

Freescale Semiconductor 119

Figure J-11. Device ready status

6. Send your video to SD as following Figure J-12

Video Device Class Demo Applications

USB Users Guide, Rev. 12

120 Freescale Semiconductor

Figure J-12. Send video to SD loader

Then, waiting for transferring process

Figure J-13. Transfer data

7. When transferring finish, by Double-clicking on the SD LOADER icon, you will see a
SUCCESS.TXT file Figure J-14.

Video Device Class Demo Applications

USB Users Guide, Rev. 12

Freescale Semiconductor 121

Figure J-14. Transfer success rate

J.3.4.1 Running video demo application

1. Running the Video_SD application from folder app\Virtual_camera_SD

2. You repeat steps from 2th to 7th in Internal flash demo, then video is displayed as shown as shown
in Figure J-15

Video Device Class Demo Applications

USB Users Guide, Rev. 12

122 Freescale Semiconductor

Figure J-15. Video is displayed

USB Users Guide, Rev. 12

Freescale Semiconductor 123

Appendix K MSD and CDC Composite Demo

K.1 Introduction

K.1.1 About MSD and CDC demo

This section gives a quick overview on how to use the USB Composite Device application: MSD_CDC
composite device demo. In that, the MSD device contains the driver file which will be used to install CDC
device.

By this way, user always have driver file of CDC device but does not need find it.

The USB MSD and CDC demo is developed base on USB MSD, CDC classes and consists of two different
applications:

• USB MSD disk: receive request from host, send and receives data from host.

• USB CDC virtual com: receive request and data from host. The data, then can be displayed on
HyperTerminal.

Because CDC feature include two interfaces, the application used IAD to write the feature's descriptor

To take you through this guide, the demo is illustrated by using a TWR K60N512 board.

K.2 Setting up the demo
Figure K-1 describes the demo setup. The TWR-K60N512 board is connected to a personal computer
using two USB cables and one speaker through an external circuit. The computer uses one USB cable to
supply power to the board and program the image to the flash. The computer also acts as the host system
and the TWR-K60N512 board acts as the USB device. They are connected by the second cable.

The external circuit is connected to pin 40 on A side expansion port of dummy tower and is used to filter
audio signal before entering the speaker.

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

124 Freescale Semiconductor

Figure K-1. MSD and CDC demo setup

K.3 Running the demo
After the system has been set, you must follow these steps to run the demo:

1. Plug USB Composite device in to the PC (host). As soon as you turn on the device, it is recognized
by the host and is installed automatically. You must see the callout as shown in Figure K-2 on the
right bottom corner of your screen.

Figure K-2. Find New Hardware Callout

Figure K-3. Find Composite device Callout

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 125

Then each feature device will be detected respectively:

The first, CDC device is detected:

Figure K-4. Found new hardware Wizard

You should cancel to pass this request and install MSD feature device first

Next, Host detects MSD device.

Figure K-5. Find MSD device Callout

The host will install MSD feature device as a removable disk

Figure K-6. MSD feature device

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

126 Freescale Semiconductor

2. The host will warning for CDC installation fail

Figure K-7. hardware might not work properly

3. After that, MSD device is enumerated successfully. The FSL_MSDDEMO Removable disk can be
seen at My Computer window as Figure K-8:

Figure K-8. FSL_MSDDEMO disk

This drive contains driver file for CDC, FSL_VCOM.INF which can be used to install for the CDC device:

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 127

Figure K-9. CDC driver file

4. The steps to install CDC device is shown below:

Step 1. Update driver for CDC device

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

128 Freescale Semiconductor

Figure K-10. Update Driver for CDC device

Step 2. Select Install from a list or specific location (Advanced) option and click on the Next button in
Search and installation options window appears as shown in Figure K-11

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 129

Figure K-11. Found new hardware

Step 3. Select "Don't search, I will choose the driver to install" option and click Next button as
Figure K-12

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

130 Freescale Semiconductor

Figure K-12. Search and installation options

Step 4. Hardware Type Window appears, select Show All Devices option, and click Next button.
Click Have Disk button when Select device driver window appears (Figure K-13).

Figure K-13. Hardware type window

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 131

Figure K-14. Select device driver window

Figure K-15. Browse to driver

Step 5. Navigate to FSL_MSDDEMO disk, CDC driver file is FSL_VCOM.INF, choose it and click
Open button (Figure K-16). After that, click Next button when the next window appears to install
driver.

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

132 Freescale Semiconductor

Figure K-16. Location to the driver

Step 6. The device in this application is not supported yet by Window. Click Yes button in Update
driver warning window (Figure K-17)and Continue Anyway button in next window(Figure K-18).

Figure K-17. Update Warning

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 133

Figure K-18. Hardware Installation Confirm

Step 7. Click to Finish button when installation for CDC device done

Figure K-19. Update complete

Step 8. After successful installation, the host indicates that the device is ready to use as shown in
Figure K-20.

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

134 Freescale Semiconductor

Figure K-20. Installation of USB Composite device

5. To verify whether the USB Composite Device has been installed properly or not, you must see the
each feature devices and composite device entry in the device manager as shown in Figure K-21.

Figure K-21. Device manager dialog

6. Double-click on the Virtual Com Port icon, Virtual Com Port Properties dialog appears as shown
in Figure K-22.

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 135

Figure K-22. USB Video Device Properties dialog

7. Configure HyperTerminal for MSD_CDC_DEMOE com port step by step, following:

Step 1.Open Run task and enter hypertrm.exe as shown in Figure K-23.

Figure K-23. Open HyperTerminal from Run task

Step 2.Enter name of connection as Figure K-24.

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

136 Freescale Semiconductor

Figure K-24. HyperTerminal startup

Step 3.Then choose port to connect. In this application, the com is COM18 (Figure K-25).

Figure K-25. Choose Com port

Step 4. After selecting the COM port, configure baud rate and other properties as shown in
Figure K-26 (Baud rate: 115200, Data bits: 8, Parity: None, Stop bits: 1, Flow control: None)

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 137

Figure K-26. COM properties

Step 5.Configure this port as shown as in Figure K-27. Enter to ASCII setup and setting as shown as
in Figure K-29

Figure K-27. Port taskbar

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

138 Freescale Semiconductor

Figure K-28. Com port properties

Figure K-29. Setting Echo character

Step 6. The HyperTerminal is configured now as shown in Figure K-30

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 139

Figure K-30. HyperTerminal

8. In MSD_CDC_DEMO window enter: "MSD_CDC_DEMO " string. The string will display on
HyperTerminal window as shown as in Figure K-31

Figure K-31. MSD_CDC_DEMO HyperTerminal

MSD and CDC Composite Demo

USB Users Guide, Rev. 12

140 Freescale Semiconductor

USB Users Guide, Rev. 12

Freescale Semiconductor 143

Appendix L HID Audio Video Composite Demo

L.1 Introduction

L.1.1 About HID_Audio_Video demo

This section gives a quick overview on how to use the USB Composite layer application USB HID, Audio,
Video classes device demo software package.

The USB HID_Audio_Video demo is developed base on USB HID, Audio, Video classes and consists of
three different applications:

• USB HID mouse: receive request from host and send mouse data to the host.

• USB Audio speaker: receive request and audio stream data from host. The audio data then can be
play on the device.

• USB Video virtual camera: receive request from host and send video stream data to the host.

Because both video and audio feature include two interfaces, the application used IAD to write these
feature's descriptor

To take you through this guide, the demo is illustrated by using a TWR K60 board.

L.2 Setting up the demo
Figure L-1 describes the demo setup. The TWR-K60N512 board is connected to a personal computer
using two USB cables and one speaker through an external circuit. The computer uses one USB cable to
supply power to the board and program the image to the flash. The computer also acts as the host system
and the TWR-K60N512 board acts as the USB device. They are connected by the second cable.

The external circuit is connected to pin 40 on A side expansion port of dummy tower and is used to filter
audio signal before entering the speaker.

HID Audio Video Composite Demo

USB Users Guide, Rev. 12

144 Freescale Semiconductor

Figure L-1. HID Audio Video demo setup

L.3 Running the demo
After the system has been set, you must follow these steps to run the demo:

1. Plug USB Composite device in to the PC (host). As soon as you turn on the device, it is recognized
by the host and is installed automatically. You must see the callout as shown in Figure L-2 on the
right bottom corner of your screen.

Figure L-2. Find New Hardware Callout

Figure L-3. Find Composite device Callout

Then each feature device will be detected respectively:

Firstly, Video device is detected:

HID Audio Video Composite Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 145

Figure L-4. Find Video device Callout

Next, Audio device will be detected

Figure L-5. Find Audio device Callout

HID device will be detected lastly

Figure L-6. Find HID device Callout

2. After successful installation, the host indicates that the device is ready to use as shown in
Figure L-7

Figure L-7. Installation of USB Composite device

3. To verify whether the USB Composite Device has been installed properly or not, you must see the
each feature devices and composite device entry in the device manager as shown in Figure L-8.

HID Audio Video Composite Demo

USB Users Guide, Rev. 12

146 Freescale Semiconductor

Figure L-8. Device Manager

L.4 Video virtual camera feature demo
1. Double-click on the USB Video device icon, USB Video device Properties dialog appears as shown

in Figure L-9.

HID Audio Video Composite Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 147

Figure L-9. USB Video Device Properties dialog

2. To verify whether the USB Video Device has been selected as the default device or not, you open
My Computer icon. The Virtual camera will be identified as a Digital camera and appears as shown
in Figure L-10

HID Audio Video Composite Demo

USB Users Guide, Rev. 12

148 Freescale Semiconductor

Figure L-10. Digital camera application

3. Double-click on Digital camera icon video is displayed as shown in Figure L-11.

HID Audio Video Composite Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 149

Figure L-11. Virtual camera

L.5 Audio speaker feature demo
1. Double-click on the USB Audio device icon, USB Audio device Properties dialog appears as

shown in Figure L-12

HID Audio Video Composite Demo

USB Users Guide, Rev. 12

150 Freescale Semiconductor

Figure L-12. USB Audio Device Properties dialog

2. To verify whether the USB Audio Device has been selected as the default device or not, you must
right-click on master volume icon. Master volume dialog appears as shown in Figure L-13

Figure L-13. Master volume

HID Audio Video Composite Demo

USB Users Guide, Rev. 12

Freescale Semiconductor 151

3. Open the Window Media Player application as shown in Figure L-14.

Figure L-14. Launch Windows Media Player application

4. The window shown in the Figure L-15 appears. Select and play your favorite song, you can hear
the song clearly.

Figure L-15. Windows Media Player

HID Audio Video Composite Demo

USB Users Guide, Rev. 12

152 Freescale Semiconductor

L.6 HID mouse feature demo
1. To verify whether the mouse has been properly installed or not, you must see the Mouse demo

device entry in the device manager

Figure L-16. Mouse demo device entry

2. After the HID device is installed, it can be moved on the host computer screen by pressing the push
buttons. Figure L-17 shows the function of these button.

Figure L-17. HID device push buttons

USB Users Guide, Rev. 12

Freescale Semiconductor 153

Glossary

A

API
Application Programming Interface. It is a set of functions, structures, and classes that can be called from an
application program to access other programs. In S08USB applications, it is an interface defined by a layer that the
application developer can use.

application
A user program that you can develop using the driver layers to performs a specific function.

C

callback
An application-provided function that S08 USB software calls, when a particular event occurs.

CDC
Communication Device Class. This device class is used for implementation of communication protocols over the
USB transport.

class driver
A driver that can operate large number of devices of the comparable type.

CodeWarrior
An integrated development environment used to develop software.

configuration descriptor
The structure that defines the configurations for a USB device. A USB device can have one or more configuration
descriptors. Each configuration has one or more interfaces and each interface has zero or more endpoints. An
endpoint is not shared among different interfaces within a single configuration, however it can be shared among
interfaces that are part of different configurations without this restriction.

Continua Alliance
The alliance formed between various companies for the development of medical connectivity standards.

control endpoint
The data pipe defined in the USB protocol that is used to receive and transmit control data.

controller
The hardware module that controls the bus to transmit or receive data.

USB Users Guide, Rev. 12

154 Freescale Semiconductor

D

debugger
The combination of hardware and software used in the development of a project to find and resolve issues.

descriptor
A data structure that contains the information about the USB device and its features.

device descriptor
The structure that describes a USB device. It includes configurations and the information that apply to a USB
device. A USB device has only one device descriptor.

device driver
It is the software that controls the controller device and drives it to transmit or receive data.

device stack
These are the group of software layers through which the data passes to the application.

E

enumeration
This is a process in USB protocol by which the host identifies the devices connected to it.

event
It is a condition occurring at the bus that is passed through the device stack to the upper layers of software.

endpoint
It signifies logical data source and sink of a USB device.

endpoint designator
It contains details required by the host to determine the bandwidth requirements of endpoints.

F

function parameters
The parameters passed on a function call.

H

HID
Human Interface Device. This is the devices that is used by humans to control the operation of computer systems.
Typical examples include keyboard, joystick, and mouse.

USB Users Guide, Rev. 12

Freescale Semiconductor 155

host
The hardware and its operating system (for example, a desktop personal computer), where you develop your
application.

I

IEEE11073
It is an IEEE standard that defines medical connectivity standards between devices and applications at various
levels.

I/O
Generally refers to the transfer of commands or data across a device interface.

M

MSC
Mass Storage Class. The USB mass storage device class (USB MSC or UMS) is a set of computing
communications protocols defined by the USB Implementers Forum that run on the USB. The standard provides an
interface to a variety of storage devices like USB flash drive, memory card reader, digital audio player, digital
camera, external drive and so on.

P

PHD
Personal Healthcare Device. This is the devices that is used to take medical measurements. Typical examples
include pulse meter, glucometer, and blood pressure monitor.

porting
It is a process of moving some applications and software layers that work on one device platform to another.

R

resume
The process of waking a USB device from suspend state so that it can start sending data.

USB Users Guide, Rev. 12

156 Freescale Semiconductor

S

setup packet
A special 8 byte packet that the host sends on the control endpoint to receive control information from the device.

suspend
A phase in the USB protocol where the device and the host turn off their transmitters to save power if there is
nothing to transmit on the USB bus.

SCSI
Small Computer System Interface. It is a set of standards for physically connecting and transferring data between
computers and peripheral devices. SCSI is generally pronounced as scuzzy.

T

transport
Moving data from one entity to another.

U

USB
Universal Serial Bus. It is a serial bus that is used to connect devices to a personal computer.

	Freescale USB Device Stack
	Chapter 1 Before You Begin
	1.1 About Freescale USB Stack
	1.2 About this book
	1.3 Reference material
	1.4 Acronyms and abbreviations
	1.5 Important terms

	Chapter 2 Getting Familiar
	2.1 Introduction
	2.2 Software suite
	2.3 Directory structure

	Chapter 3 Freescale USB Stack Architecture
	3.1 Architecture overview
	3.2 Software flows
	3.2.1 Initialization flow
	3.2.2 De-initialization flow
	3.2.3 Transmission flow
	3.2.4 Reception flow

	Chapter 4 Developing New Class Drivers
	4.1 Introduction
	4.2 Steps for developing new class drivers
	4.2.1 Directory structure
	4.2.2 Class initialization
	4.2.3 Class callback routine
	4.2.4 Class request routine
	4.2.4.1 Endpoint service routine

	Chapter 5 Developing Applications
	5.1 Introduction
	5.2 Application interfaces
	5.3 Developing an Application
	5.4 Application design
	5.4.1 Main Application Function
	5.4.2 Callback Function

	Appendix A Working with the Software
	A.1 Introduction
	A.1.1 Preparing the setup
	A.1.1.1 Software setup
	A.1.1.2 Hardware setup

	A.1.2 Building the Application with CodeWarrior 6 and CodeWarrior 7
	A.1.3 Running the Application with CodeWarrior 6 and CodeWarrior 7
	A.1.4 Building and Running the Application with CodeWarrior 10

	A.2 Uninstall Freescale USB Stack Software
	A.3 Important files

	Appendix B Human Interface Device (HID) Demo
	B.1 Setting up the demo
	B.2 Running the demo

	Appendix C Personal Healthcare - Multi-Specialization Device Demo
	C.1 Setting up the demo
	C.2 Running the demo

	Appendix D Human Interface Device (HID) Demo
	D.1 Setting up the demo
	D.2 Running the demo

	Appendix E Personal Healthcare - Weigh Scale Device Demo
	E.1 Setting up the demo
	E.2 Running the demo

	Appendix F SD Card Demo
	F.1 Setting up the demo
	F.2 Running the demo

	Appendix G USB Audio Demo
	G.1 Audio speaker demo
	G.1.1 Setting up the demo
	G.1.2 Running the demo

	G.2 Audio generator demo
	G.2.1 Setting up the demo
	G.2.2 Running the demo

	Appendix H DFU Class Demo
	H.1 Setting up the demo
	H.2 Running the demo
	H.2.1 Driver installation
	H.2.2 Downloading firmware
	H.2.3 Upload firmware

	Appendix I Battery Charging Device Demo Application
	I.1 Setting up the demo
	I.2 Running the demo

	Appendix J Video Device Class Demo Applications
	J.1 Introduction
	J.1.1 About Video Class demo

	J.2 USB Video Demo - Internal Flash
	J.2.1 Overview
	J.2.2 Setting up the demo
	J.2.3 Running the demo
	J.2.3.1 Preparing

	J.3 USB Video Demo - SD card
	J.3.1 Overview
	J.3.2 Setting up the demo
	J.3.3 Running the demo
	J.3.4 Preparing video data
	J.3.4.1 Running video demo application

	Appendix K MSD and CDC Composite Demo
	K.1 Introduction
	K.1.1 About MSD and CDC demo

	K.2 Setting up the demo
	K.3 Running the demo

	Appendix L HID Audio Video Composite Demo
	L.1 Introduction
	L.1.1 About HID_Audio_Video demo

	L.2 Setting up the demo
	L.3 Running the demo
	L.4 Video virtual camera feature demo
	L.5 Audio speaker feature demo
	L.6 HID mouse feature demo

	Glossary

