
EXAMPLE 6 Find the gradient vector field of . Plot the gradient
vector field together with a contour map of f. How are they related?

SOLUTION The gradient vector field is given by

Figure 15 shows a contour map of with the gradient vector field. Notice that the
gradient vectors are perpendicular to the level curves, as we would expect from
Section 11.6. Notice also that the gradient vectors are long where the level curves
are close to each other and short where they are farther apart. That’s because the
length of the gradient vector is the value of the directional derivative of and close
level curves indicate a steep graph.

A vector field is called a conservative vector field if it is the gradient of some
scalar function, that is, if there exists a function such that . In this situation

is called a potential function for .
Not all vector fields are conservative, but such fields do arise frequently in physics.

For example, the gravitational field F in Example 4 is conservative because if we
define

then

In Sections 13.3 and 13.5 we will learn how to tell whether or not a given vector field
is conservative.
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FIGURE 15

9. 10.
� � � � � � � � � � � � �

11–14 � Match the vector fields with the plots labeled I–IV.
Give reasons for your choices.

11.

12.

13.

14. F�x, y� � � ln�1 � x 2 � y 2 �, x�

F�x, y� � �sin x, sin y�

F�x, y� � �2x � 3y, 2x � 3y�

F�x, y� � � y, x�

F

F�x, y, z� � j � iF�x, y, z� � y j1–10 � Sketch the vector field by drawing a diagram like 
Figure 5 or Figure 9.

1. 2.

3. 4.

5. 6.

7.

8. F�x, y, z� � z j

F�x, y, z� � j

F�x, y� �
y i � x j
sx 2 � y 2

F�x, y� �
y i � x j
sx 2 � y 2

F�x, y� � x i � y jF�x, y� � x i � y j

F�x, y� � i � x jF�x, y� � 1
2�i � j�

F
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use it to plot

Explain the appearance by finding the set of points 
such that .

20. Let , where and . Use
a CAS to plot this vector field in various domains until you
can see what is happening. Describe the appearance of the
plot and explain it by finding the points where .

21–24 � Find the gradient vector field of .

21. 22.

23. 24.
� � � � � � � � � � � � �

25–26 � Find the gradient vector field of and sketch it.

25. 26.
� � � � � � � � � � � � �

27–28 � Plot the gradient vector field of together with a con-
tour map of . Explain how they are related to each other.

27. 28.
� � � � � � � � � � � � �

29–32 � Match the functions with the plots of their gradient
vector fields (labeled I–IV). Give reasons for your choices.

29. 30.

31. 32.

� � � � � � � � � � � � �
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III IV

f �x, y� � sx 2 � y 2f �x, y� � x 2 � y 2

f �x, y� � x 2 � y 2f �x, y� � xy

f

f �x, y� � sin�x � y�f �x, y� � sin x � sin y

f
fCAS

f �x, y� � 1
4�x � y�2f �x, y� � xy � 2x

f∇ f

f �x, y, z� � x cos�y�z�f �x, y, z� � sx 2 � y 2 � z 2

f �x, y� � x �e��xf �x, y� � ln�x � 2y�

f

F�x� � 0

r � � x �x � �x, y�F�x� � �r 2 � 2r�xCAS

F�x, y� � 0
�x, y�

F�x, y� � �y 2 � 2xy� i � �3xy � 6x 2 � j

� � � � � � � � � � � � �

15–18 � Match the vector fields on with the plots labeled
I–IV. Give reasons for your choices.

15.

16.

17.

18.

� � � � � � � � � � � � �

19. If you have a CAS that plots vector fields (the command is
fieldplot in Maple and PlotVectorField in Mathematica),

CAS
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F�x, y, z� � x i � y j � z k

F�x, y, z� � x i � y j � 3 k

F�x, y, z� � i � 2 j � z k

F�x, y, z� � i � 2 j � 3 k
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Line Integrals � � � � � � � � � � � � � � � � �

In this section we define an integral that is similar to a single integral except that
instead of integrating over an interval , we integrate over a curve . Such inte-
grals are called line integrals, although “curve integrals” would be better terminology.
They were invented in the early 19th century to solve problems involving fluid flow,
forces, electricity, and magnetism.

We start with a plane curve given by the parametric equations

or, equivalently, by the vector equation , and we assume that 
is a smooth curve. [This means that is continuous and . See Section 10.2.]
If we divide the parameter interval into n subintervals of equal width
and we let and , then the corresponding points divide 
into subarcs with lengths (See Figure 1.) We choose any point

in the th subarc. (This corresponds to a point in .) Now if is
any function of two variables whose domain includes the curve , we evaluate at
the point , multiply by the length of the subarc, and form the sum

which is similar to a Riemann sum. Then we take the limit of these sums and make
the following definition by analogy with a single integral.

Definition If is defined on a smooth curve given by Equations 1, then
the line integral of f along C is

if this limit exists.

In Section 6.3 we found that the length of is

L � y
b

a

 ��dx

dt 	2

� �dy

dt 	2

 dt

C

y
C
 f �x, y� ds � lim 

n l 	
 


n

i�1
 f �xi*, yi*� 
si

Cf2



n

i�1
 f �xi*, yi*� 
si


si�xi*, yi*�
fC
f�ti�1, ti�ti*iPi*�xi*, yi*�


s1, 
s2, . . . , 
sn.n
CPi�xi, yi�yi � y�ti�xi � x�ti�

�ti�1, ti ��a, b�
r��t� � 0r�

Cr�t� � x�t� i � y�t� j

a � t � by � y�t�x � x�t�1

C

C�a, b�

13.2

solve the differential equations to find an equation of
the flow line that passes through the point (1, 1).

34. (a) Sketch the vector field and then
sketch some flow lines. What shape do these flow lines
appear to have?

(b) If parametric equations of the flow lines are 
, what differential equations do these functions 

satisfy? Deduce that .
(c) If a particle starts at the origin in the velocity field

given by F, find an equation of the path it follows.

dy�dx � x
y � y�t�

x � x�t�,

F�x, y� � i � x j

33. The flow lines (or streamlines) of a vector field are the
paths followed by a particle whose velocity field is the
given vector field. Thus, the vectors in a vector field are
tangent to the flow lines.
(a) Use a sketch of the vector field to

draw some flow lines. From your sketches, can you
guess the equations of the flow lines?

(b) If parametric equations of a flow line are
, explain why these functions satisfy the differ-

ential equations and . Then dy�dt � �ydx�dt � x
y � y�t�

x � x�t�,

F�x, y� � x i � y j
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FIGURE 1

Pi-1
P*i (x*i , y*i )

Pi

Pn

t i-1

t*i

t i

P¸

P¡

P™

C

a b

x0

y

t



EXAMPLE 8 Evaluate , where and is the
twisted cubic given by

SOLUTION We have

Thus

Finally, we note the connection between line integrals of vector fields and line inte-
grals of scalar fields. Suppose the vector field on is given in component form by
the equation . We use Definition 13 to compute its line integral
along :

But this last integral is precisely the line integral in (10). Therefore, we have

For example, the integral in Example 6 could be expressed
as where

F�x, y, z� � y i � z j � x k

xC F � dr
xC y dx � z dy � x dz

where F � P i � Q j � R ky
C
 F � dr � y

C
 P dx � Q dy � R dz

 � y
b

a
 �P�x�t�, y�t�, z�t��x��t� � Q�x�t�, y�t�, z�t��y��t� � R�x�t�, y�t�, z�t��z��t�� dt

 � y
b

a
 �P i � Q j � R k� � �x��t� i � y��t� j � z��t� k� dt

 y
C
 F � dr � y

b

a
 F�r�t�� � r��t� dt

C
F � P i � Q j � R k

� 3F

 � y
1

0
 �t 3 � 5t 6 � dt �

t 4

4
�

5t 7

7 �0

1

�
27

28

 y
C
 F � dr � y

1

0
 F�r�t�� � r��t� dt

 F�r�t�� � t 3 i � t 5 j � t 4 k

 r��t� � i � 2t j � 3t 2 k

 r�t� � t i � t 2 j � t 3 k

0 � t � 1z � t 3y � t 2x � t

CF�x, y, z� � xy i � yz j � zx kx
C
 F � dr
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� Figure 13 shows the twisted cubic 
in Example 8 and some typical vectors
acting at three points on .C

C

FIGURE 13

y

z

x

0

0.5

1

1.5

2

2
1

0

12 0

F{r (1)}

(1, 1, 1)

C

F{r(1/2)}

F{r(3/4)}

4. ,
is the arc of the curve from to 

5. , consists of line segments from
to and from to �3, 2��2, 0��2, 0��0, 0�

Cx
C
 xy dx � �x � y� dy

�1, 1��1, �1�x � y 4C
x

C
 sin x dx1–12 � Evaluate the line integral, where is the given curve.

1. ,

2. ,

3. , is the right half of the circle x 2 � y 2 � 16Cx
C
 xy 4 ds

C: x � t 4, y � t 3, 1
2 � t � 1x

C
 �y�x� ds

C: x � t 2, y � t, 0 � t � 2x
C
 y ds

C

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �13.2



934 � CHAPTER 13 VECTOR CALCULUS

15–18 � Evaluate the line integral , where is given
by the vector function .

15. ,
,

16. ,
,

17. ,
,

18. ,
,

� � � � � � � � � � � � �

19–20 � Use a graph of the vector field F and the curve C to
guess whether the line integral of F over C is positive, negative,
or zero. Then evaluate the line integral.

19. ,
is the arc of the circle traversed counter-

clockwise from (2, 0) to 

20. ,

is the parabola from to (1, 2)
� � � � � � � � � � � � �

21. (a) Evaluate the line integral , where
and is given by 

, .

; (b) Illustrate part (a) by using a graphing calculator or com-
puter to graph and the vectors from the vector field
corresponding to , , and 1 (as in Figure 13).

22. (a) Evaluate the line integral , where
and is given by

, .

; (b) Illustrate part (a) by using a computer to graph and
the vectors from the vector field corresponding to

and (as in Figure 13).

23. Find the exact value of , where is the part of the
astroid , in the first quadrant.

24. (a) Find the work done by the force field
on a particle that moves once

around the circle oriented in the
counterclockwise direction.

(b) Use a computer algebra system to graph the force field
and circle on the same screen. Use the graph to explain
your answer to part (a).

25. A thin wire is bent into the shape of a semicircle
, . If the linear density is a constant ,

find the mass and center of mass of the wire.

26. Find the mass and center of mass of a thin wire in the shape 
of a quarter-circle , , , if the den-
sity function is .��x, y� � x � y

y � 0x � 0x 2 � y 2 � r 2

kx � 0x 2 � y 2 � 4

CAS

x 2 � y 2 � 4
F�x, y� � x 2 i � xy j

y � sin3tx � cos3t
CxC x 3y 5 dsCAS

�
1
2t � �1

C
�1 � t � 1r�t� � 2t i � 3t j � t 2 k

CF�x, y, z� � x i � z j � y k
xC F � dr

1�s2t � 0
C

0 � t � 1r�t� � t 2 i � t 3 j
CF�x, y� � e x�1 i � xy j

xC F � dr

��1, 2�y � 1 � x 2C

F�x, y� �
x

sx 2 � y 2
 i �

y

sx 2 � y 2
 j

�0, �2�
x 2 � y 2 � 4C

F�x, y� � �x � y� i � xy j

CAS

0 � t � �2r�t� � sin t i � cos t j � t 2 k
F�x, y, z� � x 2 i � xy j � z2 k

0 � t � 1r�t� � t 3 i � t 2 j � t k
F�x, y, z� � sin x i � cos y j � xz k

0 � t � 2r�t� � t i � t 2 j � t 3 k
F�x, y, z� � yz i � xz j � xy k

0 � t � 1r�t� � t 2 i � t 3 j
F�x, y� � x 2y 3 i � ysx j

r�t�
CxC F � dr6. ,

consists of the shortest arc of the circle from
to and the line segment from to 

7. ,
,

8. , is the line segment from (0, 6, �1) to (4, 1, 5)

9. , is the line segment from (0, 0, 0) to (1, 2, 3)

10. , : , , ,

11. ,
consists of line segments from to , from

to , and from to 

12. ,
consists of line segments from to , from

to , and from to 
� � � � � � � � � � � � �

13. Let be the vector field shown in the figure.
(a) If is the vertical line segment from to

, determine whether is positive, nega-
tive, or zero.

(b) If is the counterclockwise-oriented circle with radius
3 and center the origin, determine whether is
positive, negative, or zero.

14. The figure shows a vector field and two curves and .
Are the line integrals of over and positive, negative,
or zero? Explain.

y

x

C¡

C™

C2C1F
C2C1F

y

x0
1

1

2 3

2

3

_3 _2 _1

_3

_2

_1

xC2
 F � dr

C2

xC1
 F � dr��3, 3�

��3, �3�C1

F

�1, 3, 0��1, 3, �1��1, 3, �1��2, 0, 0�
�2, 0, 0��0, 0, 0�C

x
C
 yz dx � xz dy � xy dz

�1, 2, 4��1, 2, 3��1, 2, 3��0, 1, 1�
�0, 1, 1��0, 0, 0�C

x
C
 z2 dx � z dy � 2y dz

0 � t � 1z � t 2y � tx � stCx
C
 yz dy � xy dz

Cx
C
 xe yz ds

Cx
C
 x 2z ds

0 � t � �2C: x � 4 sin t, y � 4 cos t, z � 3t
x

C
 xy 3 ds

�4, 3��0, 1��0, 1��1, 0�
x 2 � y 2 � 1C

x
C
 xsy dx � 2ysx dy



revolutions, how much work is done by the man against
gravity in climbing to the top?

36. Suppose there is a hole in the can of paint in Exercise 35
and 9 lb of paint leak steadily out of the can during the
man’s ascent. How much work is done?

37. An object moves along the curve shown in the figure
from (1, 2) to (9, 8). The lengths of the vectors in the force
field are measured in newtons by the scales on the axes.
Estimate the work done by on the object.

38. Experiments show that a steady current in a long wire pro-
duces a magnetic field that is tangent to any circle that
lies in the plane perpendicular to the wire and whose cen-
ter is the axis of the wire (as in the figure). Ampère’s Law
relates the electric current to its magnetic effects and states
that

where is the net current that passes through any surface
bounded by a closed curve and is a constant called the
permeability of free space. By taking to be a circle with
radius , show that the magnitude of the magnetic
field at a distance from the center of the wire is

B

I

B �
�0 I

2r

r
B � � B �r

C
�0C

I

y
C
 B � dr � �0 I

B
I

0 1

1

y
(meters)

x
(meters)

C

C

F
F

C

27. (a) Write the formulas similar to Equations 4 for the center
of mass of a thin wire with density function

in the shape of a space curve .
(b) Find the center of mass of a wire in the shape of the

helix , , , , if the
density is a constant .

28. Find the mass and center of mass of a wire in the shape of
the helix , , , , if the
density at any point is equal to the square of the distance
from the origin.

29. If a wire with linear density lies along a plane curve
its moments of inertia about the - and -axes are

defined as

Find the moments of inertia for the wire in Example 3.

30. If a wire with linear density lies along a space
curve , its moments of inertia about the -, -, and -axes
are defined as

Find the moments of inertia for the wire in Exercise 27.

31. Find the work done by the force field
in moving an object along an arch

of the cycloid ,
.

32. Find the work done by the force field
on a particle that moves along the

parabola from to .

33. Find the work done by the force field
on a particle that moves

along the curve , .

34. The force exerted by an electric charge at the origin on a
charged particle at a point with position vector

is where is a constant. (See
Example 5 in Section 13.1.) Find the work done as the par-
ticle moves along a straight line from to .

35. A 160-lb man carries a 25-lb can of paint up a helical stair-
case that encircles a silo with a radius of 20 ft. If the silo 
is 90 ft high and the man makes exactly three complete 

�2, 1, 5��2, 0, 0�

KF�r� � Kr�� r �3r � �x, y, z �
�x, y, z�

0 � t � 1r�t� � t 2 i � t 3 j � t 4 k
F�x, y, z� � xz i � yx j � zy k

�2, 4���1, 1�y � x 2
F�x, y� � x sin y i � y j

0 � t � 2
r�t� � �t � sin t� i � �1 � cos t� j

F�x, y� � x i � �y � 2� j

 Iz � y
C
 �x 2 � y 2 ���x, y, z� ds

 Iy � y
C
 �x 2 � z2 ���x, y, z� ds

 Ix � y
C
 �y 2 � z2 ���x, y, z� ds

zyxC
��x, y, z�

Iy � y
C
 x 2��x, y� dsIx � y

C
 y 2��x, y� ds

yxC,
��x, y�

0 � t � 2z � sin ty � cos tx � t

k
0 � t � 2z � 3ty � 2 cos tx � 2 sin t

C��x, y, z�
�x, y, z �
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Therefore

where is the velocity.
The quantity , that is, half the mass times the square of the speed, is

called the kinetic energy of the object. Therefore, we can rewrite Equation 15 as

which says that the work done by the force field along is equal to the change in
kinetic energy at the endpoints of .

Now let’s further assume that is a conservative force field; that is, we can write
. In physics, the potential energy of an object at the point is defined

as , so we have . Then by Theorem 2 we have

Comparing this equation with Equation 16, we see that

which says that if an object moves from one point to another point under the influ-
ence of a conservative force field, then the sum of its potential energy and its kinetic
energy remains constant. This is called the Law of Conservation of Energy and it is
the reason the vector field is called conservative.

BA

P�A� � K�A� � P�B� � K�B�

 � P�A� � P�B�

 � ��P�r�b�� � P�r�a���

 W � y
C
 F � dr � �y

C
 ∇P � dr

F � �∇PP�x, y, z� � �f �x, y, z�
�x, y, z�F � ∇ f

F
C

C

W � K�B� � K�A�16

1
2 m � v�t� �2

v � r�

W � 1
2 m � v�b� �2 �

1
2 m � v�a� �215
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3–10 � Determine whether or not is a conservative vector
field. If it is, find a function such that .

3.

4.

5.

6.

7.

8.

9. F�x, y� � �ye x � sin y� i � �e x � x cos y� j

F�x, y� � �1 � 2xy � ln x� i � x 2 j

F�x, y� � �2x cos y � y cos x� i � ��x 2 sin y � sin x� j

F�x, y� � e y i � xe y j

F�x, y� � xe y i � ye x j

F�x, y� � �x 3 � 4xy� i � �4xy � y 3 � j

F�x, y� � �6x � 5y� i � �5x � 4y� j

F � � ff
F

1

3

8

6

5

2

4

7

9

x
y

0

1

2

0 1 2
1. The figure shows a curve and a contour map of a function

whose gradient is continuous. Find .

2. A table of values of a function with continuous gradient is
given. Find , where has parametric equations

.x � t 2 � 1, y � t 3 � t, 0 � t � 1
CxC � f � dr

f

y

x0

10

20
30

40
50

60

C

xC � f � drf
C
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22. ; ,
� � � � � � � � � � � � �

23. Is the vector field shown in the figure conservative?
Explain.

24–25 � From a plot of guess whether it is conservative.
Then determine whether your guess is correct.

24.

25.

� � � � � � � � � � � � �

26. Let , where . Find curves 
and that are not closed and satisfy the equation.

(a) (b)

27. Show that if the vector field is con-
servative and , , have continuous first-order partial
derivatives, then

28. Use Exercise 27 to show that the line integral
is not independent of path.

29–32 � Determine whether or not the given set is (a) open,
(b) connected, and (c) simply-connected.

29. 30.

31.

32.
� � � � � � � � � � � � �

33. Let .

(a) Show that .
(b) Show that is not independent of path. 

[Hint: Compute and , where and
are the upper and lower halves of the circle

from to .] Does this
contradict Theorem 6?

��1, 0��1, 0�x 2 � y 2 � 1
C2

C1xC2
 F � drxC1

 F � dr
xC F � dr
�P��y � �Q��x

F�x, y� �
�y i � x j

x 2 � y 2

��x, y� � x 2 � y 2 � 1 or 4 � x 2 � y 2 � 9�

��x, y� � 1 � x 2 � y 2 � 4�

��x, y� � x � 0���x, y� � x � 0, y � 0�

xC y dx � x dy � xyz dz

�Q

�z
�

�R

�y

�P

�z
�

�R

�x

�P

�y
�

�Q

�x

RQP
F � P i � Q j � R k

y
C2

 F � dr � 1y
C1

 F � dr � 0

C2

C1f �x, y� � sin�x � 2y�F � � f

F�x, y� �
�x � 2y� i � �x � 2� j

s1 � x 2 � y 2

F�x, y� � �2xy � sin y� i � �x 2 � x cos y� j

FCAS

x

y

Q�4, �2�P�1, 1�F�x, y� � �y 2�x 2 � i � �2y�x� j10.
� � � � � � � � � � � � �

11. The figure shows the vector field and
three curves that start at (1, 2) and end at (3, 2).
(a) Explain why has the same value for all three

curves.
(b) What is this common value?

12–18 � (a) Find a function such that and (b) use
part (a) to evaluate along the given curve .

12. ,
is the upper semicircle that starts at (0, 1) and ends 

at (2, 1)

13. ,
: ,

14. ,
: ,

15. ,
is the line segment from to 

16. ,
: , , ,

17. ,
: ,

18. ,
: ,

� � � � � � � � � � � � �

19–20 � Show that the line integral is independent of path and
evaluate the integral.

19. ,
is any path from to 

20. ,
is any path from to 

� � � � � � � � � � � � �

21–22 � Find the work done by the force field in moving an
object from to .

21. ; , Q�2, 1�P�0, 0�F�x, y� � x 2 y 3 i � x 3y 2 j

QP
F

�3, 2��1, 1�C
x

C
 �2y 2 � 12x 3y 3 � dx � �4xy � 9x 4y 2 � dy

�5, 1���1, 0�C
x

C
 2x sin y dx � �x 2 cos y � 3y 2 � dy

0 � t � 1r�t� � t i � t 2 j � t 3 kC
F�x, y, z� � ey i � xe y j � �z � 1�ez k

0 � t � r�t� � t 2 i � sin t j � t kC
F�x, y, z� � y 2 cos z i � 2xy cos z j � xy 2 sin z k

0 � t � 1z � 2t � 1y � t � 1x � t2C
F�x, y, z� � �2xz � y2� i � 2xy j � �x 2 � 3z2� k

�4, 6, 3��1, 0, �2�C
F�x, y, z� � yz i � xz j � �xy � 2z� k

0 � t � 1r�t� � te t i � �1 � t� jC
F�x, y� � e 2y i � �1 � 2xe 2y � j

0 � t � 1r�t� � st i � �1 � t 3 � jC
F�x, y� � x 3y 4 i � x 4y 3 j

C
F�x, y� � y i � �x � 2y� j

CxC F � dr
F � ∇ ff

y

x0 3

3

2

1

21

x
C
 F � dr

F�x, y� � �2xy, x 2 �

F�x, y� � �ye xy � 4x 3y� i � �xe xy � x 4 � j
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(at a maximum distance of km from the
Sun) to perihelion (at a minimum distance of

km). (Use the values kg,
kg, and 

(c) Another example of an inverse square field is the elec-
tric field discussed in Example 5 in 
Section 13.1. Suppose that an electron with a charge of

C is located at the origin. A positive unit
charge is positioned a distance m from the elec-
tron and moves to a position half that distance from 
the electron. Use part (a) to find the work done by the
electric field. (Use the value .)� � 8.985 � 1010

10�12
�1.6 � 10�19

E � �qQr�� r �3

N�m2�kg2.�G � 6.67 � 10�11M � 1.99 � 1030
m � 5.97 � 10241.47 � 108

1.52 � 10834. (a) Suppose that is an inverse square force field, that is,

for some constant , where . Find
the work done by in moving an object from a point 
along a path to a point in terms of the distances 
and from these points to the origin.

(b) An example of an inverse square field is the gravita-
tional field discussed in Example 4
in Section 13.1. Use part (a) to find the work done by
the gravitational field when Earth moves from aphelion 

F � ��mMG �r�� r �3

d2

d1P2

P1F
r � x i � y j � z kc

F�r� �
cr

� r �3

F

Green’s Theorem gives the relationship between a line integral around a simple closed
curve and a double integral over the plane region bounded by . (See Figure 1.
We assume that consists of all points inside as well as all points on .) In stating
Green’s Theorem we use the convention that the positive orientation of a simple
closed curve refers to a single counterclockwise traversal of . Thus, if is given
by the vector function , , then the region is always on the left as the
point traverses . (See Figure 2.)

Green’s Theorem Let be a positively oriented, piecewise-smooth, simple
closed curve in the plane and let be the region bounded by . If and 
have continuous partial derivatives on an open region that contains , then

NOTE � The notation

g
C

is sometimes used to indicate that the line integral is calculated using the positive ori-
entation of the closed curve . Another notation for the positively oriented boundary C

P dx � Q dyor�y
C
 P dx � Q dy

y
C
 P dx � Q dy � yy

D

 ��Q

�x
�

�P

�y 	 dA

D
QPCD

C

FIGURE 2 (a) Positive orientation (b) Negative orientation

y

x0

D

C

y

x0

D

C

Cr�t�
Da � t � br�t�

CCC

CCD
CDC
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y

x0

D

C



SECTION 13.4 GREEN’S THEOREM � 951

16. , where ,
is the ellipse 

� � � � � � � � � � � � �

17. Use Green’s Theorem to find the work done by the force
in moving a particle from the 

origin along the -axis to , then along the line segment 
to , and then back to the origin along the -axis.

18. A particle starts at the point , moves along the -axis
to , and then along the semicircle to the
starting point. Use Green’s Theorem to find the work done
on this particle by the force field .

19–20 � Find the area of the given region using one of the 
formulas in Equations 5.

19. The region bounded by the hypocycloid with vector
equation ,

20. The region bounded by the curve with vector equation
,

� � � � � � � � � � � � �

21. (a) If is the line segment connecting the point to
the point , show that

(b) If the vertices of a polygon, in counterclockwise order,
are , , show that the area of
the polygon is

(c) Find the area of the pentagon with vertices , ,
, , and .

22. Let be a region bounded by a simple closed path in the 
-plane. Use Green’s Theorem to prove that the coordi-

nates of the centroid of are

where is the area of .

23. Use Exercise 22 to find the centroid of the triangle with 
vertices , , and .

24. Use Exercise 22 to find the centroid of a semicircular region
of radius .

25. A plane lamina with constant density occupies a
region in the -plane bounded by a simple closed path .
Show that its moments of inertia about the axes are

Iy �
�

3
 �y

C
 x 3 dyIx � �

�

3
 �y

C
 y 3 dx

Cxy
��x, y� � �

a

�0, 1��1, 0��0, 0�

DA

y � �
1

2A
 �y

C
 y 2 dxx �

1

2A
 �y

C
 x 2 dy

D�x, y �
xy

CD

��1, 1��0, 2��1, 3�
�2, 1��0, 0�

 A � � �xn�1 yn � xn yn�1 � � �xn y1 � x1 yn ��

 A � 1
2 ��x1 y2 � x2 y1 � � �x2 y3 � x3 y2 � � � � �

�xn, yn ��x2, y2 �, . . . , �x1, y1 �

y
C
 x dy � y dx � x1 y2 � x2 y1

�x2, y2�
�x1, y1�C

0 � t � 2r�t� � cos t i � sin3t j

0 � t � 2r�t� � cos3t i � sin3t j

F�x, y� � �x, x 3 � 3xy 2 �

y � s4 � x 2�2, 0�
x��2, 0�

y�0, 1�
�1, 0�x

F�x, y� � x�x � y� i � xy 2 j

4x 2 � y 2 � 1C
F�x, y� � y 6 i � xy 5 jx

C
 F � dr1–4 � Evaluate the line integral by two methods: (a) directly

and (b) using Green’s Theorem.

1. ,
is the rectangle with vertices (0, 0), (2, 0), (2, 3), and (0, 3)

2. ,
is the circle with center the origin and radius 1

3. ,
is the triangle with vertices (0, 0), (1, 0), and (1, 2)

4. , consists of the arc of the
parabola from to and the line segments
from to and from to 

� � � � � � � � � � � � �

5–6 � Verify Green’s Theorem by using a computer algebra
system to evaluate both the line integral and the double integral.

5. , ,
is the circle 

6. , ,
consists of the arc of the parabola from (0, 0) to 

(1, 1) followed by the line segment from (1, 1) to (0, 0)
� � � � � � � � � � � � �

7–16 � Use Green’s Theorem to evaluate the line integral along
the given positively oriented curve.

7. ,
is the square with sides , , , and 

8. ,
is the triangle with vertices (0, 0), (1, 3), and (0, 3)

9. ,
is the boundary of the region enclosed by the parabolas

and 

10. ,
is the boundary of the region enclosed by the parabola

and the line 

11. , is the circle 

12. , is the ellipse 

13. ,
consists of the line segment from to and the

top half of the circle 

14. ,
is the boundary of the region between the circles

and 

15. , where ,
consists of the circle from to 

and the line segments from to and from
to �2, 0��0, 0�

�0, 0�(s2, s2)
(s2, s2)�2, 0�x 2 � y 2 � 4C

F�x, y� � �y 2 � x 2 y� i � xy 2 jxC F � dr

x 2 � y 2 � 9x 2 � y 2 � 1
C
xC �x 3 � y 3 � dx � �x 3 � y 3 � dy

x 2 � y 2 � 4
�2, 0���2, 0�C

xC xy dx � 2x 2 dy

x 2 � xy � y 2 � 1CxC sin y dx � x cos y dy

x 2 � y 2 � 4CxC y 3 dx � x 3 dy

y � 4y � x 2
C
x

C
 �y 2 � tan�1x� dx � �3x � sin y� dy

x � y 2y � x 2
C
xC (y � esx ) dx � �2x � cos y 2 � dy

C
xC x 2y 2 dx � 4xy 3 dy

y � 1y � 0x � 1x � 0C
xC e y dx � 2xe y dy

y � x 2C
Q�x, y� � x 2 sin yP�x, y� � y 2 sin x

x 2 � y 2 � 1C
Q�x, y� � �x 7y 6P�x, y� � x 4y 5

CAS

�0, 0��0, 4��0, 4��2, 4�
�2, 4��0, 0�y � x 2

C�xC �x 2 � y 2 � dx � 2xy dy

C
�x

C
 xy dx � x 2y 3 dy

C
�xC y dx � x dy

C
�xC xy 2 dx � x 3 dy
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where :

Here is the region in the -plane that corresponds to the
region in the -plane under the transformation given by

, .
[Hint: Note that the left side is and apply the first

part of Equation 5. Convert the line integral over to a
line integral over and apply Green’s Theorem in the 

-plane.]uv
�S

�R
A�R�

y � h�u, v�x � t�u, v�
uvS

xyR

yy
R

 dx dy � yy
S

 � ��x, y�
��u, v� �  du dv

f �x, y� � 126. Use Exercise 25 to find the moment of inertia of a circular
disk of radius with constant density about a diameter.
(Compare with Example 4 in Section 12.5.)

27. If is the vector field of Example 5, show that
for every simple closed path that does not

pass through or enclose the origin.

28. Complete the proof of the special case of Green’s Theorem
by proving Equation 3.

29. Use Green’s Theorem to prove the change of variables for-
mula for a double integral (Formula 12.9.9) for the case 

xC F � dr � 0
F

�a

Curl and Divergence � � � � � � � � � � � � � � �

In this section we define two operations that can be performed on vector fields and that
play a basic role in the applications of vector calculus to fluid flow and electricity and
magnetism. Each operation resembles differentiation, but one produces a vector field
whereas the other produces a scalar field.

Curl

If is a vector field on and the partial derivatives of , , and
all exist, then the curl of is the vector field on defined by

As an aid to our memory, let’s rewrite Equation 1 using operator notation. We intro-
duce the vector differential operator (“del”) as

It has meaning when it operates on a scalar function to produce the gradient of :

If we think of as a vector with components , , and , we can also con-
sider the formal cross product of with the vector field as follows:

 � curl F

 � ��R

�y
�

�Q

�z 	 i � ��P

�z
�

�R

�x 	 j � ��Q

�x
�

�P

�y 	 k

 ∇ � F � � i
�

�x

P

j
�

�y

Q

k
�

�z

R �
F∇

���z���y���x∇

∇ f � i 
�f

�x
� j 

�f

�y
� k 

�f

�z
�

�f

�x
 i �

�f

�y
 j �

�f

�z
 k

f

∇ � i 
�

�x
� j 

�

�y
� k 

�

�z
 

∇

curl F � ��R

�y
�

�Q

�z 	 i � ��P

�z
�

�R

�x 	 j � ��Q

�x
�

�P

�y 	 k1

� 3FR
QP� 3F � P i � Q j � R k
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by Green’s Theorem. But the integrand in this double integral is just the divergence
of . So we have a second vector form of Green’s Theorem.

This version says that the line integral of the normal component of along is equal
to the double integral of the divergence of over the region enclosed by .CDF

CF

�y
C
 F � n ds � yy

D

 div F�x, y� dA13

F

958 � CHAPTER 13 VECTOR CALCULUS

9.

� � � � � � � � � � � � �

10. Let be a scalar field and a vector field. State whether 
each expression is meaningful. If not, explain why. If so,
state whether it is a scalar field or a vector field.
(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) ( j)
(k) (l)

11–16 � Determine whether or not the vector field is conserva-
tive. If it is conservative, find a function such that .

11.

12.

13.

14.

15.

16.
� � � � � � � � � � � � �

17. Is there a vector field on such that
? Explain.

18. Is there a vector field on such that
? Explain.

19. Show that any vector field of the form

where , , are differentiable functions, is irrotational.htf

F�x, y, z� � f �x� i � t�y� j � h�z� k

curl G � yz i � xyz j � xy k
� 3G

curl G � xy 2 i � yz2 j � zx 2 k
� 3G

F�x, y, z� � yze xz i � e xz j � xye xz k

F�x, y, z� � e x i � e z j � e y k

F�x, y, z� � xy 2z 3 i � 2x 2yz 3 j � 3x 2y 2z 2 k

F�x, y, z� � 2xy i � �x 2 � 2yz� j � y 2 k

F�x, y, z� � x i � y j � z k

F�x, y, z� � yz i � xz j � xy k

F � ∇ ff

div�curl�grad f ���grad f � � �div F�
div�div F�curl�curl F�
grad�div f �div�grad f �
grad�div F�grad F
curl�grad f �div F
grad fcurl f

Ff

y

x0

1–6 � Find (a) the curl and (b) the divergence of the vector
field.

1.

2.

3.

4.

5.

6.

� � � � � � � � � � � � �

7–9 � The vector field F is shown in the xy-plane and looks the
same in all other horizontal planes. (In other words, F is inde-
pendent of and its -component is 0.)
(a) Is div F positive, negative, or zero? Explain.
(b) Determine whether curl . If not, in which direction

does curl F point?

7.

8. y

x0

y

x0

F � 0

zz

x

x 2 � y 2 � z 2  i �
y

x 2 � y 2 � z 2  j �
z

x 2 � y 2 � z 2  kF�x, y, z� �

F�x, y, z� � e x sin y i � e x cos y j � z k

F�x, y, z� � xe y j � ye z k

F�x, y, z� � xyz i � x 2y k

F�x, y, z� � �x � 2z� i � �x � y � z� j � �x � 2y� k

F�x, y, z� � xy i � yz j � zx k
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where and satisfy the hypotheses of Green’s Theorem 
and the appropriate partial derivatives of and exist and
are continuous.

33. This exercise demonstrates a connection between the curl 
vector and rotations. Let be a rigid body rotating about
the -axis. The rotation can be described by the vector

, where is the angular speed of , that is, the tan-
gential speed of any point in divided by the distance 
from the axis of rotation. Let be the position
vector of .
(a) By considering the angle in the figure, show that the

velocity field of is given by .
(b) Show that .
(c) Show that .

34. Maxwell’s equations relating the electric field and mag-
netic field as they vary with time in a region containing
no charge and no current can be stated as follows:

where is the speed of light. Use these equations to prove
the following:

(a)

(b)

(c) [Hint: Use Exercise 27.]

(d) � 2H �
1

c 2  
�2H
�t 2

� 2E �
1

c 2  
�2E
�t 2

� � �� � H� � �
1

c 2  
�2H
�t 2

� � �� � E� � �
1

c 2  
�2E
�t 2

c

 curl H �
1

c
 
�E
�t

 curl E � �
1

c
 
�H
�t

 div H � 0 div E � 0

H
E

0

z

y

¨

P

dB

w

x

v

curl v � 2w
v � ��y i � �x j

v � w � rB
�

P
r � �x, y, z�

dBP
B�w � �k

z
B

tf
CD20. Show that any vector field of the form

is incompressible.

21–27 � Prove the identity, assuming that the appropriate 
partial derivatives exist and are continuous. If is a scalar field
and , are vector fields, then , , and are
defined by

21. div

22. curl

23. div

24. curl

25. div

26. div

27.
� � � � � � � � � � � � �

28–30 � Let and .

28. Verify each identity.
(a) (b)
(c)

29. Verify each identity.
(a) (b)
(c) (d)

30. If , find div . Is there a value of for which 
div ?

� � � � � � � � � � � � �

31. Use Green’s Theorem in the form of Equation 13 to prove
Green’s first identity:

where and satisfy the hypotheses of Green’s Theorem 
and the appropriate partial derivatives of and exist and
are continuous. (The quantity occurs in the
line integral. This is the directional derivative in the direc-
tion of the normal vector and is called the normal deriva-
tive of .)

32. Use Green’s first identity (Exercise 31) to prove Green’s 
second identity:

yy
D

 � f �2
t � t�2f � dA � �y

C
 � f �t � t� f � � n ds

t

n

�t � n � Dn t

tf
CD

yy
D

 f �2
t dA � �y

C
 f ��t� � n ds � yy

D

 � f � �t dA

F � 0
pFF � r�r p

� ln r � r�r 2��1�r� � �r�r 3
� � r � 0�r � r�r

� 2r 3 � 12r
� � �rr� � 4r� � r � 3

r � � r �r � x i � y j � z k

curl curl F � grad div F � � 2F

�� f � �t� � 0

�F � G� � G � curl F � F � curl G

curl F � �� f � � F� f F� � f

div F � F � � f� f F� � f

�F � G� � curl F � curl G

�F � G� � div F � div G

 �F � G��x, y, z� � F�x, y, z� � G�x, y, z�

 �F � G��x, y, z� � F�x, y, z� � G�x, y, z�

 � f F��x, y, z� � f �x, y, z�F�x, y, z�

F � GF � Gf FGF
f

F�x, y, z� � f �y, z� i � t�x, z� j � h�x, y� k
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13. ,
is the part of the plane that lies inside the 

cylinder 

14. ,
is the boundary of the region enclosed by the cylinder

and the planes and 

15. ,
is the hemisphere ,

16. ,
is the part of the sphere that lies above

the cone 

17. ,
is the part of the cylinder between the planes

and 

18. ,
consists of the cylinder in Exercise 17 together with its

top and bottom disks
� � � � � � � � � � � � �

19–27 � Evaluate the surface integral for the given
vector field and the oriented surface . In other words, find
the flux of across . For closed surfaces, use the positive 
(outward) orientation.

19. , is the part of the 
paraboloid that lies above the square

, and has upward orientation

20. ,
is the helicoid of Exercise 6 with upward orientation

21. ,
is the part of the plane in the first octant

and has downward orientation

22. ,
is the part of the cone beneath the plane

with downward orientation

23. ,
is the sphere 

24. , is the hemisphere
with upward orientation

25. ,
consists of the paraboloid , , and

the disk ,

26. ,
is the surface of Exercise 14

27. ,
is the cube with vertices 

� � � � � � � � � � � � �

��1, �1, �1�S
F�x, y, z� � x i � 2y j � 3z k

S
F�x, y, z� � x i � y j � 5 k

y � 1x 2 � z2 � 1
0 � y � 1y � x 2 � z2S

F�x, y, z� � y j � z k

z � s16 � x 2 � y 2

SF�x, y, z� � �y i � x j � 3z k

x 2 � y 2 � z2 � 9S
F�x, y, z� � x i � y j � z k

z � 1
z � sx 2 � y 2S

F�x, y, z� � x i � y j � z4 k

x � y � z � 1S
F�x, y, z� � xze y i � xze y j � z k

S
F�x, y, z� � y i � x j � z2 k

0 � y � 10 � x � 1,
z � 4 � x 2 � y 2

SF�x, y, z� � xy i � yz j � zx k

SF
SF
xxS F � dS

S
xxS �x 2 � y 2 � z2 � dS

z � 2z � 0
x 2 � y 2 � 9S

xx
S
 �x 2 y � z2 � dS

z � sx 2 � y 2

x 2 � y 2 � z2 � 1S
xxS xyz dS

z � 0x 2 � y 2 � z2 � 4S
xxS �x 2z � y 2z� dS

x � y � 2y � 0x 2 � z2 � 1
S
xxS xy dS

x 2 � y 2 � 1
z � y � 3S

xxS yz dS1. Let be the cube with vertices . Approximate
by using a Riemann sum as in Def-

inition 1, taking the patches to be the squares that are the
faces of the cube and the points to be the centers of the
squares.

2. A surface consists of the cylinder ,
, together with its top and bottom disks.

Suppose you know that is a continuous function with
, and .

Estimate the value of by using a Riemann
sum, taking the patches to be four quarter-cylinders and
the top and bottom disks.

3. Let be the hemisphere , and 
suppose is a continuous function with 

, and . 
By dividing into four patches, estimate the value of

.

4. Suppose that , where is a 
function of one variable such that . Evaluate

, where is the sphere .

5–18 � Evaluate the surface integral.

5. ,
is the surface with parametric equations ,

, ,

6. ,
is the helicoid with vector equation

, ,

7. ,
is the part of the plane that lies above

the rectangle 

8. ,
is the triangular region with vertices (1, 0, 0), (0, 2, 0),

and (0, 0, 2)

9. ,
is the part of the plane that lies in the 

first octant

10. ,
is the surface , ,

11. ,
is the surface , ,

12. ,
is the part of the paraboloid that lies in

front of the plane x � 0
x � 4 � y 2 � z2S

xxS �y 2 � z2 � dS

0 � z � 20 � x � 2y � x 2 � 4zS
xxS x dS

0 � y � 10 � x � 1z � 2
3 �x 3�2 � y 3�2 �S

xxS y dS

x � y � z � 1S
xxS yz dS

S
xx

S
 xy dS

�0, 3� � �0, 2�
z � 1 � 2x � 3yS

xxS x
2yz dS

0 � v � 
0 � u � 1r�u, v� � u cos v i � u sin v j � v k

S
xxS s1 � x 2 � y 2 dS

u 2 � v2 � 1z � u � vy � u � v
x � uvS

xxS yz dS

x 2 � y 2 � z2 � 4SxxS f �x, y, z� dS
t�2� � �5

tf �x, y, z� � t(sx 2 � y 2 � z 2 )

xxH f �x, y, z� dS
H

f ��3, �4, 5� � 12f �3, �4, 5� � 8, f ��3, 4, 5� � 9
f �3, 4, 5� � 7,f

x 2 � y 2 � z2 � 50, z � 0H

Sij

xxS f �x, y, z� dS
f �0, 0, �1� � 4f �0, �1, 0� � 3f ��1, 0, 0� � 2,

f
�1 � z � 1

x 2 � y 2 � 1S

Pij*
Sij

xxS sx 2 � 2y 2 � 3z 2 dS
��1, �1, �1�S
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(b) Find the moment of inertia about the -axis of the 
funnel in Exercise 34.

36. The conical surface , , has constant
density . Find (a) the center of mass and (b) the moment of
inertia about the -axis.

37. A fluid with density 1200 flows with velocity
. Find the rate of flow upward through the

paraboloid , .

38. A fluid has density 1500 and velocity field
. Find the rate of flow outward

through the sphere .

39. Use Gauss’s Law to find the charge contained in the solid
hemisphere , , if the electric field is

.

40. Use Gauss’s Law to find the charge enclosed by the cube 
with vertices if the electric field is

.

41. The temperature at the point in a substance with
conductivity is . Find the
rate of heat flow inward across the cylindrical surface

, .

42. The temperature at a point in a ball with conductivity is
inversely proportional to the distance from the center of the
ball. Find the rate of heat flow across a sphere of radius 
with center at the center of the ball.

aS

K

0 � x � 4y 2 � z2 � 6

u�x, y, z� � 2y 2 � 2z2K � 6.5
�x, y, z�

E�x, y, z� � x i � y j � z k
��1, �1, �1�

E�x, y, z� � x i � y j � 2z k
z � 0x 2 � y 2 � z2 � a 2

x 2 � y 2 � z2 � 25
v � �y i � x j � 2z k

x 2 � y 2 � 36z � 9 �
1
4 �x 2 � y 2 �

v � y i � j � z k

z
k

0 � z � az2 � x 2 � y 2

z28. Let be the surface , , .
(a) Evaluate correct to four decimal places.
(b) Find the exact value of .

29. Find the value of correct to four decimal
places, where is the part of the paraboloid

that lies above the -plane.

30. Find the flux of 
across the part of the cylinder that lies above 
the -plane and between the planes and 
with upward orientation. Illustrate by using a computer
algebra system to draw the cylinder and the vector field on
the same screen.

31. Find a formula for similar to Formula 10 for the
case where is given by and is the unit
normal that points toward the left.

32. Find a formula for similar to Formula 10 for the
case where is given by and is the unit nor-
mal that points forward (that is, toward the viewer when the
axes are drawn in the usual way).

33. Find the center of mass of the hemisphere
, , if it has constant density.

34. Find the mass of a thin funnel in the shape of a cone
, , if its density function is

.

35. (a) Give an integral expression for the moment of inertia 
about the -axis of a thin sheet in the shape of a surface

if the density function is .�S
z

Iz

��x, y, z� � 10 � z
1 � z � 4z � sx 2 � y 2

z � 0x 2 � y 2 � z2 � a 2

nx � k�y, z�S
xxS F � dS

ny � h�x, z�S
xxS F � dS

x � 2x � �2xy
4y 2 � z2 � 4

F�x, y, z� � sin�xyz� i � x 2 y j � z2e x�5 kCAS

xyz � 3 � 2x 2 � y 2
S

xxS x
2 y 2z2 dSCAS

xxS x
2 yz dS

xxS xyz dS
0 � y � 10 � x � 1z � xySCAS

Stokes’ Theorem � � � � � � � � � � � � � � � �

Stokes’ Theorem can be regarded as a higher-dimensional version of Green’s Theo-
rem. Whereas Green’s Theorem relates a double integral over a plane region to a
line integral around its plane boundary curve, Stokes’ Theorem relates a surface inte-
gral over a surface to a line integral around the boundary curve of (which is a space
curve). Figure 1 shows an oriented surface with unit normal vector . The orientation
of induces the positive orientation of the boundary curve C shown in the figure.
This means that if you walk in the positive direction around with your head point-
ing in the direction of , then the surface will always be on your left.

Stokes’ Theorem Let be an oriented piecewise-smooth surface that is bounded
by a simple, closed, piecewise-smooth boundary curve with positive orienta-
tion. Let be a vector field whose components have continuous partial deriva-
tives on an open region in that contains . Then

y
C
 F � dr � yy

S

 curl F � dS

S� 3
F

C
S

n
C

S
n

SS

D

13.7

SECTION 13.7 STOKES’ THEOREM � 971

S

y

z

x

C

0

n

n
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9. ,
is the curve of intersection of the plane and

the cylinder 

10. ,
is the boundary of the part of the paraboloid

in the first octant
� � � � � � � � � � � � �

11. (a) Use Stokes’ Theorem to evaluate , where

and is the curve of intersection of the plane
and the cylinder oriented

counterclockwise as viewed from above.

; (b) Graph both the plane and the cylinder with domains 
chosen so that you can see the curve and the surface 
that you used in part (a).

; (c) Find parametric equations for and use them to graph .

12. (a) Use Stokes’ Theorem to evaluate , where
and is the curve of

intersection of the hyperbolic paraboloid 
and the cylinder oriented counterclockwise
as viewed from above.

; (b) Graph both the hyperbolic paraboloid and the cylinder
with domains chosen so that you can see the curve 
and the surface that you used in part (a).

; (c) Find parametric equations for and use them to 
graph .

13–15 � Verify that Stokes’ Theorem is true for the given vector
field and surface .

13. ,
is the part of the paraboloid that lies below

the plane oriented upward

14. ,
is the part of the plane that lies in the

first octant, oriented upward

15. ,
is the hemisphere , , oriented in

the direction of the positive -axis

� � � � � � � � � � � � �

16. Let

Let be the curve in Exercise 12 and consider all possible
smooth surfaces whose boundary curve is . Find the val-
ues of , , and for which is independent of the
choice of .S

xxS F � dScba
CS

C

F�x, y, z� � �ax 3 � 3xz2, x 2 y � by 3, cz3 �

y
y � 0x 2 � y 2 � z 2 � 1S

F�x, y, z� � y i � z j � x k

2x � y � z � 2S
F�x, y, z� � x i � y j � xyz k

z � 1,
z � x 2 � y 2S

F�x, y, z� � y 2 i � x j � z 2 k

SF

C
C

C

x 2 � y 2 � 1
z � y 2 � x 2

CF�x, y, z� � x 2 y i �
1
3 x 3 j � xy k

xC F � dr

CC

C

x 2 � y 2 � 9x � y � z � 1
C

F�x, y, z� � x 2z i � xy 2 j � z2 k

xC F � dr

z � 1 � x 2 � y 2
C
F�x, y, z� � x i � y j � �x 2 � y 2 � k

x 2 � y 2 � 4
z � x � 4C

F�x, y, z� � 2z i � 4x j � 5y k1. A hemisphere and a portion of a paraboloid are shown.
Suppose is a vector field on whose components have
continuous partial derivatives. Explain why

2–6 � Use Stokes’ Theorem to evaluate .

2. ,
S is the part of the paraboloid that lies
above the plane , oriented upward

3. ,
S is the hemisphere , ,
oriented upward

4. ,
is the part of the hemisphere that lies

inside the cylinder , oriented in the direction of 
the positive -axis

5. ,
consists of the top and the four sides (but not the bottom) 

of the cube with vertices , oriented outward
[Hint: Use Equation 3.]

6. ,
consists of the four sides of the pyramid with vertices

, , , , and that lie to 
the right of the -plane, oriented in the direction of the
positive -axis [Hint: Use Equation 3.]

� � � � � � � � � � � � �

7–10 � Use Stokes’ Theorem to evaluate . In each case
is oriented counterclockwise as viewed from above.

7. ,
is the triangle with vertices (1, 0, 0), (0, 1, 0),

and (0, 0, 1)

8. ,
is the boundary of the part of the plane 

in the first octant
2x � y � 2z � 2C

F�x, y, z� � e�x i � e x j � e z k

C
F�x, y, z� � �x � y 2 � i � �y � z2 � j � �z � x 2 � k

C
x

C
 F � dr

y
xz

�0, 1, 0��1, 0, 1��0, 0, 1��1, 0, 0��0, 0, 0�
S
F�x, y, z� � xy i � e z j � xy 2 k

��1, �1, �1�
S
F�x, y, z� � xyz i � xy j � x 2 yz k

x
y 2 � z2 � 4

x � s9 � y 2 � z 2S
F�x, y, z� � �x � tan�1yz� i � y 2z j � z k

z � 0x 2 � y 2 � z2 � 4
F�x, y, z� � x 2e yz i � y 2e xz j � z2e xy k

z � 5
z � 9 � x 2 � y 2

F�x, y, z� � yz i � xz j � xy k

xxS curl F � dS

H

4

z

x y22

P

4

z

x y22

yy
H

 curl F � dS � yy
P

 curl F � dS

�3F
PH
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WRITING PROJECT THREE MEN AND TWO THEOREMS � 977

Three Men and Two Theorems

Although two of the most important theorems in vector calculus are named after George
Green and George Stokes, a third man, William Thomson (also known as Lord Kelvin),
played a large role in the formulation, dissemination, and application of both of these
results. All three men were interested in how the two theorems could help to explain and
predict physical phenomena in electricity and magnetism and fluid flow. The basic facts of
the story are given in the margin notes on pages 946 and 972.

Write a report on the historical origins of Green’s Theorem and Stokes’ Theorem. Explain
the similarities and relationship between the theorems. Discuss the roles that Green, Thom-
son, and Stokes played in discovering these theorems and making them widely known.
Show how both theorems arose from the investigation of electricity and magnetism and
were later used to study a variety of physical problems.

The dictionary edited by Gillispie [2] is a good source for both biographical and scientific
information. The book by Hutchinson [5] gives an account of Stokes’ life and the book by
Thompson [8] is a biography of Lord Kelvin. The articles by Grattan-Guinness [3] and 
Gray [4] and the book by Cannell [1] give background on the extraordinary life and works
of Green. Additional historical and mathematical information is found in the books by
Katz [6] and Kline [7].

1. D. M. Cannell, George Green, Mathematician and Physicist 1793–1841: The Back-
ground to his Life and Work (London: Athlone Press, 1993).

2. C. C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribner’s, 1974).
See the article on Green by P. J. Wallis in Volume XV and the articles on Thomson by
Jed Buchwald and on Stokes by E. M. Parkinson in Volume XIII.

3. I. Grattan-Guinness, “Why did George Green write his essay of 1828 on electricity and
magnetism?” Amer. Math. Monthly, Vol. 102 (1995), pp. 387–396.

4. J. Gray, “There was a jolly miller.” The New Scientist, Vol. 139 (1993), pp. 24–27.

5. G. E. Hutchinson, The Enchanted Voyage (New Haven: Yale University Press, 1962).

6. Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins,
1993), pp. 678–680.

7. Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford 
University Press, 1972), pp. 683–685.

8. Sylvanus P. Thompson, The Life of Lord Kelvin (New York: Chelsea, 1976).

Writing
Project

� The photograph shows a stained-
glass window at Cambridge University
in honor of George Green.

19. If is a sphere and satisfies the hypotheses of Stokes’
Theorem, show that .

20. Suppose and satisfy the hypotheses of Stokes’ Theorem
and , have continuous second-order partial derivatives.
Use Exercises 22 and 24 in Section 13.5 to show the 
following.
(a)

(b)

(c) x
C
 � f �t � t� f � � dr � 0

xC � f � f � � dr � 0

xC � f �t� � dr � xxS �� f � �t� � dS

tf
CS

xxS curl F � dS � 0
FS17. Calculate the work done by the force field

when a particle moves under its influence around the edge
of the part of the sphere that lies in the
first octant, in a counterclockwise direction as viewed from
above.

18. Evaluate ,
where is the curve ,

. [Hint: Observe that lies on the surface
.]z � 2xy

C0 � t � 2
r�t� � �sin t, cos t, sin 2t�C

xC �y � sin x� dx � �z2 � cos y� dy � x 3 dz

x 2 � y 2 � z2 � 4

F�x, y, z� � �x x � z2 � i � �y y � x 2 � j � �z z � y 2 � k



For the vector field in Figure 4, it appears that the vectors that end near are
shorter than the vectors that start near Thus, the net flow is outward near so

and is a source. Near on the other hand, the incoming arrows 
are longer than the outgoing arrows. Here the net flow is inward, so 
and is a sink. We can use the formula for F to confirm this impression. Since

, we have , which is positive when . So the
points above the line are sources and those below are sinks.

FIGURE 4
The vector field F=≈ i+¥ j

P¡

P™

y

x

y � �x
y � �xdiv F � 2x � 2yF � x 2 i � y 2 j

P2

div F�P2 � � 0
P2,P1div F�P1� � 0

P1,P1.
P1

SECTION 13.8 THE DIVERGENCE THEOREM � 983

3–6 � Verify that the Divergence Theorem is true for the vector
field on the region .

3. ,
is the cube bounded by the planes , , ,

, , and 

4. ,
is the solid bounded by the paraboloid and

the plane 

5. ,
is the solid cylinder ,

6. ,
is the unit ball 

� � � � � � � � � � � � �

7–15 � Use the Divergence Theorem to calculate the surface
integral ; that is, calculate the flux of across .

7. ,
is the surface of the box bounded by the planes ,

, , , , and 

8. ,
is the surface of the box with vertices 

9. ,
is the surface of the solid bounded by the cylinder

and the planes and x � 2x � �1y 2 � z2 � 1
S
F�x, y, z� � 3xy 2 i � xe z j � z3 k

��1, �2, �3�S
F�x, y, z� � x 2z3 i � 2xyz3 j � xz4 k

z � 2z � 0y � 1y � 0x � 1
x � 0S

F�x, y, z� � ex sin y i � ex cos y j � yz2 k

SFxxS F � dS

x 2 � y 2 � z2 � 1E
F�x, y, z� � x i � y j � z k

0 � z � 1x 2 � y 2 � 1E
F�x, y, z� � xy i � yz j � zx k

z � 1
z � x 2 � y 2E

F�x, y, z� � xz i � yz j � 3z2 k

z � 1z � 0y � 1
y � 0x � 1x � 0E

F�x, y, z� � 3x i � xy j � 2xz k

EF
1. A vector field is shown. Use the interpretation of

divergence derived in this section to determine whether
is positive or negative at and at 

2. (a) Are the points and sources or sinks for the vector
field shown in the figure? Give an explanation based
solely on the picture.

(b) Given that , use the definition of diver-
gence to verify your answer to part (a).

2

_2

_2 2

P¡

P™

F�x, y� � �x, y 2�

F
P2P1

2

_2

_2 2

P¡

P™

P2.P1div F

F
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and components of the vector fields have continuous second-
order partial derivatives.

21. , where is a constant vector

22. , where 

23.

24.

25.

26.

� � � � � � � � � � � � �

27. Suppose and satisfy the conditions of the Divergence
Theorem and is a scalar function with continuous partial
derivatives. Prove that

These surface and triple integrals of vector functions are
vectors defined by integrating each component function.
[Hint: Start by applying the Divergence Theorem to ,
where is an arbitrary constant vector.]

28. A solid occupies a region with surface and is immersed
in a liquid with constant density . We set up a coordinate
system so that the -plane coincides with the surface of the
liquid and positive values of are measured downward into
the liquid. Then the pressure at depth is , where 
is the acceleration due to gravity (see Section 6.5). The total
buoyant force on the solid due to the pressure distribution is
given by the surface integral

where is the outer unit normal. Use the result of Exer-
cise 27 to show that , where is the weight of
the liquid displaced by the solid. (Note that is directed
upward because is directed downward.) The result is
Archimedes’ principle: The buoyant force on an object
equals the weight of the displaced liquid.

z
F

WF � �Wk
n

F � �yy
S

 pn dS

tp � �tzz
z

xy
�

SE

c
F � fc

yy
S

 f n dS � yyy
E

 � f dV

f
ES

yy
S

 � f �t � t� f � � n dS � yyy
E

 � f � 2
t � t� 2f � dV

yy
S

 � f �t� � n dS � yyy
E

 � f � 2
t � � f � �t� dV

yy
S

 Dn f dS � yyy
E

 � 2f dV

yy
S

 curl F � dS � 0

F�x, y, z� � x i � y j � z kV�E � � 1
3 yy

S

 F � dS

ayy
S

 a � n dS � 0

10. ,
is the surface of the solid bounded by the hyperboloid

and the planes and 

11. ,
is the ellipsoid 

12. ,
is the surface of the solid bounded by the paraboloid

and the -plane

13. ,
is the sphere 

14. ,
is the surface of the solid bounded by the hemispheres

, and the plane 

15. ,
is the surface of the solid that lies above the -plane 

and below the surface ,

� � � � � � � � � � � � �

16. Use a computer algebra system to plot the vector field

in the cube cut from the first octant by the planes ,
, and . Then compute the flux across the 

surface of the cube.

17. Use the Divergence Theorem to evaluate , where

and is the top half of the sphere .
[Hint: Note that is not a closed surface. First compute 
integrals over and , where is the disk ,
oriented downward, and .]

18. Let . 
Find the flux of across the part of the paraboloid

that lies above the plane and is 
oriented upward.

19. Verify that for the electric field

20. Use the Divergence Theorem to evaluate

where is the sphere .

21–26 � Prove each identity, assuming that and satisfy the
conditions of the Divergence Theorem and the scalar functions 

ES

x 2 � y 2 � z2 � 1S

yy
S

 �2x � 2y � z2 � dS

E�x� �
�Q

� x �3  x

div E � 0
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Summary � � � � � � � � � � � � � � � � � �

The main results of this chapter are all higher-dimensional versions of the Funda-
mental Theorem of Calculus. To help you remember them, we collect them together
here (without hypotheses) so that you can see more easily their essential similarity.
Notice that in each case we have an integral of a “derivative” over a region on the left
side, and the right side involves the values of the original function only on the bound-
ary of the region.

Fundamental Theorem of Calculus

Fundamental Theorem for Line Integrals
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