
Chapter 2
The Language PCF

We will illustrate the various styles of semantics of programming languages with an
example: the language PCF—Programming language for computable functions—,
also called Mini-ML.

2.1 A Functional Language: PCF

2.1.1 Programs Are Functions

We observed in the previous chapter that a deterministic program computes a func-
tion, and from this observation we derived the principles of denotational semantics.
This remark is also the basis of a class of programming languages: functional lan-
guages, such as Caml, Haskell or Lisp, which are traditionally used to begin the
study of programming languages.

In these languages, the goal is to shorten the distance between the notion of a
program and the notion of a mathematical function. In other words, the idea is to
bring programs closer to their denotational semantics.

The basic constructions in the language PCF are the explicit construction of a
function, written fun x -> t, and the application of a function to an argument,
written t u.

PCF includes also a constant for each natural number, the operations +, -,
*, /, and a test to detect zero ifz t then u else v. Addition and multi-
plication are defined for all natural numbers, and similarly for subtraction using
the convention n - m = 0 if n < m. Division is the standard Euclidean division,
division by 0 produces an error.

2.1.2 Functions Are First-Class Objects

In many programming languages, it is possible to define a function that takes another
function as argument, or that returns another function, but often this requires the use

G. Dowek, J.-J. Lévy, Introduction to the Theory of Programming Languages,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-076-2_2, © Springer-Verlag London Limited 2011

15

http://dx.doi.org/10.1007/978-0-85729-076-2_2

16 2 The Language PCF

of a syntax that is different from the syntax used for a standard argument such as an
integer or a string. In a functional language, functions are defined in the same way
whether they take numbers or functions as arguments.

For example, the composition of a function with itself is defined by fun f ->
fun x -> f (f x).

To highlight the fact that functions are not considered different, and thus they can
be used as arguments or returned as results for other functions, we say that functions
are first class objects.

2.1.3 Functions with Several Arguments

In PCF, there is no symbol to build a function with several arguments. These func-
tions are built as functions with one argument, using the isomorphism (A × B)
-> C = A -> (B -> C). For instance, the function that associates to x and y
the number x * x + y * y is defined as the function associating to x a func-
tion, which in turn associates to y the number x * x + y * y, that is, fun x
-> fun y -> x * x + y * y.

Then, to apply the function f to the numbers 3 and 4we need to apply it first to 3,
obtaining the term f 3, which represents the function that associates 3 * 3 +
y * y to y, and then to 4, obtaining the term (f 3) 4. Since, by convention,
application associates to the left, we will write this term simply as f 3 4.

2.1.4 No Assignments

In contrast with languages such as Caml or Java, the main feature of PCF is a total
lack of assignments. There is no construction of the form x := t or x = t to
assign a value to a “variable”. We will describe, in Chap. 7, an extension of PCF
with assignments.

2.1.5 Recursive Definitions

In Mathematics, some functions cannot be defined explicitly. For example, in a high-
school textbook, the power function is often defined by

x, n �→ x× · · · × x
︸ ︷︷ ︸

n times

or through a definition by induction.
In programming languages, we use similar constructs: iterations and recursive

definitions. PCF includes a special construct to define recursive functions.

2.1 A Functional Language: PCF 17

It is often said that a function is recursive if the function is used in its own defi-
nition. This is absurd: in programming languages, as everywhere else, circular def-
initions are meaningless. We cannot “define” the function fact by fun n ->
ifz n then 1 else n * (fact (n - 1)). In general, we cannot define
a function f by a term G which contains an occurrence of f. However, we can define
the function f as the fixed point of the function fun f -> G. For example, we can
define the function fact as the fixed point of the function fun f -> fun n ->
ifz n then 1 else n * (f (n - 1)).

Does this function have a fixed point? and if it does, is this fixed point unique?
Otherwise, which fixed point are we referring to? We will leave these questions for
a moment, and simply state that a recursive function is defined as a fixed point.

In PCF, the symbol fix binds a variable in its argument, and the term
fix f G denotes the fixed point of the function fun f -> G. The function
fact can then be defined by fix f fun n -> ifz n then 1 else n *
(f (n - 1)).

Note, again, that using the symbol fix we can build the factorial function with-
out necessarily giving it a name.

2.1.6 Definitions

We could, in theory, omit definitions and replace everywhere the defined symbols by
their definitions. However, programs are simpler and clearer if we use definitions.

We add then a final construct in PCF, written let x = t in u. The occur-
rences of the variable x in u are bound, but those in t are not. The symbol let is a
binary operator that binds a variable in its second argument.

2.1.7 The Language PCF

The language PCF contains

– a symbol fun with one argument, that binds a variable in its argument,
– a symbol α with two arguments, which does not bind any variables in its argu-

ments,
– an infinite number of constants to represent the natural numbers,
– four symbols +, -, * and / with two arguments, which do not bind any variables

in their arguments,
– a symbol ifz with three arguments, which does not bind any variables in its

arguments,
– a symbol fix with one argument, which binds a variable in its argument,
– a symbol letwith two arguments, which binds a variable in its second argument.

In other words, the syntax of PCF is inductively defined by

18 2 The Language PCF

t = x
| fun x -> t
| t t
| n
| t + t | t - t | t * t | t / t
| ifz t then t else t
| fix x t
| let x = t in t

Despite its small size, PCF is Turing complete, that is, all computable functions
can be programmed in PCF.

Exercise 2.1 Write a PCF program that takes two natural numbers n and p as inputs
and returns np.

Exercise 2.2 Write a PCF program that takes a natural number n as input and re-
turns the number 1 if the input is a prime number, and 0 otherwise.

Exercise 2.3 (Polynomials in PCF) Write a PCF program that takes a natural num-
ber q as input, and returns the greatest natural number u such that u (u + 1) /
2 ≤ q.

Cantor’s function K is a function from N
2 to N defined by fun n ->

fun p -> (n + p) (n + p + 1) / 2 + n. Let K’ be the function from
N to N

2 defined by fun q -> (q - (u (u + 1) / 2), u - q +
u (u + 1) / 2) where u is the greatest natural number such that u (u +
1) / 2 ≤ q.

Show that K ◦ K’ = id. Let n and p be two natural numbers, show that
the greatest natural number u such that u (u + 1) / 2 ≤ (n + p) (n +
p + 1) / 2 + n is n + p. Then deduce that K’ ◦ K = id. From this fact,
deduce that K is a bijection from N

2 to N.
Let L be the function fun n -> fun p -> (K n p) + 1. A polynomial

with integer coefficients a0 + a1 X + · · · + ai Xi + · · · + an Xn can be
represented by the integer L a0 (L a1 (L a2 ... (L an 0) ...)).

Write a PCF program that takes two natural numbers as input and returns the
value of the polynomial represented by the first number applied to the second.

2.2 Small-Step Operational Semantics for PCF

2.2.1 Rules

Let us apply the program fun x -> 2 * x to the constant 3. We obtain the term
(fun x -> 2 * x) 3. According to the principles of small-step operational
semantics, let us try to evaluate this term step by step, to obtain a result: 6 if all

2.2 Small-Step Operational Semantics for PCF 19

goes well. The first step in this simplification process is parameter passing, that
is, the replacement of the formal argument x by the actual argument 3. The initial
term becomes, after a first small-step transformation, the term 2 * 3. In the second
step, the term 2 * 3 is evaluated, resulting in the number 6. The first small step,
parameter passing, can be performed each time we have a term of the form (fun
x -> t) u where a function fun x -> t is applied to an argument u. As a
consequence, we define the following rule, called β-reduction rule

(fun x -> t) u −→ (u/x)t

The relation t −→ u should be read “t reduces—or rewrites—to u”. The second
step mentioned above can be generalised as follows

p ⊗ q −→ n (if p ⊗ q = n)

where ⊗ is any of the four arithmetic operators included in PCF. We add similar
rules for conditionals

ifz 0 then t else u −→ t

ifz n then t else u −→ u (if n is a number different from 0)

a rule for fixed points

fix x t −→ (fix x t/x)t

and a rule for let

let x = t in u −→ (t/x)u

A redex is a term t that can be reduced. In other words, a term t is a redex if
there exists a term u such that t −→ u.

2.2.2 Numbers

It could be said, quite rightly, that the rule p ⊗ q −→ n (if p ⊗ q = n), of
which 2 * 3 −→ 6 is an instance, does not really explain the semantics of the
arithmetic operators, since it just replaces the multiplication in PCF by that of Math-
ematics. This choice is however motivated by the fact that we are not really inter-
ested in the semantics of arithmetic operators, instead, our goal is to highlight the
semantics of the other constructs in the language.

To define the semantics of the arithmetic operators in PCF without referring to
the mathematical operators, we should consider a variant of PCF without numeric
constants, where we introduce just one constant for the number 0 and a symbol S—
“successor”—with one argument. The number 3, for instance, is represented by the
term S(S(S(0))). We then add small-step rules

0 + u −→ u
S(t) + u −→ S(t + u)
0 - u −→ 0

20 2 The Language PCF

t - 0 −→ t
S(t) - S(u) −→ t - u
0 * u −→ 0
S(t) * u −→ t * u + u
t / S(u) −→ ifz t - u then 0 else S((t - S(u)) / S(u))

Note that, to be precise, we should add a rule for division by 0, which should raise
an exception: error.

Exercise 2.4 (Church numerals) Instead of introducing the symbols 0 and S, we
can represent the number n by the term fun z -> fun s -> s (s (...
(s z)...)) rather than S(S(...(0)...)). Show that addition and multi-
plication can be programmed on these representations. Show that the function that
checks whether a number is 0 can also be programmed.

Exercise 2.5 (Position numerals) It could be said that the representations of num-
bers using the symbols 0 and S, or using Church numerals, are not efficient, since
the size of the term representing a number grows linearly with the number—as the
representation in unary notation, where to write the number n we need n symbols—
and not logarithmically, as it is the case with the usual position-based notation. An
alternative could be to use a symbol z for the number 0 and two functions O and I
to represent the functions n �→ 2 * n and n �→ 2 * n + 1. The number 26
would then be represented by the term O(I(O(I(I(z))))), and reversing it we
obtain IIOIO, the binary representation of this number.

Write a small-step operational semantics for the arithmetic operators in this lan-
guage.

2.2.3 A Congruence

Using the rules of the small-step semantics we obtain

(fun x -> 2 * x) 3 −→ 2 * 3 −→ 6

Thus, denoting by −→∗ the reflexive-transitive closure of −→, we can write
(fun x -> 2 * x) 3 −→∗ 6.

However, with this definition, the term (2 + 3) + 4 does not reduce to the
term 9 according to −→∗. Indeed, to reduce a term of the form t + u the terms
t and u should be numeric constants, but our first term 2 + 3 is a sum, not a
constant. The first step should then be the evaluation of 2 + 3, which produces the
number 5. Then, a second step reduces 5 + 4 to 9. The problem is that, with our
definition, the term 2 + 3 reduces to 5, but (2 + 3) + 4 does not reduce to
5 + 4.

We need to define another relation, where rules can be applied to any subterm of
a term to be reduced. Let us define inductively the relation � as follows

if t −→ ut � u

2.2 Small-Step Operational Semantics for PCF 21

t � u
t v � u v

t � u
v t � v u

t � u
fun x -> t � fun x -> u

t � u
t + v � u + v

...

It is possible to show that a term is a redex with respect to the relation � if and
only if one of its subterms is a redex with respect to −→.

2.2.4 An Example

To illustrate PCF’s small-step semantic rules, let us compute the factorial of 3.

(fix f fun n -> ifz n then 1 else n * (f (n - 1))) 3
� (fun n -> ifz n then 1 else n * ((fix f fun n ->
ifz n then 1 else n * (f (n - 1))) (n - 1))) 3
� ifz 3 then 1 else 3 * ((fix f fun n -> ifz n then 1
else n * (f (n - 1))) (3 - 1))
� 3 * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) (3 - 1))
� 3 * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) 2)
� 3 * ((fun n -> ifz n then 1 else n * ((fix f fun n ->
ifz n then 1 else n * (f (n - 1))) (n - 1))) 2)
� 3 * (ifz 2 then 1 else 2 * ((fix f fun n -> ifz n
then 1 else n * (f (n - 1))) (2 - 1)))
� 3 * (2 * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) (2 - 1)))
� 3 * (2 * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) 1))
� 3 * (2 * ((fun n -> ifz n then 1 else
n * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) (n - 1))) 1))
� 3 * (2 * (ifz 1 then 1 else 1 * ((fix f fun n ->
ifz n then 1 else n * (f (n - 1))) (1 - 1))))
� 3 * (2 * (1 * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) (1 - 1))))

22 2 The Language PCF

� 3 * (2 * (1 * ((fix f fun n -> ifz n then 1
else n * (f (n - 1))) 0)))
� 3 * (2 * (1 * ((fun n -> ifz n then 1 else
n * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) (n - 1))) 0)))
� 3 * (2 * (1 * ((ifz 0 then 1 else
0 * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) (0 - 1))))))
� 3 * (2 * (1 * 1)) � 3 * (2 * 1) � 3 * 2 � 6

2.2.5 Irreducible Closed Terms

A term t is irreducible if it cannot be reduced by �, that is, if there is no term u
such that t � u.

We can now define the relation “the term u is the result of the evaluation of term
t”, where t is a closed term, by: t ↪→ u if and only if t �* u and u is irreducible.
In this case, the term u must be closed. Finally, the relation “the program p with
inputs e1, ..., en produces the output s” is simply written p e1 ... en
↪→ s.

Exercise 2.6 (Classification of irreducible closed terms) Show that a term is irre-
ducible and closed if and only if it is of one of the following forms

– fun x -> t where t is irreducible and does not contain any free variables
except possibly x,

– n where n is a number,
– V1 V2, where V1 and V2 are irreducible closed terms and V1 is not of the form
fun x -> t,

– V1 ⊗ V2, where V1 and V2 are irreducible closed terms and are not both numeric
constants,

– ifz V1 then V2 else V3 where V1, V2 and V3 are irreducible closed
terms and V1 is not a number.

Numbers and irreducible closed terms of the form fun x -> t are called val-
ues. When the result of a computation is a value, we associate the value to the initial
term, and we say that the term evaluates to this value.

Unfortunately, values are not the only possible results. For example, the term
(fun x -> x) 1 2 can be reduced to the term 1 2, which is irreducible and
closed, and thus the term 1 2 is the result of the computation of (fun x ->
x) 1 2. This result is meaningless, because we cannot apply the object 1, which
is not a function, to 2. An irreducible closed term that is not a value is said to
be stuck. Stuck terms have the form V1 V2, where V1 and V2 are irreducible
closed terms and V1 is not a function fun x -> t (for example 1 2), V1 ⊗ V2,
where V1 and V2 are irreducible and closed and are not numbers (for example 1 +

2.2 Small-Step Operational Semantics for PCF 23

(fun x -> x)), and ifz V1 then V2 else V3 where V1, V2 and V3 are
irreducible and closed and V1 is not a number (for example, ifz (fun x ->
x) then 1 else 2).

Exercise 2.7 Which are the values associated to the terms

(fun x -> fun x -> x) 2 3

and

(fun x -> fun y -> ((fun x -> (x + y)) x)) 5 4

according to the small-step operational semantics of PCF?

Exercise 2.8 (Static binding) Does the small-step operational semantics of PCF
associate the value 10 or the value 11 to the term

let x = 4 in let f = fun y -> y + x
in let x = 5 in f 6?

The first versions of the language Lisp produced the value 11 instead of 10 for
this term. In this case, we say that the binding is dynamic.

2.2.6 Non-termination

It is easy to see that the relation ↪→ is not total, that is, there are terms t for which
there is no term u such that t ↪→ u. For example, the term b = fix x x re-
duces to itself, and only to itself. It does not reduce to any irreducible term.

Exercise 2.9 Let b1 = (fix f (fun x -> (f x))) 0. Show all the terms
obtained by reducing this term. Does the computation produce a result in this case?

Exercise 2.10 (Curry’s fixed point operator) Let t be a term and u be the term
(fun y -> (t (y y)))(fun y -> (t (y y))). Show that u reduces
to t u.

Let t be a term and v be the term (fun y -> ((fun x -> t)
(y y)))(fun y -> ((fun x -> t) (y y))). Show that v reduces to
(v/x)t.

Thus, we can deduce that the symbol fix is superfluous in PCF. However, it is
not going to be superfluous later when we add types to PCF.

Write a term u without using the symbol fix and equivalent to b = fix x x.
Describe the terms that can be obtained by reduction. Does the computation produce
a result in this case?

24 2 The Language PCF

2.2.7 Confluence

Is it possible for a closed term to produce several results? And, in general, can a
term reduce to several different irreducible terms? The answer to these questions
is negative. In fact, every PCF program is deterministic, but this is not a trivial
property. Let us see why.

The term (3 + 4) + (5 + 6) has two subterms which are both redexes.
We could then start by reducing 3 + 4 to 7 or 5 + 6 to 11. Indeed, the term
(3 + 4) + (5 + 6) reduces to both 7 + (5 + 6) and (3 + 4) + 11.
Fortunately, neither of these terms is irreducible, and if we continue the computation
we reach in both cases the term 18.

To prove that any term can be reduced to at most one irreducible term we need to
prove that if two computations originating in the same term produce different terms,
then they will eventually reach the same irreducible term.

This property is a consequence of another property of the relation �: confluence.
A relation R is confluent if each time we have a R∗ b1 and a R∗ b2, there exists
some c such that b1 R∗ c and b2 R∗ c.

It is not difficult to show that confluence implies that each term has at most one
irreducible result. If the term t can be reduced to two irreducible terms u1 and u2,
then we have t �∗ u1 and t �∗ u2. Since � is confluent, there exists a term v
such that u1 �∗ v and u2 �∗ v. Since u1 is irreducible, the only term v such that
u1 �∗ v is u1 itself. Therefore, u1 = v and similarly u2 = v. We conclude that
u1 = u2. In other words, t reduces to at most one irreducible term.

We will not give here the proof of confluence for the relation �. The idea is that
when a term t contains two redexes r1 and r2, and t1 is obtained by reducing r1
and t2 is obtained by reducing r2, then we can find the residuals of r2 in t1 and
reduce them. Similarly, we can reduce the residuals of r1 in t2, obtaining the same
term. For example, by reducing 5 + 6 in 7 + (5 + 6) and reducing 3 + 4 in
(3 + 4) + 11, we obtain the same term: 7 + 11.

2.3 Reduction Strategies

2.3.1 The Notion of a Strategy

Since in PCF each term has at most one result (due to the unicity property men-
tioned above), it does not matter in which order we reduce the redexes in a term:
if we reach an irreducible term, it will always be the same. However, it may be
the case that one sequence of reduction reaches an irreducible term whereas an-
other one does not. For example, let C be the term fun x -> 0 and let b1
be the term (fix f (fun x -> (f x))) 0. The term b1 reduces to b2 =
(fun x -> (fix f (fun x -> (f x)) x)) 0 and then again to b1.
The term C b1 contains several redexes, and it can be reduced to 0 and to C b2
which in turn contains several redexes and can be reduced to 0 and C b1 (amongst

2.3 Reduction Strategies 25

other terms). By reducing always the innermost redex, we can build an infinite re-
duction sequence C b1 � C b2 � C b1 � · · · , whereas reducing the outermost
redex produces the result 0.

This example may seem an exception, because it contains a function C that does
not use its argument; but note that the ifz construct is similar, and in the example
of the factorial function, when computing the factorial of 3 for instance, we can
observe the same behaviour: The term ifz 0 then 1 else 0 * ((fix f
fun n -> ifz n then 1 else n * (f (n - 1))) (0 - 1)) has
several redexes. Outermost reduction produces the result 1 (the other redexes disap-
pear), whereas reducing the redex fix f fun n -> ifz n then 1 else
n * (f (n - 1)) we get an infinite reduction sequence. In other words, the
term fact 3 can be reduced to 6, but it can also generate reductions that go on
forever.

Both C b1 and fact 3 produce a unique result, but not all reduction sequences
reach a result.

Since the term C b1 has the value 0 according to the PCF semantics, an evalu-
ator, that is, a program that takes as input a PCF term and returns its value, should
produce the result 0 when computing C b1. Let us try to evaluate this term using
some current compilers. In Caml, the program

let rec f x = f x in let g x = 0 in g (f 0)

does not terminate. In Java, we have the same problem with the program

class Omega {
static int f (int x) {return f(x);}
static int g (int x) {return 0;}
static public void main (String [] args) {
System.out.println(g(f(0)));}}

Only a small number of compilers, using call by name or lazy evaluation, such as
Haskell, Lazy-ML or Gaml, produce a terminating program for this term.

This is because the small-step semantics of PCF does not correspond to the se-
mantics of Caml or Java. In fact, it is too general and when a term has several
redexes it does not specify which one should be reduced first. By default, it imposes
termination of all programs that somehow can produce a result. An ingredient is
missing in this semantic definition: the notion of a strategy, that specifies the order
of reduction of redexes.

A strategy is a partial function that associates to each term in its domain one of its
redex occurrences. Given a strategy s, we can define another semantics, replacing
the relation � by a new relation �s such that t �s u if s t is defined and u is
obtained by reducing the redex s t in t. Then, we define the relation �∗

s as the
reflexive-transitive closure of �s, and the relation ↪→s as before.

Instead of defining a strategy, an alternative would be to weaken the reduction
rules, in particular the congruence rules, so that only some specific reductions can
be performed.

26 2 The Language PCF

2.3.2 Weak Reduction

Before defining outermost or innermost strategies for the term C b1, let us give
another example to show that the operational semantics defined above is too liberal,
and to motivate the definition of strategies or weaker reduction rules. Let us apply
the program fun x -> x + (4 + 5) to the constant 3. We obtain the term
(fun x -> x + (4 + 5)) 3 that contains two redexes. We can then reduce
it to 3 + (4 + 5) or to (fun x -> x + 9) 3. The first reduction is part of
the execution of the program, but not the second. Usually, if we execute a function
before passing arguments to it, we say that we are optimising or specialising the
program.

A weak reduction strategy never reduces a redex that is under a fun. Thus, weak
reduction does not specialise programs, it just executes them. It follows that with a
weak strategy all terms of the form fun x -> t are irreducible.

Alternatively, we can define weak reduction by weakening the reduction rules,
more precisely, by discarding the congruence rule

t � u
fun x -> t � fun x -> u

Exercise 2.11 (Classification of weak irreducible closed terms) Show that, under
weak reduction, a closed irreducible term must have one of the following forms:

– fun x -> t, where t has at most x free,
– n where n is a number,
– V1 V2, where V1 and V2 are irreducible closed terms and V1 is not a term of the

form fun x -> t,
– V1 ⊗ V2, where V1 and V2 are irreducible closed terms and are not both numbers,
– ifz V1 then V2 else V3 where V1, V2 and V3 are irreducible closed

terms and V1 is not a number.

What is the difference with Exercise 2.6?

Numbers and closed terms of the form fun x -> t are called values.

2.3.3 Call by Name

Let us analyse again the reductions available for the term C b1. We need to decide
whether we should evaluate the arguments of the function C before they are passed
to the function, or we should pass to the function the arguments without evaluating
them.

The call by name strategy always reduces the leftmost redex first, and the weak
call by name strategy always reduces the leftmost redex that is not under a fun.
Thus, the term C b1 reduces to 0. This strategy is interesting due to the following

2.4 Big-Step Operational Semantics for PCF 27

property, called standardisation: if a term can be reduced to an irreducible term,
then the call by name strategy terminates. In other words, ↪→n = ↪→. Moreover,
when we evaluate the term (fun x -> 0) (fact 10) using a call by name
strategy, we do not need to compute the factorial of 10. However, if we evaluate
the term (fun x -> x + x) (fact 10), using a call by name strategy, we
will compute it twice, because this term reduces to (fact 10) + (fact 10).
Most call by name evaluators use sharing to avoid this duplication of computation,
and in this case we call it lazy evaluation.

2.3.4 Call by Value

Call by value, in contrast, always evaluates the arguments of a function before pass-
ing them to the function. It is based on the following convention: we can only reduce
a term of the form (fun x -> t) u if u is a value. Thus, when we evaluate the
term (fun x -> x + x) (fact 10), we start by reducing the argument to
obtain (fun x -> x + x) 3628800, and then we reduce the leftmost redex.
By doing this, we only compute the factorial of 10 once.

All the strategies that evaluate arguments before passing them are in this class.
For instance, the strategy that reduces always the leftmost redex amongst those that
are authorised. Thus, call by value is not a unique strategy, but a family of strategies.

This convention can also be defined by weakening the β-reduction rule: the term
(fun x -> t) u is a redex only if the term u is a value.

A weak strategy is said to implement call by value if it reduces a term of the form
(fun x -> t) u only when u is a value and is not under a fun.

2.3.5 A Bit of Laziness Is Needed

Even under a call by value strategy, a conditional construct ifz must be evaluated
under call by name: in a term of the form ifz t then u else v, we should
never evaluate the three arguments. Instead, we should first evaluate t and depend-
ing on the result, evaluate either u or v.

It is easy to see that if we evaluate the three arguments of an ifz then the evalu-
ation of the term fact 3 does not terminate.

Exercise 2.12 Characterise the irreducible closed terms under weak call by name,
then characterise the irreducible closed terms under weak call by value.

2.4 Big-Step Operational Semantics for PCF

Instead of defining a strategy, or weakening the reduction rules of the small-step
operational semantics, we can control the order in which redexes are reduced by
defining a big-step operational semantics.

28 2 The Language PCF

The big-step operational semantics of a programming language provides an in-
ductive definition of the relation ↪→, without first defining −→ and �.

2.4.1 Call by Name

Let us start by the call by name semantics for PCF. Consider a term of the form t
u that is reduced under call by name to obtain an irreducible term V. We will start
by reducing the redexes that occur in t until we obtain an irreducible term. If this
term is of the form fun x -> t’, then the whole term reduces to (fun x ->
t’) u and the left-most redex is the term itself. It reduces to (u/x)t’, which in
turn reduces to V. We can say that the term t u reduces under call by name to the
irreducible term V if t reduces to fun x -> t’ and (u/x)t’ reduces to V.

This can be expressed as a rule

t ↪→ fun x -> t’ (u/x)t’ ↪→ V
t u ↪→ V

which will be part of the inductive definition of the relation ↪→ (without first defin-
ing −→ and �).

Other rules state that the result of the computation for a term of the form fun is
the term itself, that is, we are defining a weak reduction relation

fun x -> t ↪→ fun x -> t

and that the result of the computation of a term of the form n is the term itself

n ↪→ n

Also, there is a rule to give the semantics of arithmetic operators

u ↪→ q t ↪→ p if p ⊗ q = n
t ⊗ u ↪→ n

two rules to define the semantics of the ifz construct

t ↪→ 0 u ↪→ V
ifz t then u else v ↪→ V

t ↪→ n v ↪→ V if n is a
number �= 0ifz t then u else v ↪→ V

a rule to define the semantics of the fixed point operator

(fix x t/x)t ↪→ V
fix x t ↪→ V

2.4 Big-Step Operational Semantics for PCF 29

and finally a rule to define the semantics of a let

(t/x)u ↪→ V
let x = t in u ↪→ V

We can prove by structural induction on the evaluation relation that the result
of the computation of a term is always a value, that is, a number or a closed term
of the form fun. There are no stuck terms. The computation of a term such as
((fun x -> x) 1) 2, which gave rise to the term 1 2 (stuck) with the small-
step semantics, does not produce a result with the big-step semantics, since none
of the rules can be applied to this term. Indeed, there is no rule in the big-step
semantics that explains how to evaluate an application where the left part evaluates
to a number.

2.4.2 Call by Value

The rules defining the call by value semantics are similar, except for the application
rule: we compute the value of the argument before passing it to the function

u ↪→ W t ↪→ fun x -> t’ (W/x)t’ ↪→ V
t u ↪→ V

and the let rule

t ↪→ W (W/x)u ↪→ V
let x = t in u ↪→ V

Summarising, we have the following rules

u ↪→ W t ↪→ fun x -> t’ (W/x)t’ ↪→ V
t u ↪→ V

fun x -> t ↪→ fun x -> t

n ↪→ n

u ↪→ q t ↪→ p if p ⊗ q = n
t ⊗ u ↪→ n

t ↪→ 0 u ↪→ V
ifz t then u else v ↪→ V

t ↪→ n v ↪→ V if n is a
constant �= 0ifz t then u else v ↪→ V

30 2 The Language PCF

(fix x t/x)t ↪→ V
fix x t ↪→ V

t ↪→ W (W/x)u ↪→ V
let x = t in u ↪→ V

Notice that, even under call by value, we keep the rules for the ifz

t ↪→ 0 u ↪→ V
ifz t then u else v ↪→ V

t ↪→ n v ↪→ V if n is a
constant �= 0ifz t then u else v ↪→ V

that is, we do not evaluate the second and third arguments of an ifz until they are
needed.

Note also that, even under call by value, we keep the rule

(fix x t/x)t ↪→ V
fix x t ↪→ V

We must resist the temptation to evaluate the term fix x t to a value W before
substituting it in t, because the rule

fix x t ↪→ W (W/x)t ↪→ V
fix x t ↪→ V

requires, in order to evaluate fix x t, to start by evaluating fix x t which
would create a loop and the term fact 3 would never produce a value—its evalu-
ation would give rise to an infinite computation.

Note finally that other rule combinations are possible. For example, some variants
of the call by name semantics use call by value in the let rule.

Exercise 2.13 Which values do we obtain under big-step semantics for the terms

(fun x -> fun x -> x) 2 3

and

(fun x -> fun y -> ((fun x -> (x + y)) x)) 5 4?

Compare your answer with that of Exercise 2.7.

Exercise 2.14 Does the big-step semantics associate the value 10 or the value 11
to the term

let x = 4 in let f = fun y -> y + x
in let x = 5 in f 6?

Compare your answer with that of Exercise 2.8.

2.5 Evaluation of PCF Programs 31

2.5 Evaluation of PCF Programs

A PCF evaluator is a program that takes a closed PCF term as input, and produces
its value as output. When read in a bottom-up fashion, the rules in the big-step
semantics can be seen as the kernel of such an evaluator: To evaluate an application
t u one starts by evaluating u and t, . . . this is easy to program in a language like
Caml

let rec eval p = match p with
| App(t,u) -> let w = eval u

in let v = eval t
in ...

| ...

In the case of an application, the rules of the big-step semantics leave us the
freedom to evaluate u first or t first—call by value is not a strategy, but a family of
strategies—, but the term (W/x)t’ must be the third to be evaluated, because it is
built out of the results of the first two evaluations.

Exercise 2.15 Write a call by name evaluator for PCF, that is, a program that takes
as input a closed term and computes its value. Write a call by value evaluator. Eval-
uate the term fact 6 and the term C b1 in both cases.

PCF’s denotational semantics is more difficult to define. This may seem a para-
dox, since PCF is a functional language and it should be easy to interpret its pro-
grams as functions. However, in PCF, any object can be applied to any object, and
nothing stops us writing for instance the term fun x -> (x x). In contrast with
mathematical functions, PCF functions do not have a domain. For this reasons, we
will give a denotational semantics for PCF after we add types, in Chap. 5.

	The Language PCF
	A Functional Language: PCF
	Programs Are Functions
	Functions Are First-Class Objects
	Functions with Several Arguments
	No Assignments
	Recursive Definitions
	Definitions
	The Language PCF

	Small-Step Operational Semantics for PCF
	Rules
	Numbers
	A Congruence
	An Example
	Irreducible Closed Terms
	Non-termination
	Confluence

	Reduction Strategies
	The Notion of a Strategy
	Weak Reduction
	Call by Name
	Call by Value
	A Bit of Laziness Is Needed

	Big-Step Operational Semantics for PCF
	Call by Name
	Call by Value

	Evaluation of PCF Programs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

