MPC5676R Microcontroller Data Sheet

On-chip modules available within the family include the following features:

- Two identical dual issue, 32-bit CPU core complexes (e200z7), each with
- Power Architecture embedded specification compliance
- Instruction set enhancement allowing variable length encoding (VLE), optional encoding of mixed 16-bit and 32-bit instructions, for code size footprint reduction
- Signal processing extension (SPE) instruction support for digital signal processing (DSP)
- Single-precision floating point operations (FPU)
- 16 KB I-Cache and 16 KB D-Cache
- Hardware cache coherency between cores
- 16 Hardware semaphores
- 3 channel CRC module
- 6MB on-chip flash
- Supports read during program and erase operations, and multiple blocks allowing EEPROM emulation
- 384 KB on-chip general-purpose SRAM including 48 KB of standby RAM
- Two multi-channel direct memory access controllers (eDMA)
- 64 channels per eDMA
- Dual core Interrupt controller (INTC)
- Phase-locked loop with FM modulation (FMPLL)
- Crossbar switch architecture for concurrent access to peripherals, flash, or RAM from multiple bus masters
- External Bus Interface (EBI) for calibration and application development
- System integration unit (SIU) with error correction status module (ECSM)
- Four protected port output pins (PPO)
- Boot assist module (BAM) supports serial bootload via CAN or SCI
- Three second-generation enhanced time processor units (eTPU2)

- Up to 96 eTPU2 channels (32 channels per eTPU2)
- total of 36 KB code RAM
- total of 9 KB parameter RAM
- Enhanced modular input output system supporting 32 unified channels (eMIOS) with each channel capable of single action, double action, pulse width modulation (PWM) and modulus counter operation
- Two enhanced queued analog-to-digital converter (eQADC) modules with
- two separate analog converters per eQADC module
- support for a total of 64 analog input pins, expandable to 176 inputs with off-chip multiplexers
- one absolute reference ADC channel
- interface to twelve hardware decimation filters
- enhanced ‘Tap’ command to route any conversion to two separate decimation filters
- Temperature sensor
- Five deserial serial peripheral interface (DSPI) modules
- Three enhanced serial communication interface (eSCI) modules
- Four controller area network (FlexCAN) modules
- Dual-channel FlexRay controller
- Nexus development interface (NDI) per IEEE-ISTO 5001-2003 standard, with some support for 2010 standard.
- Device and board test support per Joint Test Action Group (JTAG) (IEEE 1149.1)
- On-chip voltage regulator controller regulates supply voltage down to 1.2 V for core logic
- Self Test capability

Table of Contents

1 Ordering Information 3
1.1 Orderable Parts. 3
2 MPC5676R Blocks 4
2.1 Block Diagram 4
3 Pin Assignments 6
3.1 416-ball TEPBGA Pin Assignments 6
3.2 516-ball TEPBGA Pin Assignments 7
3.3 Pin Muxing and Reset States 8
4 Electrical Characteristics 8
4.1 Maximum Ratings 8
4.2 Thermal Characteristics 9
4.2.1 General Notes for Specifications at Maximum Junction Temperature 11
4.3 EMI (Electromagnetic Interference) Characteristics 12
4.4 ESD Characteristics 13
4.5 PMC/POR/LVI Electrical Specifications 13
4.5.1 Regulator Example 16
4.6 Power Up/Down Sequencing 18
4.6.1 Power-Up 19
4.6.2 Power-Down 19
4.6.3 Power Sequencing and POR Dependent on $V_{\text {DDA }}$ 20
4.7 DC Electrical Specifications 20
4.7.1 I/O Pad Current Specifications 23
4.7.2 I/O Pad V ${ }_{\text {DD33 }}$ Current Specifications 24
4.7.3 LVDS Pad Specifications 25
4.8 Oscillator and FMPLL Electrical Characteristics 27
4.9 eQADC Electrical Characteristics 29
4.10 C90 Flash Memory Electrical Characteristics 31
4.11 AC Specifications. 32
4.11.1 Clocking Modes 32
4.11.2 Pad AC Specifications 33
4.12 AC Timing 34
4.12.1 Generic Timing Diagrams 34
4.12.2 Reset and Configuration Pin Timing. 35
4.12.3 IEEE 1149.1 Interface Timing 36
4.12.4 Nexus Timing 39
4.12.5 External Bus Interface (EBI) Timing 41
4.12.6 External Interrupt Timing (IRQ Pin) 46
4.12.7 eTPU Timing 46
4.12.8 eMIOS Timing 47
4.12.9 DSPI Timing 48
5 Package Information 54
5.1 416-Pin Package 54
5.2 516-Pin Package 56
6 Product Documentation 58
Appendix ASignal Properties and Muxing 59
Appendix BRevision History 109

1 Ordering Information

1.1 Orderable Parts

Figure 1 and Table 1describe and list the orderable part numbers for the MPC5676R.

Temperature Range $\mathrm{M}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Package Identifier
VU = 416 TEPBGA Pb-Free VY = 516 TEPBGA Pb-Free

Operating Frequency
$1=2 \times 180 \mathrm{MHz}$
Tape and Reel Status
$\mathrm{R}=$ Tape and reel (blank) = Trays

Qualification Status
$\mathrm{P}=$ Pre qualification
$M=$ Fully spec. qualified, general market flow S = Fully spec. qualified, automotive flow

Figure 1. MPC5676R Orderable Part Number Description
Table 1. Orderable Part Numbers

NXP Part Number ${ }^{1}$	Package Description	Speed (MHz) ${ }^{2}$		Operating Temperature ${ }^{3}$	
		Nominal	$\operatorname{Max}^{4}\left(\mathrm{f}_{\mathrm{MAX}}\right)$	$\operatorname{Min}\left(\mathrm{T}_{\mathrm{L}}\right)$	$\operatorname{Max}\left(\mathrm{T}_{\mathrm{H}}\right)$
SPC5676RDK2MVU1R	MPC5676R 416 package Lead-free (Pb-free)	180	184	$-40^{\circ} \mathrm{C}$	$125{ }^{\circ} \mathrm{C}$
SPC5676RDK2MVY1R	MPC5676R 516 package Lead-free (Pb-free)	180	184	$-40^{\circ} \mathrm{C}$	$125{ }^{\circ} \mathrm{C}$

1 All packaged devices are PPC5676R, rather than MPC5676R or SPC5676R, until product qualifications are complete. The unpackaged device prefix is PCC, rather than SCC, until product qualification is complete. Not all configurations are available in the PPC parts.
2 For the operating mode frequency of various blocks on the device, see Table 28.
3 The lowest ambient operating temperature is referenced by T_{L}; the highest ambient operating temperature is referenced by T_{H}.
4 Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM). 180 MHz parts allow for 180 MHz system clock $+2 \%$ FM.

MPC5676R Blocks

2 MPC5676R Blocks

2.1 Block Diagram

The following figure shows a top-level block diagram of the MPC5676R. The purpose of the block diagram is to show the general interconnection of functional modules through the crossbar switch and from the Dual Interrupt Controller, and provide an indication of the modules that connect to external pins. For clarity, the following modules are omitted from the diagram: PMU, SWT, STM, PIT, ECSM, DTS, and CRC.

LEGEND

```
ADC - Analog to Digital Convertor
AMux - Analog Pin Multiplexer
D-Cache - Data Cache
DECFILT - Decimation Filter
DSPI - Deserial/Serial Peripheral Interface
EBI - External Bus Interface
eDMA2 - Enhanced Direct Memory Access controller version 2
eMIOS - Enhanced Modular I/O System
eQADC - Enhanced Queued Analog to Digital Converter
eSCI - Enhanced Serial Communications Interface
eTPU2 - Enhanced Time Processing Unit version 2
FlexCAN-Flexible Controller Area Network controller
FMPLL - Frequency Modulated Phase Lock Loop clock generator
```

I-Cache - Instruction Cache
IRC - Internal RC Oscillator
JTAG - Joint Test Action Group controller
MMU - Memory Management Unit
MPU - Memory Protection Unit
PPO - Protected Port Output
S/B - Stand-by
SIUA - System Integration Unit A
SIUB - System Integration Unit B
SPE - Signal Processing Engine
SRAM - Static RAM
STCU - Self Test Control Unit
VLE - Variable Length instruction Encoding

Figure 2. MPC5676R Block Diagram

3 Pin Assignments

3.1 416-ball TEPBGA Pin Assignments

Figure 3 shows the 416-ball TEPBGA pin assignments.

CAUTION

This ball map is preliminary and subject to change. Do not use it for board design.

Figure 3. MPC5676R 416-ball TEPBGA (full diagram)

MPC5676R Microcontroller Data Sheet, Rev. 4

Pin Assignments

3.2 516-ball TEPBGA Pin Assignments

Figure 4 shows the 516-ball TEPBGA pin assignments.

Figure 4. MPC5676R 516-ball TEPBGA (full diagram)

3.3 Pin Muxing and Reset States

See Appendix A, Signal Properties and Muxing, for a listing and description of the pin functions and properties.

4 Electrical Characteristics

This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the MPC5676R.
The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed.

4.1 Maximum Ratings

Table 2. Absolute Maximum Ratings ${ }^{1}$

Spec	Characteristic	Symbol	Min	Max ${ }^{2}$	Unit
1	1.2 V Core Supply Voltage ${ }^{3}$	$V_{\text {DD }}$	-0.3	$1.65{ }^{4}$	V
2	SRAM Standby Voltage	$V_{\text {STBY }}$	-0.3	5.5 ${ }^{\text {5,6 }}$	V
3	Clock Synthesizer Voltage	$V_{\text {DDSYN }}$	-0.3	$4.5{ }^{6,7}$	V
4	I/O Supply Voltage (I/O buffers and predrivers)	$V_{\text {DD33 }}$	-0.3	$4.5{ }^{6,7}$	V
5	Analog Supply Voltage (reference to $\mathrm{V}_{\text {SSA }}{ }^{8}$)	$V_{\text {DDA }}{ }^{9}$	-0.3	$5.5^{5,6}$	V
6	I/O Supply Voltage (fast I/O pads)	$\mathrm{V}_{\text {DDE }}$	-0.3	$4.5{ }^{6}$	V
7	I/O Supply Voltage (medium I/O pads)	$V_{\text {DDEH }}$	-0.3	$5.5^{5,6}$	V
8	Voltage Regulator Input Supply Voltage	$V_{\text {DDREG }}$	-0.3	$5.5^{5,6}$	V
9	Analog Reference High Voltage (reference to $\mathrm{V}_{\mathrm{RL}}{ }^{10}$)	$\mathrm{V}_{\mathrm{RH}}{ }^{11}$	-0.3	$5.5^{5,6}$	V
10	$\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {SSA }}{ }^{8}$ Differential Voltage	$V_{S S}-V_{S S A}$	-0.1	0.1	V
11	$\mathrm{V}_{\text {REF }}$ Differential Voltage	$\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}$	-0.3	$5.5^{5,6}$	V
12	V_{RL} to $\mathrm{V}_{\text {SSA }}$ Differential Voltage	$\mathrm{V}_{\mathrm{RL}}-\mathrm{V}_{\mathrm{SSA}}$	-0.3	0.3	V
13	$\mathrm{V}_{\text {DD33 }}$ to $\mathrm{V}_{\text {DDSYN }}$ Differential Voltage	$\mathrm{V}_{\text {DD33 }}-\mathrm{V}_{\text {DDSYN }}$	-0.1	0.1	V
14	$\mathrm{V}_{\text {SSSYN }}$ to $\mathrm{V}_{\text {SS }}$ Differential Voltage	$\mathrm{V}_{\text {SSSYN }}-\mathrm{V}_{\text {SS }}$	-0.1	0.1	V
15	Maximum Digital Input Current ${ }^{12}$ (per pin, applies to all digital pins)	$\mathrm{I}_{\text {MAXD }}$	-3^{13}	3^{13}	mA
16	Maximum Analog Input Current ${ }^{14}$ (per pin, applies to all analog pins)	$I_{\text {MAXA }}$	$-3^{9,13}$	$3^{9,13}$	mA

Electrical Characteristics

Table 2. Absolute Maximum Ratings ${ }^{1}$ (continued)

Spec	Characteristic	Symbol	Min	Max ${ }^{2}$	Unit
17	Maximum Operating Temperature Range ${ }^{15}$ - Die Junction Temperature	TJ	-40.0	150.0	${ }^{\circ} \mathrm{C}$
18	Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55.0	150.0	${ }^{\circ} \mathrm{C}$
19	Maximum Solder Temperature ${ }^{16}$ Pb -free package SnPb package	$\mathrm{T}_{\text {sdr }}$	-	$\begin{aligned} & 260.0 \\ & 245.0 \end{aligned}$	${ }^{\circ} \mathrm{C}$
20	Moisture Sensitivity Level ${ }^{17}$	MSL	-	3	-

1 Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device.
2 Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined.
$31.2 \mathrm{~V} \pm 10 \%$ for proper operation. This parameter is specified at a maximum junction temperature of $150^{\circ} \mathrm{C}$.
42.0 V for 10 hours cumulative time, $1.2 \mathrm{~V}+10 \%$ for time remaining.
${ }^{5} 6.4 \mathrm{~V}$ for 10 hours cumulative time, $5.0 \mathrm{~V}+10 \%$ for time remaining.
6 Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.
74.5 V for 10 hours cumulative time, $3.3 \mathrm{~V}+10 \%$ for time remaining.

8 MPC5676R has two analog power supply pins on the pinout: VDDA_A and VDDA_B.
9 MPC5676R has two analog ground supply pins on the pinout: VSSA_A and VSSA_B.
${ }^{10}$ MPC5676R has two analog low reference voltage pins on the pinout: VRL_A and VRL_B.
${ }^{11}$ MPC5676R has two analog high reference voltage pins on the pinout: VRH_A and VRH_B.
${ }^{12}$ Total injection current for all pins must not exceed 25 mA at maximum operating voltage.
${ }^{13}$ Injection current of $\pm 5 \mathrm{~mA}$ allowed for limited duration for analog (ADC) pads and digital 5 V pads. The maximum accumulated time at this current shall be 60 hours. This includes an assumption of a 5.25 V maximum analog or $\mathrm{V}_{\text {DDEH }}$ supply when under this stress condition.
${ }^{14}$ Total injection current for all analog input pins must not exceed 15 mA .
${ }^{15}$ Lifetime operation at these specification limits is not guaranteed.
${ }^{16}$ Solder profile per CDF-AEC-Q100.
${ }^{17}$ Moisture sensitivity per JEDEC test method A112.

4.2 Thermal Characteristics

Table 3. Thermal Characteristics, 416-pin TEPBGA Package ${ }^{1}$

Characteristic	Symbol	Value	Unit
Junction to Ambient ${ }^{2,3}$ Natural Convection (Single layer board)	$\mathrm{R}_{\theta \mathrm{JA}}$	24	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient ${ }^{2,4}$ Natural Convection (Four layer board 2s2p)	$\mathrm{R}_{\theta \mathrm{JAA}}$	16	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient (@200 ft./min., Single layer board)	$\mathrm{R}_{\theta \mathrm{JMA}}$	18	${ }^{\circ} \mathrm{C} / \mathrm{W}$

MPC5676R Microcontroller Data Sheet, Rev. 4

Table 3. Thermal Characteristics, 416-pin TEPBGA Package ${ }^{1}$ (continued)

Characteristic	Symbol	Value	Unit
Junction to Ambient (@200 ft./min., Four layer board 2s2p)	$\mathrm{R}_{\text {өJMA }}$	13	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Board ${ }^{5}$	$\mathrm{R}_{\theta \mathrm{JB}}$	8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case ${ }^{6}$	$\mathrm{R}_{\text {өJC }}$	4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Package Top ${ }^{7}$ Natural Convection	$\Psi_{J T}$	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1 Thermal characteristics are targets based on simulation that are subject to change per device characterization.
2 Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
3 Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
4 Per JEDEC JESD51-6 with the board horizontal.
5 Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
6 Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.
7 Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

Table 4. Thermal Characteristics, 516-pin TEPBGA Package ${ }^{1}$

Characteristic	Symbol	Value	Unit
Junction to Ambient ${ }^{2,3}$ Natural Convection (Single layer board)	$\mathrm{R}_{\theta \mathrm{JAA}}$	24	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient ${ }^{2,4}$ Natural Convection (Four layer board 2s2p)	$\mathrm{R}_{\theta \mathrm{JA}}$	17	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient (@200 ft./min., Single layer board)	$\mathrm{R}_{\theta \mathrm{JMA}}$	19	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient (@200 ft./min., Four layer board 2s2p)	$\mathrm{R}_{\theta \mathrm{JMA}}$	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Board ${ }^{5}$	$\mathrm{R}_{\theta \mathrm{JB}}$	9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case ${ }^{6}$	$\mathrm{R}_{\theta \mathrm{JCC}}$	5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Package Top 7 Natural Convection	$\Psi_{\text {JT }}$	2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1 Thermal characteristics are targets based on simulation that are subject to change per device characterization.
2 Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
3 Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
4 Per JEDEC JESD51-6 with the board horizontal.
5 Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
6 Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.

Electrical Characteristics

7 Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

4.2.1 General Notes for Specifications at Maximum Junction Temperature

An estimation of the chip junction temperature, T_{J}, can be obtained from the equation:

$$
\begin{equation*}
T_{J}=T_{A}+\left(R_{\theta J A} * P_{D}\right) \tag{Eqn. 1}
\end{equation*}
$$

where:
$\mathrm{T}_{\mathrm{A}}=$ ambient temperature for the package $\left({ }^{\circ} \mathrm{C}\right)$
$R_{\theta J A}=$ junction to ambient thermal resistance (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
$\mathrm{P}_{\mathrm{D}}=$ power dissipation in the package (W)
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the TEPBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed as the sum of a junction to case thermal resistance and a case to ambient thermal resistance:

$$
\begin{equation*}
\mathbf{R}_{\theta \mathrm{JA}}=\mathbf{R}_{\theta \mathrm{JC}}+\mathbf{R}_{\theta \mathrm{CA}} \tag{Eqn. 2}
\end{equation*}
$$

where:
$\mathrm{R}_{\theta \mathrm{JA}}=$ junction to ambient thermal resistance (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
$\mathrm{R}_{\theta \mathrm{JC}}=$ junction to case thermal resistance $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
$\mathrm{R}_{\theta \mathrm{CA}}=$ case to ambient thermal resistance (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
$\mathrm{R}_{\theta \mathrm{JC}}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $\mathrm{R}_{\theta \mathrm{CA}}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{T}}+\left(\Psi_{\mathrm{JT}} \times \mathrm{P}_{\mathrm{D}}\right) \tag{Eqn. 3}
\end{equation*}
$$

where:
$\mathrm{T}_{\mathrm{T}}=$ thermocouple temperature on top of the package (${ }^{\circ} \mathrm{C}$)
$\Psi_{\mathrm{JT}}=$ thermal characterization parameter (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
$\mathrm{P}_{\mathrm{D}}=$ power dissipation in the package (W)
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm . of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

MPC5676R Microcontroller Data Sheet, Rev. 4

References:

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134
(408) 943-6900

MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956.

JEDEC specifications are available on the WEB at http://www.jedec.org.

- C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.
- G. Kromann, S. Shidore, and S. Addison, "Thermal Modeling of a PBGA for Air-Cooled Applications," Electronic Packaging and Production, pp. 53-58, March 1998.
- B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

4.3 EMI (Electromagnetic Interference) Characteristics

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions, go to www.nxp.com and perform a keyword search for "radiated emissions." The following tables list the values of the device's radiated emissions operating behaviors.

Table 5. EMC Radiated Emissions Operating Behaviors: 416 BGA

Symbol	Description	Conditions	$\begin{aligned} & f_{\mathrm{OSC}} \\ & \mathrm{f}_{\mathrm{SYS}} \end{aligned}$	Frequency band (MHz)	Level (max.)	Unit	Notes
$\mathrm{V}_{\text {RE_TEM }}$	Radiated emissions, electric field and magnetic field	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DDE}}=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DDEH}}=5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ 416 \mathrm{BGA} \\ \text { EBI off } \\ \text { CLK off } \\ \text { FM off } \end{gathered}$	$\begin{gathered} 40 \mathrm{MHz} \text { crystal } \\ 180 \mathrm{MHz} \\ \left(\mathrm{f}_{\mathrm{EBI} / \mathrm{CAL}}=46\right. \\ \overline{\mathrm{MHz}} \text {) } \end{gathered}$	0.15-50	26	$\mathrm{dB} \mu \mathrm{V}$	1
				50-150	30		
				150-500	34		
				500-1000	30		
				IEC and SAE level	1^{2}	-	1,3
$V_{\text {RE_TEM }}$	Radiated emissions, electric field and magnetic field	$\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}$ $\mathrm{V}_{\text {DDE }}=3.3 \mathrm{~V}$ $V_{\text {DDEH }}=5 \mathrm{~V}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ 416 BGA EBI off CLK off FM on ${ }^{4}$	$\begin{gathered} 40 \mathrm{MHz} \text { crystal } \\ 180 \mathrm{MHz} \\ \left(\mathrm{f}_{\text {EBI_CAL }}=46\right. \\ \overline{\mathrm{MHz}}) \end{gathered}$	0.15-50	24	$\mathrm{dB} \mu \mathrm{V}$	1
				50-150	25		
				150-500	25		
				500-1000	21		
				IEC and SAE level	K^{5}	-	1,3

1 Determined according to IEC Standard 61967-2, Measurement of Radiated Emissions-TEM Cell and Wideband TEM Cell Method, and SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits-TEM/Wideband TEM (GTEM) Cell Method.
$2 \mathrm{I}=36 \mathrm{~dB} \mu \mathrm{~V}$
3 Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions-TEM Cell and Wideband TEM Cell Method, and Appendix D of SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits-TEM/Wideband TEM (GTEM) Cell Method.
4 "FM on" = FM depth of $\pm 2 \%$
${ }^{5} \mathrm{~K}=30 \mathrm{~dB} \mu \mathrm{~V}$

Electrical Characteristics

4.4 ESD Characteristics

Table 6. ESD Ratings ${ }^{1,2}$

Spec	Characteristic	Symbol	Value	Unit
1	ESD for Human Body Model (HBM)	$\mathrm{V}_{\mathrm{HBM}}$	2000	V
2	ESD for Charged Device Model (CDM)	$\mathrm{V}_{\text {CDM }}$	750 (corners) 500 (other)	V

1 All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2 A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

4.5 PMC/POR/LVI Electrical Specifications

Table 7. PMC Operating conditions

Spec	Name	Parameter	Condition	Min	Typ	Max	Unit
1	$V_{\text {DDREG }}$	Supply voltage VDDREG 5 V nominal ${ }^{1}$	LDO5V / SMPS5V mode	4.5	5	5.5	V
2	$\mathrm{V}_{\text {DDREG }}$	Supply voltage VDDREG 3 V nominal ${ }^{1}$	LDO3V mode	3.0	3.3	3.6	V
3	$\mathrm{V}_{\text {DD33 }}$	Supply voltage VDDSYN / $V_{\text {DD33 }} 3.3 \mathrm{~V}$ nominal ${ }^{2}$	LDO3V mode	3.0	3.3	3.6	V
4	V_{DD}	Supply voltage VDD 1.2 V nominal ${ }^{3}$	-	1.14	1.2	1.32	V

${ }^{1}$ Voltage should be higher than maximum $\mathrm{V}_{\text {LVDREG }}$ to avoid LVD event
${ }^{2}$ Applies to both $\mathrm{V}_{\text {DD33 }}$ (flash supply) and VDDSYN (PLL supply) pads. Voltage should be higher than maximum $\mathrm{V}_{\text {LVD33 }}$ to avoid LVD event
${ }^{3}$ Voltage should be higher than maximum $\mathrm{V}_{\mathrm{LVD12}}$ to avoid LVD event

NOTE

In the following table, "untrimmed" means "at reset" and "trimmed" means "after reset".
Table 8. PMC Electrical Specifications

Spec	Name	Symbol	Condition	Min	Typ	Max	Unit
1	Nominal bandgap reference voltage	V_{BG}	-	0.59	0.620	0.65	V
1 a	Bandgap reference voltage during power on reset	-	-	$\mathrm{V}_{\mathrm{BG}}-5 \%$	$\mathrm{~V}_{\mathrm{BG}}$	$\mathrm{V}_{\mathrm{BG}}+5 \%$	V
1 b	Bandgap reference voltage at nominal voltage / nominal temperature after power on reset	-	-	$\mathrm{V}_{\mathrm{BG}}-2 \%$	$\mathrm{~V}_{\mathrm{BG}}$	$\mathrm{V}_{\mathrm{BG}}+2 \%$	V

MPC5676R Microcontroller Data Sheet, Rev. 4

Table 8. PMC Electrical Specifications

Spec	Name	Symbol	Condition	Min	Typ	Max	Unit
1c	Bandgap reference voltage / temperature dependence after power on reset	-	-	-	300	-	ppm/C
1d	Bandgap reference voltage / voltage dependence ($\mathrm{V}_{\text {DDREG }}$) after power on reset	-	-	-	1500	-	
2	Nominal VRC regulated 1.2V output VDD ${ }^{1}$	$\mathrm{V}_{\text {DD120UT }}$	-	-	1.2	-	V
2a	VRC 1.2V output variation at reset (unloaded) ${ }^{2}$	-	At POR	$\mathrm{V}_{\text {DD12OUT }}-8 \%$	$\mathrm{V}_{\text {DD12OUT }}$	$\mathrm{V}_{\text {DD12OUT }}+10 \%$	
2b	VRC 1.2 V output variation after reset(REGCTL load max. 20mA, VDD load max. 1A)	-	After POR	$\mathrm{V}_{\text {DD12OUT }}-5 \%$	$\mathrm{V}_{\text {DD12OUT }}$	$\mathrm{V}_{\text {DD12OUT }}+10 \%$	
2c	Trimming step Vdd1p2	$\mathrm{V}_{\text {STEPV12 }}$	-	-	10	-	mV
3	POR rising VDD 1.2V	$\mathrm{V}_{\text {PORC }}$	-	-	0.7	-	V
3 a	POR VDD 1.2V variation	-	-	$\mathrm{V}_{\text {PORC }}-30 \%$	$\mathrm{V}_{\text {PORC }}$	$\mathrm{V}_{\text {PORC }}+30 \%$	
3b	POR 1.2V hysteresis	-	-	-	75	-	mV
4	Nominal rising LVD $1.2 \mathrm{~V}^{3}$	$\mathrm{V}_{\text {LVD12 }}$	-	-	1.100	-	V
4 a	LVD 1.2V variation before band gap trim ${ }^{4}$	-	At POR	$\mathrm{V}_{\text {LVD12 }}-6 \%$	$\mathrm{V}_{\text {LVD12 }}$	$\mathrm{V}_{\mathrm{LVD12}}+6 \%$	
4b	LVD 1.2V variation after band gap trim ${ }^{4}$	-	After POR	$\mathrm{V}_{\text {LVD12 }}-3 \%$	$\mathrm{V}_{\text {LVD12 }}$	$\mathrm{V}_{\mathrm{LVD12}}+3 \%$	
4c	LVD 1.2V Hysteresis	-	-	15	20	25	mV
4d	Trimming step LVD 1.2V	$\mathrm{V}_{\text {LVDSTEP12 }}$	-	-	10	-	mV
5	VRC 1.2V max DC output current	$\mathrm{I}_{\text {REGCTL }}$	-	-	-	20	mA
6	Voltage regulator 1.2 V current consumption VDDREG	-	-	-	3	-	mA
7	Nominal Vreg 3.3V output ${ }^{5}$	$\mathrm{V}_{\text {DD330UT }}$	-	-	3.3	-	V
7a	Vreg 3.3V output variation at reset (unloaded) ${ }^{6}$	-	At POR	$\mathrm{V}_{\text {DD330UT }}-6 \%$	$\mathrm{V}_{\text {DD330UT }}$	$\mathrm{V}_{\text {DD330UT }}+10 \%$	
7b	Vreg 3.3V output variation after reset (max. load 60mA)	-	After POR	$\mathrm{V}_{\text {DD33OUT }}-5 \%$	$\mathrm{V}_{\text {DD330UT }}$	$\mathrm{V}_{\text {DD33OUT }}+10 \%$	
7c	Trimming step VDDSYN	$\mathrm{V}_{\text {STEPV33 }}$	-	-	30	-	mV
8	Nominal rising LVD 3.3V ${ }^{7}$	$\mathrm{V}_{\text {LVD33 }}$	-	-	2.950	-	V
8 a	LVD 3.3V variation before band gap trim ${ }^{6}$	-	At POR	$\mathrm{V}_{\text {LVD } 33}-5 \%$	$\mathrm{V}_{\text {LVD33 }}$	$\mathrm{V}_{\text {LVD33 }}+5 \%$	
8b	LVD 3.3V variation after bad gap trim ${ }^{6}$	-	After POR	$\mathrm{V}_{\text {LVD } 33}-3 \%$	$\mathrm{V}_{\text {LVD33 }}$	$\mathrm{V}_{\text {LVD } 33}+3 \%$	

Electrical Characteristics

Table 8. PMC Electrical Specifications

Spec	Name	Symbol	Condition	Min	Typ	Max	Unit
8 c	LVD 3.3V Hysteresis	-	-	-	30	-	mV
8d	Trimming step LVD 3.3V	V ${ }_{\text {LVDSTEP33 }}$	-	-	30	-	mV
9	Vreg 3.3V minimum peak DC output current supplied by regulator without causing $V_{\text {LVD33 }}{ }^{8}$	IDD33	-	60	-	-	mA
10	Voltage regulator 3.3 V current consumption VDDREG ${ }^{9}$	-	-	-	2	-	mA
11	POR rising on VDDREG	$V_{\text {Porreg }}$	-	-	2.00	-	V
11a	POR VDDREG variation	-	-	$V_{\text {PORREG }}-30 \%$	VPorreg	$\mathrm{V}_{\text {PORREG }}+30 \%$	
11b	POR VDDREG hysteresis	-	-	-	250	-	mV
12	Nominal rising LVD VDDREG	$\mathrm{V}_{\text {LVDREG }}$	LDO3V / LDO5V mode	-	2.950	-	V
12a	LVD VDDREG variation at reset ${ }^{10}$	-	At POR	$\mathrm{V}_{\text {LVDREG }}-5 \%$	V LVDREG	$\mathrm{V}_{\text {LVDREG }}+5 \%$	
12b	LVD VDDREG variation after reset ${ }^{10}$	-	After POR	V ${ }_{\text {LVDREG }}$ - 3\%	V LVDREG	$\mathrm{V}_{\text {LVDREG }}+3 \%$	
12c	LVD VDDREG Hysteresis	-	$\begin{gathered} \text { LDO3V / } \\ \text { LDO5V } \\ \text { mode } \end{gathered}$	-	30	-	mV
12d	Trimming step LVD VDDREG	V LVDSTEPREG	$\begin{gathered} \text { LDO3V / } \\ \text { LDO5V } \\ \text { mode } \end{gathered}$	-	30	-	mV
13	Nominal rising LVD VDDREG	V ${ }_{\text {LVDREG }}$	SMPS5V mode	-	4.360	-	V
13a	LVD VDDREG variation at reset ${ }^{10}$	-	At POR	$\mathrm{V}_{\text {LVDREG }}-5 \%$	V LVDREG	$\mathrm{V}_{\text {LVDREG }}+5 \%$	
13b	LVD VDDREG variation after reset ${ }^{10}$	-	After POR	V ${ }_{\text {LVDREG }}$ - 3\%	V LVDREG	$\mathrm{V}_{\text {LVDREG }}+3 \%$	
14	SMPS regulator output resistance ${ }^{11}$	-	-	-	15	25	Ohm
15	SMPS regulator clock frequency	-	After POR	1.0	1.5	-	MHz
16	SMPS regulator overshoot at start-up ${ }^{12}$	-	GBD/GBC ${ }^{13}$	-	1.32	1.4	V
17	SMPS maximum output current, as required by SoC^{14}	-	-	-	1.0	-	A
18	Voltage variation on current step (20% to 80% of maximum current with 4 usec constant time) ${ }^{14}$	-	GBD/GBC ${ }^{13}$	-	-	0.1	V

MPC5676R Microcontroller Data Sheet, Rev. 4

1 Nominal internal regulator output voltage is 1.27 V
2 Voltage should be higher than maximum VLVD12 to avoid LVD event
3 ~VDD12OUT *0.87
4 Rising VDD
${ }^{5}$ Nominal internal regulator output voltage is 3.4 V
${ }^{6}$ Rising VDDSYN
7 ~VDD33OUT *0.872
8 VDDSYN
9 Except IDD33
${ }^{10}$ Rising VDDREG
${ }^{11}$ Pull up to VDDREG when high, pull down to VSSREG when low.
${ }^{12}$ Depends on external device, can be as high as 1.6 V for short time (<100 usec each start-up)
${ }^{13}$ GBD — Guaranteed By Design; GBC — Guaranteed by Characterization
${ }^{14}$ Proper external devices required

4.5.1 Regulator Example

Figure 5. VRC 1.2 V LDO configuration with external bipolar

Electrical Characteristics

No VRCCTL capacitor is allowed
Figure 6. VRC 1.2V buck SMPS LDO configuration with external MOS - Schottky diode
Table 9. VRC LDO recommended external devices

Part Name	Part Type	Nominal	Description
NJD2873 Beta (Bf) Vbe Vce	NPN Capacitor	6×4.7 uF-20 V	ON Semiconductor TM From 60 to 550 From 0.4 V to 1.0 V From 0.2 V to 0.6 V depends on package / power Ceramic low ESR—One for each VDD pin
	Capacitor	6×0.1 uF-20 V	Ceramic -One capacitor for each VDD pin
	Capacitor	20 uF	Supply decoupling cap (close to bipolar collector)
	Capacitor	2.2 uF	Snubber cap, required with NJD2873 (on bipolar base)
	Resistor	12Ω	Optional ESR for snubber cap

Table 10. VRC SMPS recommended external devices

Part Name	Part Type	Nominal	Description
IR7353 SS8P3L Vf SI3460 or equivalent Vth Ids Vds Rdson Cg Turn on / off delay Rise time	HS nMOS + Schottky Schottky nMOS		Low threshold n-MOS/Low Vf Schottky diode Low Vf Schottky diode From 0.4 V to 0.6 V Low threshold n-MOS Less than 2 V More than 1.5 A More than 12 V Less than 100 Ohms Less than 5 nF Less than 50 ns Less than 90 ns
LQH66SN2R2M03	inductor	$2.2 \mathrm{uH}-3.2 \mathrm{~A}$	muRata TM shielded coil, preferred $\mathrm{f}_{\max }>40 \mathrm{MHz}$
C3225X7R1E106M	capacitor	$22 \mathrm{uF}-25 \mathrm{~V}$	TDK high capacitance ceramic SMD (on VDD close to coil)
C3225X7R1E225K	capacitor	$\begin{aligned} & 2 \text { to } 6 \times 2.2 \mathrm{uF} \\ & -25 \mathrm{~V} \end{aligned}$	TDK ceramic SMD (on VDD close to MCU)
	capacitor	$\begin{gathered} 6 \times 0.1 u F \\ -20 \mathrm{~V} \end{gathered}$	Ceramic -One capacitor for each VDD pin
C3225X7R1E106M	capacitor	$22 \mathrm{uF}-25 \mathrm{~V}$	Supply decoupling cap-close to n-MOS drain
	resistor	20 K	Pull down for power n-MOS gate

4.6 Power Up/Down Sequencing

There is no power sequencing required among power sources during power up and power down in order to operate within specification as long as the following two rules are met:

- When VDDREG is tied to a nominal 3.3V supply, VDD33 and VDDSYN must be both shorted to VDDREG.
- When VDDREG is tied to a 5V supply, VDD33 and VDDSYN must be tied together and shall be powered by the internal 3.3V regulator.

The recommended power supply behavior is as follows: Use $25 \mathrm{~V} /$ millisecond or slower rise time for all supplies. Power up each $V_{\text {DDE }} / V_{\text {DDEH }}$ first and then power up $V_{D D}$. For power down, drop $V_{D D}$ to 0 V first, and then drop all $V_{\text {DDE }} / V_{\text {DDEH }}$ supplies. There is no limit on the fall time for the power supplies.

Although there are no power up/down sequencing requirements to prevent issues like latch-up, excessive current spikes, etc., the state of the I/O pins during power up/down varies according to Table 11 and Table 12.

Electrical Characteristics

Table 11. Power Sequence Pin States for MH and AE pads

VDD	VDD33	VDDE	MH Pad	MH+LVDS Pads ${ }^{1}$	AE/up-down Pads
High	High	High	Normal operation	Normal operation	Normal operation
-	Low	High	Pin is tri-stated (output buffer, input buffer, and weak pulls disabled)	Outputs driven high	Pull-ups enabled, pull-downs disabled
Low	High	Low	Output low, pin unpowered	Outputs disabled	Output low, pin unpowered
Low	High	High	Pin is tri-stated (output buffer, input buffer, and weak pulls disabled)	Outputs disabled	Pull-ups enabled, pull-downs disabled

${ }^{1} \mathrm{MH}+$ LVDS pads are output-only.

Table 12. Power Sequence Pin States for F and FS pads

VDD	VDD33	VDDE	F and FS pads
low	low	high	Outputs drive high
low	high	-	Outputs Disabled
high	low	low	Outputs Disabled
high	low	high	Outputs drive high
high	high	low	Normal operation - except no drive current and input buffer output is unknown. ${ }^{1}$
high	high	high	Normal Operation

1 The pad pre-drive circuitry will function normally but since VDDE is unpowered the outputs will not drive high even though the output pmos can be enabled.

4.6.1 Power-Up

If $\mathrm{V}_{\mathrm{DDE}} / \mathrm{V}_{\mathrm{DDEH}}$ is powered up first, then a threshold detector tristates all drivers connected to $\mathrm{V}_{\mathrm{DDE}} / \mathrm{V}_{\mathrm{DDEH}}$. There is no limit to how long after $\mathrm{V}_{\text {DDE }} / \mathrm{V}_{\text {DDEH }}$ powers up before V_{DD} must power up. If there are multiple $\mathrm{V}_{\mathrm{DDE}} / \mathrm{V}_{\text {DDEH }}$ supplies, they can be powered up in any order. For each $V_{\text {DDE }} / V_{\text {DDEH }}$ supply not powered up, the drivers in that $V_{\text {DDE }} / V_{\text {DDEH }}$ segment exhibit the characteristics described in the next paragraph.
If V_{DD} is powered up first, then all pads are loaded through the drain diodes to $\mathrm{V}_{\mathrm{DDE}} / \mathrm{V}_{\mathrm{DDEH}}$. This presents a heavy load that pulls the pad down to a diode above V_{SS}. Current injected by external devices connected to the pads must meet the current injection specification. There is no limit to how long after $V_{D D}$ powers up before $V_{\text {DDE }} / V_{\text {DDEH }}$ must power up.
The rise times on the power supplies are to be no faster than $25 \mathrm{~V} /$ millisecond.

4.6.2 Power-Down

If $V_{D D}$ is powered down first, then all drivers are tristated. There is no limit to how long after $V_{D D}$ powers down before $\mathrm{V}_{\text {DDE }} / \mathrm{V}_{\text {DDEH }}$ must power down.
If $V_{\text {DDE }} / V_{\text {DDEH }}$ is powered down first, then all pads are loaded through the drain diodes to $V_{D D E} / V_{\text {DDEH }}$. This presents a heavy load that pulls the pad down to a diode above V_{SS}. Current injected by external devices connected to the pads must meet the current injection specification. There is no limit to how long after $\mathrm{V}_{\mathrm{DDE}} / \mathrm{V}_{\mathrm{DDEH}}$ powers down before V_{DD} must power down.

There are no limits on the fall times for the power supplies.

4.6.3 Power Sequencing and POR Dependent on $V_{\text {DDA }}$

During power up or down, $\mathrm{V}_{\text {DDA }}$ can lag other supplies (of magnitude greater than $\mathrm{V}_{\mathrm{DDEH}} / 2$) within 1 V to prevent any forward-biasing of device diodes that causes leakage current and/or POR. If the voltage difference between $V_{\text {DDA }}$ and $V_{\text {DDEH }}$ is more than 1 V , the following will result:

- Triggers POR (ADC monitors on $V_{\text {DDEH1 }}$ segment which powers the RESET pin) if the leakage current path created, when $V_{\text {DDA }}$ is sufficiently low, causes sufficient voltage drop on $V_{\text {DDEH1 }}$ node monitored crosses low-voltage detect level.
- If $\mathrm{V}_{\mathrm{DDA}}$ is between $0-2 \mathrm{~V}$, powering all the other segments (especially $\mathrm{V}_{\mathrm{DDEH}}$) will not be sufficient to get the part out of reset.
- Each $\mathrm{V}_{\text {DDEH }}$ will have a leakage current to $\mathrm{V}_{\mathrm{DDA}}$ of a magnitude of $\left(\left(\mathrm{V}_{\mathrm{DDEH}}-\mathrm{V}_{\mathrm{DDA}}-1 \mathrm{~V}\right.\right.$ (diode drop)/200 KOhms) up to $\left(\mathrm{V}_{\mathrm{DDEH}} / 2=\mathrm{V}_{\mathrm{DDA}}+1 \mathrm{~V}\right)$. .
- Each V_{DD} has the same behavior; however, the leakage will be small even though there is no current limiting resistor since $\mathrm{V}_{\mathrm{DD}}=1.32 \mathrm{~V}$ max.

4.7 DC Electrical Specifications

Table 13. DC Electrical Specifications ${ }^{1}$

Spec	Characteristic	Symbol	Min	Max	Unit
1	Core Supply Voltage (External Regulation)	$V_{\text {DD }}$	1.14	$1.32^{2,3}$	V
1 a	Core Supply Voltage (Internal Regulation) ${ }^{4}$	$V_{\text {DD }}$	1.08	1.32	V
2	I/O Supply Voltage (fast I/O pads)	$\mathrm{V}_{\text {DDE }}$	3.0	$3.6{ }^{2}$	V
3	I/O Supply Voltage (medium I/O pads)	$V_{\text {DDEH }}$	3.0	5.25^{2}	V
4	3.3 V I/O Buffer Voltage	$V_{\text {DD33 }}$	3.0	$3.6{ }^{2}$	V
5	Analog Supply Voltage	$V_{\text {DDA }}$	4.75	$5.25{ }^{2}$	V
6a	SRAM Standby Voltage low range	$V_{\text {STBY_LOW }}$	$0.95{ }^{5}$	1.2	V
6b	SRAM Standby Voltage high range	$\mathrm{V}_{\text {STBY_HIGH }}$	2	6	V
7	Voltage Regulator Control Input Voltage ${ }^{6}$	$V_{\text {DDREG }}$	2.7^{7}	5.5^{2}	V
8	Clock Synthesizer Operating Voltage ${ }^{8}$	$V_{\text {DDSYN }}$	3.0	$3.6{ }^{2}$	V
9	Fast I/O Input High Voltage Hysteresis enabled Hysteresis disabled	$\mathrm{V}_{\text {IH_F }}$	$\begin{aligned} & 0.65 \times V_{\mathrm{DDE}} \\ & 0.55 \times \mathrm{V}_{\mathrm{DDE}} \end{aligned}$	$V_{\text {DDE }}+0.3$	V
10	Fast I/O Input Low Voltage Hysteresis enabled Hysteresis disabled	VIL_F	$\mathrm{V}_{\text {SS }}-0.3$	$\begin{aligned} & 0.35 \times V_{\text {DDE }} \\ & 0.40 \times V_{\text {DDE }} \end{aligned}$	V
11	Medium I/O Input High Voltage Hysteresis enabled Hysteresis disabled	$\mathrm{V}_{\mathrm{IH} \text { _S }}$	$\begin{aligned} & 0.65 \times V_{\text {DDEH }} \\ & 0.55 \times V_{\text {DDEH }} \end{aligned}$	$\mathrm{V}_{\text {DDEH }}+0.3$	V

Electrical Characteristics

Table 13. DC Electrical Specifications ${ }^{1}$ (continued)

Spec	Characteristic	Symbol	Min	Max	Unit
12	Medium I/O Input Low Voltage Hysteresis enabled Hysteresis disabled	$\mathrm{V}_{\text {IL_S }}$	$\mathrm{V}_{\text {SS }}-0.3$	$\begin{aligned} & 0.35 \times V_{\text {DDEH }} \\ & 0.40 \times V_{\text {DDEH }} \end{aligned}$	V
13	Fast I/O Input Hysteresis	$\mathrm{V}_{\text {HYS_F }}$	$0.1 \times \mathrm{V}_{\text {DDE }}$	-	V
14	Medium I/O Input Hysteresis	$\mathrm{V}_{\text {HYS_S }}$	$0.1 \times V_{\text {DDEH }}$	-	V
15	Analog Input Voltage	$V_{\text {INDC }}$	$\mathrm{V}_{\text {SSA }}-0.1$	$\mathrm{V}_{\mathrm{DDA}}+0.1$	V
16	Fast I/O Output High Voltage ${ }^{9}$	$\mathrm{V}_{\text {OH_F }}$	$0.8 \times V_{\text {DDE }}$	-	V
17	Medium I/O Output High Voltage ${ }^{10}$	$\mathrm{V}_{\mathrm{OH}+\mathrm{S}}$	$0.8 \times \mathrm{V}_{\text {DDEH }}$	-	V
18	Fast I/O Output Low Voltage ${ }^{9}$	$\mathrm{V}_{\text {OL_F }}$	-	$0.2 \times V_{\text {DDE }}$	V
19	Medium I/O Output Low Voltage	$\mathrm{V}_{\text {OL_S }}$	-	$\begin{gathered} 0.2 \times V_{0} V_{\text {DDEH }}{ }^{1} \\ 0.15 \times V_{\text {DDEH }} \end{gathered}$	V
20		C_{L}	-	$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
21	Input Capacitance (Digital Pins)	$\mathrm{C}_{\text {IN }}$	-	7	pF
22	Input Capacitance (Analog Pins)	$\mathrm{C}_{\text {IN_A }}$	-	10	pF
23	Input Capacitance (Digital and Analog Pins ${ }^{13}$)	$\mathrm{C}_{\text {IN_M }}$	-	12	pF
24	Operating Current 1.2 V Supplies @ $\mathrm{f}_{\text {sys }}=180 \mathrm{MHz}$ V_{DD} (including $\mathrm{V}_{\text {DDF }}$ current)@1.32 V $\mathrm{V}_{\text {STBY }}{ }^{14} @ 1.2 \mathrm{~V}$ and $85^{\circ} \mathrm{C}$ $\mathrm{V}_{\text {STBY }} @ 6.0 \mathrm{~V}$ and $85^{\circ} \mathrm{C}$ $V_{D D F}{ }^{15}$ (P/E) $\mathrm{V}_{\mathrm{DDF}}{ }^{15}$ (Read) $\mathrm{V}_{\mathrm{DDF}^{15}}$ (RWW) $\mathrm{V}_{\mathrm{DDF}}{ }^{15}$ (Standby) $\mathrm{V}_{\mathrm{DDF}}{ }^{15}$ (Disabled)	$I_{D D}$ $I_{\text {DDSTBY }}$ ImDStBy6 $l_{\text {DDFPE }}$ I DDFREAD IDDFRWW IDDpITANDBY I DDFDISABLED	- - - - -	$\begin{gathered} 1.0^{16} \\ 0.10 \\ 0.15 \\ 36^{17} \\ 50^{17} \\ 90^{17} \\ 0.20^{17} \\ 0.10^{17} \end{gathered}$	A mA
25	$\begin{aligned} & \text { Operating Current } 3.3 \mathrm{~V} \text { Supplies @ } \mathrm{f}_{\text {sys }}=180 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD} 33}{ }^{18} \\ & \mathrm{~V}_{\mathrm{DDSYN}}{ }^{19}(\mathrm{P} / \mathrm{E}) \\ & \mathrm{V}_{\text {FLASH }}^{19} \\ & \mathrm{~V}_{\mathrm{FLASH}}^{19} \\ & \mathrm{~V}_{\mathrm{FLASH}}^{19} \\ & \mathrm{~V}_{\mathrm{FLASH}}(\mathrm{Read}) \\ & \mathrm{V}_{\mathrm{FLASH}}{ }^{19}(\text { Standby }) \\ & (\text { Disabled }) \end{aligned}$	$I_{\text {DD33 }}$ IDDSYN IDDFLASHPE IDDFLASHREADS IDDFLASHRWw I IDFLASHSTANDBY IDDFLASHDISABLED	- - -	$\begin{aligned} & \text { note }^{18} \\ & 7^{20} \\ & 32^{21} \\ & 6.4^{21} \\ & 40^{21} \\ & 3.4^{21} \\ & 0.10^{21} \end{aligned}$	mA mA mA mA mA mA mA
26	Operating Current 5.0 V Supplies $@ \mathrm{f}_{\text {sys }}=180 \mathrm{MHz}$ $V_{\text {DDA }}$ Analog Reference Supply Current (Transient) $V_{\text {DDREG }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{DDA}} \\ & \mathrm{I}_{\mathrm{REF}} \\ & \mathrm{I}_{\mathrm{REG}} \end{aligned}$	-	$\begin{gathered} 50^{22} \\ 1.0 \\ 22 \end{gathered}$	mA mA mA

MPC5676R Microcontroller Data Sheet, Rev. 4

Table 13. DC Electrical Specifications ${ }^{1}$ (continued)

Spec	Characteristic	Symbol	Min	Max	Unit
27	```Operating Current \(\mathrm{V}_{\mathrm{DDE}} / \mathrm{V}_{\mathrm{DDEH}}{ }^{23}\) Supplies \(V_{\text {DDE2 }}\) \(V_{\text {DDEH1 }}\) \(V_{\text {DDEH3 }}\) \(V_{\text {DDEH4 }}\) \(V_{\text {DDEH5 }}\) \(V_{\text {DDEH6 }}\) \(V_{\text {DDEH7 }}\)```	$I_{\text {DD2 }}$ $I_{D D 1}$ $I_{\text {DD3 }}$ $I_{D D 4}$ $I_{\text {DD5 }}$ $\mathrm{I}_{\mathrm{DD6}}$ $I_{\text {DD7 }}$	- - - - -	note ${ }^{23}$	mA mA mA mA mA mA mA
28	Fast I/O Weak Pull Up/Down Current ${ }^{24}$ 3.0 V-3.6 V	$\mathrm{I}_{\text {ACT_F }}$	42	158	$\mu \mathrm{A}$
29	```Medium I/O Weak Pull Up/Down Current }\mp@subsup{}{}{25 3.0 V-3.6 V 4.5 V-5.5 V```	$\mathrm{I}_{\text {ACt_S }}$	$\begin{aligned} & 15 \\ & 35 \end{aligned}$	$\begin{gathered} 95 \\ 200 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
30	I/O Input Leakage Current ${ }^{26}$	$I_{\text {INACT_D }}$	-2.5	2.5	$\mu \mathrm{A}$
31	DC Injection Current (per pin)	$l_{\text {IC }}$	-1.0	1.0	mA
32	Analog Input Current, Channel Off ${ }^{27}$, AN[0:7], AN38, AN39 Analog Input Current, Channel Off, all other analog inputs $A N[x]=-/+150 n A$	IINACT_A	$\begin{aligned} & -250 \\ & -150 \end{aligned}$	$\begin{aligned} & 250 \\ & 150 \end{aligned}$	nA nA
33	$\mathrm{V}_{\text {SS }}$ Differential Voltage	$V_{S S}-V_{S S A}$	-100	100	mV
34	Analog Reference Low Voltage	V_{RL}	$\mathrm{V}_{\text {SSA }}$	$V_{S S A}+100$	mV
35	V_{RL} Differential Voltage	$\mathrm{V}_{\mathrm{RL}}-\mathrm{V}_{\mathrm{SSA}}$	-100	100	mV
36	Analog Reference High Voltage	V_{RH}	$V_{\text {DDA }}-100$	$V_{\text {DDA }}$	mV
37	$\mathrm{V}_{\text {REF }}$ Differential Voltage	$\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}$	4.75	5.25	V
38	$\mathrm{V}_{\text {SSSYN }}$ to $\mathrm{V}_{\text {SS }}$ Differential Voltage	$\mathrm{V}_{\text {SSSYN }}-\mathrm{V}_{\text {SS }}$	-100	100	mV
39	Operating Temperature Range—Ambient (Packaged)	$\mathrm{T}_{\mathrm{A}}\left(\mathrm{T}_{\mathrm{L}}\right.$ to $\left.\mathrm{T}_{\mathrm{H}}\right)$	-40.0	125.0	${ }^{\circ} \mathrm{C}$
40	Slew rate on power supply pins	-	-	25	V/ms
41	Weak Pull-Up/Down Resistance ${ }^{28,29} 200 \mathrm{k} \Omega$ Option	$\mathrm{R}_{\text {PUPD200K }}$	130	280	k Ω
42	Weak Pull-Up/Down Resistance ${ }^{28,29} 100 \mathrm{k} \Omega$ Option	$\mathrm{R}_{\text {PUPD100K }}$	65	140	$\mathrm{k} \Omega$
43	```Weak Pull-Up/Down Resistance \({ }^{28}\) (5 k \(\Omega\) Option) \(5 \mathrm{~V} \pm 10 \%\) supply \(3.3 \mathrm{~V} \pm 10 \%\) supply```	$\mathrm{R}_{\text {PUPD5K }}$	$\begin{aligned} & 1.4 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 7.7 \end{aligned}$	$\mathrm{k} \Omega$
44	Pull-Up/Down Resistance Matching Ratios (100K/200K) (Pull-up and pull-down resistances both enabled and settings are equal)	R PUPDMATCH	-2.5	2.5	\%

1 These specifications are design targets and subject to change per device characterization.
2 Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.
32.0 V for 10 hours cumulative time, $1.2 \mathrm{~V}+10 \%$ for time remaining.

Electrical Characteristics

4 Assumed with DC load.
${ }^{5} \mathrm{~V}_{\text {STBY }}$ below 0.95 V the RAM will not retain states, but will be operational. $\mathrm{V}_{\text {STBY }}$ can be 0 V when bypass standby mode.
${ }^{6}$ Regulator is functional with derated performance, with supply voltage down to 4.0 V for system with $V_{\text {DDREG }}=4.5 \mathrm{~V}(\mathrm{~min})$.
72.7 V minimum operating voltage allowed during vehicle crank for system with $\mathrm{V}_{\text {DDREG }}=3.0 \mathrm{~V}$ (min). Normal operating voltage should be either $\mathrm{V}_{\text {DDREG }}=3.0 \mathrm{~V}(\mathrm{~min})$ or $4.5 \mathrm{~V}(\mathrm{~min})$ depending on the user regulation voltage system selected.
8 Required to be supplied when 3.3 V regulator is disabled. See Section 4.5, "PMC/POR/LVI Electrical Specifications."
$9 \mathrm{I}_{\mathrm{OH} \text { F }}=\{12,20,30,40\} \mathrm{mA}$ and $\mathrm{I}_{\mathrm{OL} _\mathrm{F}}=\{24,40,50,65\} \mathrm{mA}$ for $\{00,01,10,11\}$ drive mode with $\mathrm{V}_{\mathrm{DDE}}=3.0 \mathrm{~V}$.
${ }^{10} \mathrm{I}_{\mathrm{OH} \text { _S }}=\{11.6\} \mathrm{mA}$ and $\mathrm{IOL} \mathrm{S}=\{17.7\} \mathrm{mA}$ for $\{$ medium $\} \mathrm{I} / \mathrm{O}$ with $\mathrm{V}_{\mathrm{DDEH}}=4.5 \mathrm{~V}$;
$\mathrm{I}_{\mathrm{OH} _\mathrm{S}}=\{5.4\} \mathrm{mA}$ and $\mathrm{IOL} _\mathrm{S}=\{8.1\} \mathrm{mA}$ for $\{$ medium $\} \mathrm{I} / \mathrm{O}$ with $\mathrm{V}_{\mathrm{DDEH}}=3.0 \mathrm{~V}$
${ }^{11} \mathrm{I}_{\mathrm{OL} \text { _s }}=2 \mathrm{~mA}$
${ }^{12}$ Applies to D_CLKOUT, external bus pins, and Nexus pins.
${ }^{13}$ Applies to the FCK, SDI, SDO, and SDS_B pins.
${ }^{14} \mathrm{~V}_{\text {STBY }}$ current specified at 1.0 V at a junction temperature of $85^{\circ} \mathrm{C}$. $\mathrm{V}_{\text {STBY }}$ current is $700 \mu \mathrm{~A}$ maximum at a junction temperature of $150^{\circ} \mathrm{C}$.
${ }^{15}$ VDDF pin is shorted to $V_{D D}$ on the package substrate.
${ }^{16}$ Preliminary. Specification pending typical and/or high-use Runidd pattern simulation as well as final silicon characterization. 1.0 A based on transistor count estimate at Worst Case (wcs) process and temperature condition.
${ }^{17}$ Typical values from the simulation.
${ }^{18}$ Power requirements for the $\mathrm{V}_{\mathrm{DD} 33}$ supply depend on the frequency of operation and load of all I/O pins, and the voltages on the I/O segments. See Section 4.7.2, "I/O Pad $\mathrm{V}_{\mathrm{DD} 33}$ Current Specifications," for information on both fast (F, FS) and medium (MH) pads. Also refer to Table 15 for values to calculate power dissipation for specific operation.
${ }^{19} \mathrm{VFLSH}$ pin is shorted to $\mathrm{V}_{\text {DD33 }}$ on the package substrate.
${ }^{20}$ This value is a target that is subject to change.
${ }^{21}$ Typical values from the simulation.
${ }^{22}$ These value allows a 5 V 20 mA reference to supply ADC + REF.
${ }^{23}$ Power requirements for each I/O segment depend on the frequency of operation and load of the I/O pins on a particular I/O segment, and the voltage of the I/O segment. See Section 4.7.1, "I/O Pad Current Specifications," for information on I/O pad power. Also refer to Table 14 for values to calculate power dissipation for specific operation. The total power consumption of an I/O segment is the sum of the individual power consumptions for each pin on the segment.
${ }^{24}$ Absolute value of current, measured at V_{IL} and V_{IH}.
${ }^{25}$ Absolute value of current, measured at V_{IL} and V_{IH}.
${ }^{26}$ Weak pull up/down inactive. Measured at $\mathrm{V}_{\text {DDE }}=3.6 \mathrm{~V}$ and $\mathrm{V}_{\text {DDEH }}=5.25 \mathrm{~V}$. Applies to pad types F and MH .
${ }^{27}$ Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each 8 to $12{ }^{\circ} \mathrm{C}$, in the ambient temperature range of 50 to $125^{\circ} \mathrm{C}$. Applies to pad types AE and $\mathrm{AE} / \mathrm{up}$-down.
${ }^{28}$ This programmable option applies only to eQADC differential input channels and is used for biasing and sensor diagnostics.
${ }^{29}$ When the pull-up and pull-down of the same nominal $200 \mathrm{k} \Omega$ or $100 \mathrm{k} \Omega$ value are both enabled, assuming no interference from external devices, the resulting pad voltage will be $0.5^{*} \mathrm{~V}_{\text {DDEH }} \pm 2.5 \%$.

4.7.1 I/O Pad Current Specifications

The power consumption of an I/O segment is dependent on the usage of the pins on a particular segment. The power consumption is the sum of all output pin currents for a particular segment. The output pin current can be calculated from Table 14 based on the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 14.

The AC timing of these pads are described in the Section 4.11.2, "Pad AC Specifications."

Table 14. $\mathrm{V}_{\text {DDE }} / \mathrm{V}_{\text {DDEH }}$ I/O Pad Average DC Current ${ }^{1}$

Spec	Pad Type	Symbol	Frequency (MHz)	$\begin{gathered} \text { Load }^{2} \\ (\mathrm{pF}) \end{gathered}$	Voltage (V)	Drive/Slew Rate Select	Current (mA)
1	Medium	$\mathrm{I}_{\text {DRV_MH }}$	50	50	5.25	11	16.0
2			20	50	5.25	01	6.3
3			3.0	50	5.25	00	1.1
4			2.0	200	5.25	00	2.4
5	Fast	I DRV_FC	66	10	3.6	00	6.5
6			66	20	3.6	01	9.4
7			66	30	3.6	10	10.8
8			66	50	3.6	11	33.3
9			66	10	1.98	00	2.0
10			66	20	1.98	01	3.0
11			66	30	1.98	10	4.4
12			66	50	1.98	11	15.1
13	Fast w/ Slew Control	I DRV_FSR	66	50	3.6	11	12.0
14			50	50	3.6	10	6.2
15			33.33	50	3.6	01	4.0
16			20	50	3.6	00	2.4
17			20	200	3.6	00	8.9

1 These are average IDDE numbers for worst case PVT from simulation. Currents apply to output pins only.
2 All loads are lumped.

4.7.2 I/O Pad VDD33 Current Specifications

The power consumption of the $\mathrm{V}_{\mathrm{DD} 33}$ supply is dependent on the usage of the pins on all I/O segments. The power consumption is the sum of all input and output pin $\mathrm{V}_{\mathrm{DD33}}$ currents for all I/O segments. The $\mathrm{V}_{\mathrm{DD} 33}$ current draw on fast speed pads can be calculated from Table 15 dependent on the voltage, frequency, and load on all F type pins. The $V_{\text {DD33 }}$ current draw on medium pads can be calculated from Table 15 dependent on voltage and independent on the frequency and load on all MH type pins. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 15.

The AC timing of these pads are described in the Section 4.11.2, "Pad AC Specifications."

Electrical Characteristics

Table 15. $\mathrm{V}_{\text {DD33 }}$ Pad Average DC Current ${ }^{1}$

Spec	Pad Type	Symbol	Frequency (MHz)	$\begin{gathered} \mathrm{Load}^{2} \\ (\mathrm{pF}) \end{gathered}$	$V_{\text {DD33 }}$ (V)	$V_{\text {DDE }}$ (V)	Drive/Slew Rate Select	Current (mA)
1	Medium	$\mathrm{I}_{33} \mathrm{MH}$	-	-	3.6	5.5	-	0.0007
2	Fast	I_{33} FC	66	10	3.6	3.6	00	0.92
3			66	20	3.6	3.6	01	1.14
4			66	30	3.6	3.6	10	1.50
5			66	50	3.6	3.6	11	2.19
6			66	10	3.6	1.98	00	0.70
7			66	20	3.6	1.98	01	0.90
8			66	30	3.6	1.98	10	1.08
9			66	50	3.6	1.98	11	1.52
10	Fast w/ Slew Control	I33_FSR	66	50	3.6	3.6	11	0.74
11			50	50	3.6	3.6	10	0.52
12			33.33	50	3.6	3.6	01	0.36
13			20	50	3.6	3.6	00	0.19
14			20	200	3.6	3.6	00	0.19

1 These are average IDD33 for worst case PVT from simulation. Currents apply to output pins only for the fast pads and to input pins only for the medium pads.
2 All loads are lumped.

4.7.3 LVDS Pad Specifications

LVDS pads are implemented to support the MSC (Microsecond Channel) protocol, which is an enhanced feature of the DSPI module.

Table 16. DSPI LVDS Pad Specification ${ }^{1,2}$
$\left(\mathrm{V}_{\mathrm{DD} 33}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDEH}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to $\left.\mathrm{T}_{\mathrm{H}}\right)$

Spec	Characteristic	Symbol	Min	Typical	Max	Unit
Data Rate						
1	Data Frequency	$\mathrm{f}_{\text {LVDSCLK }}$	-	-	40	MHz
Driver Specs						
2	$\begin{aligned} & \text { Differential Output Voltage } \\ & \text { SRC=0b00 or 0b11 } \\ & \text { SRC=0b01 } \\ & \text { SRC=0b10 } \end{aligned}$	V_{OD}	$\begin{aligned} & 215 \\ & 170 \\ & 260 \end{aligned}$	-	$\begin{aligned} & 400 \\ & 320 \\ & 480 \end{aligned}$	mV
3	Common Mode Voltage (LVDS), VOS	V_{OS}	1.075	1.2	1.325	V
4	Rise/Fall Time	t_{R} or t_{F}	-	-	2.5	ns
5	Delay, Z to Normal (High/Low)	t_{DZ}	-	-	100	ns

Table 16. DSPI LVDS Pad Specification ${ }^{1,2}$ (continued)
$\left(\mathrm{V}_{\mathrm{DD} 33}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDEH}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to $\left.\mathrm{T}_{\mathrm{H}}\right)$

6	Differential Skew between Positive and Negative LVDS Pair $\mid t_{\text {phla }}-t_{\text {plhb }} I \text { or } I t_{\text {plhb }}-t_{\text {phla }} I$	${ }^{\text {Skew }}$	-	-	0.5	ns
Termination						
7	Termination Resistance ${ }^{3}$	$\mathrm{R}_{\text {Load }}$	95	100	105	ohm
8	Load	-	-	-	32	pF

1 These are typical values that are estimated from simulation.
2 These specifications are subject to change per device characterization.
3 The termination resistance spec is not meant to specify the receiver termination requirements. They are there to establish the measurement criteria for the specs in this table. As per the TIA/EIA-644A standard, the LVDS receiver termination resistance can vary from 90 to 132Ω.

4.8 Oscillator and FMPLL Electrical Characteristics

> Table 17. FMPLL Electrical Specifications ${ }^{1}$
> $\left(\mathrm{~V}_{\mathrm{DDSYN}}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{SSSYN}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to $\left.\mathrm{T}_{\mathrm{H}}\right)$

Spec	Characteristic	Symbol	Min	Max	Unit
1	PLL Reference Frequency Range ${ }^{2}$ (Normal Mode) Crystal Reference $($ PLLCFG2 $=0 b 0)$ Crystal Reference (PLLCFG2 = 0b1) External Reference (PLLCFG2 = 0b0) External Reference (PLLCFG2 = 0b1)	$f_{\text {ref_crystal }}$ $\mathrm{f}_{\text {ref_crystal }}$ $f_{\text {ref_ext }}$ $f_{\text {ref_ext }}$	$\begin{gathered} 8 \\ 40 \\ 8 \\ 40 \end{gathered}$	$\begin{gathered} 20 \\ 40^{3} \\ 20 \\ 40 \end{gathered}$	MHz
2	PLL Frequency ${ }^{4}$ Enhanced Mode	$\mathrm{f}_{\mathrm{PLL}}$	$\mathrm{f}_{\mathrm{vco}(\text { min })} \div 64$	$\mathrm{f}_{\text {max }}$	MHz
3	Loss of Reference Frequency ${ }^{5}$	$\mathrm{f}_{\text {LOR }}$	100	1000	kHz
4	Self Clocked Mode Frequency ${ }^{6}$	$\mathrm{f}_{\text {SCM }}$	4	16	MHz
5	PLL Lock Time ${ }^{7}$	$\mathrm{t}_{\text {LPLL }}$	-	<750	$\mu \mathrm{S}$
6	Duty Cycle of Reference ${ }^{\text {8, } 9}$	$t_{\text {DC }}$	40	60	\%
7	Frequency un-LOCK Range	f_{UL}	-4.0	4.0	\% $\mathrm{f}_{\text {sys }}$
8	Frequency LOCK Range	$\mathrm{f}_{\text {LCK }}$	-2.0	2.0	\% $\mathrm{f}_{\text {sys }}$
9	D_CLKOUT Period Jitter ${ }^{10,11}$ Measured at $\mathrm{f}_{\text {SYS }}$ Max Cycle-to-cycle Jitter	$\mathrm{C}_{\text {Jitter }}$	-5	5	$\begin{gathered} \text { \%f }_{\text {Clko }} \\ \text { ut } \end{gathered}$
10	Peak-to-Peak Frequency Modulation Range Limit ${ }^{12,13}$ ($\mathrm{f}_{\text {sys }}$ Max must not be exceeded)	$\mathrm{C}_{\text {mod }}$	0	4	\%fsys
11	FM Depth Tolerance ${ }^{14}$	$\mathrm{C}_{\text {mod_err }}$	-0.25	0.25	\%f sys
12	VCO Frequency	$\mathrm{f}_{\mathrm{Vco}}$	192	600	MHz
13	Modulation Rate Limits ${ }^{15}$	$\mathrm{f}_{\text {mod }}$	0.400	1	MHz
14	Predivider Operating Frequency	$\mathrm{f}_{\text {prediv }}$	4	10	MHz

Electrical Characteristics

1 All values given are initial design targets and subject to change.
2 Crystal and External reference frequency limits depend on device relying on PLL to lock prior to release of reset, default PREDIV/EPREDIV, MFD/EMFD default settings, and VCO frequency range. Absolute minimum loop frequency is 4 MHz .
3 Upper tolerance of less than 1% is allowed on 40 MHz crystal.
${ }^{4}$ All internal registers retain data at 0 Hz .
5 "Loss of Reference Frequency" is the reference frequency detected internally, which transitions the PLL into self clocked mode.
6 Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below f $\mathrm{f}_{\text {LOR }}$. This frequency is measured at D_CLKOUT with the divider set to divide-by-2 of the system clock. NOTE: in SCM, the PLL is running open loop at a centercode 0×4. The MFD has no effect and the RFD is bypassed.
7 This specification applies to the period required for the PLL to re-lock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). From power up with crystal oscillator reference, lock time will be additive with crystal startup time.
8 For FlexRay operation, duty cycle requirements are higher.
9 Duty cycle can be $20-80 \%$ when PLL is used with a pre-divider greater than 1.
${ }^{10}$ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum $f_{\text {sys }}$. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via $\mathrm{V}_{\text {DDSYN }}$ and $\mathrm{V}_{\text {SSSYN }}$ and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval. D_CLKOUT divider set to divide-by-2.
${ }^{11}$ Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of $\mathrm{C}_{\mathrm{jitter}}+\mathrm{C}_{\text {mod }}$.
${ }^{12}$ Modulation depth selected must not result in $f_{\text {pll }}$ value greater than the $f_{\text {pll }}$ maximum specified value.
${ }^{13}$ Maximum and minimum variation from programmed modulation depth is pending characterization. Depth settings available in control register are: $1 \%, 2 \%, 3 \%$, and 4% peak-to-peak.
${ }^{14}$ Depth tolerance is the programmed modulation depth $\pm 0.25 \%$ of $\mathrm{F}_{\text {sys. }}$. Initial design target pending silicon evaluation.
${ }^{15}$ Modulation rates less than 400 kHz will result in exceedingly long FM calibration durations. Modulation rates greater than 1 MHz will result in reduced calibration accuracy.

Table 18. Oscillator Electrical Specifications ${ }^{1}$
$\left(\mathrm{V}_{\text {DDSYN }}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{SSSYN}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to $\left.\mathrm{T}_{\mathrm{H}}\right)$

Spec	Characteristic	Symbol	Min	Max	Unit
1	Crystal Mode Differential Amplitude ${ }^{2}$ (Min differential voltage between EXTAL and XTAL)	$\mathrm{V}_{\text {crystal_diff_amp }}$	$\begin{gathered} \left\|V_{\text {extal }}-V_{x t a l}\right\| \\ >0.4 \mathrm{~V} \end{gathered}$	-	V
2	Crystal Mode: Internal Differential Amplifier Noise Rejection	$\mathrm{V}_{\text {crystal_dift_amp_nr }}$	-	$\begin{gathered} \left\|V_{\text {extal }}-V_{\text {xtal }}\right\| \\ <0.2 \mathrm{~V} \end{gathered}$	V
3	EXTAL Input High Voltage Bypass mode, External Reference	$\mathrm{V}_{\text {IHEXT }}$	$\left(\left(\mathrm{V}_{\mathrm{DD} 33} / 2\right)+0.4 \mathrm{~V}\right)$	-	V
4	EXTAL Input Low Voltage Bypass mode, External Reference	$\mathrm{V}_{\text {ILEXT }}$	-	$\left(\mathrm{V}_{\mathrm{DD} 33} / 2\right)-0.4 \mathrm{~V}$	V
5	XTAL Current ${ }^{3}$	$\mathrm{I}_{\text {XTAL }}$	1	3	mA
6	Total On-chip stray capacitance on XTAL	$\mathrm{C}_{\text {S_XTAL }}$	-	1.5	pF

MPC5676R Microcontroller Data Sheet, Rev. 4

Table 18. Oscillator Electrical Specifications ${ }^{1}$ (continued)
$\left(\mathrm{V}_{\text {DDSYN }}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{SSSYN}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to $\left.\mathrm{T}_{\mathrm{H}}\right)$

Spec	Characteristic	Symbol	Min	Max	Unit
7	Total On-chip stray capacitance on EXTAL	$\mathrm{C}_{\text {S_EXTAL }}$	-	1.5	pF
8	Crystal manufacturer's recommended capacitive load	C_{L}	See crystal spec	See crystal spec	pF
9	Discrete load capacitance to be connected to EXTAL	$\mathrm{C}_{\mathrm{L}_{-} \mathrm{EXTAL}}$	-	$\begin{gathered} \left(2 \times C_{L}-C_{S _E X T A}\right. \\ L-C_{P C B} \text { EXTAL } \end{gathered}$	pF
10	Discrete load capacitance to be connected to XTAL	$\mathrm{C}_{\text {L_XTAL }}$	-	$\begin{gathered} \left(2 \times C_{L}-C_{S-X T A L}\right. \\ \left.-C_{P C B _}{ }^{4} \text { TAL }\right) \end{gathered}$	pF

1 All values given are initial design targets and subject to change.
2 This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal mode. In that case, $\mathrm{V}_{\text {extal }}-\mathrm{V}_{\mathrm{xtal}} \geq 400 \mathrm{mV}$ criterion has to be met for oscillator's comparator to produce output clock.
$\mathrm{I}_{\mathrm{xtal}}$ is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded.
${ }^{4} \mathrm{C}_{\text {PCB_EXTAL }}$ and $\mathrm{C}_{\text {PCB_XTAL }}$ are the measured PCB stray capacitances on EXTAL and XTAL, respectively.

4.9 eQADC Electrical Characteristics

Table 19. eQADC Conversion Specifications (Operating)

Spec	Characteristic	Symbol	Min	Max	Unit
1	ADC Clock (ADCLK) Frequency	$\mathrm{f}_{\text {ADCLK }}$	2	16	MHz
2	Conversion Cycles	CC	$2+13$	$128+14$	ADCLK cycles
3	Stop Mode Recovery Time ${ }^{1}$	$\mathrm{T}_{\text {SR }}$	10	-	$\mu \mathrm{S}$
4	Resolution ${ }^{2}$	-	1.25	-	mV
5	INL: 8 MHz ADC Clock 3	INL8	-4^{4}	4^{4}	LSB^{5}
6	INL: $16 \mathrm{MHz} \mathrm{ADC} \mathrm{Clock}{ }^{3}$	INL16	-8^{4}	8^{4}	LSB
7	DNL: $8 \mathrm{MHz} \mathrm{ADC} \mathrm{Clock}{ }^{3}$	DNL8	-3^{4}	3^{4}	LSB
8	DNL: 16 MHz ADC Clock ${ }^{3}$	DNL16	-3^{4}	3^{4}	LSB
9	Offset Error without Calibration	OFFNC	04	1004	LSB
10	Offset Error with Calibration	OFFWC	-4^{4}	4^{4}	LSB
11	Full Scale Gain Error without Calibration	GAINNC	-120^{4}	0^{4}	LSB
12	Full Scale Gain Error with Calibration	GAINWC	$-4^{4,6}$	$4^{4,6}$	LSB
13	Disruptive Input Injection Current ${ }^{\text {7, 8, 9, } 10}$	$\mathrm{I}_{\text {INJ }}$	-1	1	mA
14	Incremental Error due to injection current ${ }^{11,12}$	$\mathrm{E}_{\mathrm{INJ}}$	-	$\pm 4^{4}$	Counts
15	TUE value at $8 \mathrm{MHz}{ }^{13,14}$ (with calibration)	TUE8	-	$\pm 4^{4,6}$	Counts

Electrical Characteristics

Table 19. eQADC Conversion Specifications (Operating) (continued)

Spec	Characteristic	Symbol	Min	Max	Unit
16	TUE value at $16 \mathrm{MHz}{ }^{13,14}$ (with calibration)	TUE16	-	± 8	Counts
17	Variable gain amplifier accuracy (gain=1) ${ }^{15}$ INL, 8 MHz ADC INL, 16 MHz ADC DNL, 8 MHz ADC DNL, 16 MHz ADC	GAINVGA1	$\begin{gathered} -4 \\ -8 \\ -3^{16} \\ -3^{16} \end{gathered}$	$\begin{gathered} 4 \\ 8 \\ 3^{16} \\ 3^{16} \end{gathered}$	Counts ${ }^{17}$
18	Variable gain amplifier accuracy (gain=2) ${ }^{15}$ INL, 8 MHz ADC INL, 16 MHz ADC DNL, 8 MHz ADC DNL, 16 MHz ADC	GAINVGA2	$\begin{aligned} & -5 \\ & -8 \\ & -3 \\ & -3 \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \\ & 3 \\ & 3 \end{aligned}$	Counts
19	Variable gain amplifier accuracy (gain=4) ${ }^{15}$ INL, 8 MHz ADC INL, 16 MHz ADC DNL, 8 MHz ADC DNL, 16 MHz ADC	GAINVGA4	$\begin{aligned} & -7 \\ & -8 \\ & -4 \\ & -4 \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \\ & 4 \\ & 4 \end{aligned}$	Counts

${ }^{1}$ Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time that the ADC is ready to perform conversions. Delay from power up to full accuracy $=8 \mathrm{~ms}$.
2 At $\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}=5.12 \mathrm{~V}$, one count $=1.25 \mathrm{mV}$ without using pregain.
3 INL and DNL are tested from $V_{R L}+50$ LSB to $V_{R H}-50$ LSB.
4 New design target. Actual specification will change following characterization. Margin for manufacturing has not been fully included.
${ }^{5}$ At $\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}=5.12 \mathrm{~V}$, one $\mathrm{LSB}=1.25 \mathrm{mV}$.
6 The value is valid at 8 MHz , it is ± 8 counts at 16 Mhz .
7 Below disruptive current conditions, the channel being stressed has conversion values of \$3FF for analog inputs greater than V_{RH} and $\$ 000$ for values less than V_{RL}. Other channels are not affected by non-disruptive conditions.
8 Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit do not affect device reliability or cause permanent damage.
9 Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values using $\mathrm{V}_{\text {POSCLAMP }}=\mathrm{V}_{\mathrm{DDA}}+0.5 \mathrm{~V}$ and $\mathrm{V}_{\text {NEGCLAMP }}=-0.3 \mathrm{~V}$, then use the larger of the calculated values.
${ }^{10}$ Condition applies to two adjacent pins at injection limits.
${ }^{11}$ Performance expected with production silicon.
12 All channels have same $10 \mathrm{k} \Omega<\mathrm{Rs}<100 \mathrm{k} \Omega$ Channel under test has $R s=10 \mathrm{k} \Omega, \mathrm{I}_{\text {INJ }}=\underline{I}_{\text {INJMAX }}, I_{\text {INJMIN }}$.
${ }^{13}$ The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to cancelling errors.
${ }^{14}$ TUE does not apply to differential conversions.
${ }^{15}$ Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of $\times 1, \times 2$, or $\times 4$. Settings are for differential input only. Tested at $\times 1$ gain. Values for other settings are guaranteed by as indicated.
${ }^{16}$ Guaranteed 10-bit mono tonicity.
${ }^{17}$ At $\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}=5.12 \mathrm{~V}$, one $\mathrm{LSB}=1.25 \mathrm{mV}$.

4.9.1 ADC Internal Resource Measurements

Table 20. Power Management Control (PMC) Specification

Spec	Characteristic	Symbol	Min	Typical	Max	Unit
PMC Normal Mode						
1	Bandgap 0.62 V ADC0 channel 145	$\mathrm{V}_{\text {ADC145 }}$	0.59	0.62	0.65	V
2	Bandgap 1.2 V ADC0 channel 146	$\mathrm{V}_{\text {ADC146 }}$	1.10	1.22	1.34	V
3	Vreg1p2 Feedback ADC0 channel 147	$\mathrm{V}_{\text {ADC147 }}$	$\mathrm{V}_{\mathrm{DD}} / 2.147$	$\mathrm{V}_{\mathrm{DD}} / 2.045$	$\mathrm{V}_{\mathrm{DD}} / 1.943$	V
4	LVD 1.2 V ADCO channel 180	$\mathrm{V}_{\text {ADC180 }}$	$\mathrm{V}_{\mathrm{DD}} / 1.863$	$\mathrm{V}_{\mathrm{DD}} / 1.774$	$\mathrm{V}_{\mathrm{DD}} / 1.685$	V
5	Vreg3p3 Feedback ADCO channel 181	$\mathrm{V}_{\text {ADC181 }}$	$\begin{gathered} \text { Vreg3p3 / } \\ 5.733- \end{gathered}$	Vreg3p3 / 5.460	Vreg3p3 / 5.187	V
6	LVD 3.3 V ADCO channel 182	$\mathrm{V}_{\text {ADC182 }}$	Vreg3p3 / 4.996	Vreg3p3 / 4.758	Vreg3p3 / 4.520	V
7	LVD 5.0 V ADCO channel 183 - LDO mode - SMPS mode	$\mathrm{V}_{\text {ADC183 }}$	$V_{\text {DDREG }} / 4.996$ $V_{\text {DDREG }} / 7.384$	$V_{\text {DDREG }} / 4.758$ $V_{\text {DDREG }} / 7.032$	$V_{\text {DDREG }} / 4.520$ $V_{\text {DDREG }} / 6.680$	V

Table 21. Standby RAM Regulator Electrical Specifications

Spec	Characteristic	Symbol	Min	Typ	Max	Unit
Normal Mode						
1	Standby Regulator Output ADC1 channel 194	$V_{\text {ADC194 }}$	-	1.2	-	V
2	Standby Source Bias ADC1 channel 195	$V_{\text {ADC195 }}$	150	-	360	mV

Table 22. ADC Band Gap Reference / LVI Electrical Specifications

Spec	Characteristic	Symbol	Min	Typ	Max	Unit
1	4.75 LVD (from $V_{\text {DDA }}$ ADC1 channel 196	$\mathrm{~V}_{\text {ADC196 }}$	-	4.75	-	V
2	ADC Bandgap ADC0 channel 45 ADC1 channel 45	$\mathrm{V}_{\text {ADC45 }}$	-	1.220	-	V

Electrical Characteristics

Table 23. Temperature Sensor Electrical Specifications

Spec	Characteristic	Symbol	Min	Typ	Max	Unit
1	Slope $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C} \pm 1.0^{\circ} \mathrm{C}$ $100^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} \pm 1.6^{\circ} \mathrm{C}$ ADC0 chanel 128 ADC1 channel 128	$\mathrm{~V}_{\text {SADC128 }}{ }^{1}$	-	5.8	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
2	Accuracy $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ ADCO channel 128 ADC1 channel 128	-	-20	-	+20	${ }^{\circ} \mathrm{C}$

1 Slope is the measured voltage change per ${ }^{\circ} \mathrm{C}$.

4.10 C90 Flash Memory Electrical Characteristics

Table 24. Flash Program and Erase Specifications (Pending Si characterization)

Spec	Characteristic	Symbol	Typ $^{\mathbf{1}}$	Initial Max $^{\mathbf{2}}$	Lifetime Max $^{\mathbf{3}}$	Unit
1	Double Word (64 bits) Program Time ${ }^{4}$	$\mathrm{t}_{\text {dwprogram }}$	38	-	500	$\mu \mathrm{~s}$
2	Page (128 bits) Program Time ${ }^{4}$	$\mathrm{t}_{\text {pprogram }}$	45	160	500	$\mu \mathrm{~s}$
3	16 KB Block Pre-program and Erase Time	$\mathrm{t}_{16 \mathrm{kpperase}}$	270	1000	5000	ms
4	48 KB Block Pre-program and Erase Time	$\mathrm{t}_{48 \mathrm{kpperase}}$	625	1500	5000	ms
5	64 KB Block Pre-program and Erase Time	$\mathrm{t}_{64 k p p e r a s e}$	800	1800	5000	ms
6	128 KB Block Pre-program and Erase Time	$\mathrm{t}_{128 \mathrm{kpperase}}$	1500	2600	7500	ms
7	256 KB Block Pre-program and Erase Time	$\mathrm{t}_{256 \mathrm{kpperase}}$	3000	5200	15000	ms

${ }^{1}$ Typical program and erase times represent the median performance and assume nominal supply values and operation at $25^{\circ} \mathrm{C}$. These values are characterized, but not tested.
2 Initial Max program and erase times provide guidance for time-out limits used in the factory and apply for < 100 program/erase cycles, nominal supply values and operation at $25^{\circ} \mathrm{C}$. These values are verified at production test.
${ }^{3}$ Lifetime Max program and erase times apply across the voltage, temperature, and cycling range of product life. These values are characterized, but not tested.
${ }^{4}$ Program times are actual hardware programming times and do not include software overhead.

NOTE

The low, mid, and high address blocks of the flash arrays are erased (all bits set to 1) before leaving the factory.

Table 25. Flash Memory AC Timing Specifications ${ }^{1}$

Symbol	Parameter	Value			Unit
		Min	Typ	Max	
$\mathrm{T}_{\text {RES }}$	Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low	-	-	100	ns
$\mathrm{T}_{\text {DONE }}$	Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared	-	-	5	ns
$\mathrm{T}_{\text {PSRT }}$	Time between program suspend resume and the next program suspend request. ${ }^{2}$	100	-	-	$\mu \mathrm{S}$
$\mathrm{T}_{\text {ESRT }}$	Time between erase suspend resume and the next erase suspend request. ${ }^{3}$	10	-	-	ms

1 This parameter is guaranteed by characterization before qualification rather than 100% tested.
${ }^{2}$ Repeated suspends at a high frequency may result in the operation timing out, and the flash module will respond by completing the operation with a fail code ($\mathrm{MCR}[\mathrm{PEG}]=0$), or the operation not able to finish ($\mathrm{MCR}[\mathrm{DONE}]=1$ during Program operation). The minimum time between suspends to ensure this does notoccur is $\mathrm{T}_{\text {PSRT }}$.
3 If Erase suspend rate is less than $T_{E S R T}$, an increase of slope voltage ramp occurs during erase pulse. This improves erase time but reduces cycling figure due to overstress.

Table 26. Flash EEPROM Module Life

Spec	Characteristic	Symbol	Min	Typical ${ }^{1}$	Unit
1	Number of Program/Erase cycles per block for 16 KB and 64 KB blocks over the operating temperature range (T_{J})	P/E	100,000	-	cycles
2	Number of Program/Erase cycles per block for 128 KB and 256 KB blocks over the operating temperature range (T_{J})	P/E	1,000	100,000	cycles
3	Minimum Data Retention at $85^{\circ} \mathrm{C}$ ambient temperature ${ }^{2}$ Blocks with 0-1,000 P/E cycles Blocks with 1,001-10,000 P/E cycles Blocks with 10,001-100,000 P/E cycles	Retention	$\begin{gathered} 20 \\ 10 \\ 1-5 \end{gathered}$	-	years

[^0]
Electrical Characteristics

Table 27. BIUCR1/BIUCR3 Settings

Spec	Maximum Frequency (MHz)		APC = RWSC	WWSC	DPFEN ${ }^{1}$	IPFEN ${ }^{1}$	PFLIM ${ }^{2}$	BFEN ${ }^{3}$
	Core $f_{\text {sys }}$	Platform $f_{\text {platf }}$						
1	180 MHz	90 MHz	Ob010	Ob01	$\begin{aligned} & \text { Ob0 } \\ & \text { Ob1 } \end{aligned}$	$\begin{aligned} & \text { Ob0 } \\ & \text { Ob1 } \end{aligned}$	$\begin{aligned} & \text { Ob00 } \\ & \text { Ob01 } \\ & \text { Ob1x } \end{aligned}$	$\begin{aligned} & \text { Ob0 } \\ & \text { Ob1 } \end{aligned}$
Default setting after reset:			Ob111	Ob11	Ob00	Ob00	Ob00	Ob0

1 For maximum flash performance, set to 0b1.
2 For maximum flash performance, set to 0b10.
3 For maximum flash performance, set to Ob1.

4.11 AC Specifications

4.11.1 Clocking Modes

There are two main modes of operating frequency settings:

- Double 2:1 (Core:Platform) Mode-the core is running at the system frequency setting while the platform and eTPU are running at half the core frequency (system frequency divided by 2).
- eTPU Mode-the core and eTPU are running at the system frequency setting while the platform is running at half the core frequency (system frequency divided by 2).

Table 28 shows the operating frequencies of various blocks depending on the device's clocking mode configuration settings.
Table 28. MPC5676R Block Operating Frequency ${ }^{1,2}$

Spec	Blocks	Symbol	Double Mode Freq $(\mathbf{M H z})$	eTPU Mode Freq $(\mathbf{M H z})$
1	Cores	$\mathrm{f}_{\text {sys }}$ $\left(\mathrm{t}_{\text {cycsys }}=1 / \mathrm{f}_{\text {sys }}\right)$	$\mathrm{f}_{\text {sys }}=180$	$\mathrm{f}_{\text {sys }}=180$
2	Platform	$\mathrm{f}_{\text {platf }}$ $\left(\mathrm{t}_{\text {cyc }}=1 / \mathrm{f}_{\text {platf }}\right)$	$\mathrm{f}_{\text {sys }} / 2$	$\mathrm{f}_{\text {sys }} / 2$
3	eTPU	$\mathrm{f}_{\text {eTPU }}$	$\mathrm{f}_{\text {sys }} / 2$	$\mathrm{f}_{\text {sys }}$
4	EBI	$\mathrm{f}_{\text {ebi }}$	$\mathrm{f}_{\text {sys }} / 4$	$\mathrm{f}_{\text {sys }} / 4$

1 The values in the table are specified at $\mathrm{V}_{\mathrm{DD}}=1.02 \mathrm{~V}$ to $1.32 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDE}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDEH}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 33}$ and $\mathrm{V}_{\mathrm{DDSYN}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H}.
2 Up to the maximum frequency rating of the device (refer to Table 1). The $f_{\text {sys }}$ speed is the nominal maximum frequency.

4.11.2 Pad AC Specifications

Table 29. Pad AC Specifications ($\left.\mathrm{V}_{\text {DDEH }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {DDE }}=3.3 \mathrm{~V}\right)^{1}$

Spec	Pad	SRC/DSC	$\begin{gathered} \text { Out Delay }{ }^{2,4} \\ \mathrm{~L} \rightarrow \mathrm{H} / \mathrm{H} \rightarrow \mathrm{~L}(\mathrm{~ns}) \end{gathered}$	Rise/Fall ${ }^{3,4}$ (ns)	Load Drive (pF)
1	Medium ${ }^{5}$	00	152/165	70/74	50
2			205/220	96/96	200
3		01	28/34	12/15	50
4			52/59	28/31	200
5		11	12/12	5.3/5.9	50
6			32/32	22/22	200
7	Fast ${ }^{6}$	00	2.5	1.2	10
8		01			20
9		10			30
10		11			50
11	Fast with Slew Rate	00	40/40	16/16	50
12			50/50	21/21	200
13		01	13/13	5/5	50
14			19/19	8/8	200
15		10	8/8	2.4/2.4	50
16			12/12	5/5	200
17		11	5/5	1.1/1/1	50
18			8/8	2.6	200
19	Pull Up/Down (3.6 V max)	-	-	7500	50
20	Pull Up/Down (5.25 V max)	-	6000	5000/5000	50

1 These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at $\mathrm{V}_{\mathrm{DD}}=1.02 \mathrm{~V}$ to $1.32 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDE}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDEH}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 33}$ and $\mathrm{V}_{\mathrm{DDSYN}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H}.
2 This parameter is supplied for reference and is not guaranteed by design and not tested.
3 This parameter is guaranteed by characterization before qualification rather than 100% tested.
4 Delay and rise/fall are measured to 20% or 80% of the respective signal.
5 Out delay is shown in Figure 7. Add a maximum of one system clock to the output delay for delay with respect to system clock.
6 Out delay is shown in Figure 7. Add a maximum of one system clock to the output delay for delay with respect to system clock.
Table 30. Derated Pad AC Specifications ($\left.\mathrm{V}_{\text {DDEH }}=3.3 \mathrm{~V}\right)^{1}$

Spec	Pad	SRCIDSC	$\begin{aligned} & \text { Out Delay }{ }^{2,3} \\ & \mathrm{~L} \rightarrow \mathrm{H} / \mathrm{H} \rightarrow \mathrm{~L} \text { (ns) } \end{aligned}$	$\begin{gathered} \text { Rise/Falll, }{ }^{4,3} \\ \text { (ns) } \end{gathered}$	Load Drive (pF)
1	Medium ${ }^{5}$	00	200/210	86/86	50
2			270/285	120/120	200
3		01	37/45	15.5/19	50
4			69/82	38/43	200
5		11	18/17	7.6/8.5	50
6			46/49	30/34	200

Electrical Characteristics

1 These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at $\mathrm{V}_{\mathrm{DD}}=1.08 \mathrm{~V}$ to $1.32 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDE}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDEH}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 33}$ and $\mathrm{V}_{\mathrm{DDSYN}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H}.
2 This parameter is supplied for reference and is not guaranteed by design and not tested.
3 Delay and rise/fall are measured to 20% or 80% of the respective signal.
4 This parameter is guaranteed by characterization before qualification rather than 100% tested.
5 Out delay is shown in Figure 7. Add a maximum of one system clock to the output delay for delay with respect to system clock.

Figure 7. Pad Output Delay

4.12 AC Timing

4.12.1 Generic Timing Diagrams

The generic timing diagrams in Figure 8 and Figure 9 apply to all I/O pins with pad types F and MH. See Table 39 for the pad type for each pin.

Figure 8. Generic Output Delay/Hold Timing

A - Minimum Input Setup Time B - Minimum Input Hold Time
Figure 9. Generic Input Setup/Hold Timing

4.12.2 Reset and Configuration Pin Timing

Table 31. Reset and Configuration Pin Timing ${ }^{1}$

Spec	Characteristic	Symbol	Min	Max	Unit
1	$\overline{\text { RESET Pulse Width }}$	$\mathrm{t}_{\mathrm{RPW}}$	10	-	$\mathrm{t}_{\mathrm{cyc}}{ }^{2}$
2	RESET Glitch Detect Pulse Width	$\mathrm{t}_{\mathrm{GPW}}$	2	-	$\mathrm{t}_{\mathrm{cyc}}{ }^{2}$
3	PLLCFG, BOOTCFG, WKPCFG Setup Time to $\overline{\text { RSTOUT Valid }}$	$\mathrm{t}_{\mathrm{RCSU}}$	10	-	$\mathrm{t}_{\mathrm{cyc}}{ }^{2}$
4	PLLCFG, BOOTCFG, WKPCFG Hold Time to $\overline{\text { RSTOUT Valid }}$	$\mathrm{t}_{\mathrm{RCH}}$	0	-	$\mathrm{t}_{\mathrm{cyc}}{ }^{2}$

${ }^{1}$ Reset timing specified at: $\mathrm{V}_{\mathrm{DDEH}}=3.0 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=1.08 \mathrm{~V}$ to $1.32 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H}.

MPC5676R Microcontroller Data Sheet, Rev. 4

Electrical Characteristics

${ }^{2}$ See Notes on $\mathrm{t}_{\mathrm{cyc}}$ on Table 28.

Figure 10. Reset and Configuration Pin Timing

4.12.3 IEEE 1149.1 Interface Timing

Table 32. JTAG Pin AC Electrical Characteristics ${ }^{1}$

Spec	Characteristic	Symbol	Min	Max	Unit
1	TCK Cycle Time	$\mathrm{t}_{\text {JCYC }}$	100	-	ns
2	TCK Clock Pulse Width (Measured at $\left.V_{\text {DDE }} / 2\right)$	$\mathrm{t}_{\text {JDC }}$	40	60	ns
3	TCK Rise and Fall Times (40\%-70\%)	$\mathrm{t}_{\text {TCKRISE }}$	-	3	ns
4	TMS, TDI Data Setup Time	$\mathrm{t}_{\text {TMSS }} \mathrm{t}_{\text {TDIS }}$	5	-	ns
5	TMS, TDI Data Hold Time	$\mathrm{t}_{\text {TMSH }}, \mathrm{t}_{\text {TDIH }}$	25	-	ns
6	TCK Low to TDO Data Valid	$\mathrm{t}_{\text {TDOV }}$	-	10	ns
7	TCK Low to TDO Data Invalid	$\mathrm{t}_{\text {TDOI }}$	0	-	ns
8	TCK Low to TDO High Impedance	$\mathrm{t}_{\text {TDOHZ }}$	-	20	ns
9	JCOMP Assertion Time	$\mathrm{t}_{\text {JCMPPW }}$	100	-	ns
10	JCOMP Setup Time to TCK Low	$\mathrm{t}_{\text {JCMPS }}$	40	-	ns
11	TCK Falling Edge to Output Valid	$\mathrm{t}_{\text {BSDV }}$	-	50	ns

Table 32. JTAG Pin AC Electrical Characteristics ${ }^{1}$ (continued)

Spec	Characteristic	Symbol	Min	Max	Unit
12	TCK Falling Edge to Output Valid out of High Impedance	$\mathrm{t}_{\mathrm{BSDVZ}}$	-	50	ns
13	TCK Falling Edge to Output High Impedance	$\mathrm{t}_{\mathrm{BSDHZ}}$	-	50	ns
14	Boundary Scan Input Valid to TCK Rising Edge	$\mathrm{t}_{\text {BSDST }}$	50	-	ns
15	TCK Rising Edge to Boundary Scan Input Invalid	$\mathrm{t}_{\text {BSDHT }}$	50	-	ns

${ }^{1}$ JTAG timing specified at $\mathrm{V}_{\mathrm{DD}}=1.08 \mathrm{~V}$ to $1.32 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDE}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 33}$ and $\mathrm{V}_{\mathrm{DDSYN}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H}, and $C_{L}=30 \mathrm{pF}$ with DSC $=0 \mathrm{~b} 10, \mathrm{SRC}=0 \mathrm{~b} 00$. These specifications apply to JTAG boundary scan only. See Table 33 for functional specifications.

Figure 11. JTAG Test Clock Input Timing

Electrical Characteristics

Figure 12. JTAG Test Access Port Timing

Figure 13. JTAG JCOMP Timing

Figure 14. JTAG Boundary Scan Timing

4.12.4 Nexus Timing

Table 33. Nexus Debug Port Timing ${ }^{1}$

Spec	Characteristic	Symbol	Min	Max	Unit
1	MCKO Cycle Time	$\mathrm{t}_{\mathrm{MCYC}}$	2^{2}	8	$\mathrm{t}_{\mathrm{CYC}}$
2	MCKO Duty Cycle	$\mathrm{t}_{\text {MDC }}$	40	60	\%
3	MCKO Low to MDO Data Valid ${ }^{3}$	$\mathrm{t}_{\text {MDOV }}$	-0.1	0.2	$\mathrm{t}_{\text {MCYC }}$
4	MCKO Low to MSEO Data Valid ${ }^{3}$	$\mathrm{t}_{\text {MSEOV }}$	-0.1	0.2	$\mathrm{t}_{\mathrm{MCYC}}$
5	MCKO Low to $\overline{\text { EVTO }}$ Data Valid ${ }^{3}$	$\mathrm{t}_{\text {EVToV }}$	-0.1	0.2	$\mathrm{t}_{\text {MCYC }}$
6	$\overline{\text { EVTI }}$ Pulse Width	$\mathrm{t}_{\text {EVTIPW }}$	4.0	-	${ }_{\text {t }}{ }_{\text {TCYC }}$
7	$\overline{\text { EVTO }}$ Pulse Width	$\mathrm{t}_{\text {EVTOPW }}$	1	-	$\mathrm{t}_{\text {MCYC }}$
8	TCK Cycle Time	$\mathrm{t}_{\text {TCYC }}$	4^{4}	-	$\mathrm{t}_{\mathrm{CYC}}$
9	TCK Duty Cycle	$\mathrm{t}_{\text {TDC }}$	40	60	\%
10	TDI, TMS Data Setup Time	$\mathrm{t}_{\text {NTDIS, }} \mathrm{t}_{\text {NTMSS }}$	8	-	ns

Electrical Characteristics

Table 33. Nexus Debug Port Timing ${ }^{1}$ (continued)

Spec	Characteristic	Symbol	Min	Max	Unit
11	TDI, TMS Data Hold Time	$\mathrm{T}_{\text {NTDIH, }} \mathrm{t}_{\mathrm{NTMSH}}$	5	-	ns
12	TCK Low to TDO Data Valid	$\mathrm{t}_{\mathrm{NTDOV}}$	0	10	ns
13	$\overline{\text { RDY }}$ Valid to MCKO 5	-	-	-	-
14	TDO hold time after TCLK low	$\mathrm{t}_{\text {NTDOH }}$	1	-	ns

1 All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at $\mathrm{V}_{\mathrm{DD}}=1.08 \mathrm{~V}$ to $1.32 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDE}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 33}$ and $\mathrm{V}_{\mathrm{DDSYN}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H}, and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ with DSC = 0b10.
2 The Nexus AUX port runs up to 82 MHz (pending characterization). Set NPC_PCR[MKCO_DIV] to correct division depending on the system frequency, not to exceed maximum Nexus AUX port frequency.
3 MDO, $\overline{\mathrm{MSEO}}$, and $\overline{\mathrm{EVTO}}$ data is held valid until next MCKO low cycle.
${ }^{4}$ Lower frequency is required to be fully compliant to standard.
5 The $\overline{\mathrm{RDY}}$ pin timing is asynchronous to MCKO. The timing is guaranteed by design to function correctly.

Figure 15. Nexus Timings

Figure 16. Nexus TCK, TDI, TMS, TDO Timing

4.12.5 External Bus Interface (EBI) Timing

Table 34. Bus Operation Timing ${ }^{1}$

Spec	Characteristic	Symbol	66 MHz (Ext. Bus Freq) ${ }^{\mathbf{2}} \mathbf{}$		Unit	Notes
			Min	Max		
1	D_CLKOUT Period	t_{C}	15.2	-	ns	Signals are measured at $50 \% \mathrm{~V}_{\text {DDE }}$.

Electrical Characteristics

Table 34. Bus Operation Timing ${ }^{1}$ (continued)

Spec	Characteristic	Symbol	66 MHz (Ext. Bus Freq) ${ }^{\mathbf{2}}$		Unit	Notes
			Min	Max		
2	D_CLKOUT Duty Cycle	$\mathrm{t}_{\text {CDC }}$	45\%	55\%	${ }^{\text {t }}$ C	
3	D_CLKOUT Rise Time	$\mathrm{t}_{\mathrm{CRT}}$	-	-4	ns	
4	D_CLKOUT Fall Time	$\mathrm{t}_{\text {CFT }}$	-	- ${ }^{4}$	ns	
5	D_CLKOUT Posedge to Output Signal Invalid or High Z (Hold Time) $\begin{aligned} & \text { D_ADD[9:30] } \\ & \text { D_BDIP } \\ & \text { D_CS[0:3] } \\ & \text { D_DAT[0:15] } \\ & \text { D_OE } \\ & \hline \text { D_RD_WR } \\ & \text { D_TA } \\ & \left.\frac{\text { D_TS }}{\text { D_WE }} 0: 3\right] / \overline{D_{B}} \mathrm{BE}[0: 3] \end{aligned}$	${ }^{\text {t }} \mathrm{COH}$	1.0/1.5	-	ns	Hold time selectable via SIU_ECCR[EBTS] bit: EBTS = 0: 1.0 ns EBTS = 1: 1.5 ns
6	D_CLKOUT Posedge to Output Signal Valid (Output Delay) $\begin{aligned} & \text { D_ADD[9:30] } \\ & \text { D_BDIP } \\ & \text { D_CS[0:3] } \\ & \text { D_DAT[0:15] } \\ & \text { D_OE } \\ & \hline \text { D_RD_WR } \\ & \text { D_TA } \\ & \frac{D_{1} \text { _TS }}{\text { D_WE }[0: 3] / \overline{D-B E ~}[0: 3]} \\ & \hline \end{aligned}$	$\mathrm{t}_{\mathrm{cov}}$	-	8.5/9.0	ns	Output valid time selectable via SIU_ECCR[EBTS] bit: EBTS = 0: 8.5 ns EBTS =1: 9.0 ns
7	```Input Signal Valid to D_CLKOUT Posedge (Setup Time) D_ADD[9:30] D_DAT[0:15] D_RD_WR D_TA D_TS```	$\mathrm{t}_{\text {CIS }}$	5.0/4.5	-	ns	Input setup time selectable via SIU_ECCR[EBTS] bit: EBTS $=0 ; 5.0 \mathrm{~ns}$ EBTS $=1 ; 4.5 n s$
8	D_CLKOUT Posedge to Input Signal Invalid (Hold Time) $\begin{aligned} & \text { D_ADD[9:30] } \\ & \text { D_DAT[0:15] } \\ & \hline \text { D_RD_WR } \\ & \text { D_TA } \\ & \text { D_TS } \end{aligned}$	$\mathrm{t}_{\mathrm{CIH}}$	1.0	-	ns	
9	D_ALE Pulse Width	$\mathrm{t}_{\text {APW }}$	6.5	-	ns	The timing is for Asynchronous external memory system.
10	D_ALE Negated to Address Invalid	$\mathrm{t}_{\text {AAI }}$	$2.0 / 1.0^{5}$	-	ns	The timing is for Asynchronous external memory system. ALE is measured at 50% of VDDE.

MPC5676R Microcontroller Data Sheet, Rev. 4
${ }^{1} \mathrm{EBI}$ timing specified at $\mathrm{V}_{\mathrm{DD}}=1.08 \mathrm{~V}$ to $1.32 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDE}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 33}$ and $\mathrm{V}_{\mathrm{DDSYN}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H}, and $C_{L}=30 \mathrm{pF}$ with $\mathrm{DSC}=0 \mathrm{~b} 10$.
2 Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM).
${ }^{3}$ Depending on the internal bus speed, set the SIU_ECCR[EBDF] bits correctly not to exceed maximum external bus frequency. The maximum external bus frequency is 66 MHz .
4 Refer to Fast pad timing in Table 29 and Table 30.
5 ALE hold time spec is temperature dependant. 1.0ns spec applies for temperature range - 40 to 0 C .2 .0 ns spec applies to temperatures > 0 C. This spec has no dependency on SIU_ECCR[EBTS] bit.

Figure 17. D_CLKOUT Timing

Electrical Characteristics

Figure 18. Synchronous Output Timing

Figure 19. Synchronous Input Timing

Figure 20. ALE Signal Timing

Electrical Characteristics

4.12.6 External Interrupt Timing (IRQ Pin)

Table 35. External Interrupt Timing ${ }^{1}$

Spec	Characteristic	Symbol	Min	Max	Unit
1	IRQ Pulse Width Low	$\mathrm{t}_{\mathrm{IPWL}}$	3	-	$\mathrm{t}_{\mathrm{cyc}{ }^{2}}$
2	IRQ Pulse Width High	$\mathrm{t}_{\mathrm{IPWH}}$	3	-	$\mathrm{t}_{\mathrm{cyc}{ }^{2}}$
3	IRQ Edge to Edge Time 3	$\mathrm{t}_{\mathrm{ICYC}}$	6	-	$\mathrm{t}_{\mathrm{cyc}}{ }^{2}$

${ }^{1}$ IRQ timing specified at $\mathrm{V}_{\mathrm{DD}}=1.08 \mathrm{~V}$ to $1.32 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDEH}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 33}$ and $\mathrm{V}_{\mathrm{DDSYN}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H}.
${ }^{2}$ See Notes on $\mathrm{t}_{\text {cyc }}$ Table 28.
3 Applies when IRQ pins are configured for rising edge or falling edge events, but not both.

Figure 21. External Interrupt Timing

4.12.7 eTPU Timing

Table 36. eTPU Timing ${ }^{1}$

Spec	Characteristic	Symbol	Min	Max	Unit
1	eTPU Input Channel Pulse Width	$\mathrm{t}_{\mathrm{ICPW}}$	4	-	$\mathrm{t}_{\mathrm{cyc}}{ }^{2}$
2	eTPU Output Channel Pulse Width	$\mathrm{t}_{\mathrm{OCPW}}$	1^{3}	-	$\mathrm{t}_{\mathrm{cyc}}{ }^{2}$

${ }^{1}$ eTPU timing specified at $\mathrm{V}_{\mathrm{DD}}=1.08 \mathrm{~V}$ to $1.32 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDEH}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 33}$ and $\mathrm{V}_{\mathrm{DDSYN}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H}, and $C_{L}=200 \mathrm{pF}$ with $\mathrm{SRC}=0 \mathrm{bOO}$.
2 See Notes on $t_{\text {cyc }}$ Table 28.
3 This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).

Figure 22. eTPU Timing

4.12.8 eMIOS Timing

Table 37. eMIOS Timing ${ }^{1}$

Spec	Characteristic	Symbol	Min	Max	Unit
1	eMIOS Input Pulse Width	$\mathrm{t}_{\text {MIPW }}$	4	-	$\mathrm{t}_{\text {cyc }}{ }^{2}$
2	eMIOS Output Pulse Width	$\mathrm{t}_{\text {MOPW }}$	1^{3}	-	$\mathrm{t}_{\mathrm{cyc}}{ }^{2}$

${ }^{1}$ eMIOS timing specified at $\mathrm{V}_{\mathrm{DD}}=1.08 \mathrm{~V}$ to $1.32 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDEH}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 33}$ and $\mathrm{V}_{\mathrm{DDSYN}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H}, and $C_{L}=50 \mathrm{pF}$ with $\mathrm{SRC}=0 \mathrm{bOO}$.
2 See Notes on $\mathrm{t}_{\mathrm{cyc}}$ on Table 28.
3 This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).

Electrical Characteristics

Figure 23. eMIOS Timing

4.12.9 DSPI Timing

Table 38. DSPI Timing ${ }^{1,2}$

Spec	Characteristic	Symbol	Peripheral Bus Freq:$92 \text { MHz }$		Unit
			Min	Max	
1	DSPI Cycle Time ${ }^{3,4}$ Master (MTFE $=0$) Slave (MTFE = 0) Master (MTFE = 1) Slave (MTFE = 1)	${ }^{\text {s SCK }}$	23.8	1800	ns
2	PCS to SCK Delay ${ }^{5}$	$\mathrm{t}_{\text {csc }}$	12	-	ns
3	After SCK Delay ${ }^{6}$	$\mathrm{t}_{\text {ASC }}$	12	-	ns
4	SCK Duty Cycle	$t_{\text {SDC }}$	0.4 * tsck	0.6 * tsck	ns
5	Slave Access Time (SS active to SOUT valid)	$\mathrm{t}_{\text {A }}$	-	25	ns
6	Slave SOUT Disable Time ($\overline{\mathrm{SS}}$ inactive to SOUT High-Z or invalid)	$\mathrm{t}_{\text {DIS }}$	-	25	ns
7	PCS x to $\overline{\text { PCSS }}$ time	$t_{\text {PCSC }}$	4	-	ns
8	$\overline{\text { PCSS }}$ to PCSx time	$t_{\text {PASC }}$	5	-	ns

Table 38. DSPI Timing ${ }^{1,2}$ (continued)

Spec	Characteristic	Symbol	Peripheral Bus Freq: 92 MHz		Unit
			Min	Max	
9	Data Setup Time for Inputs Master (MTFE = 0) Slave Master (MTFE $=1, \mathrm{CPHA}=0)^{7}$ Master (MTFE = 1, CPHA = 1)	${ }_{\text {t }}^{\text {SuI }}$	$\begin{gathered} 27 \\ 10 \\ 7 \\ 27 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	ns ns ns ns
10	Data Hold Time for Inputs Master $($ MTFE $=0)$ Slave Master (MTFE $=1, \mathrm{CPHA}=0)^{7}$ Master (MTFE = 1, CPHA = 1)	t_{HI}	$\begin{gathered} -3 \\ 7 \\ 12 \\ -3 \end{gathered}$	-	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
11	Data Valid (after SCK edge) Master (MTFE = 0) Slave Master (MTFE $=1, \mathrm{CPHA}=0)$ Master (MTFE = 1, CPHA = 1) Master (LVDS)	$\mathrm{t}_{\text {suo }}$	-	$\begin{gathered} 10 \\ 30 \\ 20 \\ 10 \\ 5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
12	Data Hold Time for Outputs Master (MTFE = 0) Slave Master (MTFE $=1$, CPHA $=0$) Master (MTFE = 1, CPHA = 1) Master (LVDS)	t_{HO}	$\begin{gathered} -6 \\ 2.5 \\ 3 \\ -7 \\ -5 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	

1 DSPI timing specified at $\mathrm{V}_{\mathrm{DD}}=1.08 \mathrm{~V}$ to $1.32 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDEH}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 33}$ and $\mathrm{V}_{\mathrm{DDSYN}}=3.0 \mathrm{~V}$ to 3.6 V , and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H}
2 Speed is the nominal maximum frequency of platform clock ($\mathrm{f}_{\text {platf }}$). Max speed is the maximum speed allowed including frequency modulation (FM).
3 The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated based on two devices communicating over a DSPI link.
4 The actual minimum SCK cycle time is limited by pad performance.
5 The maximum value is programmable in DSPI_CTARn[PSSCK] and DSPI_CTARn[CSSCK].
6 The maximum value is programmable in DSPI_CTARn[PASC] and DSPI_CTARn[ASC].
7 This number is calculated assuming the SMPL_PT bit-field in DSPI_MCR is set to 0b10.

The DSPI in this device can be configured to serialize data to an external device that implements the Microsecond Bus protocol. DSPI pins support 5 V logic levels or Low Voltage Differential Signalling (LVDS) for data and clock signals to improve high speed operation.

Electrical Characteristics

Figure 24. DSPI Classic SPI Timing - Master, CPHA $=0$

Figure 25. DSPI Classic SPI Timing - Master, CPHA = 1

Figure 26. DSPI Classic SPI Timing - Slave, CPHA = 0

Figure 27. DSPI Classic SPI Timing - Slave, CPHA = 1

Electrical Characteristics

Figure 28. DSPI Modified Transfer Format Timing - Master, CPHA = 0

Figure 29. DSPI Modified Transfer Format Timing - Master, CPHA = 1

Figure 30. DSPI Modified Transfer Format Timing - Slave, CPHA = 0

Figure 31. DSPI Modified Transfer Format Timing - Slave, CPHA = 1

Electrical Characteristics

Figure 32. DSPI PCS Strobe ($\overline{\text { PCSS }}$) Timing

5 Package Information

$5.1 \quad$ 416-Pin Package

The package drawings of the 416-pin TEPBGA package are shown in Figure 33 and Figure 34.

Figure 33. 416 TEPBGA Package (1 of 2)

MPC5676R Microcontroller Data Sheet, Rev. 4

Package Information

NOTES:

1. ALL DIMENSIONS IN MILLIMETERS.
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.
4. DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

Figure 34. 416 TEPBGA Package (2 of 2)

MPC5676R Microcontroller Data Sheet, Rev. 4

$5.2 \quad$ 516-Pin Package

The package drawings of the 516-pin TEPBGA package are shown in Figure 35 and Figure 36.

Figure 35. 516 TEPBGA Package (1 of 2)

Package Information

NOTES:

1. ALL DIMENSIONS IN MILLIMETERS.
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.
4. DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
5. PACKAGE CODES: $5193 \& 5198$.

Figure 36. 516 TEPBGA Package (2 of 2)

6 Product Documentation

This data sheet is labeled as a particular type: Product Preview, Advance Information, or Technical Data. Definitions of these types are available at: http://www.nxp.com.

The following documents are required for a complete description of the device and are necessary to design properly with the parts:

- MPC5676R RM Microprocessor Reference Manual (document number MPC5676RRM)
Appendix A Signal Properties and Muxing
The following table shows the signals properties for each pin on the MPC5676R. For each port pin that has an associated SIU_PCRn register to control its pin properties, the supported functions column lists the functions associated with the programming of the SIU_PCRn[PA] bit in the order: Primary function (P), Function 2 (F2), Function 3 (F3), and GPIO (G). See Figure 37.

Figure 37. Supported Functions Example

근0믕00	Signal Name ${ }^{2}$	$\frac{\mathrm{N}}{\mathbf{0}}$	Function ${ }^{4}$	Function Summary			$\begin{aligned} & 0 \\ & 0 \\ & \mathbb{T} \\ & \frac{\pi}{0} \end{aligned}$	Stateduring RESET ${ }^{7}$	$\begin{gathered} \text { State } \\ \text { after } \\ \text { RESET }^{8} \end{gathered}$	Package Location	
										$\stackrel{0}{7}$	$\xrightarrow{0}$
eTPU_A											
113	TCRCLKA_IRQ7_ GPIO113	P	TCRCLKA	eTPU A TCR clock	1	MH	$V_{\text {DDEH1 }}$	-/Up	-/Up	L1	K4
		A1	IRQ7	External interrupt request	1						
		A2	-	-	-						
		G	GPIO113	GPIO	I/O						
114	ETPUAO_ETPUA12_ GPIO114	P	ETPUAO	eTPU A channel	I/O	MH	$\mathrm{V}_{\text {DDEH1 }}$	-/WKPCFG	-/WKPCFG	L2	L6
		A1	ETPUA12	eTPU A channel (output only)	0						
		A2	-	-	-						
		G	GPIO114	GPIO	I/O						

Table 39. Signal Properties and Muxing Summary (continued)

$$	Signal Name ${ }^{2}$	$\begin{aligned} & \text { N } \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	Function ${ }^{4}$	Function Summary			$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \frac{\pi}{0} \end{aligned}$	Stateduring RESET ${ }^{7}$	$\begin{gathered} \text { State } \\ \text { after } \\ \text { RESET }^{8} \end{gathered}$	Package Location	
										$\stackrel{\ominus}{7}$	-
115	ETPUA1_ETPUA13_ GPIO115	P	ETPUA1	eTPU A channel	I/O	MH	$\mathrm{V}_{\text {DDEH } 1}$	-/WKPCFG	-/WKPCFG	L3	J1
		A1	ETPUA13	eTPU A channel (output only)	O						
		A2	-	-	-						
		G	GPIO115	GPIO	I/O						
116	ETPUA2_ETPUA14_ GPIO116	P	ETPUA2	eTPU A channel	I/O	MH	V DDEH1	-/WKPCFG	-/WKPCFG	L4	J2
		A1	ETPUA14	eTPU A channel (output only)	0						
		A2	-	-	-						
		G	GPIO116	GPIO	I/O						
117	ETPUA3_ETPUA15_ GPIO117	P	ETPUA3	eTPU A channel	I/O	MH	$\mathrm{V}_{\text {DDEH1 }}$	-/WKPCFG	-/WKPCFG	K1	H4
		A1	ETPUA15	eTPU A channel (output only)	O						
		A2	-	-	-						
		G	GPIO117	GPIO	I/O						
118	ETPUA4_ETPUA16_ GPIO118	P	ETPUA4	eTPU A channel	I/O	MH	$\mathrm{V}_{\text {DDEH } 1}$	-/WKPCFG	-/WKPCFG	K2	J4
		A1	ETPUA16	eTPU A channel (output only)	0						
		A2	-	-	-						
		G	GPIO118	GPIO	I/O						
119	ETPUA5_ETPUA17_ GPIO119	P	ETPUA5	eTPU A channel	I/O	MH	$\mathrm{V}_{\text {DDEH } 1}$	-/WKPCFG	-/WKPCFG	K3	H1
		A1	ETPUA17	eTPU A channel (output only)	0						
		A2	-	-	-						
		G	GPIO119	GPIO	I/O						
120	$\begin{aligned} & \text { ETPUA6_ETPUA18_ } \\ & \text { GPIO120 } \end{aligned}$	P	ETPUA6	eTPU A channel	I/O	MH	$\mathrm{V}_{\text {DDEH1 }}$	-/WKPCFG	-/WKPCFG	K4	K5
		A1	ETPUA18	eTPU A channel (output only)	0						
		A2	-	-	-						
		G	GPIO120	GPIO	I/O						

Table 39. Signal Properties and Muxing Summary (continued)

	Signal Name ${ }^{2}$		Function ${ }^{4}$	Function Summary			$\begin{aligned} & 0 \\ & \mathbb{O} \\ & \frac{\pi}{0} \\ & \hline 8 \end{aligned}$	Stateduring RESET ${ }^{7}$	$\begin{gathered} \text { State } \\ \text { after } \\ \text { RESET }^{8} \end{gathered}$	Package Location	
										$\stackrel{\ominus}{7}$	6 1 i
121	ETPUA7_ETPUA19_ GPIO121	P	ETPUA7	eTPU A channel	I/O	MH	$\mathrm{V}_{\text {DDEH1 }}$	-/WKPCFG	-/WKPCFG	J1	H2
		A1	ETPUA19	eTPU A channel (output only)	O						
		A2	-	-	-						
		G	GPIO121	GPIO	I/O						
122	ETPUA8_ETPUA20_ GPIO122	P	ETPUA8	eTPU A channel	I/O	MH	$V_{\text {DDEH1 }}$	-/WKPCFG	-/WKPCFG	J2	H3
		A1	ETPUA20	eTPU A channel (output only)	0						
		A2	-	-	-						
		G	GPIO122	GPIO	I/O						
123	$\begin{aligned} & \text { ETPUA9_ETPUA21_ } \\ & \text { GPIO123 } \end{aligned}$	P	ETPUA9	eTPU A channel	I/O	MH	$\mathrm{V}_{\text {DDEH1 }}$	-/WKPCFG	-/WKPCFG	J3	J3
		A1	ETPUA21	eTPU A channel (output only)	0						
		A2	-	-	-						
		G	GPIO123	GPIO	I/O						
124	$\begin{aligned} & \text { ETPUA10_ETPUA22_ } \\ & \text { GPIO124 } \end{aligned}$	P	ETPUA10	eTPU A channel	I/O	MH	$\mathrm{V}_{\text {DDEH1 }}$	-/WKPCFG	-/WKPCFG	J4	K6
		A1	ETPUA22	eTPU A channel (output only)	0						
		A2	-	-	-						
		G	GPIO124	GPIO	I/O						
125	ETPUA11_ETPUA23_ GPIO125	P	ETPUA11	eTPU A channel	I/O	MH	$V_{\text {DDEH1 }}$	-/WKPCFG	-/WKPCFG	H1	G1
		A1	ETPUA23	eTPU A channel (output only)	0						
		A2	-	-	-						
		G	GPIO125	GPIO	I/O						
126	$\begin{aligned} & \text { ETPUA12_PCSB1_ } \\ & \text { GPIO126 } \end{aligned}$	P	ETPUA12	eTPU A channel	I/O	MH	$\mathrm{V}_{\text {DDEH1 }}$	-/WKPCFG	-/WKPCFG	H2	J5
		A1	PCSB1	DSPI B peripheral chip select	O						
		A2	-	-	-						
		G	GPIO126	GPIO	I/O						

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39．Signal Properties and Muxing Summary（continued）

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \& \multicolumn{4}{|l|}{N} \& \multicolumn{4}{|l|}{노} \& \multicolumn{4}{|l|}{O} \& \multicolumn{4}{|l|}{${ }^{\text {오 }}$} \& \multicolumn{4}{|l|}{\pm} \& \multicolumn{4}{|l|}{$\stackrel{\sim}{0}$}

\hline \& \multicolumn{4}{|l|}{$\stackrel{ \pm}{ \pm}$} \& \multicolumn{4}{|l|}{$\stackrel{\text { m }}{\text { I }}$} \& \multicolumn{4}{|l|}{J} \& \multicolumn{4}{|l|}{N} \& \multicolumn{4}{|l|}{\％} \& \multicolumn{4}{|l|}{O}

\hline \& \multicolumn{4}{|l|}{$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \vdots \\
& \vdots \\
& \cline { 1 - 1 }
\end{aligned}
$$} \& \multicolumn{4}{|l|}{$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 2 \\
& 2 \\
& 1
\end{aligned}
$$} \& \multicolumn{4}{|l|}{$$
\begin{aligned}
& 0 \\
& \text { U } \\
& \text { U } \\
& 0 \\
& \sum_{1}^{2} \\
& y_{1}
\end{aligned}
$$} \& \multicolumn{4}{|l|}{$$
\begin{array}{|l|l}
0 \\
\text { U } \\
0 \\
0 \\
0 \\
\vdots \\
\vdots \\
\vdots
\end{array}
$$} \& \multicolumn{4}{|l|}{$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \vdots \\
& \vdots
\end{aligned}
$$} \& \multicolumn{4}{|l|}{$$
\begin{aligned}
& 0 \\
& \vdots \\
& 0 \\
& 0 \\
& 0 \\
& \vdots \\
& \sum_{1}
\end{aligned}
$$}

\hline \& \multicolumn{4}{|l|}{$$
\begin{array}{|l}
0 \\
U \\
U \\
0 \\
0 \\
\vdots \\
\vdots \\
\cline { 1 - 1 }
\end{array}
$$} \& \multicolumn{4}{|l|}{$$
\begin{aligned}
& 0 \\
& \text { U } \\
& 0 \\
& 0 \\
& 2 \\
& y_{1}^{2}
\end{aligned}
$$} \& \multicolumn{4}{|l|}{$$
\begin{aligned}
& 0 \\
& 0 \\
& \text { U } \\
& 0 \\
& 0 \\
& \vdots \\
& \vdots \\
& \cline { 1 - 1 }
\end{aligned}
$$} \& \multicolumn{4}{|l|}{} \& \multicolumn{4}{|l|}{$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \vdots \\
& \vdots \\
& \cline { 1 - 1 }
\end{aligned}
$$} \& \multicolumn{4}{|l|}{$$
\begin{array}{|l}
0 \\
0 \\
0 \\
0 \\
0 \\
\vdots \\
\sum_{1}
\end{array}
$$}

\hline ${ }_{9}$ әбеұОへ \& \multicolumn{4}{|l|}{$$
\begin{aligned}
& \stackrel{\rightharpoonup}{5} \\
& \stackrel{1}{0} \\
& > \\
& >
\end{aligned}
$$} \& \multicolumn{4}{|l|}{$$
\begin{aligned}
& \text { 곤 } \\
& \text { N } \\
& > \\
& >
\end{aligned}
$$} \& \multicolumn{4}{|l|}{} \& \multicolumn{4}{|l|}{} \& \multicolumn{4}{|l|}{$$
\begin{aligned}
& \text { 곤 } \\
& \text { 10 } \\
& > \\
& \hline
\end{aligned}
$$} \& \multicolumn{4}{|l|}{$$
\begin{aligned}
& \stackrel{\rightharpoonup}{5} \\
& \text { 1 } \\
& \stackrel{0}{0}
\end{aligned}
$$}

\hline $\mathrm{g}^{\text {®d }} K_{\perp} \mathrm{pe} \mathrm{c}_{\mathrm{d}}$ \& \multicolumn{4}{|l|}{I} \& \multicolumn{4}{|l|}{I} \& \multicolumn{4}{|l|}{I} \& \multicolumn{4}{|l|}{I ${ }^{\text {I }}$} \& \multicolumn{4}{|l|}{I} \& \multicolumn{4}{|l|}{$\stackrel{\text { I }}{ }$}

\hline ио！ฺэәл！ \& \bigcirc \& \bigcirc \& 1 \& \bigcirc \& \bigcirc \& \bigcirc \& 1 \& \bigcirc \& \bigcirc \& \bigcirc \& ｜ \& \bigcirc \& \bigcirc \& \bigcirc \& 1 \& \bigcirc \& \bigcirc \& \bigcirc \& 1 \& \bigcirc \& \bigcirc \& \bigcirc \& I \& \bigcirc

\hline \& \& \& 1 \& $$
\frac{\mathrm{O}}{\mathrm{O}}
$$ \& \& \& ｜ \& $$
\frac{\mathrm{O}}{\mathrm{O}}
$$ \& \& \& 1 \& $$
\frac{\mathrm{O}}{0}
$$ \& \& \& 1 \& $$
\frac{\mathrm{O}}{\mathrm{O}}
$$ \& \& \& 1 \& $$
\begin{array}{|l}
\mathrm{O} \\
\hline \mathrm{O}
\end{array}
$$ \& \& \& ｜ \& \bigcirc

\hline \& \& $$
\begin{aligned}
& m \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$ \& 1 \& $$
\begin{aligned}
& \hat{N} \\
& \underset{O}{O} \\
&
\end{aligned}
$$ \& \& $$
\begin{aligned}
& \pm \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$ \& 1 \& $$
\begin{aligned}
& \infty \\
& \underset{\sim}{\sim} \\
& \underset{0}{0} \\
& 0
\end{aligned}
$$ \& \& N \& 1 \& 0
7
0
0
0
0 \& \& －1 \& 1 \& $$
\begin{aligned}
& \mathrm{O} \\
& \underset{O}{0} \\
& \underline{0} \\
& 0
\end{aligned}
$$ \& \& $$
\begin{aligned}
& N \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$ \& 1 \& $$
\begin{aligned}
& -\vec{m} \\
& \underline{O} \\
& \underline{0} \\
& 0
\end{aligned}
$$ \& \& N \& 1 \& N

0
0
0
0

\hline ε ¢ \& － \& 『 \& ※ \& \bigcirc \& Q \& を \& § \& \bigcirc \& － \& 『 \& ※ \& \bigcirc \& Q \& を \& ※ \& 0 \& \bigcirc \& 『 \& § \& \bigcirc \& 0 \& 『 \& § \& \bigcirc

\hline N \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline ¢ ${ }^{\text {YOd／OId }}$ \& $\xrightarrow{\text { N}}$ \& \& \& \& $\stackrel{\sim}{\text { N}}$ \& \& \& \& － \& \& \& \& － \& \& \& \& $\stackrel{-}{7}$ \& \& \& \& N \& \& \&

\hline
\end{tabular}

MPC5676R Microcontroller Data Sheet，Rev． 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

	Signal Name ${ }^{2}$		Function ${ }^{4}$	Function Summary		$\begin{aligned} & \text { n } \\ & \stackrel{0}{2} \\ & \frac{0}{\pi} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{\mathbb{Z}} \\ & \frac{\pi}{0} \end{aligned}$	Stateduring RESET ${ }^{7}$	$\begin{gathered} \text { State } \\ \text { after } \\ \text { RESET }^{8} \end{gathered}$	Package Location	
										$\stackrel{\ominus}{7}$	-18
145	$\begin{aligned} & \text { ETPUA31_PCSC4_ } \\ & \text { GPIO145 } \end{aligned}$	P	ETPUA31	eTPU A channel	I/O	MH	$V_{\text {DDEH1 }}$	-/WKPCFG	-/WKPCFG	C2	C2
		A1	PCSC4	DSPI C peripheral chip select	0						
		A2	-	-	-						
		G	GPIO145	GPIO	1/0						
eTPU_B											
146	TCRCLKB_IRQ6_ GPIO146	P	TCRCLKB	eTPU B TCR clock	1	MH	$V_{\text {DDEH6 }}$	-/Up	-/Up	T23	V25
		A1	IRQ6	External interrupt request	1						
		A2	-	-	-						
		G	GPIO146	GPIO	1/0						
147	$\begin{aligned} & \text { ETPUBO_ETPUB16_ } \\ & \text { GPIO147 } \end{aligned}$	P	ETPUB0	eTPU B channel	1/0	MH	$\mathrm{V}_{\text {DDEH6 }}$	-/WKPCFG	-/WKPCFG	T24	V26
		A1	ETPUB16	eTPU B channel (output only)	0						
		A2	-	-	-						
		G	GPIO147	GPIO	1/O						
148	$\begin{aligned} & \text { ETPUB1_ETPUB17_- } \\ & \text { GPIO148 } \end{aligned}$	P	ETPUB1	eTPU B channel	I/O	MH	$V_{\text {DDEH6 }}$	-/WKPCFG	-/WKPCFG	T25	U22
		A1	ETPUB17	eTPU B channel (output only)	0						
		A2	-	-	-						
		G	GPIO148	GPIO	1/0						
149	$\begin{array}{\|l} \text { ETPUB2_ETPUB18_ } \\ \text { GPIO149 } \end{array}$	P	ETPUB2	eTPU B channel	I/O	MH	$V_{\text {DDEH6 }}$	-/WKPCFG	-/WKPCFG	T26	U23
		A1	ETPUB18	eTPU B channel (output only)	0						
		A2	-	-	-						
		G	GPIO149	GPIO	1/O						
150	```ETPUB3_ETPUB19_ GPIO150```	P	ETPUB3	eTPU B channel	1/0	MH	$\mathrm{V}_{\text {DDEH6 }}$	-/WKPCFG	—/WKPCFG	R23	T22
		A1	ETPUB19	eTPU B channel (output only)	0						
		A2	-	-	-						
		G	GPIO150	GPIO	1/0						

Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39．Signal Properties and Muxing Summary（continued）

	$\stackrel{\sim}{\sim}$				$\stackrel{\stackrel{\rightharpoonup}{*}}{\sim}$				$\underset{\sim}{\sim}$				N				$\underset{\text { ¢ }}{\text { ¢ }}$				$\underset{\text { ¢ }}{\text { ¢ }}$			
	$\stackrel{\stackrel{\sim}{\mathrm{N}}}{ }$				N				$\stackrel{N}{\mathrm{~N}}$				$\stackrel{0}{\underset{Z}{z}}$				$\stackrel{N}{N}$				$\underset{\Sigma}{\text { N }}$			
					$\begin{aligned} & 0 \\ & 1 \\ & u \\ & 0 \\ & 0 \\ & y_{1}^{2} \\ & \hline \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & \text { U } \\ & 0 \\ & \sum_{1}^{2} \\ & \sum_{1} \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & \text { U } \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \cline { 1 - 1 } \end{aligned}$				$\begin{array}{\|l\|l} 0 \\ U \\ U \\ 0 \\ 0 \\ \vdots \\ \vdots \end{array}$				$\begin{aligned} & 0 \\ & \text { U } \\ & \text { U } \\ & 0 \\ & \vdots \\ & \sum ⿰ 亻 ⿱ 丶 ⿻ 工 二 十 \end{aligned}$			
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & y_{1}^{2} \\ & 1 \end{aligned}$				$\begin{array}{\|l} 0 \\ 0 \\ \text { U } \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \cline { 1 - 1 } \end{array}$								$\begin{array}{\|l\|l} 0 \\ \text { U } \\ U \\ 0 \\ 0 \\ \vdots \\ \vdots \end{array}$				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & y_{1} \\ & 1 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \sum_{1}^{2} \end{aligned}$			
${ }_{9}$ әбеұо＾	$\begin{array}{\|l\|l} \hline \stackrel{\circ}{1} \\ \text { 岩 } \\ > \end{array}$				$\begin{array}{\|l\|l} \text { 운 } \\ \text { 1 } \\ \hline 0 \end{array}$				$\begin{array}{\|l\|l} \hline \stackrel{\circ}{4} \\ \text { 1 } \\ \text { > } \end{array}$				$\begin{array}{\|l\|l} \hline \stackrel{\circ}{1} \\ \text { 夏 } \end{array}$				$\begin{aligned} & \text { 운 } \\ & \text { 咱 } \end{aligned}$				¢			
$\mathrm{g}^{\text {®d }} \mathrm{K}_{\perp} \mathrm{ped}$	$\stackrel{\text { T }}{ }$				I				「				\}				IT				${ }^{\text {I }}$			
ио！ฺэәл！	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	I	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	I	\bigcirc
			1	$\begin{aligned} & \frac{0}{0} \\ & 0 \end{aligned}$			1	$\begin{aligned} & \frac{0}{0} \\ & 0 \end{aligned}$			1	$\frac{\mathrm{O}}{0}$			1	$\frac{\mathrm{O}}{\mathrm{O}}$				$\begin{aligned} & \frac{0}{0} \\ & 0 \end{aligned}$			I	$\frac{0}{0}$
			1	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{7}{7} \\ & \stackrel{y}{2} \\ & \stackrel{\rightharpoonup}{2} \\ & \underset{\sim}{2} \end{aligned}$		1	$\begin{aligned} & \infty \\ & \stackrel{n}{0} \\ & \stackrel{0}{n} \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{\sim}{N} \\ & \stackrel{\sim}{2} \\ & \stackrel{2}{\omega} \end{aligned}$	1	0 0 0 0 0 0		$\begin{aligned} & \stackrel{8}{N} \\ & \stackrel{1}{2} \\ & \stackrel{2}{\Sigma} \end{aligned}$	1	$\begin{aligned} & \mathrm{O} \\ & \underline{0} \\ & \underline{O} \\ & \hline 0 \end{aligned}$			1	$\begin{aligned} & -1 \\ & 0 \\ & \underline{0} \\ & \underline{0} \end{aligned}$			｜	N 0 0 0 0 0 0
ع ${ }^{\text {O／V／d }}$	Q	を	※	0	Q	を	※	\bigcirc	－	を	※	\bigcirc	Q	を	さ	0	\bigcirc	を	さ	\bigcirc	0	を	ホ	\bigcirc
¢ ${ }^{\text {UOd／OId }}$	$\stackrel{\sim}{\square}$				$\stackrel{\sim}{\sim}$				彔				－				$\stackrel{\rightharpoonup}{0}$				N			

Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

	Signal Name ${ }^{2}$		Function ${ }^{4}$	Function Summary			$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \frac{\pi}{0} \\ & \hline \end{aligned}$	Stateduring RESET ${ }^{7}$	$\begin{gathered} \text { State } \\ \text { after } \\ \text { RESET }^{8} \end{gathered}$	Package Location	
										$\begin{aligned} & 0 \\ & \underset{F}{\prime} \end{aligned}$	-1
454	$\begin{aligned} & \text { ETPUC13_3_IRQ4_ } \\ & \text { GPIO454 } \end{aligned}$	P	ETPUC13	eTPU C channel	I/O	MH	$V_{\text {DDEH7 }}$	-/WKPCFG	-/WKPCFG	G25	G24
		A1	IRQ4	External interrupt request	1						
		A2	-	-	-						
		G	GPIO454	GPIO	1/0						
455	ETPUC14_4_IRQ5_ GPIO455	P	ETPUC14	eTPU C channel	I/O	MH	$V_{\text {DDEH7 }}$	-/WKPCFG	-/WKPCFG	G26	G25
		A1	IRQ5	External interrupt request	1						
		A2	-	-	-						
		G	GPIO455	GPIO	1/0						
456	$\begin{aligned} & \text { ETPUC15_- } \\ & \text { GPIO456 } \end{aligned}$	P	ETPUC15	eTPU C channel	1/O	MH	$V_{\text {DDEH7 }}$	-/WKPCFG	-/WKPCFG	H23	G26
		A1	-	-	-						
		A2	-	-	-						
		G	GPIO456	GPIO	1/0						
457	ETPUC16_FR_A_TX_GPIO457	P	ETPUC16	eTPU C channel	1/0	MH	$\mathrm{V}_{\text {DDEH7 }}$	-/WKPCFG	-/WKPCFG	H24	H22
		A1	FR_A_TX	FlexRay A transfer	0						
		A2	-	-	-						
		G	GPIO457	GPIO	I/O						
458	$\begin{aligned} & \text { ETPUC17_FR_A_RX_ } \\ & \text { GPIO458 } \end{aligned}$	P	ETPUC17	eTPU C channel	1/O	MH	$\mathrm{V}_{\text {DDEH7 }}$	-/WKPCFG	-/WKPCFG	H25	H23
		A1	FR_A_RX	FlexRay A receive	1						
		A2	-	-	-						
		G	GPIO458	GPIO	I/O						
459	$\begin{aligned} & \text { ETPUC18_FR_A_TX_EN_ } \\ & \text { GPIO459 } \end{aligned}$	P	ETPUC18	eTPU C channel	1/O	MH	$\mathrm{V}_{\text {DDEH7 }}$	-/WKPCFG	-/WKPCFG	H26	H24
		A1	FR_A_TX_EN	FlexRay A transfer enable	\bigcirc						
		A2	-	-	-						
		G	GPIO459	GPIO	1/0						

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

$\begin{aligned} & 7 \\ & \underline{\alpha} \\ & 0 \\ & 0 \\ & 0 \\ & 00 \\ & 0 \end{aligned}$	Signal Name ${ }^{2}$	$\begin{aligned} & \mathrm{N} \\ & \\ & \vdots \\ & \hline \end{aligned}$	Function ${ }^{4}$	Function Summary			$\begin{aligned} & 0_{\mathbb{Q}}^{\mathbf{O}} \\ & \frac{\mathbb{T}}{0} \\ & \hline \end{aligned}$	Stateduring RESET ${ }^{7}$	$\begin{gathered} \text { State } \\ \text { after } \\ \text { RESET }^{8} \end{gathered}$	Package Location	
										$\stackrel{\ominus}{\underset{7}{7}}$	0 in
460	$\begin{aligned} & \text { ETPUC19_TXDA_ } \\ & \text { GPIO460 } \end{aligned}$	P	ETPUC19	eTPU C channel	I/O	MH	$\mathrm{V}_{\text {DDEH7 }}$	-/WKPCFG	-/WKPCFG	J23	H21
		A1	TXDA	eSCI A transmit	0						
		A2	-	-	-						
		G	GPIO460	GPIO	I/O						
461	$\begin{aligned} & \text { ETPUC20_RXDA _ } \\ & \text { GPIO461 } \end{aligned}$	P	ETPUC20	eTPU C channel	I/O	MH	$\mathrm{V}_{\text {DDEH7 }}$	-/WKPCFG	-/WKPCFG	J24	H25
		A1	RXDA	eSCI A receive	1						
		A2	-	-	-						
		G	GPIO461	GPIO	I/O						
462	$\begin{aligned} & \text { ETPUC21_TXDB_ } \\ & \text { GPIO462 } \end{aligned}$	P	ETPUC21	eTPU C channel	I/O	MH	$\mathrm{V}_{\text {DDEH7 }}$	-/WKPCFG	-/WKPCFG	J25	H26
		A1	TXDB	eSCI B transmit	0						
		A2	-	-	-						
		G	GPIO462	GPIO	I/O						
463	$\begin{aligned} & \text { ETPUC22_RXDB_ } \\ & \text { GPIO463 } \end{aligned}$	P	ETPUC22	eTPU C channel	I/O	MH	$V_{\text {DDEH7 }}$	-/WKPCFG	-/WKPCFG	J26	J22
		A1	RXDB	eSCI B receive	1						
		A2	-	-	-						
		G	GPIO463	GPIO	1/O						
464	$\begin{aligned} & \text { ETPUC23_PCSD5_ } \\ & \text { GPIO464 } \end{aligned}$	P	ETPUC23	eTPU C channel	I/O	MH	$V_{\text {DDEH7 }}$	-/WKPCFG	-/WKPCFG	K23	J23
		A1	PCSD5	DSPI D peripheral chip select	0						
		A2	MAAO	ADC A Mux Address 0	0						
		A3	MAB0	ADC B Mux Address 0	0						
		G	GPIO464	GPIO	1/O						
465	$\begin{aligned} & \text { ETPUC24_PCSD4_ } \\ & \text { GPIO465 } \end{aligned}$	P	ETPUC24	eTPU C channel	I/O	MH	$V_{\text {DDEH7 }}$	-/WKPCFG	-/WKPCFG	K24	J24
		A1	PCSD4	DSPI D peripheral chip select	0						
		A2	MAA1	ADC A Mux Address 1	0						
		A4	MAB1	ADC B Mux Address 1	0						
		G	GPIO465	GPIO	1/O						

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

	Signal Name ${ }^{2}$	$\begin{aligned} & \text { M } \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	Function ${ }^{4}$	Function Summary		$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{2}{2} \\ & \stackrel{0}{\pi} \\ & 0 \end{aligned}$		Stateduring RESET ${ }^{7}$	$\begin{gathered} \text { State } \\ \text { after } \\ \text { RESET }^{8} \end{gathered}$	Package Location	
										$\stackrel{0}{7}$	0 n
184	$\begin{aligned} & \text { EMIOS5_ETPUA5_ } \\ & \text { GPIO184 } \end{aligned}$	P	EMIOS5	eMIOS channel	I/O	MH	$V_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AD12	AF14
		A1	ETPUA5	eTPU A channel	0						
		A2	-	-	-						
		G	GPIO184	GPIO	1/0						
185	$\begin{array}{\|l} \hline \text { EMIOS6_ETPUA6_ } \\ \text { GPIO185 } \end{array}$	P	EMIOS6	eMIOS channel	I/O	MH	$V_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AE12	AE14
		A1	ETPUA6	eTPU A channel	0						
		A2	-	-	-						
		G	GPIO185	GPIO	I/O						
186	$\begin{aligned} & \text { EMIOS7_ETPUA7_ } \\ & \text { GPIO186 } \end{aligned}$	P	EMIOS7	eMIOS channel	I/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AF12	AD14
		A1	ETPUA7	eTPU A channel	0						
		A2	-	-	-						
		G	GPIO186	GPIO	I/O						
187	$\begin{array}{\|l} \hline \text { EMIOS8_ETPUA8_ } \\ \text { GPIO187 } \end{array}$	P	EMIOS8	eMIOS channel	1/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AC13	AC14
		A1	ETPUA8	eTPU A channel	0						
		A2	-	-	-						
		G	GPIO187	GPIO	I/O						
188	$\begin{aligned} & \text { EMIOS9_ETPUA9_ } \\ & \text { GPIO188 } \end{aligned}$	P	EMIOS9	eMIOS channel	1/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AD13	AF15
		A1	ETPUA9	eTPU A channel	0						
		A2	-	-	-						
		G	GPIO188	GPIO	I/O						
189	$\begin{aligned} & \text { EMIOS10_SCKD_ } \\ & \text { GPIO189 } \end{aligned}$	P	EMIOS10	eMIOS channel	1/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AE13	AE15
		A1	SCKD	DSPI D clock	0						
		A2	-	-	-						
		G	GPIO189	GPIO	1/0						

Table 39. Signal Properties and Muxing Summary (continued)

	Signal Name ${ }^{2}$	$\stackrel{N}{\substack{\mathrm{O} \\ \vdots \\ \hline}}$	Function ${ }^{4}$	Function Summary			$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \frac{\pi}{0} \end{aligned}$	Stateduring RESET ${ }^{7}$	$\begin{gathered} \text { State } \\ \text { after } \\ \text { RESET }^{8} \end{gathered}$	Package Location	
										$\begin{aligned} & 9 \\ & 7 \end{aligned}$	-
190	$\begin{aligned} & \text { EMIOS11_SIND_ } \\ & \text { GPIO190 } \end{aligned}$	P	EMIOS11	eMIOS channel	I/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AF13	AB14
		A1	SIND	DSPI D data input	1						
		A2	-	-	-						
		G	GPIO190	GPIO	I/O						
191	EMIOS12_SOUTC_ GPIO191	P	EMIOS12	eMIOS channel	0	MH	$\mathrm{V}_{\text {DDEH4 }}$	-WKPCFFG	-/WKPCFG	AF14	AD15
		A1	SOUTC	DSPI C data output	0						
		A2	-	-	-						
		G	GPIO191	GPIO	I/O						
192	$\begin{aligned} & \text { EMIOS13_SOUTD_ } \\ & \text { GPIO192 } \end{aligned}$	P	EMIOS13	eMIOS channel	O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AE14	AC15
		A1	SOUTD	DSPI D data output	0						
		A2	-	-	-						
		G	GPIO192	GPIO	I/O						
193	$\begin{aligned} & \text { EMIOS14_IRQO_ } \\ & \text { GPIO193 } \end{aligned}$	P	EMIOS14	eMIOS channel	0	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AC14	AF17
		A1	IRQ0	External interrupt request	1						
		A2	CNTXD	FlexCAN D transmit	0						
		G	GPIO193	GPIO	I/O						
194	$\begin{aligned} & \text { EMIOS15_IRQ1_ } \\ & \text { GPIO194 } \end{aligned}$	P	EMIOS15	eMIOS channel	0	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AD14	AE16
		A1	IRQ1	External interrupt request	1						
		A2	CNRXD	FlexCAN D receive	1						
		G	GPIO194	GPIO	I/O						
195	```EMIOS16_ETPUB0_ GPIO195```	P	EMIOS16	eMIOS channel	I/O	MH	$V_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AF15	AD16
		A1	ETPUB0	eTPU B channel	0						
		A2	FR_DBG[3]	FlexRay debug	O						
		G	GPIO195	GPIO	I/O						

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

	Signal Name ${ }^{2}$		Function ${ }^{4}$	Function Summary			$\begin{aligned} & 0 \\ & \mathbb{O} \\ & \frac{\pi}{0} \\ & \hline 8 \end{aligned}$	Stateduring RESET ${ }^{7}$	$\begin{gathered} \text { State } \\ \text { after } \\ \text { RESET }^{8} \end{gathered}$	Package Location	
										$\stackrel{0}{7}$	-
196	$\begin{aligned} & \text { EMIOS17_ETPUB1_ } \\ & \text { GPIO196 } \end{aligned}$	P	EMIOS17	eMIOS channel	I/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AE15	AB15
		A1	ETPUB1	eTPU B channel	O						
		A2	FR_DBG[2]	FlexRay debug	O						
		G	GPIO196	GPIO	I/O						
197	EMIOS18_ETPUB2_ GPIO197	P	EMIOS18	eMIOS channel	I/O	MH	$V_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AC15	AD17
		A1	ETPUB2	eTPU B channel	0						
		A2	FR_DBG[1]	FlexRay debug	0						
		G	GPIO197	GPIO	I/O						
198	$\begin{aligned} & \text { EMIOS19_ETPUB3_ } \\ & \text { GPIO198 } \end{aligned}$	P	EMIOS19	eMIOS channel	I/O	MH	$V_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AD15	AB16
		A1	ETPUB3	eTPU B channel	0						
		A2	FR_DBG[0]	FlexRay debug	0						
		G	GPIO198	GPIO	I/O						
199	$\begin{aligned} & \text { EMIOS20_ETPUB4_ } \\ & \text { GPIO199 } \end{aligned}$	P	EMIOS20	eMIOS channel	I/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AF16	AF16
		A1	ETPUB4	eTPU B channel	0						
		A2	-	-	-						
		G	GPIO199	GPIO	I/O						
200	$\begin{aligned} & \text { EMIOS21_ETPUB5_ } \\ & \text { GPIO200 } \end{aligned}$	P	EMIOS21	eMIOS channel	I/O	MH	$V_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AE16	AE17
		A1	ETPUB5	eTPU B channel	0						
		A2	-	-	-						
		G	GPIO200	GPIO	I/O						
201	$\begin{aligned} & \text { EMIOS22_ETPUB6_ } \\ & \text { GPIO201 } \end{aligned}$	P	EMIOS22	eMIOS channel	I/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AC16	AC16
		A1	ETPUB6	eTPU B channel	0						
		A2	-	-	-						
		G	GPIO201	GPIO	I/O						

Table 39. Signal Properties and Muxing Summary (continued)

$$	Signal Name ${ }^{2}$	$\begin{aligned} & \text { N } \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	Function ${ }^{4}$	Function Summary			$\begin{aligned} & 0 \\ & \text { O } \\ & \text { IT } \\ & \hline 0 \end{aligned}$	Stateduring RESET ${ }^{7}$		Package Location	
										$\begin{aligned} & 0 \\ & \underset{寸}{\prime} \end{aligned}$	-
202	$\begin{aligned} & \text { EMIOS23_ETPUB7_ } \\ & \text { GPIO202 } \end{aligned}$	P	EMIOS23	eMIOS channel	I/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AD16	AA16
		A1	ETPUB7	eTPU B channel	O						
		A2	-	-	-						
		G	GPIO202	GPIO	I/O						
203	$\begin{aligned} & \text { EMIOS24_PCSB0_ } \\ & \text { GPIO203 } \end{aligned}$	P	EMIOS24	eMIOS channel	I/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AF17	AC17
		A1	PCSB0	DSPI B peripheral chip select	I/O						
		A2	-	-	-						
		G	GPIO203	GPIO	I/O						
204	$\begin{aligned} & \text { EMIOS25_PCSB1_ } \\ & \text { GPIO204 } \end{aligned}$	P	EMIOS25	eMIOS channel	I/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AE17	AF18
		A1	PCSB1	DSPI B peripheral chip select	0						
		A2	-	-	-						
		G	GPIO204	GPIO	I/O						
432	$\begin{aligned} & \text { EMIOS26_PCSB2_ } \\ & \text { GPIO432 } \end{aligned}$	P	EMIOS26	eMIOS channel	I/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AD17	AE18
		A1	PCSB2	DSPI B peripheral chip select	0						
		A2	-	-	-						
		G	GPIO432	GPIO	I/O						
433	$\begin{aligned} & \text { EMIOS27_PCSB3_ } \\ & \text { GPIO433 } \end{aligned}$	P	EMIOS27	eMIOS channel	I/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AC17	AD18
		A1	PCSB3	DSPI B peripheral chip select	0						
		A2	-	-	-						
		G	GPIO433	GPIO	I/O						
434	$\begin{aligned} & \text { EMIOS28_PCSCO_ } \\ & \text { GPIO434 } \end{aligned}$	P	EMIOS28	eMIOS channel	I/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AF18	AC18
		A1	PCSC0	DSPI C peripheral chip select	I/O						
		A2	-	-	-						
		G	GPIO434	GPIO	I/O						

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

$$	Signal Name ${ }^{2}$	$\begin{aligned} & \text { N } \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	Function ${ }^{4}$	Function Summary	$\begin{aligned} & \text { 들 } \\ & \text { U. } \\ & \text { U. } \end{aligned}$		$\begin{aligned} & 0_{0} \\ & \text { O} \\ & \frac{\text { TH }}{0} \end{aligned}$	Stateduring RESET ${ }^{7}$	$\begin{gathered} \text { State } \\ \text { after } \\ \text { RESET }^{8} \end{gathered}$	Package Location	
										$\begin{aligned} & 0 \\ & 7 \end{aligned}$	-
435	$\begin{aligned} & \text { EMIOS29_PCSC1_ } \\ & \text { GPIO435 } \end{aligned}$	P	EMIOS29	eMIOS channel	I/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AE18	AB17
		A1	PCSC1	DSPI C peripheral chip select	0						
		A2	-	-	-						
		G	GPIO435	GPIO	I/O						
436	$\begin{aligned} & \text { EMIOS30_PCSC2_ } \\ & \text { GPIO436 } \end{aligned}$	P	EMIOS30	eMIOS channel	I/O	MH	$V_{\text {DDEH } 4}$	-/WKPCFG	-/WKPCFG	AD18	AF19
		A1	PCSC2	DSPI C peripheral chip select	0						
		A2	-	-	-						
		G	GPIO436	GPIO	I/O						
437	$\begin{aligned} & \text { EMIOS31_PCSC5_ } \\ & \text { GPIO437 } \end{aligned}$	P	EMIOS31	eMIOS channel	I/O	MH	$\mathrm{V}_{\text {DDEH4 }}$	-/WKPCFG	-/WKPCFG	AC18	AA17
		A1	PCSC5	DSPI C peripheral chip select	0						
		A2	-	-	-						
		G	GPIO437	GPIO	I/O						
eQADC											
-	ANAO	P	ANA0 ${ }^{9}$	eQADC A shared analog input	1	AE/updown	V ${ }_{\text {DDA_A1 }}$	ANAO	ANAO	A4	A4
-	ANA1	P	ANA1 ${ }^{9}$	eQADC A shared analog input	1	AE/updown	VDDA_A1	ANA1	ANA1	B5	B5
-	ANA2	P	ANA2 ${ }^{9}$	eQADC A shared analog input	1	AE/updown	VDDA_A1	ANA2	ANA2	C5	C5
-	ANA3	P	ANA3 ${ }^{9}$	eQADC A shared analog input	1	AE/updown	V DDA_A1	ANA3	ANA3	D6	D6
-	ANA4	P	ANA4 ${ }^{9}$	eQADC A shared analog input	1	AE/updown	VDDA_A1	ANA4	ANA4	A5	A5
-	ANA5	P	ANA5 ${ }^{9}$	eQADC A shared analog input	1	AE/updown	VDDA_A1	ANA5	ANA5	B6	B6
-	ANA6	P	ANA6 ${ }^{9}$	eQADC A shared analog input	1	AE/updown	VDDA_A1	ANA6	ANA6	C6	C6
-	ANA7	P	ANA7 ${ }^{9}$	eQADC A shared analog input	1	AE/updown	VDDA_A1	ANA7	ANA7	D7	C7

Table 39．Signal Properties and Muxing Summary（continued）

	へ	$\stackrel{\ominus}{4}$	¢	«	$\stackrel{\infty}{\circ}$	\bigcirc	\sim_{\propto}^{∞}	$\stackrel{\infty}{¢}$	8	8	$\begin{aligned} & \text { O} \\ & \hline 1 \end{aligned}$	엉	$\underset{\Delta}{-7}$	거	\tilde{J}	$\underset{\sim}{\approx}$	$\underset{\sim}{\infty}$	$\underset{\sim}{0}$	$\underset{\Delta}{m}$	$\underset{\sim}{m}$	$\underset{\underset{<}{4}}{\substack{2}}$	$\underset{~}{\underset{\alpha}{d}}$	$\underset{\sim}{\underset{\infty}{-1}}$	$\underset{J}{J}$	$\left\lvert\, \begin{aligned} & \stackrel{n}{0} \\ & \stackrel{1}{\infty} \end{aligned}\right.$	$\stackrel{ \pm}{\square}$	$\xrightarrow[\sim]{\sim}$
	\％	ט̀	¢	«	$\stackrel{\infty}{\circ}$	\bigcirc	®	$\stackrel{\infty}{\text { ® }}$	8	8	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\stackrel{7}{2}$	ت7	$\underset{\sim}{7}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\sim}$	$\underset{\Delta}{m}$	$\stackrel{m}{3}$	$\underset{\infty}{m}$	$\frac{m}{4}$	$\underset{\sim}{\underset{\sim}{2}}$	$\underset{J}{J}$	$\underset{\Delta}{\Delta}$	$\underset{~}{\underset{\pi}{~}}$	$\stackrel{n}{\infty}$	$\stackrel{\sim}{\sim}$
	$\sum_{<}^{\infty}$	$\underset{<}{8}$		$\underset{\substack{7 \\ \underset{<}{2} \\ \hline}}{ }$	$\underset{\sim}{\underset{\sim}{c}}$	$\begin{aligned} & \underset{\sim}{m} \\ & \underset{<}{2} \\ & \hline \end{aligned}$	$\underset{\substack{~}}{\underset{~}{~}}$	$\mid \stackrel{n}{\underset{\sim}{2}}$	$\begin{array}{\|l\|l} 0 \\ \underset{y}{1} \\ \underset{<}{2} \end{array}$		$\begin{aligned} & \infty \\ & \underset{\sim}{2} \\ & \underset{<}{2} \end{aligned}$	$\underset{\substack{9 \\ \underset{<}{2} \\ \hline}}{ }$		$\begin{aligned} & \underset{\sim}{\underset{N}{*}} \\ & \underset{y}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\substack{\underset{\sim}{2} \\ \underset{\sim}{c}}}{ }$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{<}{2} \end{aligned}$	$\stackrel{\sim}{n}$	$$	$\stackrel{N}{N}$	$\stackrel{\infty}{\underset{\sim}{\sim}}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{<}{2} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \substack{2 \\ <~} \end{aligned}$	$\stackrel{\substack{2 \\ \lll}}{ }$	$\begin{aligned} & \tilde{N} \\ & \sum_{<}^{2} \end{aligned}$	$\begin{gathered} m \\ \sum_{<}^{2} \\ \hline \end{gathered}$	¢
	\sum_{\ll}^{∞}	I	$\underset{\substack{0 \\ \underset{k}{\prime} \\ \hline}}{ }$	$\begin{aligned} & \underset{\sim}{7} \\ & \underset{<}{2} \end{aligned}$	$\begin{aligned} & \underset{Z}{z} \\ & \underset{\sim}{4} \\ & \hline \end{aligned}$			$\underset{\substack{n \\ \underset{\sim}{n} \\ \hline}}{ }$		$\underset{\substack{\lambda \\ \underset{<}{2} \\ \hline}}{ }$	$\underset{\substack{\infty \\ \underset{y}{c} \\ \underset{y}{c}}}{ }$	$\underset{<}{\underset{\gamma}{7}}$		$\underset{\substack{z}}{\underset{\sim}{\tilde{N}}}$	$\underset{\substack{N \\ \underset{\sim}{N}\\}}{ }$		$\underset{\substack{~ \\ \underset{\sim}{2} \\ \hline}}{ }$	$\begin{array}{\|l} \stackrel{n}{N} \\ \underset{<}{2} \end{array}$	$\begin{aligned} & 0 \\ & {\underset{\sim}{2}}^{N} \end{aligned}$	$\stackrel{N}{\underset{\sim}{2}}$	$\stackrel{\infty}{\infty}$	沗	$\underset{\substack{\mathrm{m}}}{\substack{2}}$	$\stackrel{\substack{n \\ \lll}}{ }$	$\begin{aligned} & \mathbb{N} \\ & \underset{\sim}{2} \end{aligned}$	$\sum_{<}^{\infty}$	$\underset{\text { m }}{\substack{\text { m }}}$
	－	－														$\begin{aligned} & \vec{x} \\ & \stackrel{\rightharpoonup}{\prime} \\ & > \\ & > \end{aligned}$					$\begin{aligned} & \hline 8 \\ & \substack{1 \\ 0 \\ >\\ \hline} \end{aligned}$		$\begin{array}{\|l\|l\|} \hline \stackrel{\rightharpoonup}{\infty} \\ \stackrel{1}{\prime} \\ 0 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \vec{m}_{1} \\ \hat{a}^{\prime} \\ > \end{array}$		－
${ }_{\mathrm{s}} \mathrm{Vd}^{\prime} K_{\perp} \mathrm{ped}$	亗	区	щ	㞤	㞤	щ	岸	щ	岸	区	㞤	亗	щ	亗	亗	щ	岂	亗	щ	岂	亗	亗	岂	亗	亗	岸	щ
ио！ヤวə！！	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
	${\underset{<}{c}}_{\substack{\infty \\ \hline}}$	$\underset{<}{\underset{<}{2}}$	$\underset{<}{\underset{\sim}{1}}$	$\underset{\substack{7 \\ \underset{<}{2} \\ \hline}}{ }$	$\underset{~}{\underset{Z}{2}}$	$\begin{aligned} & m \\ & \underset{y}{c} \\ & \sum_{<} \end{aligned}$	$\underset{\substack{~}}{\underset{~}{\lambda}}$	$\underset{<}{\underset{\sim}{n}} \underset{\substack{n \\ \hline}}{ }$	$\begin{aligned} & 0 \\ & \underset{\sim}{c} \\ & \underset{<}{2} \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{\sim}{2} \\ & \underset{<}{2} \end{aligned}$	$\underset{<}{\underset{\sim}{7}}$	$\underset{\substack{\mathrm{O} \\ \underset{<}{2} \\ \hline}}{ }$	$\underset{\varangle}{\underset{\sim}{\underset{N}{2}}}$	$\underset{\substack{N} \underset{\sim}{N}}{\substack{2}}$		$\begin{aligned} & \underset{\sim}{~} \\ & \underset{<}{2} \end{aligned}$	$\begin{aligned} & n \\ & \underset{4}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{N} \\ & \underset{<}{2} \end{aligned}$	$\begin{aligned} & N \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & \text { N} \\ & \underset{<}{2} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \sum_{<}^{2} \end{aligned}$	$\stackrel{\substack{m \\<\\<}}{ }$	$\begin{aligned} & \underset{N}{N} \\ & \sum_{<} \end{aligned}$	$\begin{gathered} \infty \\ \sum_{<}^{2} \end{gathered}$	
ε ¢ ${ }^{\text {O／V／d }}$	0	Q	0	0	0	0	0	0	0	0	0	0	Q	0	0	Q	0	0	0	Q	0	Q	0	0	Q	0	Q
	$\underset{<}{\infty}$	$\underset{<}{8}$	$$	$\underset{\substack{7 \\ \underset{<}{2} \\ \hline}}{ }$	$\underset{\sim}{\tilde{y}}$	$\underset{\substack{m \\ \underset{<}{4}}}{ }$		$\underset{\substack{n \\ \underset{\alpha}{\prime} \\ \hline}}{ }$	$\begin{aligned} & 0 \\ & \vdots \\ & \underset{~}{2} \\ & \ll \end{aligned}$	$\underset{\substack{\lambda \\ \vec{y} \\ \gtrless}}{ }$	$\underset{\substack{\infty \\ \underset{<}{1} \\ \hline \\ \hline}}{ }$	$\underset{\substack{9 \\ \underset{<}{\prime} \\ \hline}}{ }$			$\begin{array}{\|c} \underset{N}{N} \\ \underset{<}{2} \end{array}$		$\begin{gathered} \underset{\sim}{N} \\ \underset{<}{2} \end{gathered}$	$\begin{aligned} & n \\ & \underset{<}{2} \end{aligned}$	$$	$\stackrel{N}{N}$	$\stackrel{\infty}{N}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{<}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \sum_{4} \\ & \hline \end{aligned}$	$\stackrel{\underset{\sim}{m}}{\substack{2}}$	$\begin{aligned} & \tilde{N} \\ & \sum_{<}^{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{2} \\ \sum_{<} \end{gathered}$	¢
	1	｜	1	｜	1	｜	｜	｜	｜	｜	｜	｜	｜	｜	｜	｜	｜	｜	｜	｜	｜	｜	｜	｜	｜	｜	｜

Table 39. Signal Properties and Muxing Summary (continued)

	Signal Name ${ }^{2}$	$\stackrel{N}{\substack{\mathrm{a}}}$	Function ${ }^{4}$	Function Summary		$\begin{aligned} & \text { n } \\ & \frac{0}{\lambda} \\ & \frac{0}{\pi} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{\pi} \\ & \frac{\pi}{0} \\ & \hline \end{aligned}$	Stateduring RESET ${ }^{7}$	$\begin{gathered} \text { State } \\ \text { after } \\ \text { RESET }^{8} \end{gathered}$	Package Location	
										$\stackrel{\ominus}{7}$	0
-	AN35	P	AN35	eQADC analog input	1	AE	$V_{\text {DDA_B0 }}$	AN35	AN35	D15	D15
-	AN36	P	AN36	eQADC analog input	1	AE	$V_{\text {DDA_B1 }}$	AN36	AN36	A15	A15
-	AN37	P	AN37	eQADC analog input	1	AE	VDDA_B0	AN37	AN37	C16	C17
-	AN38	P	AN38	eQADC analog input	1	AE	$V_{\text {DDA_B0 }}$	AN38	AN38	C17	D16
-	AN39	P	AN39	eQADC analog input	1	AE	$V_{\text {DDA_B0 }}$	AN39	AN39	D16	C16
-	ANB0	P	ANB0	eQADC B shared analog input	1	AE/updown	$\mathrm{V}_{\text {DDA_B0 }}$	ANB0	ANB0	C18	C18
-	ANB1	P	ANB1	eQADC B shared analog input	1	AE/updown	$\mathrm{V}_{\text {DDA_B0 }}$	ANB1	ANB1	D17	D17
-	ANB2	P	ANB2	eQADC B shared analog input	1	AE/updown	$\mathrm{V}_{\text {DDA_B }}$	ANB2	ANB2	D18	D18
-	ANB3	P	ANB3	eQADC B shared analog input	।	AE/updown	V ${ }_{\text {DDA_B }}$	ANB3	ANB3	D19	D19
-	ANB4	P	ANB4	eQADC B shared analog input	1	AE/updown	$\mathrm{V}_{\text {DDA_B }}$	ANB4	ANB4	C19	B19
-	ANB5	P	ANB5	eQADC B shared analog input	1	AE/updown	$\mathrm{V}_{\text {DDA_B }}$	ANB5	ANB5	C20	A20
-	ANB6	P	ANB6	eQADC B shared analog input	1	AE/updown	$\mathrm{V}_{\text {DDA_B }}$	ANB6	ANB6	B19	C20
-	ANB7	P	ANB7	eQADC B shared analog input	1	AE/updown	V ${ }_{\text {DDA_B }}$	ANB7	ANB7	A20	C19
-	ANB8	P	ANB8	eQADC B analog input	1	AE	$V_{\text {DDA_B }}$	ANB8	ANB8	B20	B20
-	ANB9	P	ANB9	eQADC B analog input	1	AE	$V_{\text {DDA_B }}$	ANB9	ANB9	D20	A21
-	ANB10	P	ANB10	eQADC B analog input	1	AE	VDDA_B0	ANB10	ANB10	B21	B21
-	ANB11	P	ANB11	eQADC B analog input	1	AE	$V_{\text {DDA_B }}$	ANB11	ANB11	A21	C21
-	ANB12	P	ANB12	eQADC B analog input	1	AE	$V_{\text {DDA_B }}$	ANB12	ANB12	C21	A22
-	ANB13	P	ANB13	eQADC B analog input	1	AE	$V_{\text {DDA_B0 }}$	ANB13	ANB13	D21	B22
-	ANB14	P	ANB14	eQADC B analog input	1	AE	$V_{\text {DDA_B }}$	ANB14	ANB14	A22	D20
-	ANB15	P	ANB15	eQADC B analog input	1	AE	$V_{\text {DDA_B }}$	ANB15	ANB15	B22	C22
-	ANB16	P	ANB16	eQADC B analog input	1	AE	$V_{\text {DDA_B0 }}$	ANB16	ANB16	C22	D21

Table 39. Signal Properties and Muxing Summary (continued)

$\begin{aligned} & \text { rax } \\ & \text { nun } \end{aligned}$	Signal Name ${ }^{2}$	$\begin{gathered} \text { NO } \\ \vdots \\ \vdots \end{gathered}$	Function ${ }^{4}$	Function Summary		$\begin{aligned} & n_{0}^{\circ} \\ & \stackrel{2}{\lambda} \\ & \frac{0}{0} \\ & \hline \end{aligned}$		Stateduring RESET ${ }^{7}$	$\begin{gathered} \text { State } \\ \text { after } \\ \text { RESET }^{8} \end{gathered}$	Package Location	
$\frac{0}{0}$										$\stackrel{0}{7}$	-
-	ANB17	P	ANB17	eQADC B analog input	1	AE	$\mathrm{V}_{\text {DDA_B }}$	ANB17	ANB17	A23	D22
-	ANB18	P	ANB18	eQADC B analog input	1	AE	$V_{\text {DDA_B0 }}$	ANB18	ANB18	B23	A23
-	ANB19	P	ANB19	eQADC B analog input	1	AE	$\mathrm{V}_{\text {DDA_B0 }}$	ANB19	ANB19	C23	B23
-	ANB20	P	ANB20	eQADC B analog input	1	AE	$\mathrm{V}_{\text {DDA_B0 }}$	ANB20	ANB20	D22	C23
-	ANB21	P	ANB21	eQADC B analog input	1	AE	V ${ }_{\text {DDA_B0 }}$	ANB21	ANB21	A24	A24
-	ANB22	P	ANB22	eQADC B analog input	1	AE	$V_{\text {DDA_B0 }}$	ANB22	ANB22	B24	B24
-	ANB23	P	ANB23	eQADC B analog input	1	AE	$\mathrm{V}_{\text {DDA_B }}$	ANB23	ANB23	A25	E20
-	VRH_A	P	VRH_A	ADC A Voltage reference high	1	VDDINT	$\mathrm{V}_{\text {RH_A }}$	VRH_A	VRH_A	A12	A12
-	VRL_A	P	VRL_A	ADC A Voltage reference low	1	VSSINT	$\mathrm{V}_{\text {RL_A }}$	VRL_A	VRL_A	A11	A11
-	VRH_B	P	VRH_B	ADC B Voltage reference high	1	VDDINT	$\mathrm{V}_{\text {RH_B }}$	VRH_B	VRH_B	A19	A19
-	VRL_B	P	VRL_B	ADC B Voltage reference low	1	VSSINT	$\mathrm{V}_{\text {RL_B }}$	VRL_B	VRL_B	A18	A18
-	REFBYPCB	P	REFBYPCB	ADC B Reference bypass capacitor	1	AE	$\mathrm{V}_{\text {DDA_B0 }}$	REFBYPCB	REFBYPCB	B18	B18
-	REFBYPCA	P	REFBYPCA	ADC A Reference bypass capacitor	1	AE	$V_{\text {DDA_A1 }}$	REFBYPCA	REFBYPCA	B11	B11
-	VDDA_A0	P	VDDA_A	Internal logic supply input	1	VDDE	V ${ }_{\text {DDA_A }}$	VDDA_A0	VDDA_A0	A9	A9
-	VDDA_A1	P	VDDA_A	Internal logic supply input	1	VDDE	$V_{\text {DDA_A1 }}$	VDDA_A1	VDDA_A1	B9	B9
-	REFBYPCA1	P	REFBYPCA1	ADC A Reference bypass capacitor	1	AE	VDDA_A1	REFBYPCA1	REFBYPCA1	A10	A10
-	VSSA_A1	P	VSSA_A	Ground	1	VSSE	$\mathrm{V}_{\text {SSA_A1 }}$	VSSA_A1	VSSA_A1	B10	B10
-	VDDA_B0	P	VDDA_B	Internal logic supply input	1	VDDE	$V_{\text {DDA_B }}$	VDDA_B0	VDDA_B0	A16	A16
-	VDDA_B1	P	VDDA_B	Internal logic supply input	1	VDDE	$V_{\text {DDA_B1 }}$	VDDA_B1	VDDA_B1	B16	B16
-	VSSA_B0	P	VSSA_B	Ground	1	VSSE	$\mathrm{V}_{\text {SSA_B }}$	VSSA_B0	VSSA_B0	B17	B17
-	REFBYPCB1	P	REFBYPCB1	ADC B Reference bypass capacitor	1	AE	V ${ }_{\text {DDA_B0 }}$	REFBYPCB1	REFBYPCB1	A17	A17
FlexRay											
248	$\begin{aligned} & \text { FR_A_TX } \\ & \text { GPIO248 } \end{aligned}$	P	FR_A_TX	FlexRay A transfer	0	FS	$\mathrm{V}_{\text {DDE2 }}$	$\begin{aligned} & \text {-/Up } \\ & \text { (-/- for Rev. } 1 \\ & \text { of the device) } \end{aligned}$	$\begin{aligned} & \text {-/Up } \\ & \text { (-/- for Rev. } 1 \\ & \text { of the device) } \end{aligned}$	AD4	AD4
		A1	-	-	-						
		A2	-	-	-						
		G	GPIO248	GPIO	I/O						

Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39．Signal Properties and Muxing Summary（continued）

	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\alpha} \end{aligned}$			$$				$\stackrel{\text { N }}{\text { N }}$				N0®				さ				$\stackrel{\text { N }}{\text { N }}$			
	I			I				｜				I				I				1			
	$\stackrel{2}{2}$			$\stackrel{\varrho}{\imath}$				$\stackrel{2}{1}$				$\frac{2}{1}$				$\stackrel{2}{1}$				$\stackrel{\varrho}{\imath}$			
	$\stackrel{\varrho}{1}$			$\stackrel{2}{1}$				$\stackrel{\varrho}{1}$								$\xlongequal{\imath}$				$\stackrel{\varrho}{\imath}$			
${ }_{9}$ әберо＾	$\begin{array}{l\|l\|} \hline \stackrel{0}{0} \\ 0 \\ > \end{array}$			$\left\lvert\, \begin{gathered} \text { 亗 } \\ \text { > } \end{gathered}\right.$				$\begin{array}{\|l} 0 \\ \text { 岂 } \\ 0 \\ > \end{array}$				$\begin{array}{\|l\|} \hline 0 \\ \text { 岂 } \\ 0 \\ > \end{array}$				$\begin{array}{\|c} 0 \\ \stackrel{3}{u} \\ 0 \\ > \end{array}$				$\begin{array}{\|l\|l\|} 0 \\ \text { 夏 } \end{array}$			
${ }_{\mathrm{g}}{ }^{\text {d }} K_{\perp} \mathrm{pe}_{\text {d }}$	น			«				«				น				ц				レ			
ио！̣эəハ！	$\bigcirc \bigcirc$	1	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	I	1	\bigcirc	\bigcirc	1	｜	\bigcirc	\bigcirc	1	1	\bigcirc	\bigcirc	｜	｜	\bigcirc
		1	$\frac{0}{0}$		Address and data in mux mode．	｜	$\frac{\mathrm{O}}{\mathrm{O}}$		1	1	$\frac{\mathrm{O}}{0}$		1	｜	$\frac{\mathrm{O}}{\mathrm{O}}$		1	1	$\begin{array}{\|l} \mathrm{O} \\ \hline 0 \end{array}$		｜	｜	\bigcirc
		1	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \frac{0}{n} \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \underset{ष}{4} \\ & 0 \\ & 0 \end{aligned}\right.$		1	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \underline{O} \\ & 0 \end{aligned}$		1	｜	$\begin{aligned} & \infty \\ & \stackrel{\sim}{N} \\ & \underset{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mid} \\ & \stackrel{\rightharpoonup}{4} \\ & \vdots \\ & \vdots \\ & \stackrel{1}{4} \\ & 0 \end{aligned}$	1	1			1	1	O		1	｜	（1）
ε ¢ ${ }^{\text {P／V／d }}$	－を	※	\bigcirc	－	を	§	\bigcirc	Q	を	※	\bigcirc	－	『	※	\bigcirc	Q	を	さ	\bigcirc	Q	を	※	\bigcirc
¿ ${ }^{\text {cod／Old }}$	$\stackrel{0}{N}$			$\underset{N}{N}$				$\stackrel{\infty}{\sim}$				$\stackrel{\stackrel{\rightharpoonup}{N}}{\sim}$				$\underset{\sim}{\infty}$				$\underset{\sim}{\infty}$			

MPC5676R Microcontroller Data Sheet，Rev． 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

Table 39. Signal Properties and Muxing Summary (continued)

MPC5676R Microcontroller Data Sheet, Rev. 4
Table 39. Signal Properties and Muxing Summary (continued)

Table 39. Signal Properties and Muxing Summary (continued)

	Signal Name ${ }^{2}$	$\frac{N}{\vdots}$	Function ${ }^{4}$	Function Summary			$\begin{aligned} & 0 \\ & \text { O } \\ & \frac{\mathbb{T}}{0} \\ & 8 \end{aligned}$	Stateduring RESET ${ }^{7}$	$\begin{aligned} & \text { State } \\ & \text { after } \\ & \text { RESET }^{8} \end{aligned}$	Package Location	
										$\stackrel{O}{7}$	-
212	$\begin{aligned} & \text { BOOTCFG1_IRQ3_ } \\ & \text { GPIO212 } \end{aligned}$	P	BOOTCFG1	Boot configuration	1	MH	$\mathrm{V}_{\text {DDEH1 }}$	BOOTCFG/ Down	-/Down	N2	L3
		A1	IRQ3	External interrupt request	1						
		A2	-	-	-						
		G	GPIO212	GPIO	I/O						
213	$\begin{aligned} & \text { WKPCFG_NMI_ } \\ & \text { GPIO213 }{ }^{10} \end{aligned}$	P	WKPCFG	Weak pull configuration input	1	MH	$V_{\text {DDEH1 }}$	WKPCFG/Up	-/Up	N3	M5
		A1									
		A2	-	-	-						
		G	GPIO213	GPIO	1						
208	$\begin{aligned} & \text { PLLCFGO_IRQ4_ } \\ & \text { GPIO208 } \end{aligned}$	P	PLLCFG0	FMPLL mode configuration input	1	MH	$\mathrm{V}_{\text {DDEH } 1}$	PLLCFG/Up	-IUp	R3	M3
		A1	IRQ4	External interrupt request	1						
		A2	-	-	-						
		G	GPIO208	GPIO	I/O						
209	PLLCFG1_IRQ5_GPIO209	P	PLLCFG1	FMPLL mode configuration input	1	MH	$\mathrm{V}_{\text {DDEH1 }}$	PLLCFG/Up	-/Up	P2	L1
		A1	IRQ5	External interrupt request	1						
		A2	SOUTD	DSPI D data output	0						
		G	GPIO209	GPIO	I/O						
-	PLLCFG2	P	PLLCFG2	FMPLL mode configuration input	I	MH	$V_{\text {DDEH } 1}$	PLLCFG/ Down	$\begin{gathered} -1 \\ \text { Down } \end{gathered}$	P3	L2
-	XTAL	P	XTAL	Crystal oscillator output	O	AE	$\mathrm{V}_{\text {DD33 }}$	XTAL	XTAL	AC26	AC26
-	EXTAL	P	EXTAL	Crystal oscillator input	1	AE	$\mathrm{V}_{\text {DD33 }}$	EXTAL	EXTAL	AB26	AB26
229	D_CLKOUT	P	D_CLKOUT	EBI system clock output	0	F	$\mathrm{V}_{\text {DDE9 }}$	CLKOUT/ Enabled	CLKOUT/ Enabled	-	AF12
214	ENGCLK	P	ENGCLK	EBI engineering clock output Note: EXTCLK (External clock input) selected through SIU register)	O	F	$\mathrm{V}_{\text {DDE2 }}$	ENGCLK/ Enabled	ENGCLK/ Enabled	AD1	AD1
JTAG and Nexus (see footnote ${ }^{11}$ about resets)											
-	EVTI	- ${ }^{12}$	EVTI	Nexus event in	1	F	$V_{\text {DDE2 }}$	-/Up	EVTI/Up	T4	V1

Table 39. Signal Properties and Muxing Summary (continued)

Table 39. Signal Properties and Muxing Summary (continued)

Table 39．Signal Properties and Muxing Summary（continued）

¢ ¢ 9 9	\pm				$\stackrel{\text { ® }}{ }$				$\underset{4}{4}$				$\underset{\mathbb{Z}}{\mathbb{Z}}$				$\stackrel{m}{4}$				9	$\stackrel{1}{9}$	$\stackrel{9}{3}$	$\underset{\sim}{\underset{\alpha}{<}}$	N	蓠	毎	
®ั	$\stackrel{\sim}{\sim}$				$\overrightarrow{\mathbb{K}}$				$\underset{\mathbb{K}}{N}$				$\underset{\mathbb{Z}}{\mathbb{K}}$				\pm				N	$\stackrel{\sim}{\bullet}$	枵	$\begin{array}{\|l\|l\|} \stackrel{\sim}{<} \\ \hline \end{array}$	$\underset{\sim}{\tilde{\alpha}}$	安	癷	
	$\underset{\uparrow}{\substack{0 \\ 0}}$				$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$				$\left\lvert\, \begin{aligned} & \stackrel{y}{c} \\ & 0 \\ & \end{aligned}\right.$				$\begin{aligned} & \text { n } \\ & 0 \\ & \\ & \end{aligned}$								$\begin{aligned} & \overline{1} \\ & 0 \\ & \underset{\sim}{u} \\ & \underline{n} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \underset{\sim}{\text { 人}} \end{aligned}$	$\begin{aligned} & \frac{1}{u} \\ & 0 \\ & \vdots \\ & \vdots \\ & \end{aligned}$	$\frac{\stackrel{\circ}{2}}{\stackrel{\rightharpoonup}{\ominus}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \mathrm{O} \end{aligned}$	$\stackrel{\circ}{\sum}$	
	$\stackrel{3}{0}$				$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 30 \\ & \\ & \hline 1 \end{aligned}$				$\stackrel{3}{0}$								$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{3}{0}$	$\begin{aligned} & 30 \\ & 0 \\ & \frac{3}{0} \end{aligned}$		$\stackrel{\cap}{\stackrel{\rightharpoonup}{2}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \mathrm{O} \end{aligned}$	$\sum_{i}^{\stackrel{N}{N}}$	
	$\begin{aligned} & \text { ั̈ } \\ & \text { > } \end{aligned}$												$\begin{aligned} & \text { జ̈ } \\ & \text { خ } \end{aligned}$				$\begin{gathered} \text { జ̈ } \\ \text { > } \end{gathered}$				＞	＞	＞	＞	）	＞	＞	
$\mathrm{g}^{\text {əd }} K_{\perp} \mathrm{pe}_{\text {d }}$	น				เ				น				ц				น				น	ц ц		ц	ц и		น	
ио！ฺэə！】	0	1	1	\bigcirc	0	1	｜	\bigcirc	0	1	｜	\bigcirc	\bigcirc	1	1	\bigcirc	\bigcirc	1	｜	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	－	
		1	1	$\frac{0}{0}$		1	I	$\frac{0}{0}$		1	1	$\frac{\mathrm{O}}{\mathrm{O}}$		1	1	$\frac{0}{0}$		｜	｜	$\frac{0}{0}$								
		1	1	$\begin{aligned} & \text { N } \\ & \underline{O} \\ & \end{aligned}$	$\begin{aligned} & \underset{\sim}{I} \\ & \underset{\sim}{O} \\ & \underset{\Sigma}{n} \end{aligned}$	1	\｜	$\begin{aligned} & \underset{N}{N} \\ & \underline{0} \\ & 0 \end{aligned}$	$\begin{array}{\|l} { }_{2}^{7} \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	1	1	$\begin{aligned} & \mathbb{N} \\ & \underset{N}{0} \\ & \underline{0} \\ & 0 \end{aligned}$		1	1		O	1	｜	$\begin{aligned} & \text { H } \\ & \underset{N}{0} \\ & \underline{0} \\ & 0 \end{aligned}$		$\begin{aligned} & \underset{A}{A} \\ & \underset{\sim}{3} \\ & \underset{\Sigma}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\text { 人̀ }} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{U}}}{ }$	$\stackrel{\bar{O}}{\vdash}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	\sum_{1}^{∞}	
ε ¢ ${ }^{\text {O／V／d }}$	${ }_{1}$	を	※	\bigcirc	${ }_{7}$	を	๕	\bigcirc	$\underset{1}{1}$	を	さ	\bigcirc	${ }_{1}$	を	๕	\bigcirc	${ }_{1}$	『	※	\bigcirc	$\overbrace{1}$	$\overbrace{1}$	$\overbrace{1}$	$\overbrace{1}$	$\overbrace{1}$	${ }_{1}$	$\overbrace{1}$	
					$\begin{aligned} & \underset{\sim}{N} \\ & \underline{N} \\ & \underline{0} \\ & 0 \\ & \tilde{N}^{\prime} \\ & 0 \\ & \end{aligned}$				$\begin{aligned} & \tilde{N} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & N_{1} \\ & 0 \\ & 0 \\ & \end{aligned}$								H 0 0 0 0 0 10 0 0 2				$\left\lvert\, \begin{gathered} 8 \\ \underset{\sim}{u} \\ \underset{n}{n} \\ \hline \end{gathered}\right.$	$\\| \begin{aligned} & -1 \\ & \underset{\sim}{u} \\ & \sum_{n} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{a}} \end{aligned}$	$\underset{\sim}{\mathrm{U}}$	$\bar{\square}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	\sum_{1}^{∞}	
¢ ${ }^{\text {yOd／Old }}$	～				$\underset{\sim}{\sim}$				$\underset{\sim}{\sim}$				$\underset{\sim}{N}$				$\underset{\sim}{\text { N }}$				$\underset{\sim}{\underset{N}{2}}$	$\stackrel{\sim}{N}$	$\stackrel{\sim}{N}$	1	｜	$\stackrel{\sim}{\sim}$	1	

Table 39. Signal Properties and Muxing Summary (continued)

	Signal Name ${ }^{2}$	$\begin{aligned} & \text { M } \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	Function ${ }^{4}$	Function Summary		$\begin{aligned} & \text { n } \\ & \frac{0}{\lambda} \\ & \frac{0}{\pi} \\ & \hline \end{aligned}$	$\begin{aligned} & 0_{0}^{0} \\ & \frac{\pi}{0} \\ & \frac{0}{0} \end{aligned}$	Stateduring RESET ${ }^{7}$	$\begin{gathered} \text { State } \\ \text { after } \\ \text { RESET }{ }^{8} \end{gathered}$	Package Location	
										$\begin{aligned} & 9 \\ & \underset{\gamma}{2} \end{aligned}$	$$
-	JCOMP	-12	JCOMP	JTAG TAP controller enable	1	F	$V_{\text {DDE2 }}$	JCOMP/Down	JCOMP/Down	R1	U2
-	TEST	-	TEST	Test mode select (not for customer use)	1	F	$V_{\text {DDEH1 }}$	TEST/Down	TEST/Down	B4	B4
-	VDDSYN	-	VDDSYN	Clock synthesizer power input	1/O	VDDE	$\mathrm{V}_{\text {DDSYN }}$	VDDSYN	VDDSYN	AD26	AD26
-	VSSSYN	-	VSSSYN	Clock synthesizer ground input	1	VSSE	$\mathrm{V}_{\text {DDSYN }}$	VSSSYN	VSSSYN	AA26	AA26
-	VSTBY	-	VSTBY	SRAM standby power input	1	VHV	$V_{\text {DDEH1 }}$	VSTBY	VSTBY	M4	M4
-	REGSEL	-	REGSEL	Selects regulator mode (Linear/Switch mode)	I	AE	$V_{\text {DDREG }}$	REGSEL	REGSEL	W23	W23
-	REGCTL	-	REGCTL	Regulator controller output to base/gate of power transistor	O	AE	$\mathrm{V}_{\text {DDREG }}$	REGCTL	REGCTL	Y26	Y26
-	VSSFL	-	VSSFL	Tie to $\mathrm{V}_{\text {SS }}$	1	VSS	$V_{\text {DDREG }}$	VSSFL	VSSFL	AB25	AB25
-	VDDREG	-	VDDREG	Source voltage for on-chip regulators and Low voltage detect circuits	1	VDDINT	$V_{\text {DDREG }}$	VDDREG	VDDREG	AA25	AA25

The GPIO number is the same as the corresponding pad configuration register (SIU_PCRn) number in pins that have GPIO functionality. For pins that do not have GPIO functionality, this number is the PCR number.
2 The primary signal name is used as the pin label on the BGA map for identification purposes. However, the primary signal function is not available on all devices and is indicated by a dash in the following table columns: Signal Functions, P/F/G, and I/O Type.
3 P/A/G stands for Primary/Alternate/GPIO . This column indicates which function on a pin is Primary, Alternate 1, Alternate 2, (Alternate n) and GPIO.
4 Each line in the Function column corresponds to a separate signal function on the pin. For all device I/O pins, the primary, alternate, or GPIO signal functions are designated in the PA field of the SIU_PCRn registers except where explicitly noted
$5 \mathrm{MH}=$ High voltage, medium speed
F = Fast speed
AE A Alog with ESD protection circuitry (up/down = pull up and pull down circuits included in the pad)
VHV = Very high voltage
6 VDDE (fast I/O) and VDDEH (slow I/O) power supply inputs are grouped into segments. Each segment of VDDEH pins can connect to a separate $3.3-5.0 \mathrm{~V}$ $(+5 \% /-10 \%)$ power supply input. Each segment of VDDE pins can connect to a separate $1.8-3.3 \mathrm{~V}(\pm 10 \%)$ power supply.
7 All pins are sampled after the internal POR is negated. The terminology used in this column is: O-output, I - input, Up - weak pull up enabled, Down - weak pulldown enabled, Low - output driven low, High - output driven high, ABS - Auto Baud Select (during Reset or until JCOMP assertion). A dash on the left side of the slash denotes that both the input and output buffers for the pin are off. A dash on the right side of the slash denotes that there is no weak pull up/down enabled on the pin. The signal name to the left or right of the slash indicates the pin is enabled.
8 The Function After Reset of a GPI function is general purpose input. A dash on the left side of the slash denotes that both the input and output buffers for the pin are off. A dash on the right side of the slash denotes that there is no weak pull up/down enabled on the pin.
9 During and just after POR negates, internal pull resistors can be enabled, resulting in as much as 4 mA of current draw. The pull resistors are disabled when the system clock propagates through the device

[^1]
Appendix B Revision History

Table 40 describes the changes made to this document between revisions.
Table 40. Revision History

Revision	Date	Description
Rev 1	5 Aug 2011	Initial customer release
Rev 2	21 Dec 2011	Added information about specs 1a through 1d in the PMC Electrical Specifications table. Updated the footnote reference (changed from ${ }^{13}$ to ${ }^{14}$) of spec 18 of the PMC Electrical Specifications table. Updated the Operating Current 5.0 V Supplies @ fsys $=180 \mathrm{MHz}$ VDDA Max value (changed from 30 to 50). Updated footnote ${ }^{1}$ of the VDD33 Pad Average DC Current table (changed IDDE to IDD33). Updated the pF value of 11 SRC/DSC Fast with Slew Rate (changed from 2.6 to 200) in the Pad AC Specifications (VDDEH $=5.0 \mathrm{~V}$, VDDE $=3.3 \mathrm{~V}$) table. Added a footnote for ANAO-ANA7 $\left({ }^{9}\right)$ functions in the "Signal Properties and Muxing Summary" table. Added a footnote for MDO0-MDO15 $\left({ }^{14}\right)$ and MSEOO functions in the "Signal Properties and Muxing Summary" table. Updated figure numbers $25,27,29$, and 31 : Added specs 1-4. Changed the title of the "PFCPR1 Settings" table to "BIUCR1/BIUCR3". Added a new row "Load" under "Termination" in the "DSPI LVDS Pad Specification" table. Updated the "Max" and "Typical" values of "Delay, Z to Normal", "Rise/Fall Time", and "Data Frequency" in the "DSPI LVDS Pad Specification" table. Changed " $V_{\text {DDE }}$ " to " $V_{\text {DDEH" }}$ in footnote ${ }^{10}$ of the "DC Electrical Specifications" table. Made the following changes in the "DSPI Timing" table: - Update the minimum peripheral bus frequencies for "Data Setup Time for Inputs" and "Data Hold Time for Outputs". - Updated the maximum peripheral bus frequencies for "Data Valid (after SCK edge)". - Added "Master (LVDS)" information for "Data Valid (after SCK edge)" and "Data Hold Time for Outputs". Changed the minimum voltage value of the "I/O Supply Voltage (fast I/O pads)" from "1.62 V" to "3.0 V" in the "DC Electrical Specifications" table. Changed " $\mathrm{V}_{\text {DDE }}$ " values from "1.62 V to 1.98 V " to "3.0 V to 3.6 V " in footnote ${ }^{1}$ of the "Pad AC Specifications ($\left.\mathrm{V}_{\mathrm{DDEH}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDE}}=3.3 \mathrm{~V}\right)$ " table. Removed voltage ranges "1.62 V-1.98 V" and "2.25 V-2.75 V" from "Fast I/O Weak Pull Up/Down Current" in the "DC Electrical Specifications" table.

Revision History

Table 40. Revision History (continued)

Revision	Date	Description
Rev 3	10 August 2012	Added minimum and maximum "Nominal bandgap reference voltage" values in the "PMC Electrical Specifications" table. Updated the maximum "Medium I/O Output Low Voltage" value (changed from $0.2 \times \mathrm{V}_{\text {DDEH }}$ to $0.2 \times \mathrm{V}_{\text {DDEH }}$ and $0.15 \times \mathrm{VDDEH}$) in the "DC Electrical Specifications" table, moved reference to the footnote ${ }^{10}\left(\mathrm{I}_{\mathrm{OH}} \mathrm{s}=\{11.6\} \mathrm{mA}\right.$ and $\mathrm{I}_{\mathrm{OL} _\mathrm{S}}=\{17.7\} \mathrm{mA}$ for $\{$ medium I / O with $\mathrm{V}_{\text {DDEH }}=4.5 \mathrm{~V}$; $\mathrm{IOH}_{\mathrm{S}}=\{5.4\} \mathrm{mA}$ and $\mathrm{I}_{\mathrm{OL} \text { S }}=\{8.1\} \mathrm{mA}$ for \{medium I / O with VDDEH $=3.0 \mathrm{~V})$ to " $0.2 \times \mathrm{V}_{\text {DDEH }}-$ ", and added a new footnote ${ }^{11}(\mathrm{IOL}$ S $=2 \mathrm{~mA})$ to " $0.15 \times \mathrm{V}_{\text {DDEH }}$ ". Updated footnote ${ }^{9}\left(\mathrm{I}_{\mathrm{OH}_{-} \mathrm{F}}=\{12,20,30,40\} \mathrm{mA}\right.$ and $\mathrm{I}_{\mathrm{OL}} \mathrm{F}=\{24,40,50,65\} \mathrm{mA}$ for $\{00,01,10,11\}$ drive mode with $\mathrm{V}_{\text {DDE }}=3.0 \mathrm{~V}$): Removed " $\mathrm{IOH}_{-F}=\{7,13,18,25\} \mathrm{mA}$ and $\mathrm{I}_{\text {OL_F }}=\{18,30,35,50\} \mathrm{mA}$ for $\{00,01,10,11\}$ drive mode with $\bar{V}_{\text {DDE }}=2.25 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OH}=\mathrm{F}}=\{3,7,10,16\} \mathrm{mA}$ and $\mathrm{I}_{\mathrm{OL}-\mathrm{F}}=\{12,20,27,35\} \mathrm{mA}$ for $\{00,01,10,11\}$ drive mode with $V_{D D E}=1.62 \mathrm{~V}^{\prime \prime}$. Added minimum and maximum values to all rows of the "Power Management Control (PMC) Specification" table. Updated the "Accuracy" temperature values in the "Temperature Sensor Electrical Specifications" table: Changed "-40 C to 100 C to 40 C to 150 C, removed the correspnding "Typ" value, removed "100 C to 150 C, and added minimum (10) and maximum (+10) values. Added a new section "ADC Internal Resource Measurements" and moved "Power Management Control (PMC) Specification", "Standby RAM Regulator Electrical Specifications", "ADC Band Gap Reference / LVI Electrical Specifications", and "Temperature Sensor Electrical Specifications" tables to the section. Changed "Minimum Data Retention at $25^{\circ} \mathrm{C}$ ambient temperature" to "Minimum Data Retention at $85^{\circ} \mathrm{C}$ ambient temperature" in the "Flash EEPROM Module Life" table. Added the following note after "Flash Program and Erase Specifications (Pending Si characterization)" table in the "C90 Flash Memory Electrical Characteristics" section: "The low, mid, and high address blocks of the flash arrays are erased (all bits set to 1) before leaving the factory. Updated the "DSPI LVDS Pad Specification" table: Changed maximum "Load" value from " 25 " to " 32 "; minimum values for "Differential Output Voltage SRC=0b00 or 0b11, SRC=0b01, SRC=0b10" from "150, 90, 160" to "215, 170, 260"; "Transmission lines (Differential) to "Termination Resistance"; "Zc" to "RLoad"; and added the following footnote: "The termination resistance spec is not meant to specify the receiver termination requirements. They are there to establish the measurement criteria for the specs in this table. As per the TIA/EIA-644A standard, the LVDS receiver termination resistance can vary from 90 to 132Ω.
Rev 4	21 January 2016	Added a table "Flash Memory AC Timing Specifications". Updated the min and max values from -10 and +10 to -20 and +20 for "Accuracy" in the "Temperature Sensor Electrical Specifications" table.

How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, inc. Reg. U.S. Pat. \& Tm. Off. the power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2016. All rights reserved.

[^0]: 1 Typical endurance is evaluated at $25^{\circ} \mathrm{C}$. Product qualification is performed to the minimum specification. For additional information on the NXP definition of Typical Endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory.
 2 Ambient temperature averaged over duration of application, not to exceed product operating temperature range.

[^1]: ${ }^{11}$ Nexus reset is different than system reset; MDOO-11 are enabled in RPM or FPM trace modes, while MDO12-15 are enabled in FPM trace mode only. MSEO and MCKO are also dependent on trace (RPM or FPM) being enabled.
 ${ }^{12}$ The Nexus pins don't have a "primary" function as they are not configured by the SIU. The pins are selected by asserting JCOMP and configuring the NPC. SIU values have no effect on the function of these pins once enabled.
 ${ }^{13}$ MCKO is disabled from reset; it can be enabled from the tool (controlled by Nexus NPC_PCR register).
 ${ }^{14}$ Do not connect pin directly to a power supply or ground.
 ${ }^{15}$ While JCOMP is negated, the MDOO pad is pulled up because of the default values in its SIU PCR. When JCOMP is asserted, the MDOO pad is enabled as an output and goes low when the system clock is present.

