h -

L |

e6500 Core Reference Manual

Supports
e6500

E6500RM
Rev 0
06/2014

freescale”

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Document Number: E6500RM

Rev 0, 06/2014

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,
Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,
QorlQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,
CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorlQ Qonverge, QUICC
Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are
trademarks of Freescale Semiconductor, Inc. All other product or service names are
the property of their respective owners. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© 2014 Freescale Semiconductor, Inc.

~ BUILTON

@,

Z“freescale’

Contents

Paragraph
Number Title
About this book
AUAICIICE ..ttt ettt st et s e e
OFZANIZAIONeiiiieieiieeeiie ettt et et e et ee et e et eeeateee et eesabeeesabeeesaseeas
SugeSted TEAAINZ ..ceevveeeiieieiie ettt e e
General INfOrmation.........cccueeiiiriienieeie et
Related dOCUMENTAtIONcooveeriiieiiiiieiie et
CONVENTIONS ...ttt ettt ettt et et s e e e e e e
Terminology CONVENTIONScccuvviiriieeiiie et et eetee et et ee e e e saie e
Chapter 1
6500 Overview
1.1 OVEIVIEW ..ttt ettt ettt ettt et et sr e e e
1.2 Feature SUMMATYccciiiiiiiiiiie ettt
1.3 INSruction fIOWcoc.eiiiiiiii e
1.4 Programming model OVEIVIEWcccueeeiiiiiiiieiiie et
1.4.1 Register model OVEIVIEWccovuiiiiiiiiiiiecie ettt
1.4.2 Instruction MOdel OVEIVIEWcccccoviirviiiiieiiiieniieeiececee e
1.5 Summary of differences between previous €500 family cores
1.5.1 Changes from e500vV2 t0 €500mMCccovvreerieeiiiieeiiie et
1.5.2 Changes from e500mc t0 €5500cceeeeiiieiiieeiiie et
1.5.3 Changes from €5500 t0 €6500ccceeeriieeiieiiiie et
Chapter 2
Register Model
2.1 OVEIVIEW ..ttt ettt ettt ettt e et et e e e e
2.2 €6500 register MOdel...........oooiiiiiiiiiiiiie e
2.2.1 O4-DIt TEZISTETS ..vvvieenirieeiiiieeitie et ee et e et eesatee st ee st ee st eesabeeesabeeessneennes
2.2.2 Special-purpose registers (SPRS)coovuiirriiiniiiiiiieiieeeeeeeeeees
2221 Register mapping in the guest—supervisor state..........c.ccceereueeerveennnne.
223 Memory-mapped registers (MMRS)coooiiviiiiiiiiiiniieieeeeeeees
2231 Synchronization requirements for memory-mapped registers
2.2.4 Thread management registers (TMRS)ccccooviiiiiiiniiiiiiiiieiees
2.3 Registers for INtE€Zer OPETatioNnsc.eeevvieeruiieniieeniieereesieee e e sieee e
2.3.1 General-purpose registers (GPRS)coocuiiviiiiiiiiiiiiiiiccee e
2.3.2 Integer Exception (XER) re@iStercccveevieeriiieiiiie e

€6500 Core Reference Manual, Rev 0

Page
Number

Freescale Semiconductor

Contents

Paragraph Page
Number Title Number
24 Registers for floating-point OPETAtIONSccveervieeriieeiiieeiiiesieeesieee st eeeiieeesereessaaeas 2-16
24.1 Floating-point registers (FPRS)......ccccuiiiiiiiiiiiie et 2-17
24.2 Floating-Point Status and Control (FPSCR) regiSter..........ccccevvuiivrieennieeniieeniieene 2-17
2.5 Registers fOr VECIOT OPETALIONSeeeruiieiiiiieeiiieitieeitee et ee et ee et ee st ee st eesabeeesabeeeeaeas 2-17
2.5.1 Vector reiStErS (VRS)..coiuiiiiieieie et 2-17
2.5.2 Vector Status and Control (VSCR) r€@iStercoevveeeriieiiiieiiiieiieieseee e 2-17
2.6 Registers for branch OPErationsceccueeeiieeriiieiiiie et 2-18
2.6.1 Condition (CR) TEZISETeevuvieeiiieeiiie ettt ettt ettt e st eesaae e s tae e taeeaaeeenaees 2-18
2.6.2 Link (LR) TEZISTOT ..eeitiiiiiieieiieeeiie ettt et ettt et et sttt st e st e e sabe e e e 2-18
2.6.3 COUNE (CTR) TEZISTET ..veennrieeiie ettt ettt et et ee et ee et e e st e e sabeeesabeessabeesnaseennsee 2-18
2.7 Processor CONLIOL TEZISTETS ...eciuuviiriieeiiieetie ettt et ettt e e st et eesabe e e saaeessae s 2-18
2.7.1 Machine State (IMSR) TEZISLETueiiiiieiiie ettt ettt 2-19
2.7.2 Machine State Register Protect (MSRP) regiSter......cccovvuviiriiiiniiiiiiieenieeeiieeeiie e 2-20
2.7.3 Embedded Processor Control (EPCR) re@iSter.........ccevvieeiiieniiiienieinnieeenieeeiiees 2-21
2.7.4 Branch Unit Control and Status (BUCSR) 1€ZIStErcccveeviivieriiiiiiiierieeeriieeeiieenne 2-21
2.7.5 Hardware Implementation-Dependent O (HIDO) register..........cccoeceevvieernieennneennen. 2-22
2.7.6 Core Device Control and Status (CDCSRO) regiSter.........covvuvevrueerrieennieenniieeniieenns 2-23
2.7.7 Power Management Control 0 (PWRMGTCRO) register........ccceevvueernieennieennnreennee 2-24
2.7.8 Processor Version (PVR) T@ZISIETueiiiiiiiieiiiie ettt 2-24
2.7.9 System Version (SVR) T@ZISIETcevuiiiiiiieiiie ittt ettt e e 2-25
2.7.10 Chip Identification (CIR) T@ZISIETccevuiieiiiieeiiieeitie ettt e e 2-25
2.7.11 Shifted CCSRBAR (SCCSRBAR) re€ZISIErcc.veruieiiieiieeiieeieeriieeiie e eie e e eene 2-25
2.8 TIMET TEZISLEI'S ..t euutieeieieeeiee et et ee et ee et ee ettt et e et ee et eestbeeessbeeesabeeessbeeessbeesssseennseeas 2-26
2.8.1 Timer Control (TCR) TEZISIET ..eeuvuiiriieeiiie ettt ettt e e e 2-27
2.8.2 Timer Status (TSR) T@ZISIETeeeiiiiiiie et 2-27
2.8.2.1 Watchdog Timer Reset Status (WRS) fieldccccoeiiiiiiiiiniiinieeeee 2-27
2.8.2.2 Watchdog Interrupt Status (WIS) and Enable Next Watchdog (ENW) fields 2-27
2.8.3 Time base registers (TBU and TBL)......cc.cooooiiiiiiiiiiiiiiieeeeeeeeee e 2-27
2.84 Decrementer (DEC) T@ZISLETcccuviiiiiieeiiie ettt ettt ettt e 2-28
2.8.5 Decrementer Auto-Reload (DECAR) re@iSter........coovveeeviieeiiieriiiiinieeesieeeeiieeeiieenne 2-28
2.8.6 Alternate time base registers (ATBL and ATBU)ccccoviiiiiiiiiiiiiiieeeeeieee 2-28
2.9 INEETTUPE TEZISTETS .t ittt ettt et ettt ettt et et e st e e sabe e e sabeeesabeeesabeesssbeesseeas 2-29
2.9.1 Save/restore registers (XSRRO/XSRRIT) ...cooouiiiiiiiiiiiiiiiiieeeeeceeeee e 2-29
2.9.2 (Guest) Data Exception Address (DEAR/GDEAR) regiSters.........cccevvveernieennueeennnn 2-30
293 Logical Page Exception (LPER/LPERU) re@iSterccccoevuveeriiinnieennieeniieeniieenns 2-30
294 (Guest) Interrupt Vector Prefix (IVPR/GIVPR) registers........ccccvvveerviiernieennieennnn 2-31
2.9.5 (Guest) Interrupt Vector Offset (IVORS/GIVORS) registers........cooceevvveernveennueeennnn 2-31
2.9.6 (Guest) External Proxy (EPR/GEPR) regiSterscccccuveiiieriieeniiinnieeenieeesieeenne 2-32
2.9.7 (Guest) Exception Syndrome (ESR/GESR) regiStersoocuvevvieirnieennieennieeniieennn 2-33
2.9.8 (Guest) Processor ID (PIR/GPIR) Te€ZISterSc..ceevuierriiiriiiienieeeeieeeeiieeesiie e 2-35
2.9.9 Machine-check address registers (MCAR/MCARU/MCARUA)......ccccccevvveerineennee. 2-35

€6500 Core Reference Manual, Rev 0

iv Freescale Semiconductor

Contents

Paragraph Page
Number Title Number
2.9.10 Machine Check Syndrome (MCSR) re€@iStercccverriiirrieieniiinnieeeriieeeiie e e 2-36
2.10 Software-use SPRs (SPRGs, GSPRGs, and USPRGO)ccoovevvvvivniniieiiiieiiireeneee. 2-39
2.11 LT CACRhE TEEISLETSeeeeuiiieeiiiie ettt ettt et e st e e e e e sabe e s sabeeeeae 2-40
2.11.1 L1 Cache Control and Status O (L1CSRO) r€ZISter.....cccuvveruiieriiiirieeeniieeeriie e 2-40
2.11.2 L1 Cache Control and Status 1 (LTCSR1) 1€ZISter.....cccuvtvruiieniiienieieiieeerie e 2-40
2.11.3 L1 Cache Control and Status 2 (LTCSR2) 1€ZISter....ccccuvteruiieniiienieeeriieeeriieeeive e 2-41
2.11.4 L1 Cache Configuration O (LICFGO) T€ZIStETcevvuvieriiieriiieriieeriieeeriieeeiieesiie e 2-41
2.11.5 L1 Cache Configuration 1 (LICFG1) r€ZiSter......cceviuiieriiierieieniieeeiieeeriieeeiie e 2-42
2.12 L2 CACRE TEEISLETSeeeeiiiie ettt ettt sttt e e e s sabe e e sabeeeeae 2-43
2.12.1 L2 Configuration 0 (L2CFGO) T@ZISIETcccuveeiiieeiiieeieie ettt e e 2-43
2.12.2 L2 Cache Control and Status 0 (L2CSRO) r€ZiSter.....cccveerrieeriiieiiiienieee e 2-44
2.12.3 L2 Cache Control and Status 1 (L2CSR1T) re€ZiSter.....ccccvvvrrieeriiiriiiieneee e 2-47
2.12.4 L2 cache partitioning r@ZISTETSueeruvreerrieeieeiieetee e ee et ee st eesieeesabeeesabeeesabeeseee 2-48
2.12.4.1 L2 cache partitioning identification registers (L2PIRN)ccccccovvieivniiinniinnnnen. 2-50
2.12.4.2 L2 cache partitioning allocation registers (L2PARN)ccccovviiiviiiniieinnicenen. 2-51
2.12.4.3 L2 cache partitioning way registers (L2PWRN)ccooceevviiinniinniiiiiieeieee, 2-53
2.12.5 L2 @TTOT TEEISTETS ...t tetieeeeie et eette et et ete et e et e et ee et eesabeeesabeeessbeessabeesnsseannses 2-54
2.12.5.1 L2 Cache Error Disable (L2ZERRDIS) regiSter.........coovuiernieinnieennieeeieeeiie e, 2-54
2.12.5.2 L2 Cache Error Detect (L2ZERRDET) r€@iSterccovveerriieernieeiniieeeiieeeiieeeienn 2-55
2.12.5.3 L2 Cache Error Interrupt Enable (L2ZERRINTEN) register.........ccecceevvieernveennnnen. 2-57
2.12.54 L2 Cache Error Control (L2ZERRCTL) regiSter.......ccueevvueerniieiniieiiie e 2-58
2.12.5.5 L2 cache error capture address registers (LZERRADDR and L2ZERREADDR)... 2-59
2.12.5.6 L2 cache error capture data registers (LZCAPTDATALO

and L2CAPTDATAHI)oooiiiiieie ettt et ae 2-59
2.12.5.7 L2 Cache Capture ECC Syndrome (L2ZCAPTECC) register.......ccceevvveervveennnnnn. 2-59
2.12.5.8 L2 Cache Error Attribute (L2ZERRATTR) reZiSterccouveevvuveenrireeriieeriieeeiieeeenn 2-59
2.12.59 L2 Cache Error Injection Control (L2ZERRINJCTL) register...........cceeveevruveenee. 2-60
2.12.5.10 L2 cache error injection mask registers (L2ZERRINJLO and L2ERRINJHI) 2-61
2.13 IMIMIU TEZISTEIS ..o euvieenieieeitieeiteeeitee et ee et eeeuieeeniteesaateesateeesabeeessbeeessseesssbeeessseasssseennsseas 2-62
2.13.1 Logical Partition ID (LPIDR) T€ZISTETeeeiuieeiieeiie ettt 2-62
2.13.2 Process ID (PID) T@ZISIET ...cccuuiiiiieieiie ettt ettt ettt st e e e e e e 2-62
2.13.3 MMU Control and Status 0 (MMUCSRO) r€ZiSterccceeevueeerueerrieeeniieerniieenieeenns 2-62
2.13.4 MMU Configuration (MMUCEG) T€ZISIET......ccuuteruiieeiiieeieienieeenieeeniieee e esniee e 2-63
2.13.5 TLB configuration registers (TLBRCFG)........cccccooiiiiiiiiiiiiieniieeeeee e 2-64
2.13.6 TLB page size registers (TLBNPS)coooiiiiiiie e 2-66
2.13.7 Embedded Page Table Configuration (EPTCFG) register..........ccccvevevviiennieennineenne 2-66
2.13.8 Logical to Real Address Translation Configuration (LRATCFG) register................ 2-67
2.13.9 Logical to Real Address Translation Page Size (LRATPS) register..........ccccouuee..e. 2-69
2.13.10 MMU assist registers (MASO—IMASS)oooiiiiiieeeie ettt 2-69
2.13.10.1 MMU AsSiSt O (MASO) TEZISIET ..eovvviieiieieiieeeeiie ettt et e 2-70
2.13.10.2 MMU ASSiSt 1 (MAST) TEZISIET ..eevviiiiiiieiieeeeiie ettt e e 2-71

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor %

Contents

Paragraph Page
Number Title Number
2.13.10.3 MMU ASSiSt 2 (MAS2) TEZISIET ..eeevviieeiiiieiiiie ettt eesaae e s 2-72
2.13.104 MMU ASSiSt 3 (MAS3) TEZISIET ..eeeuviieriiiieiiieeieee ettt e e e 2-73
2.13.10.5 MMU ASSiSt 4 (MAS4) TEZISIET ..eeouviieeiiiieiiiieeiteeeitee ettt e s e s 2-75
2.13.10.6 MMU ASSiSt 5 (MASS) TEZISIET ..ceeiiiieriiiieiiiieeiieee ettt 2-76
2.13.10.7 MMU ASSiSt 6 (MASO) TEZISIET ...eovuviieiiiieiiiieeieie ettt 2-76
2.13.10.8 MAS ReISter 7 (IMAST) oottt et et 2-77
2.13.10.9 MMU AsSiSt 8 (MASS) TEZISIET ...eovuviieriiiieiiiieeitieeieee ettt 2-78
2.13.10.10 64-bit access t0 MAS TeISIET PAITScevueiruieeriiiieeiiie sttt e e e e e 2-79
2.13.11 EXternal PID TE@IStEIScuuiiiiieiiiie ettt ettt et ettt e e 2-79
2.13.11.1 External PID Load Context (EPLC) regiSterccccuvvruiirrieienieeerieeerieeeiie e 2-79
2.13.11.2 External PID Store Context (EPSC) regiStercccvvviiiiriiirniiinnieieieeeieeeeen 2-80
2.14 Internal debUZ TEEISIETS ..c.uviieiiieeiiie ettt ettt ettt e e e e s sabeesbae s 2-81
2.14.1 Unimplemented internal debug ré@iSterscccveeervieeiieeeiiienieienieeeeieee e sire e 2-82
2.14.2 Debug Resource Request 0 (DBRRO) re@iSter........cccveevueierieieniiinnieeeniieeeiieesiieenns 2-82
2.14.3 External Debug Resource Allocation Control 0 (EDBRACO) register...................... 2-83
2.14.4 Debug Control 0 (DBCRO) TEZISLETceeuvieeiieeiiieeiiee ettt e e 2-85
2.14.5 Debug Control 1 (DBCRI) T@ZISETcceuveeiiieeiiieeitie ettt ettt 2-88
2.14.6 Debug Control 2 (DBCR2) @ISOcecuvieeiieeiiieeitie et eieee et ee s saie e e 2-91
2.14.7 Debug Control 4 (DBCR4) @ISOceeuvieeiieeiiieeieie ettt siie e e e 2-93
2.14.8 Debug Control 5 (DBCRS) @ISOceeuuvieiiieeiiieeitie ettt 2-94
2.14.9 Debug Status (DBSR/DBSRWR) r€@iSterccueeviieeiiieiiieciieceee et 2-96
2.14.10 Instruction address compare registers (IACI—TACS).......ccceevveiriiiriiiinniiiniieeerieene 2-99
2.14.11 Data address compare registers (DACT—DAC2)......c.coevieeiiiieiiiieiiieneeeeieeesiieene 2-100
2.14.12 Nexus SPR aCCESS TEZISIETS ...uvveeuiieeriiieeiiieeiie ettt ettt st e e s e e e s 2-100
2.14.12.1 Nexus SPR Configuration (NSPC) re@iSterceevveeerieeeiieenieeenieeesieeesie e 2-100
2.14.12.2 Nexus SPR Data (NSPD) re@iSter......ccovuiiiiiiiriiieiiiieiieeeeieeeeiieee e 2-101
2.14.13 Debug Event Select (DEVENT) re@iSterc.ueeviieiiiieeiiieniie e 2-101
2.14.14 Debug Data Acquisition Message (DDAM) regiSter.........covcuvevrieernieernieernieennnenn 2-102
2.14.15 Nexus Process ID (NPIDR) T€ZIStEIcccuviiirieiiiieeiie et ettt 2-102
2.15 Multi-threaded operation management TEZISLETSccvueeerueeerueerrieenrireenrireernieeessareens 2-103
2.15.1 Thread (processor) management SPRS.........ccooiiiiiiiiiiiiieiiienieecceee e 2-103
2.15.1.1 Thread Identification (TIR) T€ZISLETccvverviieiiiieiiie e 2-103
2.15.1.2 Thread Enable (TEN) r@ZiSteT.......covuiiiiiiiiiiieeieieeieeeeie e e 2-104
2.15.1.3 Thread Enable Set (TENS) re@iSterccuvvviieiiiieiiiieeiie ettt 2-104
2.15.14 Thread Enable Clear (TENC) re@iStercccueeviirriiirniieenieeenieeeniieeesiie e 2-105
2.15.1.5 Thread Enable Status (TENSR) 1€ZISter....ccueviriiiriiieiiiieiieieeieeesieee e 2-106
2.15.1.6 Processor Priority (PPR32) re@iSter.......cccvvviiiiiiieiiiieniiie e 2-107
2.15.2 Thread management registers (TIMRS)ccooiiiiiiiiiiiiiiiieece e 2-108
2.15.2.1 Thread Management Configuration O (TMCFGO) registerccccceeevveernureennee. 2-108
2.15.2.2 Thread Initial Next Instruction Address n (INIAnN) registers.......ccoceevvveernuveennee. 2-109
2.15.2.3 Thread Initial Machine State Register n (IMSRn) registersccooceevrveereveennee. 2-109

€6500 Core Reference Manual, Rev 0

vi Freescale Semiconductor

Contents

Paragraph Page
Number Title Number
2.15.2.4 Thread Priority n (TPRIN) r@ZISIETScccueiiiuiiiiiiieiiieeiieee et 2-110
2.16 Performance monitor registers (PMRS)cccooiiiiiiiiiiniiiieice e 2-110
2.16.1 Performance Monitor Global Control 0 (PMGCO0) and User

Performance Monitor Global Control O (UPMGCO) regiSterscccoueervvenee. 2-112
2.16.2 Local control A registers (PMLCa0-PMLCa5/UPMLCa0-UPMLCa5) 2-112
2.16.3 Local control b registers (PMLCbO-PMLCbS5/UPMLCbO-UPMLCDS) 2-114
2.16.4 Performance monitor counter registers (PMCO-PMCS5/UPMCO-UPMC)) 2-118

Chapter 3
Instruction Model
3.1 OVETVIEW ...ttt et ettt et ettt e ettt e st eeeateesatteesabeeesabeeesabeeessbeeessbeaessbeennsaeanns 3-1
3.1.1 Supported Power ISA categories and unsupported inStructionsccceeeveerreveennnnen. 3-1
32 COMPULATION TNOAE......ueieiiiie ettt ettt ettt et ee st e e st e e sabeeesabeeessbeesssbeesnsbeenns 3-3
33 INStrUCHON SEt SUMIMATYuvieeuiiieeiiieeieie ettt ee et eetee et ee et ee st eesabeeesabeeessseesssbeesssseesnsaeanns 3-3
3.3.1 INStrUCtioN dECOING ...veeeuviiiiie ettt ettt e st eesabe e e aee s 3-4
3.3.2 Definition of boundedly undefined............ccccceeviiiiiiiiiiiiiiieeeee e 3-4
333 Synchronization TEQUITEMENLScceeerruiieriuieiiiieeiieeeitee st ee st ee e e e siaeeesabeessabeessaeeas 3-5
3.3.3.1 Shared resource SyNnChroniZationcoeceeerieeeiieesieeenieee e e e e aae e 3-8
3.3.3.2 Synchronization with tlbwe, tlbivax, and tlbilx insStructionscccccceeveerruveennen. 3-9
3333 Context SYNCRTONIZAION ...ccc.ueiiruieieiiieeesiieeiiieee st e ettt e e seieeestbeessaeeesstaeessaeesseesnreeenns 3-9
3334 Execution SyNChIONIZAtioN...........civiiiiiiieiniiieiie ettt et e 3-10
3.3.35 Instruction-related INEETTUPLSc..eevruriirriieniieenieee ittt e e ee e s 3-10
34 INSEIUCHON SEL OVETVIEW ...uuiieiiiieeiiie ettt ettt et et te e te et ae et e et enaeenneesnnes 3-10
34.1 Record and overflow fOrms............oooiiiiiiiiiiie e 3-10
34.2 Effective address COMPULATIONeevvuviireiieieiiieciieee ettt iie e ebe e eaeeseeeeseae e 3-11
343 USer-18Vel INSIIUCHIONSvveiiiiiiiiiiieeiiie ettt ee it ee st e et e e stte e s stbeestaeestbe e naeesasaeennnaeenns 3-11
34.3.1 INEEZET INSLIUCTIONSeieiiiiieciiiieeiitie ettt ettt et e et esstae e s sbaeeeaae s 3-11
34.3.1.1 Integer arithmetic INSIUCHIONScc.ueieiiuieeiiie ettt e e e 3-12
343.1.2 Integer compare INSTIUCTIONS.viireieerieeeiie et eeiieeseieeseeeeseteeaee e eaeereeenas 3-13
343.1.3 Integer 10Zical INSTUCHIONScevuiieiiieeiie et ettt e e eeee e 3-13
343.1.4 Integer rotate and shift INSTIUCHIONSeeeiiieiriiieiiiie e 3-14
3432 Load and StOre INSIIUCHIONSceeviieriiieriieieiieeeieeeeiieee st ee et eesibeeestbeessabeesssaeesaees 3-15
34.3.2.1 Update forms of load and Store inStruCtionsceveueeerueeerueernieennieessireennnes 3-16
34322 General integer 10ad INSIUCHONScccuvveriieeriie ettt 3-16
34323 Integer StOT€ INSIUCTIONS.veeeiiieeitieeiiie et et ee et ee et ee et e e sebe e e sebe e e sabeeesabeeeeee 3-17
34324 Integer load and store with byte-reverse inStruCtionseoceeeeevveeeeeeerneeenne 3-18
34325 Integer load and store multiple INStrUCHIONS.ccovuierruierriierrieeerie e 3-18
34.3.2.6 Floating-point 10ad iNStrUCHONScoecuieeiiiieeiiie ettt 3-19
34327 Floating-point StOre INSIUCHIONSceeruieeiiieeirieeieeesieee st ee e e e seieeesereeeereesnee 3-19
34328 AltiVec 10ad INSIIUCHIONSveeiuiiieiiiie ettt e e 3-20
€6500 Core Reference Manual, Rev 0

Freescale Semiconductor vii

Contents

Paragraph Page
Number Title Number
34329 AltIVEC StOTE INSIIUCTIONS. ...ceveeeiieinitietieiie ettt ettt ettt ee et e e e e s 3-21
34.3.2.10 Decorated load and StOre INSIrUCHIONSccocveeriieeieerieeniee e 3-21
34.4 Floating-point execution modelcccueiiiiiiriiiiniie e 3-22
34.4.1 Floating-point iNStIUCHONSceevuuieeriieeeiie ettt eeiieeette et e ee st ee s seieeeeaieeesaneee e 3-23
34.4.1.1 Floating-point arithmetic INSIUCHIONSceeeriieriiieniiienieee et 3-24
34.4.1.2 Floating-point multiply-add inStruCtionscoovueeerieernieernieeenieeesiieesiieenne 3-24
344.1.3 Floating-point rounding and conversion inStruCtionsoecueeevveerreveersuveennnes 3-25
344.1.4 Floating-point cOMpPAare iNSIUCHIONScccuvterurierieeenieeenieeesieee e eesereeesareennes 3-25
344.1.5 Floating-Point Status and Control (FPSCR) register instructions..................... 3-25
34.4.1.6 Floating-point MOVE INSIIUCLIONSeeeuieeririeeirieeieeeeieee st eesereeesiieeesaaeeesaae e 3-26
34.5 ATtIVEC INSIIUCTIONS. . ..eeetiiiieeeie ettt ettt ettt st et e e seee et eabeenaeens 3-26
3451 AltIVEC INtEZET INSTIUCTIONS ...eeeruviieriiiieeiieieieeeeitee et ee st ee et e e sabeeesabeeesabeesssaeessaeeas 3-27
3452 AltiVec integer CoOmpare INSIIUCHIONS.......eevveeerureerieeesieeesieeesieeesireeesireessseeesssees 3-29
3453 AltiVec integer 10Zical INSIIUCLIONScovuveiviierriiiieiiiienieee ettt e e 3-29
3454 AltiVec integer rotate and shift INSIrUCHIONScovvuierriiirniierniiienieeeieeeie e 3-30
3455 AltiVec floating-point INSTIUCHIONSeovuiiriieeriiiieniieenieeeeieee st eeseieeesiieessaaeeesaeeas 3-30
34.55.1 AltiVec floating-point behavior for special case data..........ccccceevueernieinnneennne. 3-31
34552 Floating-point division and SQUAre ro0t..........cceevruieeriuieeriieernieeenieeeniieeeeve e 3-35
34553 AltiVec floating-point arithmetic INStrUCtIONSc.c.cevruierrieerrieeriieeenieeesieenns 3-35
34554 AltiVec floating-point multiply-add inStructions............ceevveervveernieerriieerineeenne 3-35
34555 Floating-point rounding and conversion inStruCtionsoec.eeerveerreveersuveennnes 3-35
34.55.6 AltiVec floating-point compare INSIrUCHIONS.cccueeerveerrueerrieeeriieeerireenseeeennns 3-36
34.5.5.7 AltiVec floating-point estimate INStrUCIONScccuveerureeriueerrieeenieeesiieeesireennnns 3-37
34.5.6 AltiVec compatibility INSTIUCHONSeevveviiriiiieriiiieniieee it eiie et seie et eeeae e 3-37
34.5.7 AltiVec permutation and formatting inStruCtionsceeeveerveveerriieensiieeriiieenenenn 3-37
34.5.7.1 AltIVEC pack TNSLIUCTIONSveeeuiiieeiiiieeiiie ettt ee et ee et e et eesabe e e aeeennee 3-37
34.5.7.2 AltiVec unpack INSIIUCIONSveeeiiieeiie ettt st e e 3-38
34573 AltIVEC MErge INSIUCHIONS ...eeeuivieeiiiieeiieeitieeieee et ee ettt ee st eeseieeesebeeesabeesseaeesneee 3-39
34574 AItIVeC splat INSTIUCHIONSeeeeuiiieeiiiieeiiie ettt ee ettt ee e e e e e et e s eaeenaes 3-39
34575 AltiVec Permute inStrUCION.eeoiirriieieertieniie ettt ce e s 3-39
34.5.7.6 AltiVec Select INSTIUCHIONo.ueeuveiriiriieie ettt s 3-40
3.4.5.7.7 AltiVec Shift INSIIUCTIONSeovvieiieiiiiiiieie et et 3-40
34.5.7.8 AltiVec status and control register INStIUCHONSceevueerriierrieerrieeerieesniieens 3-40
34.5.79 GPR to AltiVec MOVe INSIIUCHIONS.......covuuiriteiiiriie ettt et 3-40
34.6 Branch and flow control iNStruCtONScecieiiiieeiie ettt e 3-41
34.6.1 Conditional branch controlcocceoiiiiiniiiiiii e 3-41
34.6.2 Branch INStrUCHIONSco.ueiiiiiiiiiie ettt 3-42
3.4.6.3 Integer Select (iSel) INSIIUCHIONccuiiiriiiriiie it 3-43
34.64 Condition register 10gical INSIUCHIONSccoveiriiiiriiierriieeeiie et esiteeseee e e 3-43
34.6.5 TTAP INSLIUCHIONS ...eeviiieiiiiieiiiteeeitee et ee ettt ettt e e ettt e e sabeesstbeeestbeesstaeenasaeensaesnnees 3-43
3.4.6.6 System 1inkage INSIIUCION.......c.ueiiiiieiiiie ettt ettt eesabe e s saae e 3-44

€6500 Core Reference Manual, Rev 0

viii Freescale Semiconductor

Paragraph
Number

3.4.6.7
3.4.7
34.7.1
34.7.2
3.4.8
349
3.4.9.1
3.4.10
34.11
34.11.1
34.11.1.1
34.11.2
3.4.12
3.4.12.1
3.4.12.2
3.4.12.3
34.12.4
3.4.12.4.1
3.4.12.4.2
3.4.12.5
3.4.12.6
3.4.13
34.14
3.5

3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.6.1
4.7
4.8
4.9
49.1
49.2

Contents

Page
Title Number
Hypervisor privilege INSIUCHIONeevriiiriiieriieeeiieesieee et ee st siieeesaieeesaaeeeaeeas 3-44
Processor control INSIIUCTIONSeevviiriieeieiiieniie ettt see s 3-44
Move to/from Condition RegiSter iNStruCtiONScevueerrieerrieernieernieesniieenineen 3-44
Wait for INterrupt INSTIUCHON ...ecuvveeiiie ettt 3-45
Performance monitor instructions (USer 1€VEl)............cooevvivrerieeieiriiiiiieeeeeeeeeeeeennenen, 3-45
Memory synchronization inStruCtiONSc.eecveeerreeeieeeeieienieee e ee e e e siieeesaee e 3-46
MDA (MO = 1)t e et e e e e ae s 3-50
RESEIVATIONS ... cntieiie ettt st s e e 3-51
Memory CONtrol INSTIUCTIONScouvueiiieeteeeite et et ee et et ee s eesaae e e sebeeesabeessabeesneee 3-51
User-level cache INSIIUCTIONSeovuieeiiiiiirniieciie ettt s 3-52
CT {1e]ld VALUES ...ttt s e 3-52
Cache 10CKINg INSIIUCTIONScccuiieriiieriiieitie ettt et eesiae e e sabe e s saaeeeaee s 3-54
Hypervisor- and supervisor-level inStruCtionsc.ceeeveeriiieeniieerniieeenieeeriieesiieenns 3-56
System linkage and MSR access INStruCtioNS.eeevveeiiieeiieeeniieie e eieee e 3-56
Thread management INSTIUCTIONSeevrveiriieeriieenieeesieee et eeseieeesibeeeseaeessaaeesaees 3-57
External PID load and StOre inStriCtiONScccveeeiieeiiieeeiiie e eieee e 3-58
Supervisor-level memory control InStruCtioNS..........ceevueeerieerrieeenieeeriieesriie e 3-59
Supervisor-level cache INStrUCtiONeovviieiiieeriie e 3-59
Supervisor-level TLB management inStruCtionscoeceeevveeerieennveerneneennnes 3-60
Message Clear and Message Send inStruCtionsoeceeeeueeenieeenieennieennieennanens 3-62
Performance monitor instructions (SuUpervisor level)........ccccccovvvvevviiinniiennieennnen. 3-63
Recommended simplified MNemMONICS........ccceeviiieiiiieiiiieeiiiececee e 3-63
Context SYNCATONIZATIONccuviiiiiieiiiie ettt ettt ee st eesabe e e sebeeesabeesaeeenaees 3-64
Debug instruction MOdel............ooiiiiiiiiiiiiiie et e e e 3-64
INSIUCTHON TISTINE 1.ttt ettt ettt ettt ee st st e e st e e sabe e e sabe e e sabeeeseeas 3-64
Chapter 4

Interrupts and Exceptions
OVEIVIEW ..ttt ettt ettt a e ettt et e sa e ea bt et e et e e sateeabe e e e st eeseeeeane 4-1
€6500 implementation of interrupt architeCtUIe..........eeevuvirriiiirriiierieeeeieeeie e 4-2
DITECEA TNLETTUPLS ..eeeueeieeiiieeitie ettt ettt ee e ee et e st ee st e e sabeeesabeeessbeeessbeeesabeeensbeanns 4-4
Recoverability and MSR[RI]ccociiiiiiiiiiie ettt 4-4
INEETTUPE TEZISTETS ..veeueie ettt et ettt ettt et e st ee st e e sabeeesabeeesabeeesabeeessbeeensbeanns 4-5
EXCEPHIONS ...ttt ettt ettt ettt e st e e sttt e e sabe e e sabe e e sabeeestbeeenbbeeenabeeensaeas 4-6
Interrupt ordering and MAaSKING........cceeeriiriiieiiiie e e 4-7
Interrupt ClasSTICATIONueeriiiiiiie ettt et s st eeaie e 4-7
INEETTUPE PIOCESSINE ...t ettt et ettt et e et ee st e e sabe e e sabeeesabeeesabeeessbeeensseanns 4-8
INEEerrupt AEINTITIONSviiiiiieeiiie ettt ettt e et e eetbe e s saeeseaeenns 4-8
Partially executed INStIUCHONSeeiiieeriie ettt ettt ettt e e e 4-12
Critical input interrupt—IVORO.........cooiiiiiii e 4-13

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor ix

Paragraph
Number

49.3
49.3.1
49.3.2
49.33
49.3.4
49.4
4.9.5
4.9.6
4.9.6.1
4.9.7
4.9.8
49.9
4.9.10
49.11
4.9.12
4.9.13
49.14
4.9.15
4.9.16
4.9.16.1
49.17
4.9.18
4.9.19
4.9.20
4.9.20.1
4.9.20.1.1
4.9.20.1.2
4.9.20.1.3
4.9.20.1.4
4.9.20.1.5
49.21
4.9.22
4.10

4.11

4.12

5.1
52

Contents

Page
Title Number
Machine check interrupt—IVORIcccoiiiiiiiiiiiii e 4-14
General machine check, error report, and NMI mechanism...........cccccccevvveennnnene 4-14
INIMI EXCOPLIONS ...eeeeiiieeiitieeiitie ettt et ee st eitee sttt ee st e e sabeeesabeeesabeeestbeessabeesbaeannsseas 4-17
Machine check error report synchronous eXCeptionsceevveeerveerrieersveennnnen. 4-17
Asynchronous machine check eXCeptionsccccvevreuierrieieniieinnieennieeesieeeenn 4-19
Data storage interrupt (DSI)—IVOR2/GIVOR2ccoovviiiiiiiiiiiiiieneeeeeeeieee 4-20
Instruction storage interrupt (ISI)—IVOR3/GIVORS3cccciviiiiiiiiiieiieeieeeae 4-23
External input interrupt—IVOR4/GIVORA.........cooooiiiiiiiiiieieeeeeee e 4-25
EXEEINAl PIOXY cveeieiiiie ettt sttt et e s 4-26
Alignment interrupt—IVORS ..o 4-27
Program interrupt—IVOROcc.oiiiiiiiie it 4-28
Floating-point unavailable interrupt—IVORTccccoviiiiiiiiiiiiieeeeeeiee 4-29
System call/hypervisor system call interrupt—IVOR8/GIVORS8/IVOR40................ 4-30
Decrementer interrupt—IVORTOcooiiiiiiiiiiiei e 4-31
Fixed-interval timer interrupt—IVOR Tccoooiiiiiiiiiieeee e 4-31
Watchdog timer interrupt—IVORI2cccooiiiiiiiiiiiieeeeeceeee e 4-32
Data TLB error interrupt—IVORI13/GIVORI13.......ccooiiiiiiiiiiieeeeeeeeee e 4-33
Instruction TLB error interrupt—IVOR14/GIVOR14........ccccooviiiiiiiiiiiiiieeeieee 4-34
Debug interrupt—IVORIS ...t 4-35
Suppressing debug events in hypervisor mode...........ccceevveeerieerrieennieennieensiieenne 4-36
AltiVec unavailable interrupt—IVOR32.........ccooiiiiiiiiiieececeeee e 4-36
AltiVec assist interrupt—IVOR33 ... 4-37
Performance monitor interrupt—IVOR35/GIVOR3Sccccooviiiiiiiiiiieeeeieee 4-37
Doorbell interrupts—IVOR36—IVOR39.........ccooiiiiiiiiieeeteeeeeeee e 4-38
Doorbell interrupt definitionsceeevuiieiiieeriiiieniiee et 4-39
Processor doorbell interrupt (IVOR36)coociiviiiiiiiiiiiiiiiieeeeeeeeee e 4-39
Processor doorbell critical interrupt—IVOR37cooviiimniiiiiiiiieiieceee 4-39
Guest processor doorbell interrupts—IVOR38cooviiirviiiiniiiiieieieceieee 4-40
Guest processor doorbell critical interrupts—IVOR39cccovviviniieinneennne 4-40
Guest processor doorbell machine check interrupts—IVOR39 4-41
Hypervisor privilege interrupt—IVOR4 1cccoiiiiiiiiiiiiieee e 4-42
LRAT error interrupt—IVORA2cooiiiiie ettt 4-45
Guidelines fOr SyStem SOFtWATE.......cccuuiiriiieiiiie ettt e e e 4-46
INEETTUPE PIIOTIEIES .. eetie ettt ettt ettt ettt estbe e e stbe e e sabeeesbbeeesbeessaeennsaeas 4-46
EXCEPUON PIIOTILIES ..uuvieeuiiieeiiieeitie et ee et ee st eeit e et e et e e sttt e e stbeeesabeaesebeeesaaeessbeennsaeas 4-47
Chapter 5

Core Caches and Memory Subsystem
OVEIVIEW ..ttt ettt ettt a e ettt et e sat e ea bt et e et e e sateeabe e e e et eeseeeeane 5-1
The cache programming MOElcooiiiiiiiiiiiiiiiiie e 5-4

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

Paragraph
Number

5.2.1
522
53
5.3.1
5.3.1.1
53.1.2
53.13
53.14
5.3.15
532
533
54
54.1
542
543
544
545
5.5
5.5.1
552
553
554
5541
5542
5543
5544
5545
555
5.5.5.1
5552
5.5.5.2.1
5553
5554
5555
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.4.1
5642

Contents

Page

Title Number

CaChe TAENLTIETS ..ottt ettt e e s 5-4
CaChe STASNING ..c.vvviieiii e ettt e e i e aae s 5-4
Core memory subsystem block diagram...........coccveeeiiieriiiriiiieiiieeceeeseeee e 5-5
Dual Load/Store Unit (LSU).....ccccouiiieiiiieeeeeeee et e 5-5
Caching-allowed loads and the LSUcccccooviiiiiiiinieiece e 5-6
L1 Load Miss Queue (LIMQ)uuvriiiiiiieiiiieiee ettt ernae e ae e 5-6
SEOTE QUEUEcvvvirreieeeeeeeeeeiite et eeeeee ettt ree e e e e eeettareaeeeeeeeeeetaraeaeaeseeeenensanreaeaeseenens 5-6
Store Gather BUffer.........coovoviiiiiii e 5-6
Data Reload Data Buffer (DRLDB)ccccooviiiiiiiiiieeeeee e 5-6
INSTIUCTION UNIE...cotiiiiieiiiiiieiie ettt sttt eiees 5-6
COre/CIUSLET INEEITACEeeeeieieie ettt ettt sttt s 5-7
L1 CACRE SIIUCLUTEcutiitieciiteieet ettt ettt s et st et e s 5-7
L1 data cache OrganiZationcccceeeriieeerieenriieeniieereee ettt e e e e sabe e e e s 5-8
Write-through CaCheccccviiiiiiiii e e 5-9
L1 instruction cache Organization............cceecueeriieeriieeiiie e st ee et e e sieeesiieeesaae e e s 5-9
LT CACRE PATILY..eeiiuiiiiiie ettt et st st s st e e e e e sabe e 5-11
L1 cache parity error iNJECTIONeeiruieeiiieeriieeesiteeeiieeeieeestae et estee e eee e eiee s 5-11
L1 cache coherency support and memory access Ordering..........cceeevveervveerveeerveennnes 5-12
Data cache coherency modelccooviieiiiiiiiiiiiiiie e 5-12
Instruction cache coherency model............cooviiviiiiiniiinniiinie e 5-12
SNOOP SIZNALINEZ.eeiiiiieiiiiie ettt ettt e et e e sabe e s sabe e s eabeesneee 5-12
WIMGE settings and the effect on caches..........cccoovviiviiiiiiiiiiniee e 5-12
WIIEE-DACK SEOTES ...ttt s et 5-12
WIIE-thTrOUZN STOTESeiiiieiiie ettt 5-13
Caching-inhibited 10ads and StOTESccceeeruiirriierniiieieeeie e 5-13
Misaligned accesses and the Endian (E) bitccccccoviiiiniiinniiinniiiiceeiecen 5-13
Speculative accesses and guarded MEMOTYcoccverriierriiierniiiienieee e eieee e 5-13
Load/store Operation OTAETINGueeruveeerrieeriteeteeetee et ee et ee st e et e e sebeeesabeeseareesneee 5-14
Architecture ordering reqUITEMENLScevveeerreeerreeeiiieeeiteesieeesiieeesareessiaeeesaeeas 5-15
Forcing load and store ordering (memory barriers).........coeccveeveveeiieeenieennieennnnen. 5-15
Simplified memory barrier recommendationscceevveeeriueeenieennieennineennes 5-17
MemOory ACCESS OTAETING ... eeevveeeiieeriieeritiesitieerteeestte et ee et ee st ee st eesabeeesabeeesaseas 5-17
MSZSNA OTAETINEceeuivieeiiiieeiiie ettt ee ettt ee et et ee st e e st e e sabeeesabeessabeesssbeesnaeeas 5-18
AtOMIC MEMOTY TEIETENCES.eevuuiieriiiieriiiieitie ettt ettt e e e e e aae s 5-18
L1 CaChe CONLIOL.......eiiiiiiiie ittt e e s 5-19
Cache cONrol INSITUCTIONSvieeiiieeiie ettt et ettt e e e e e e e eee 5-19
Enabling and disabling the L1 caches..........cccooviiiiiiiiiiieiiiece e 5-19
L1 cache flash invalidationc.cooviiiiiiiiniiiiieeee e 5-20
Instruction and data cache line locking and unlocking..........cccccceevveerniiinnieennieennne. 5-20
Effects of other cache instructions on locked lines..........cccccceeveiiriiiinniiinnieennnnen. 5-21
Flash clearing of 10CK DitS........ccccuevriiiiiiiiniiiiiieeeeseet e 5-21

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor Xi

Contents

Paragraph Page
Number Title Number
5.6.5 L1 data cache fIUShINgccoouiiiiiiiiie e e 5-22
5.7 LT CAChE OPETAtION ...ccuutieiiiie ettt et et ettt e st e e e e sabeeesaae s 5-22
5.7.1 Cache miss and reload OPeTationsS...........c.ueerieeriieeriiie ettt 5-22
5.7.1.1 Data cache 1€10adSooiiiiiiiiiiiie e 5-22
5.7.1.2 Instruction cache reloadscceevriiiiiiiiiiiie e 5-22
5.7.1.3 Cache alloCation ON MIISSESceeutteritieriieeiieeeieeesieeesieeeeibeeestbeeestbeessareesssbeesnsees 5-23
5.7.2 L1 cache block replaCementceoviieiiieiiiieiiiie et 5-23
5.7.2.1 FIFO 1ePIaCeIMENLeiiiuiiieeiiiie ettt ettt sttt e e saae s 5-23
5.7.2.2 PLRU 1eplacement.......ccccueeiiiiiiiie ittt ettt st sttt st 5-23
5.7.2.3 PLRU Dt UPAAteS...c.uvieiiiieiiiieiiiie ettt ettt sttt e e e e s 5-25
5.8 Cluster shared L2 CaCheccoouiiiiiiiiiie e 5-26
5.8.1 Cluster memory subsystem block diagram...........cccceevvvireiiieniiiiiniiinnieenieeeie e 5-27
5.8.1.1 Core/ClIUSLEr TNIETTACEeeeiieiieieiiieeieie ettt e et 5-27
5.8.1.2 L2 CACRC ...t et 5-27
5.8.1.3 CoreNet Bus Interface Unit (BIU)........coooeiviiiiiiiiiiiiieeeeeeeeecreeeee e 5-28
5.8.2 L2 CACRE SIUCTUTEeiitie ettt et sttt e e e e e sabeeeas 5-28
5.8.3 L2 cache coherency support and memory access ordering.............ccceeeeeeerueerrneennnn 5-29
5.8.3.1 L2 cache coherency modelcoovuiiiiiiiiiiiiiiiiecee e 5-29
5.8.32 SNOOP SIZNATINEZ ..ottt s esabe e e sbbe e e sabeessaaeens 5-29
5.8.33 Dynamic Harvard implementation............cccceeviiirriieriiiennieeeniecenieeesie e 5-29
5.8.4 L2 CaChe CONLIOL.....cooiuiiiiiiiieie ettt sttt st e e 5-30
5.8.4.1 Cache cONtrol INSITUCHIONSeevviieriiieriiieitee et ee et ee st ee et e e sabe e e sebe e e sabeessabeesaees 5-30
5.8.4.2 Enabling and disabling the L2 cacheccccoovviiiiiiiiiiiii e, 5-31
5.8.4.3 L2 cache flash invalidationccoecueiiiiiriiiiiniiieie e e 5-31
5.8.44 L2 cache line locking and unloCKingc.cceccveeeoiiriiierniienniie e 5-32
5.8.4.5 L2 cache partitioningcccueeeriieeiiieiiiiieiie ettt sttt e e e e s 5-32
5.8.4.6 L2 cache fTUSRING.........coviiiiiiiiiie e s s 5-33
5.8.5 L2 CAChe OPETAtION.......eiiiiiiiiiiiiiieiieieeie ettt ettt ettt e sabe e sate e s sbeessaeenas 5-33
5.8.5.1 L2 cache block replacementccoueeeriieriiieiniie e 5-33
5.8.5.1.1 PLRU 1eplacement...........eoiiieiiiieiiie ettt sttt 5-33
5.8.5.1.2 SPLRU and SPLRU with Aging replacementc.cccceveueerrieeenieennieennineenne 5-34
5.8.5.1.3 FIFO 1ePlaCemMENteeiuiieiiieiiiie ettt ettt ettt e e e 5-34
5.8.5.2 Special scenarios for L2 cachecoocvviviiiiiiiiiiiiiiiie e 5-34
5.8.5.2.1 Instruction Cache Block Invalidate (icbi).........cccovveveeeieeiiiiiiienieeieeeeeeciieeeeeen 5-35
5.8.6 L2 CACRE @ITOTS. ..coiiiiiiie ettt sttt et e sabe e e sabe e 5-35
5.8.6.1 L2 cache ECC error iNJECIONc.ueeeruiiirriiieiitieeiieeesiie et ee e st eseve e eeee s 5-36
5.8.7 L2 cache performance monitor EVENLSceerrueeeriiieeriiieeiie e et 5-36
59 CoreNet Bus Interface Unit (BIU)eoeiiiiiiiiiiiiiieeieieeecieieee e 5-37

€6500 Core Reference Manual, Rev 0

Xii Freescale Semiconductor

Paragraph
Number

6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.2.1
6.2.2.2
6.2.3
6.2.4
6.2.5
6.2.5.1
6.2.6
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.2.2.1
6.3.3
6.3.4
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.5.1
6.4.5.2
6.5
6.5.1
6.5.1.1
6.5.2
6.5.2.1
6.5.2.2
6.5.3
6.5.4
6.5.5

Contents

Page
Title Number
Chapter 6

Memory Management Units (MMUs)
€6500 MMU OVEIVIEW ..c.uviiiiiiiieiiiieiie ettt ettt ettt sttt et st s e e e e eane 6-1
IMMU fRALUTESeeueeiriieeiie ettt ettt ettt et sa e eabe et e s e e e 6-1
TLB entry maintenance fEaAtUIES.cerureirieiiiie ettt e e e 6-2
Effective-to-real address translationcoccueerieennieenniieeeie e e e e 6-3
Address tranSlationcooceovieeiieitiiiee e e 6-3
Page table transSlationc.ueeeiieiiiie e 6-5
Locating a hardware page table and PTEcccccccooiiiiiiiiniiieeceee 6-5
Translation and TLB update using a PTE.........ccccoooiiiiiiiiiieeeee e, 6-7
Page table entry (PTE)ooiiiiiiie ettt 6-9
Address translation using external PID addressingccoeceeeviiiiniiennieennieenniieenns 6-10
Variable-S1Z€d PAZESeevveeiiiie it 6-12
Checking for TLB entry itccccovuiiiiiiiiiiiieiiieeieeeee e 6-13
Checking for acCess PETMISSIONS ...cccuvveerurreerieeriieeitieerireeeieeeeieeesieeesebeeesabeessaseeseane 6-13
Translation lookaside buffers (TLBS)ccoiviiiieiiiieiiiiiieeeee e 6-14
LT TLB QITAYS...eeeitie it etie ettt et ettt et e et ee st eesabeeesebeeesabeeesabeesssseesnsseanns 6-15
L2 TLB QITAYS...eeeieieiiie ettt et ettt ettt ee st e st e sabteesebeeesabeeesabeesssbeeensbeanns 6-16
Invalidation protection (IPROT) in TLBITcccccooiiiiiiiiiiiiiiiiecceeeeeeen 6-17
Replacement algorithms for L2 MMU entries..........ccceccveeeueeenieienieennieeenieeeenenn 6-18
Round-robin replacement for TLBOccccooiiiiiiiiiiiiiiieceeceeeeeeeee 6-19
Consistency between L1 and L2 TLBS......cccccooiiiiiiiiiiiiieceeeeseeeeeee e 6-19
TLB entry field definitionsccoooieiiiieiiiie e 6-21
LR AT CONCEPL ...ttt ettt ettt ettt ettt sttt e et e e st e e sabe e e sabeeessbeeessseesssbeessseeenses 6-21
LRAT ENEIICS .. cvteiuiteteeetie ettt ettt st et se e eabe et st e saaeeabeeieenneens 6-22
LRAT @NIY PAZE SIZE ..eevuvveeiiieeiiieeiiieeitieeteetee et e et ee st ee st eesaaeessabeessabeessaseesnnee 6-23
Reading and writing LRAT @ntriesccccvvviiieiiiieeiie et 6-24
Invalidating LRAT @NEIIES.......ueiriieeiiieeitie ettt ettt et esebe e e saae e e saaeeeneee 6-25
LRAT translation.......c.ueeeuieiriiie ettt ettt ettt esaie e st e s sabeessabeessaseesneee 6-25
LRAT translation during tIbWeccovueiriiiiiiiiiiniiienieceeeeeie e 6-25
LRAT translation during page table translation............cccceeueevviiennieennieeniie e 6-26
TLB instructions—implemMeENtationceeruieereeeeiueeeeieienieeeeieeesieeesireesstaeessareessseeas 6-26
TLB Read Entry (t1bre) inStruCtion..........coevveiiiieeriie et 6-27
Reading TLB1 and TLBO array €ntri€scceceeeeveerrieeenieeenieeeniieeeseveessiveessanens 6-27
TLB Write Entry (tIbwe) inStruCtionccceeiiieeiiieeieieeieie e 6-27
Writing to the TLBT Qrraycoocvveeeiieeiiieiie et 6-28
Writing to the TLBO Qrrayccccveeeeiieiiiieiie et 6-29
TLB Search (tlbsx) instruction—searching TLB1 and TLBO arrays...........cccc......... 6-29
TLB Invalidate Local Indexed (tIbilx) inStruction..........cccccvevveeeeereiniineneeeeeeeereennnnen 6-29
TLB Invalidate (tIbivax) inStIUCHON.coceeveveeeeeereiiiieeeee e e e e e eeeeerarreeeeeees 6-30

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor xiii

Contents

Paragraph Page
Number Title Number
6.5.6 TLB Synchronize (tlbsync) InStruction..........coccuvveiiieeiiieeiiieneeesieee e 6-31
6.6 TLB entry maintenance—detailsccoovureriuiieiiiieiiiie et 6-31
6.7 TLB and LRAT States after TESETccueeueeriirniieieirieeiie ettt 6-32
6.8 The G bit (0f WIMGE) ...c..oiiiiiiiiieieiieciee ettt s st 6-33
6.9 MMU parity detection and iNJECION.ccueeeruiieiiiieeieieeitieeieee et ee e eesere e e s 6-34
6.9.1 TLBO Parity detECION ...ccuveiieieeetieeetieetee e ertee et ee et ee e ee st eesaaeeesebeeesabeeesabeeseee 6-34
6.9.2 TLBO PArity INJECHIOMN...cceuutiititertieeriieerteeeteesteeertee et ee et eesaieeesabeeesabeeesabeessaseesnne 6-34
6.10 IMIMIU TEZISTEIS ..o euveeenieieeitteeteeeitee et ee et eeeaiteesateesuaeeesaseeessbeeessbeeessbeaessbeeessbeeessseennseeas 6-35
6.10.1 MAS TEZIStET UPAALES....cc.ueeeeiiieeiie ettt et ettt ettt e e e e sabe e e sabeessabeesneee 6-35

Chapter 7

Timer Facilities

7.1 TIMET FACIIIEIESeieiitieiee ettt e e e e 7-1
7.2 TIMET TEZISLEI'S ..o euntieeitie ettt et ee et te et ee et ee et ee e ee et ee st eesebeeesabeeesabeeessbeeessbeasssseanssseanns 7-2
7.3 Watchdog timer implementation............ceevueeeriieriiiieeieie et e e e e seie e eaae e e as 7-2
7.4 Performance monitor time base EVENL..........ccoueruieieiriirniienie et 7-3

Chapter 8

Power Management

8.1 OVEIVIEW ...ttt ettt ettt a e ettt e e e sa e eabe et e et e e sateeabe e e enneeseeeeane 8-1
8.2 Power management SIZNALS.........cccuiiiiiiiiiiiiiiiietie ettt e 8-2
8.3 Core poWer MaNAZEMENTE STALESeeerurieerurieeireeriieeireeeiteesieeesbeeesabeeessbeesssbeesssreesssseenns 8-3
8.4 Cluster pOWer ManagemMENt STALES.........eeerureerureertieeireeeireeeieeesieeesereeessbeeessreeessreessseeas 8-10
8.5 Power management ProtOCOL...........coiiiiiiiiieiiiieiiie ettt 8-11
8.6 AltiVec power doOwn and POWET UPeeeurieeuiieniiieeiiieeieieeiteesieeeseieee st ee e eesareessaneas 8-13
8.6.1 AltiVec power down—software controlled entrycecceeevciieniiiinnieennieennieennnn 8-13
8.6.2 AltiVec power down—hardware triggered entryccceeevveeriieenieeenieennieeenieenns 8-13
8.6.3 AltiVec 1oW POWET StAte TELENTIONvueeiiieeireeiieeitie ettt ee et eieeesebe e e sabe e e sabe e 8-13
8.6.4 AltiVec power up—hardware triggeredcooveeviiieeiiie et 8-14
8.6.5 AltiVec power up sequence—software controlled.............coecvevviiirniiiinnieinnieennieenn. 8-14
8.7 €6500 cluster power management SEQUENCEc..uueerureeerureeeureeeiureesneeesreeesneessnneesssses 8-14
8.7.1 Cluster state PCL10 €Ntry SEQUENCEcuveeeiieeriiieeirieeireeeieeeeieeesiieeesireeesineessaseesene 8-14
8.7.2 Cluster PCL10 €Xit SEQUENCEccvuiiriieeeiieeeieeeriieessiieeeiteesiteesteeesaeeessaeenseesnnraeenns 8-14
8.8 Interrupts and POWEr MANAZEMENL..........ccccuueerrieriieeriieertie e ereeeetee e e eeeeeaneeeaaes 8-15

Chapter 9

Debug and Performance Monitor Facilities
9.1 OVEIVIEW ...ttt ettt ettt ea e ettt et e eateeabe et e et e e sateeabeebe e st eeseeeeane 9-1
€6500 Core Reference Manual, Rev 0

Xiv Freescale Semiconductor

Contents

Paragraph Page
Number Title Number
9.1.1 TRITNINOLOZY ..t eetie ettt et ettt et et st e e sabe e e sabeeesabeeesabeaenseeas 9-2
9.2 Debug 1eS0Urce SRATINE.vieiiieiiie ettt et e aae e 9-2
9.2.1 Debug resource sharing between threads............ccoeoiiviiiieiiiieiiie e 9-2
9.2.2 Debug resource request—software debug agent.........oecveeeeieriiernieerniieennieeesiieeeeeen 9-3
9.2.3 Debug resource request—external host debuggerccccovceevviiiiniiinniiinnieceniee, 9-3
9.2.4 Debug resource allocation—external host debuggercccceevviiiviiinniiinnieennieennn 9-3
9.2.5 Debug reSOUICE PIOtECHIONuvveeiiieeiieeieeeteeeteetee et ee et ee st eesabeeesabeeesabeeesabeeenaeeas 9-4
9.2.5.1 Debug resource protection—from software debug agent’s perspective 9-5
9.25.2 Debug resource protection—from external host debugger’s perspective 9-5
9.3 Internal debUZ TEEISIETSuvvieiiieeiiie ettt ettt ettt s e e st e e sbbe e e sabe e e nabeens 9-6
9.4 EXternal debUg T@ZISTETSuuieiiieeitie ettt ettt ettt e st e e sabe e e sabe e e sabe e e sabeeensbeanns 9-6
9.4.1 External Debug Control O (EDBCRO) re@iSterceeeuieeriiieniiieniieeniieeeniieeeiie e 9-6
9.4.2 External Debug Resource Request 0 (EDBRRO) register.........c.ccevveeevieennieennneennnen. 9-8
9.4.3 External Debug Status O (EDBSRO) re@iSter........ccccveeeruiieriiiieniiienieeenieeeniieee s 9-10
9.4.4 External Debug Status Mask O (EDBSRMSKO) regisSterccceevvueernieeenieennneennnn 9-12
9.4.5 External Debug Status 1 (EDBSRI) r€@iSter........ccccveeeriiieriiieniiieiieeenieeesie e 9-13
9.4.6 External Debug Exception Syndrome (EDESR) registercccoeveevvieeenieennineenne 9-14
94.7 Processor Run Status (PRSR) 1€ZISIETrcoeiuiviiiiiiiiiieeieieeieeereceie e 9-15
9.4.8 Extended External Debug Control 0 (EEDCRO) regiStercccevvueerrveeenieennineennnn 9-17
9.4.9 Processor Debug Information (PDIR) regiSterccovvveeeriieriiiiniiienieeesieeeiees 9-17
9.4.10 Next Instruction Address (NIA) TeZISTET....cceruieiriieriieeriie ettt 9-18
9.5 INEXUS TEZISTETS ..o eutieenieieetteette et e et ee et eeeaie e et eeeaateeeateeesabeeessbeeesabeeessbeeessbeeessseenseeas 9-18
9.5.1 Nexus Development Control 1 (DC1) r€ZIStErcccveveriieeiiieniiieiieceeieeeeie e 9-18
9.5.2 Nexus Development Control 2 (DC2) T€ZISIETcevuveeeiieeeiiierieeenieeeeiieee s e 9-20
9.5.3 Nexus Development Control 3 (DC3) reZISIETcevveeeruieeeiiieriieenieee st eiee e 9-21
9.5.4 Nexus Development Control 4 (DC4) T€ZISIETccvuveeeriieeeiiieeieierieee e 9-22
9.5.5 Nexus Watchpoint Trigger Control 1 (WTT) re@ister.......cccvveevueienieernieennieeniieennns 9-23
9.5.6 Nexus Watchpoint Trigger Control 2 (WT2) re@iSter.......cocvveerueeenieernieennieenniieennns 9-25
9.5.7 Nexus Watchpoint Mask (WMSK) r€gISterceeviieriiiieiiiieniieeeieceeieeeie e 9-26
9.5.8 Nexus Overrun Control (OVCR) T@ZISETeeevvieeriieeiiie ettt 9-27
9.5.9 Reloadable Counter Configuration (RCCR) r€giSter.........covvueervuiirnieennieenriieeniieenne 9-28
9.5.10 Reloadable Counter Value (RCVR) r€giSter........covuiireiiiiiiiieniiieieeeiieeeie e 9-29
9.5.11 Performance Monitor Snapshot Configuration (PMSCR) register.........cccecveevuvennee. 9-30
9.6 Instruction Jamming (IJAM) TEZISIETS ...cc.uveeruiieiiieiiiie ettt ettt 9-31
9.6.1 IJAM Configuration (IJCFG) re€@iSter........ccccuviriiieiiiieeiiie et 9-32
9.6.2 IJAM Instruction (IJTR) T@GISETccovvviiiriieiiiiieciieeesiie et 9-33
9.6.3 IJAM data registers 0-3 (IJIDATAOQ, IJIDATA1, IJDATA2, IIDATA3) ...ccceevveeverreenne 9-33
9.7 Performance monitor registers (PMRS)ccccooiiiiiiiiiiiiiiieeeeeeeeee e 9-33
9.8 CAPLUIE TEZISTETS eeuuvreeuirieeitieeitee et e et te st eesette et ee et ee st te st eesaae e saneeesaneeesnneeesnneeesane 9-33
9.8.1 Performance monitor counter capture registers (PMCCO-PMCCS)ccccevueeennee. 9-33
9.8.1.1 Program Counter Capture (PCC) regiSter.......cccuvivvvierriiernieeeniieeeriieeeiieeeiie e 9-34

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor XV

Paragraph
Number

9.9

9.9.1
99.2
9.9.3
994

9.9.5
9.9.6
9.9.7
9.9.8
9.9.9
9.9.10
9.9.11
9.9.12
9.9.13
9.9.14
9.9.15
9.9.16
9.9.16.1
9.9.16.2
9.9.16.3
9.9.17
9.9.17.1
9.9.17.2
9.10
9.10.1
9.10.1.1
9.10.1.1.1
9.10.1.2
9.10.1.3
9.10.1.4
9.10.1.5
9.10.2
9.10.3
9.10.3.1
9.10.3.2
9.10.4
9.10.4.1
9.10.4.2
9.10.4.3
9.10.4.4

Contents

Page
Title Number
DEDUZ EVEINLSeiieiiiieeiiie ettt sttt e st e e st e e sabe e e sbbeeesabe e s sabeeebbeeeneae 9-34
Embedded NYPerVISOT ..ccc.uiiiiiiiiie ettt 9-35
Internal and external debug MOAEScc.eeeviiiiiiiiiiiie e 9-35
Changing the debug facility state in internal debug mode............ccceceevviiiinieinnnenn. 9-35
IAC, DAC, ICMP, BRT, IRPT, RET, CIRPT, CRET
debug condition response table...........coociiriiriiiiiiiiiee e 9-36
Instruction address compare debug conditionccoecveeriiieriieiriieennieennieeeiieenns 9-36
Data address compare debug cOnditionccceeeviieeiiireiiieniie e 9-37
Instruction complete debug CONAIION.cccveeriireriiieeiiie et 9-38
Branch taken debug cONditioncoooviieiiiiiiiiiieiie e 9-39
Interrupt taken debug cONditioncoeoiieiiiiiiiiieiiie e 9-39
Interrupt return debug CONAIIONc..veiriieiiie e 9-40
Critical interrupt taken debug cONAitionccceeeviireiiieiiiieniieeeieeeeeeee e 9-40
Critical return debug CONAItIONceeiiiiiieiiiieeiiie et 9-41
Unconditional debug event CONAitioNcccevruueerriieinniieeniie e e 9-41
TRAP debug CONAItIONoovuiiiiiiiiiiie ettt e 9-42
Debugger Notify Interrupt (DNI) debug condition...........cccceeevuiernieinniiennieennneenen 9-43
Dedicated debug halt reqUESt EVENLS.........eeeriiiiiiieeiiie et 9-44
Debug Halt Request (corex_dbg_halt_thrdn) input.........cccccceeveiiiiiinniiennieennen. 9-45
Debugger Notify Halt (dnh) inStruction............cceevuierriierniiennieeerieeeeeeesie e 9-45
Cross-thread debug halt TeQUESEScovviiiriiiriiiieeieeeee e 9-46
Simultaneous debug eVENt PrIOTILIESc..eeerrierueeerieierieeerieeeriieee e e eiae e seie e saae e 9-46
Simultaneous debug event handing—events within same ownerccee.e..... 9-47
Simultaneous debug event handing—events of different owners.............cccceueee. 9-48
External debug INterfacecc.eeeiiiiiiiiiiiiie e 9-48
ProOCESSOT TUN SALES......eiiuiiiitieieie ettt ettt et et st eie e 9-48
HALE Lo ettt s s 9-48
Watchdog timer during debug halted statecccceveieriiiinniiniinieeeee 9-49
SEOP (FTEEZE)..veeneee ettt et ettt et st st e st e e st e e et e e sabeeesaaeeens 9-49
WAL ettt ettt e et e a ettt e ea e sh bttt 9-50
Thread diSabled.........c.eoviiiiiii e 9-50
Entering/exiting proCesSOr TUN STALEScevveeerueeerieeerieeesiieeesiteeesiieessireesssaeesssees 9-50
SINEIE-STEP 1. vttt ettt ettt et e st e st e e sabe e et eestbe e e sabe e e nabe e aeee 9-52
RESOUICE ACCESS ..cnvviniiiiiietie ettt ettt et eie e 9-52
MemOry-MAaPPEA ACCESS ...eevuvrreriiieriiiierieieiteeeiteesitee st ee st eesabeesstbeessareesssbeesnsees 9-52
Special-purpose register access (Nexus Only)cccceeveernieennieennieinnieeeie e 9-58
INStrUCtiON JAMIMINEveiiiieiiiie ettt et et et et e e sabe e e sabe e e 9-58
Debug storage space (IJCFG[IIMODE] = 1) ..ccccooiiiiiiiiiiiiiececeeeeeeeeeeeen 9-59
Instruction JamMMING INPUL.......ccouiieriiirniiieitee sttt ee e et eestbeeesaaeesesaeesaeees 9-61
Supported instruction jamming INSIUCHIONSccueeerueeerieerrieerriieeesiieessireessiaeenns 9-62
Instructions supported only during instruction jJamming............cceecveeerveerrveennnnen. 9-64

€6500 Core Reference Manual, Rev 0

XVi

Freescale Semiconductor

Contents

Paragraph Page
Number Title Number
9.10.4.5 Exception conditions and affected architectural registersccocceevvveerrieennnen. 9-65
9.10.4.6 InStruction JAMMING SEATUSeeevuveerriieeriieeriieeetieeette ettt ee e s eeeaieeesaneeean 9-66
9.10.4.7 Special note on jamming StOT€ INSIUCHIONScc.vveerureeerueerrieeenieeesiieessireesssaeensenens 9-66
9.10.4.8 Instruction JamMmMING OULPUL......cc.ueieruiirriiieiiieeiteeeitee et ee et e et eeseieeesaaeessaaeeeaeeas 9-67
9.10.4.9 TJAM PrOCEAUTEooieiieiiiiieeiitie ettt ettt e e st e e stbe e e sabe e s baeeeaae s 9-67
9.10.4.9.1 IJAM of instructions with input dataccecceeeviiiiniiieniiieeeeeeee e 9-67
9.10.4.9.2 IJAM of instructions with Output datacccceeevvieeriiiiniiinnieeesieeeecee e 9-68
9.10.4.9.3 IJAM of instructions with no associated data.........cccccceeeevieeieeneennienieenecnee. 9-68
9.10.494 IJAM of instructions to read or write SPRs, PMRs, CR, FPSCR, and MSR 9-68
9.10.4.10 Instruction jamming error CONAIIONScccveeeiuiieiiiiieiiiee ettt siie e 9-69
9.11 INEXUS TLACE. ...t ceteeniteetie ettt ettt et ettt ettt et e sa e et et et e e saeesabe et et eesbaeenbeennees 9-69
9.11.1 INEXUS fEATUIES ...ttt ettt ettt sttt e e e et et eaeeseee s 9-70
9.11.2 Enabling Nexus operations on the proCessor..........ccuveveeeieieriiieniieienieeenieeerieeens 9-71
9.11.3 MOdES Of OPETALIONeevviiiiiiiieiiieeeiie ettt et te e eae et ee e sebe e tteensaeeanaeeans 9-71
9.11.4 SUpPPOTted TCODES ...ttt ettt e e e e 9-71
9.11.5 Nexus MesSAZE fICIAS ...ccvuuiiiiieieie e e 9-78
9.11.5.1 TCODE fIeld....ccuieiuiiiiiiiiitieeee ettt sttt e st sttt 9-78
9.11.5.2 Source ID field (SROC)....ccouiiiiiiiiiiiieeecee ettt 9-78
9.11.5.3 Relative Address field (U-ADDR)........cccoovviiiiiiiiiieeeeeeeeeeeeeee e 9-79
9.11.54 Full Address field (F-ADDR)c..coiiiiiiiiiect et 9-79
9.11.5.5 Timestamp field (TSTAMP)ccuviiiiie e 9-79
9.11.6 INEXUS MESSAZE QUEUES ... veeeueieeueieeitieeiteeeiteeiteeesireeeieeeenneeesaseeessneesssseesssseesssseesses 9-80
9.11.6.1 MESSAZE QUEUE OVEITUIeeuveieeiiiieriiieesiieeeiteeeeieeeeeieeesateeesaneeesabeesssseesssseesssseesssses 9-81
9.11.6.2 CPU SLAlL ...ttt e et sa ettt e et eb e e es 9-81
9.11.6.3 MESSAZE SUPPIESSION .evuirieriiiieeiiiieeiieeesiieeeiteeeiiteeeeteeesabeeesabeeesabeeessbeesssseesssseesssses 9-81
9.11.7 INEXUS MESSAZE PIIOTILY ...uvveiieieeieieeiiieertieeteertee et e et eeeieeesaieeesaaeeesabeeesabeessaseesene 9-81
9.11.7.1 Data Acquisition Message priority 10ss response and retry........ccoeveevvveerreveennnen. 9-82
9.11.7.2 Ownership Trace message priority loss response and retry...........ccceeveeveervveennnenn. 9-82
9.11.7.3 Program Trace Message priority loss response and retryccoeeeevvveerniveennnnen. 9-83
9.11.8 Timestamp Correlation Message priority loss response and retry..........ccoecveevuveennen. 9-83
9.11.9 Performance Profile Message priority loss response and retry.........ccoecveeevveeeneveennee. 9-83
9.11.10 Data Trace Message priority 10ss response and retryccoecceeevueeenieernieennneennns 9-83
9.11.11 Debug Stattis MESSAZESvveeruvieeriie et etie et e et ee et ee et ee st ee st e e sabeeesabeessabeesneee 9-83
9.11.12 EITOT TNESSAZES .eevveeeiieeetie ettt et ettt et et et e st e st e e sabeeesabe e e eabeeeeee 9-83
9.11.13 Resource full MESSAZESccoviiiiiieeiie ettt e 9-84
9.11.14 Program TTaCE......c.uiiiiie ettt et sttt s st sane e 9-84
9.11.14.1 Program Trace—enable and disablecccceeciiiiiiiiiiiiiniiieneeeeeeeee e 9-85
9.11.14.2 Lite Program Trace Modecccovuiiiriiiiiiiriiiieniiee et e 9-86
9.11.14.2.1 Lite Program Trace mode—enablingcccccceviviiviiiiinniiinniiinicieseceeieee 9-86
9.11.14.2.2 Lite Program Trace mode—how it WOTKSccccovviimniiiniiiinniieeeeee, 9-86
9.11.14.2.3 Lite Program Trace mode—eXample..........ccceevviieenniieeniiieeniieeniie e 9-88

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor Xvii

Contents

Paragraph Page
Number Title Number
9.11.14.3 Sequential instruction count fieldcocceeiiiiiiiiiiiiiiiin i 9-89
9.11.14.4 Branch/predicate hiStOry @VENLSccovuieriiieriiieniieenieeeeieeeseie e 9-89
9.11.14.5 Indirect Branch message EVENLS........ueeriieeriieiriie ettt 9-90
9.11.14.6 ReSoUrce FUll @VENLSc..eeiiiiiiiiieiic et 9-90
9.11.14.7 Program COrrelation EVENLScoccueivriiiriiirnieieiieee et ee st ee e e seaeeseae e 9-90
9.11.14.8 Synchronization CONAItIONSeevvieeiiieeiiieeiiie ettt et eesaae e 9-91
9.11.15 Data TTACE ...eeveeeeieiit ettt et ettt sttt et 9-92
9.11.15.1 Data Trace—enable and diSableccoceriiiiiiiiiiiniiieee e 9-92
9.11.15.2 Data Trace range CONLIOL........ccovuiiriiiiiiiiieiiieeie ettt e 9-93
9.11.15.3 Data Trace Size (DSZ) fielduvveeieiiiiiiiieeeee e 9-94
9.11.15.4 Data Trace address field...........coovuiiiieiiiiiiiiiieece e 9-94
9.11.15.5 Data Trace data fieldc.oooiiiiiiiiiiiiiie e 9-95
9.11.15.6 Data Trace MEeSSAZE EVENLScceueeeriiierieeeiieeeieeeeieeeseieeeseteeesibeeessbeesssreessssessssses 9-95
9.11.16 OWNETSHIP TTACE ...cecuiiieeiiiieeiiie ettt et et et e e abe e aeee 9-95
9.11.16.1 Ownership Trace—enable and disableccccoeciiiiiiiiiiiiiniecee, 9-95
9.11.16.2 Ownership Trace Process fieldcoovieeriiiiiiiiiiee e 9-96
9.11.16.3 Standard Ownership Trace Message EVENLScovveerrieerrieernieeeriieeeriieeeiie e 9-96
9.11.16.4 “Sync” Ownership Trace mesSage EVENLS.eevvveeerieeriiieerieeenieeenieeesveeesieens 9-97
9.11.17 Data AcqUISION TTACEeeeeiieeiie ettt e e 9-97
9.11.17.1 Data Acquisition Trace—enable and disable............cccccceevviiiiniiiniiiinieeie e, 9-97
9.11.17.2 Data Acquisition ID Tag field..........ccooviiiriiiiniiiiiiecieieecee e 9-98
9.11.17.3 Data Acquisition Data fieldccoocueiviiiiniiiiiiiiiie e 9-98
9.11.17.4 Data AcquiSition Trace @VENL.........ceevuuieriiierriieeeiie ettt 9-98
9.11.18 WatChPOINt TTACEeeiuiiieeiiiie ettt ettt eesabe e sbbe e e eaeanns 9-98
9.11.18.1 WaLChPOINE EVENLS ...cuvviiiiiiieiie ettt ettt st e e sabe e e sabeeesaae s 9-98
9.11.18.2 Watchpoint Trace—enable and disablecccoeciieiiiiiiiiinniiieceiecee 9-100
9.11.18.3 Watchpoint Hit field.........coooiiiiiiniiiiiece e 9-100
9.11.18.4 Watchpoint Trace MeSSaAZE EVENLSccvuvieriieeriieeiiie et eeee et ee e e e 9-101
9.11.19 Timestamp Correlation MESSAZES ...c.uvveeruveeeriveeritieeirieeiteeeieeesieeesreeesieeesibeesssreenns 9-101
9.11.20 Performance Profile MeSSagescooviiviiiiiiiiiiiiieiieeeiie e e 9-101
9.11.20.1 Performance Profile messages—enable and disableccocceevviiinniiinninnnnnn. 9-101
9.11.20.2 Performance Profile message eVentscccovceevriierniiirnieinnieeeseeeeie e 9-102
9.11.20.3 Performance Profile message configurationcceceevviiernieennieennieenniieeenes 9-102
9.11.20.4 Performance Profile Sync field..........ccoceiviiiiiiiiiiieee e 9-102
9.12 Performance MONITOTcoouiiiiiiiii ittt ettt s 9-102
9.12.1 OVETVIEW ..ttt ettt et ettt et ettt et ea e b et et et et ebtesaee e e e enee 9-103
9.12.2 Performance monitor iNSIUCHIONSeeivieerieeiiieeieeeitee et ee et ee e e e sabe e s saae e 9-105
9.12.3 Performance monitor iNtEITUPL........cooveeeriiieeriie ettt ettt st 9-105
9.12.4 EVENt COUNTING ..cvvviieiiiieiie et et et et st st st e st e e sabe e e saseee s 9-106
9.12.4.1 Processor context configurabilityccccoovievriiiiniiirniiinnceeeeee e 9-106
9.12.4.2 Processor performance monitor and program counter capture function 9-107
€6500 Core Reference Manual, Rev 0
xviii Freescale Semiconductor

Paragraph
Number

9.12.5
9.12.5.1
9.12.6

10.1

10.2

10.3
10.3.1
10.3.2
10.3.2.1
10.3.2.2
10.3.2.3
10.3.3
10.3.3.1
10.3.4
10.3.4.1
10.3.4.2
10.4
104.1
104.1.1
104.1.2
104.1.2.1
10.4.1.2.2
10.4.1.2.3

10.4.1.2.4
104.1.2.5
104.1.3
104.2
104.2.1
10.4.2.2
104.2.3
10.4.3
10.4.4
104.4.1
10.5

10.6

Contents

Page
Title Number
EXAMIPIES ...ttt et ettt st e st eenabe e aae s 9-108
ChaININg COUNLETSueieeiiiieeiiiieeitee ettt ee et e ettt e st e e sabeeesabe e e sabeesnaaeessbeesnnes 9-108
EVENT SEIECTIONevieciiecie ittt e eaiees 9-109
Chapter 10
Execution Timing

Terminology and CONVENTIONSceeeiiiriiiieeitieiteecieee et ee sttt eeeiieee st eesabeeesabeessareesseeas 10-1
INStruction tIMING OVETVIEWeeeiuiieiiiiieeiiieeieeeitee et ee et ee sttt eesiie e e st e e sabeeesabeesssbeesnseeas 10-3
General timing CONSIACTALIONSeeivieeriieeiiieeitieetee et ee et ee st ee st e e sebeeessbeessabeessaaeans 10-6
General INStruction flOWcccoiiiiiiiiiie e 10-7
Instruction fetch timing cONSIAETAtiONS..........ceeriieeiiieeiiie et 10-8
L1 and L2 TLB aCCESS tIMEScovveiruieeuieirieniieeieenteesiee et e e e e e esnee e 10-8
Interrupts associated with instruction fetchingoccceevvieervieiniieiniieciie e 10-9
Cache-related 1ateNCycovouiiiiiiiiiiiieeeee ettt e 10-9
Dispatch, issue, and completion cONSIderationscceecueeeriueeerueernieernueensneenns 10-10
Instruction SErialiZationcoceevieeiiiiiinie et 10-11
Memory synchronization timing coOnsSiderations..............ceecveerveeeriieerniieennneennneens 10-12
Sync instruction timing CONSIAETAtIONSc..eevrueirriierriieenieeeriieeeniieeeieeeseee e 10-12
mbar instruction timing CONSIAETAIONSccecueerriierriierniieeerieeeniieeeiieeeeee e 10-13
EXECULION ...ttt ettt st e et et sa e eabeebe e s e e e 10-13
Branch eXeCUtion UMcocueerieiiieiiiiiienie ettt s e 10-14
Branch instructions and COMPIEIONcccueeviiiiriiieriieeeie e 10-14
Branch prediction and reSOIUtIONocueiriiiriiiiniieeeie e e 10-15
Branch predictor structure and OPerationcceeeeueeeriieeerieennieennieesniieenns 10-16
Global History (GHR) register and Pattern History Table (PHT) 10-17

Segment Target Address Cache (STAC), Segment Target Index
Cache (STIC), and link StacK..........ccovvveeeiiieiieiiiiiiieeeee e 10-17
Branch predictor operations controlled by BUCSRccoccivniiinniiinninnn. 10-18
Branch prediction special cases: multiple matches and phantom branches 10-19
Changing LR and CTR in branch inStruCtionscceeeeveeerieenniieennieecnseeeennnes 10-19
Complex and SIMple UNit €XECULION.......cuviieiieeiiieeiiie ettt ee e e e sabe e saee e 10-19
CFX diVIide EXECULIONeevveeniiiiieeete ettt sttt et e et et eie et snee s eieesee 10-20
CEFX MUItiPly €XECULION.ueieeiiieeiiieeitie et ettt ee et ee s e e sabe e e sebe e e sabeeeaae s 10-20
CEX DYPaSS PAth...ccouiiiiiiiieeiiie ettt 10-21
AIIVEC (VECLOT) EXECULION ...oeeeeeiiiiireieeeeeeeeiitireeeeeeeeeeeeraereeeeeseeseiesarseaeeeseeeenenneenees 10-22
L.0ad/StOTE EXECULIONc...eiiiieiieeiieeit ettt ettt sttt et saee e eniees 10-23
Effect of operand placement on performance............coeceveeeeeeeeieienieeenieensieennn 10-23
Instruction 1atenCy SUMIMATYcc.ceeeriiiieiiiieeiiieitteeitee et ee et ee et eesibeeesabeeesbbeeesaaeesneee 10-24
Instruction scheduling GUIAEIINEScocciiiiiiiiiiiiiiieeeeeee e 10-45

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor Xix

Contents

Paragraph Page
Number Title Number
Chapter 11
Core and Cluster Software Initialization Requirements
11.1 Core and cluster state and software initialization after resetccoccevveevvieernieennnen. 11-1
11.2 IMIMIU STALE ...ttt ettt ettt ettt st et et et e et eabe et e st e e sateeabeenne s 11-1
11.3 TRIEAA STALEeeiieieeie ettt st e et st e s 11-1
11.4 COT TEZISTET STALE ..vveeuuereeiiieeiiieeitee et ee et ee ettt eeitee et ee et eesabeeessbeeessbeeessbeesssbeesssseensaeas 11-2
11.4.1 GPRS ettt ettt e et e e 11-2
11.4.2 PR .t ettt e ettt s 11-2
11.4.3 VR S ettt ettt st ettt st e e 11-3
11.4.4 SPRS ottt ettt ettt st e et ee e e 11-3
11.4.5 MSR, FPSCR, and VSCR.......ccccooiiiiiiiiieiecteet ettt 11-4
11.5 TIAMET STALE....ccneeeitietie ettt ettt ettt et et et et e sateeabe et e et eesaaeeabeeanees 11-5
11.6 LT CAChE STALE.....cueieeieeiieeie ettt st ettt s e e es 11-5
11.7 L2 CAChE STALE.....cueieiieeiie ettt ettt et e e e s 11-6
11.8 Branch target buffer Statecooviiiiiiiiiii e 11-7
Appendix A
Simplified Mnemonics
Al OVEIVIEW ...ttt ettt et et a e et e e b e sh e et e st e et e e sbbeeabeenaeenteesaeeeas A-1
A2 Subtract sSimplified MNEMONICS.......cccuviiiiieeiie ettt se e sbe e s sebe e A-1
A2.1 Subtract IMMEIALEccvveeuieiiiiiiie ettt et e e e A-1
A22 SUDLTACT ..ttt ettt s ettt s e e A-2
A3 Rotate and shift simplified MNEMONICS.........ccceeeiiiiiiiiiiiiiie e A-2
A3.1 OPETAtiONS ON WOTES ...eeiuviieiiiiieiiiieeiiteesiieeeeitee st ee st e e ettt e e sttt eestbeesstbeesssaeessseensaesnnsees A-2
A32 Operations 0n dOUDIEWOTScoecuiiiiiiiiiiie ettt A-3
A4 Branch instruction simplified MNEMONICScoovuieeriiriiiieeiie et A-4
A4l Key facts about simplified branch mnemonicscceceeevueeeniiinniiinnieenrieeesieeee, A-5
A4.2 Eliminating the BO operandcccoooiiiiiiiiiie e A-6
A43 Incorporating the BO branch predictionc.eeeviieiiiieeiiieeiiieceeeece e A-7
A4.4 The BI operand—CR bit and field representationsccccceeeeveerieeenieeenieennneenns A-8
A4.4.1 BI operand inStruction €NCOAING........vverueirriiireiiiieeitieeitee et ee st ee e eesiieeesereeesiaeeas A-8
A4.4.1.1 Specifying @ CR Dil...cccuciiiiiiiiiiiiceieeeeee et A-9
A4.4.1.2 The €IS OPErandccocuviiiiiiiiie ettt A-11
A4S Simplified mnemonics that incorporate the BO operand.............ccccccceviivniiinnnennns A-11
A4.5.1 Examples that Eliminate the BO Operand...........cccccceviiiiiiiiieniiinniiinncceeecee A-12

A4.6 Simplified mnemonics that incorporate CR conditions (eliminate BO
and replace BI With €I'S)...c..cooiiiiiiiii e A-15
A4.6.1 Branch simplified mnemonics that incorporate CR conditions:
EXAMPILS ..eeeenirieenitie ettt ee et ee et ee ettt ee et ee st eeesaeeeesbeeessbeeeesbeeesabeeessbeeesabeeesabeens A-17
€6500 Core Reference Manual, Rev 0
XX Freescale Semiconductor

Paragraph
Number

A4.6.2

AS
A6
AT
A8
A9
A.10
A1l
All.1
A.11.2
A.11.3
All.4
A.11.5
A.11.6
A11.7
A.11.8
A.11.9

Contents

Page
Title Number
Branch simplified mnemonics that incorporate CR conditions:

LESTIIIZS 1ottt ettt ettt ettt ettt e ettt e et e ettt e sttt e e stbe e e eabe e e e abe e e eabeeeeabeens A-17
Compare word simplified MNEMONICSccccuvieriieiiiieeiie ettt A-19
Compare doubleword simplified MNEMONICSceervieriiiirriiiieniiienieeeieeeie e A-20
Condition register logical simplified MNemMONICScccceerriieriiirriiieniieneee e A-21
Trap instructions simplified MNEMONICS.........c.ceeviieiiiiiiiiiieiiieeie e A-21
Simplified mnemonics for accessing SPRS.......cccccooviiiiiiiiniiiie e, A-23
AltiVec simplified MNEMONICS........eeiiiieeiiie ittt A-24
Recommended simplified MNeMONICScoecuiiiiiieiiiieiiiieeeieeeeee e A-24

INO-OP (THOP) -ttt ettt e ettt et et e et e et e st ee et eesabeeesabeeesaneeenes A-24
Load immediate (1) ...ccuvvevieiieiiiiiiiieie e e A-24
L0oad address (JA)coouvveeieeieiieicieieee e e e A-24
MOVE TEZISTET (INIT') c.eeeveeiiieeiieeetie et ee et teete et ee et te et ee et eesusteeenbteesabeeesnbeeesaneennes A-25
Complement re@iSter (TOL)........cccuueeriiieeriiie ettt et ettt ee e eesebeeesebe e e A-25
Move to condition re@iSter (IMECT)eeivieeiiieiiiieetieetee ettt et eesieee e e e seae e A-25
SYINC (SYIIC) c.evveiiiteeiie ettt ettt et te et ee et ee e te et e et ee et ee et eesasaeesaneeesabeeessneeessneeanes A-25
Integer SEIECt (ASED).......oiiiiiiiie et s A-26
TLB invalidate local iNdeXedccouiiiiiiiiiiieiiiie et A-26

Appendix B
Revision History

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor XXi

N

Contents

Paragraph Page
Number Title Number

e€6500 Core Reference Manual, Rev 0

XXii Freescale Semiconductor

Figure
Number

1-1
1-2
1-3
1-4
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
2-33
2-34
2-35
2-36
2-37

Figures

Page

Title Number

€6500 DLOCK AIAZTAMN ...eiiiieiiie ettt ettt et ettt st e e st e e sabe e e sabeeesabeeesaeas 1-3
Example partitioning scenario of a multicore integrated deviCe.........cocceevvueerrieirnieernneennnn. 1-4
GPR Issue Queue (GIQ)oooiuvrerieeieieeecieieee et ee et e e e e ee e e e e eseeaarreaeaeae s 1-11
Three-stage 10ad/StOTe UNIt........ccuuiiiiieeiiie ettt ettt e et e e sabe e s abeeeeee 1-12
Machine State (IMSR) T@ZISTEIeeiiiiiiiie ettt ettt ettt sttt sabe e e eesabeeeeee 2-20
Branch Unit Control and Status (BUCSR) T€ZISIET.....c..ceeeuiiiiiiiiriiienieeerieeeeiieeesiie e 2-21
Hardware Implementation-Dependent O (HIDO) re@iSterccceeveierriieerrieennieennieenniieenns 2-22
Core Device Control and Status O (CDCSRO) re@iStercceevuierriiiernieennieeenieeenieeeiieenns 2-23
Power Management Control 0 (PWRMGTCRO) re@ister........ccccveeevvieriiieiiiennieieeieeeeieenns 2-24
Processor Version (PVR) T@ZISIET........ceiuiiiiiie ittt st 2-24
System Version (SVR) TEZISIETcccuiiiruiiiiiiieiiiieeiee ettt sttt sibe e sibe e sabe e e sabeeeeee 2-25
Chip Identification Register (CIR)........cccieiiiiiiiiiiie ettt 2-25
Shifted CCSRBAR (SCCSRBAR) rEZISIETc..eerieeiieiieeiieeiieetieniieeereeieeeeeesaaeeeveeieeeaeens 2-25
Relationship of timer facilities to the time Dase...........ccueeeviiiriiiiriiieniieieceeeee e 2-26
Logical Page Exception (LPER) T€ZISIETceeiuiiiiiieeiiie ettt 2-30
(Guest) Interrupt Vector Offset (IVORS/GIVORS) re€@iSters........cooveeruierrieerrieernieerniieennns 2-31
(Guest) Exception Syndrome (ESR/GESR) regiSterscccevvuiiiriiieniiinnieeenieeeniieeeive e 2-33
Machine Check Syndrome (MCSR) T@ZISLETceevuieriiiieiiiieiieieeieeesiie et 2-36
L1 Cache Configuration 0 (L1CFGO) register fields implemented on the €6500................. 2-41
L1 Cache Configuration 1 (LTCFG1) T€ZIStETccccueiriuiieeiiieiiiieeieeesit et 2-42
L2 Cache Configuration 0 (L2CFGO) T€ZISIETccccueeeiiieeiiieiieieeiteeeiieee st ee e eseee e 2-43
L2 Cache Control and Status 0 (L2CSRO) T€ZISIETcccuveeruiieiiiieiiiie ettt 2-44
L2 Cache Control and Status 1 (L2CSRT) Te€ZISIEr ...cecuvieriiiieiiiieiiiie vt 2-47
L2 cache partitioning identification registers (L2PIRN)cccceoviiniiiiiiiiiniiiieccecee, 2-51
L2 cache partitioning allocation registers (L2PARN)..........cccoiiiiiiiiiiiiiiniieeeeceee 2-52
L2 cache partitioning way registers (L2PWRN).........coccvviiiiiiiiiiiiiiieeeeecee e 2-53
L2 Cache Error Disable (L2ZERRDIS) T€ZISIETccueeruiieeiiieniiiieiieeeiieeesiieeeseie e 2-54
L2 Cache Error Detect (L2ZERRDET) r@@ISterccueevuiieriiiiniiiiieieeesiieeesiie e 2-56
L2 Cache Error Interrupt Enable (L2ZERRINTEN) regiSter........ccocvteriiirrieinnieeenieernireennns 2-57
L2 Cache Error Control (L2ZERRCTL) T€ZISIET ...cccvveeeuiiieniiiieniiiieriieeesiieeeeiie e e 2-58
L2 Cache Error Attribute (L2ZERRATTR) r€ZIStEr....cccuiiiriiiiiiiiiiieeiieeeiieeeeie e 2-59
L2 Cache Error Injection Control (L2ZERRINJCTL) regiSterccccevveueerrieernieernieennieeenns 2-61
MMU Control and Status 0 (MMUCSRO) re€ZISteTcc..eeeruiieriiieriieenieeeriieeeriieeeniieeesive e 2-63
MMU Configuration (MMUCEG) TEZISIETcccuvueerieeriieeiiieereieeriteenteeenrteesteeereesreeenns 2-63
TLB configuration registers (TLBOCFG, TLB1CFG).......ccccoociiiviiiiniiinieieieeeeeeiie e 2-64
TLB page size registers (TLBNPS)oooiiiiiiiie e 2-66
Embedded Page Table Configuration (EPTCFG) registerccoccevveiiiiiiirniieniieeenieee 2-67
Logical to Real Address Translation Configuration (LRATCFG) register.........ccccceevueeennee. 2-68
Logical to Real Address Translation Page Size (LRATPS) registercoevueevvieennieenninennns 2-69
MMU ASSiSt O (MASO) T@ZISIET....eeuueieeitieeitie ettt ettt ee ettt e e st e e sebe e e sabeeesabeesssbeesnene 2-70
MMU ASSISt 1 (IMAST) T@ZISIET ... euieieeiiie ettt ettt ettt ettt e e eesabe e e sabeeeeee 2-72

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor Xxiii

Figure Page
Number Title Number
2-38 MMU ASSISt 2 (IMAS2) T@ZISIET...ceeuutieeiiieeiiie ettt ettt ee et ee st e e st e e sebe e e sabeeesabeesssbeesneee 2-73
2-39 MMU ASSISt 3 (IMAS3) T@ZISIETeeuutieeieieeiiie ettt ettt ee st e st e e sebe e e stbe e e sabeeensbeeeeee 2-74
2-40 MMU ASSISt 4 (MASA) T@ZISIET...ceeuueieeiiieeitie ettt ettt ettt sabe e e sebe e e sibe e e sabeesssbeeeneee 2-75
2-41 MMU ASSISt 5 (IMASS) T@ZISIET...ceeuiiieeiiie ettt ettt ettt e s e e sabe e e sabeesssbeeeneee 2-76
2-42 MMU ASSISt 6 (MASO) TEZISIET....ccuuvieeiiieeitie ettt ettt eie et e e st e e e e sabe e e sabeesssbeeeeee 2-77
2-43 MMU ASSISt 7 (IMAST) T@ZISIET ... euevieeieie ettt ettt ettt ee et e e st esebe e e sabe e e sabeeessbeeeeee 2-78
2-44 MMU ASSiSt 8 (IMASS) T@ZISIET....eeuueieeieieeitie ettt et ettt e st esebe e e sibe e e sabeesssbeeeneee 2-78
2-45 External PID Load Context (EPLC) T@ZISIETuveveiieeiiieeiiie ettt ee st eesiie e esiae e 2-79
2-46 External PID Store Context (EPSC) r€ZISIEruvviiieiiieeiiie ettt 2-80
2-47 Debug Resource Request 0 (DBRRO) regiStercccvieeiiiiiiiieiiiienieeesieeesieeesiie e 2-82
2-48 External Debug Resource Allocation Control 0 (EDBRACO) register........ccceevveeeniveennnneane 2-84
2-49 Debug Control O (DBCRO) TEZISLETccuuvieeiiieeiiieeiieeieieeitee st ee et ee st eesebeeesibeeesabeessareeneee 2-86
2-50 Debug Control 1 (DBCRI) TEZISETccuuviieiiieiiiieeiie ettt ettt eeseae e 2-88
2-51 Debug Control 2 (DBCR2) TEISLETccuuvieeiiieeiiieeiieeitee et ee et ee st ee st ee e eesibeessabeessareeeeee 2-91
2-52 Debug Control 4 (DBCR4) TEZISLETccuuvieeiiieeiiieeiiieeieie et st ee et ee st ee e e e sibeeesabeessaaeeeneee 2-93
2-53 Debug Control 5 (DBCRS) TEZISLETccuuviieiiieeiiieeiiie ettt ettt st esabe e e sebe e s aae e 2-94
2-54 Debug Status Register Write (DBSRWR) 1€giSter........coeeviiiiiiiiiiiieiiienieeeeieeeeeeiie e 2-97
2-55 Debug Status (DBSR) TEZISTETceeuiiieiiiieiiie ettt sttt et e e sabe e ebe e 2-97
2-56 Instruction address compare registers (IACI-TACSE)........coocvviiiiiiiiiiiniiieiieeeeeeeeeee e 2-99
2-57 Data address compare registers (DACT—DAC2)cooviiiiiiiiiiiieiiieeieeeeeeeeeee e 2-100
2-58 Nexus SPR Configuration (NSPC) reZIStereevrierriieiiiieiiiie ettt 2-100
2-59 Nexus SPR Data (NSPD) TEZISIETveeeiiieiiiieeiiieeiee ettt e seae st e st esaaeseee e 2-101
2-60 Debug Event (DEVENT) T@ZISIETueiiiieeiiie ettt ettt ettt 2-101
2-61 Debug Data Acquisition Message (DDAM) TreQiSterccceeeruiieriiienieeerieeenieeeniieeesiieenns 2-102
2-62 Nexus Process ID (NPIDR) TEZISTET ...ccuvvieiiieeiiieeiie ettt sttt e saie e e saae e 2-103
2-63 Thread Identification (TIR) TEEISEI.....cccuiiiriiiiiiieeieeeiie e 2-103
2-64 Thread Enable (TEN) T@ZISIETeiiiiiiiiie ettt ettt ettt ettt e sabe e e saae e 2-104
2-65 Thread Enable Set (TENS) reZISTeI.....cciiiiiiiieeiie ettt ettt sttt saae e 2-105
2-66 Thread Enable Clear (TENC) r@@ISteT.......ccovuiteriieiieeiiie ettt ettt st 2-106
2-67 Thread Enable Status (TENSR) T@ZISIET ...cccvviiiiieiieeiiie ettt 2-107
2-68 Processor Priority (PPR32) re@ISterccuuiiiiiieiiieiiie ettt ettt sttt 2-107
2-69 Thread Management Configuration 0 (TMCFGO) regiSter..........ccovoueevvveirnieennieenniieennnenn 2-108
2-70 Thread Initial Next Instruction Address n (INTAN) r€ZIStETSceevuveirreieerriieenriieeniieerieeenne 2-109
2-71 Thread Initial Machine State n (IMSRN) T€ZIStETScccuveviiiiiiriiieriiieeieeecieeeie e 2-109
2-72 Thread Priority n (TPRIN) T@ZISIETSccouviieiiieeiiie ettt ettt 2-110
2-73 Performance Monitor Global Control 0 (PMGCO0) and

User Performance Monitor Global Control O (UPMGCO0) registersccecveevruveennen. 2-112
2-74 Local control A (PMLCa0-PMLCa5/UPMLCa0-UPMLCa5) registers.........cccceeveerrunenne 2-113
2-75 Local control b registers (PMLCbO0-PMLCbS/UPMLCbO-UPMLCDS)......ccccveevvuveernnnne 2-114
2-76 Performance monitor counter (PMCO-PMCS5/UPMCO-UPMCS) registers...........cceeueeenne 2-118
5-1 Core memory subsystem bloCK diagrami.........ccccveeeiieeiiiieiiiie et 5-5

€6500 Core Reference Manual, Rev 0

XXiv Freescale Semiconductor

Figure
Number

5-2
5-3
5-4
5-5
5-6
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
7-1
8-1
8-2
8-3
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23

Page

Title Number

L1 data cache OrganiZation............eeevuueeriieeiiieeieie et et ee ettt et st ee st e e sabeeesabeessabeeesaaeas 5-8
L1 instruction cache OrganizZationcceceeeeriiieeiieeiiieeiiee et e et ee st ee st e e sebeeesabeessabeesneee 5-10
PLRU replacement al@orithmi...........c.ceeiiiiiiiieiiiie et 5-25
Cluster memory subsystem block diagramccceeiciieeiiiriiiiiiiiienieee e 5-27
L2 cache bank OrganiZationc.ueeevuieeriieeiiiie e eeie et ettt e e sabe e s eabeeeeaee 5-28
Effective-to-real address translation flow in €6500...........cccceeeiiiiiiiiieriiirniieeneeereee e 6-4
Page table entry (PTE)oooiiii ettt et et e s s 6-9
Forming a virtual address using external PIDccocccoiiiiiiiiiiiiiiii e 6-11
Virtual address and TLB-entry COMPAre ProCessccueeerueeeriueeeeiueeesueeesieeesveessneesssseesnnns 6-13
TWO-1EVEl MMU SEIUCTUTEcnvveeireeiieietie sttt ettt et ettt st et ee e e e en 6-14
LT MMU TLB OFaniZaAtiON....cc.uvveeiiieeitieeitieeiteeeiteeiteeeiteesaieeessieeesaseeessseesssseesssseessssessnses 6-16
L2 MMU TLB OIaniZatiON.......uvueeiiiieertieeitieeieeeeiteeiteeeiteesuieeessseeeseseeessseesssseesssseessssesnses 6-17
Round-robin replacement for TLBOcoooiiiiiiiiiiieie et 6-19
L1 MMU TLB relationships with L2 TLBS.....ccccoviiiiiiiiiiieeieeeiteesieeeie e 6-20
Relationship of timer facilities tO tiMe DASE.........ceerieeriiriiiieeiie et 7-2
Core activity State dIAZTAIM.......cccuuieiiieeiiieetie et ee e et et ee et ee et ee st eesabeeesabeeesabeesssbeeenene 8-10
Cluster activity State dIAZIaAMueeiiieeiiie ettt et et et ee st e e st e e sebe e e stbeeesabeessbeesneee 8-11
Core power management handshakingc.cccceeiiiiiiiiiiiiiiiiieeeee e 8-12
External Debug Control O (EDBCRO) FEZISIETccueeeuiieriiieeiiieeieeenieeesiieee e eeseieeseve e 9-7
External Debug Resource Request 0 (EDBRRO) re@ister.........ccveevueeerieennieennieeniieeeiieennes 9-9
External Debug Status O (EDBSRO) reZISeTcoeouieiiiiieeiiieeiiieeiteesieee st 9-10
External Debug Status Mask O (EDBSRMSKO) regiSter.......ccccvvvrriirriiirniieeniieeeieeesieeeene 9-13
External Debug Status 1 (EDBSRI) r@ZISETcevviiiiiiieeiiie et 9-14
Processor Run Status (PRSR) TEZISIETcoeuiiiiiiiiiiiieiiie ettt 9-15
Extended External Debug Control 0 (EEDCRO) regiSter........cccveevvieriiieiieeeniee e 9-17
Processor Debug Information Register (PDIR)coccviiiiiiiiiiiiiiiiiiieeceecee e 9-17
Next Instruction Address (INTA) TEZISTET ...eeuureeriieeieeiiie et ettt et e e 9-18
Nexus Development Control 1 (DC1) r@ZIStET......ccuveeriieeiiieiiiieeiiie st 9-19
Nexus Development Control 2 (DC2) T@ZISETccuueeruiieeriieiieee ettt eeae e 9-20
Nexus Development Control 3 (DC3) T@ZISIET......ceuieeriiieeiiiieeieieeieeeeieee e e e e 9-21
Nexus Development Control 4 (DC4) T@ZISETccuveeriieeiiieeieieeieee st 9-22
Nexus Watchpoint TrZEr 1 TEZISTET ..eeuviieiiieeiiie ettt ettt e e e sabe e 9-24
Nexus Watchpoint THZZEr 2 TEZISET ...c.uveeeuiieeiiieeiieeitie et ee et et ee st ee st e e sibeeesareessseeennees 9-25
Nexus Watchpoint Mask (WMSK) T€ZISIETcc.uvieeuiieiiieeiiie ettt 9-26
Nexus Overrun Control (OVCR) T@ZISIET.ueeruiieeieeiiie ettt ettt e e 9-28
Reloadable Counter Configuration (RCCR) T€ZISETcccueevruiirriiieniiiieniieeeriieeeiie e 9-29
Reloadable Counter Value (RCVR) T€ZISIET ...c.ueieruiiieiiieriiiiesiieeeeiie ettt 9-30
Performance Monitor Snapshot Configuration (PMSCR) registerccovueevvieennieenninennns 9-30
IJAM Configuration (IJCFG) r@@ISteTcccuiiiiiieeiieeiie ettt 9-32
IJAM Instruction (IJTR) T@GISIETccvuuieiiiieiiie ettt 9-33
IJAM data registers (IJDATAO—IIDATAS).....cooiiieiie ettt 9-33

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor XXV

Figure
Number

9-24
9-25
9-26
9-27
9-28
9-29
9-30
9-31
9-32
9-33
9-34
10-1
10-2
A-1

A-2

A-3

Figures

Page

Title Number

Performance monitor counter capture registers (PMCCO-PMCCS)ccccccevvivevnieennineennee 9-34
Program Counter Capture (PCC) T@ZISIETccvuiieeiieeiiieeiiie ettt 9-34
DEDUZ TESOUITE ACCESS .nuvveennrieeieieeitieeteeeitee et eeeeite et eeeatee et eessbeeesabeeessbeeessbeeessbeesssseennses 9-53
Source ID field SHUCTUTEeieiiiieiiiie ettt sttt e e et e e abe e neee 9-78
Timestamp field COMPONENLSceiiiieiiieeiiie et e et e 9-80
Lite Program Trace mode eXamplecceeiiiriiiiriiiiiiiiie ittt 9-88
Data Trace address field COMPONENLS.........cccueeeiiieiiieeiiie ettt 9-94
Data Trace full address reCONSIIUCION.......c..eeiiriiieeiieeiiie ettt e e 9-94
Watchpoint Hit fIeldcooieiiiiiiiiiiiiiiie et 9-101
Detailed view: processor performance monitor counters O through 3 ... 9-104
Processor performance monitor capture capability.........cccccveeeiiieriieeniiieniieennieeeeieeeniieene 9-108
GPR Issue Queue (GIQ) (per thread).........cceevvieiiriieniiieeiie et 10-4
Branch completion (LR/CTR write-back) for one thread.............cocceevviiinniiinniiinniienen. 10-14
Branch conditional (bc) inStruction fOrMAL..............cocvvveriieieeriiiiiiereee e eeeeeerreee e e eeeeeraene e A-4
BO field (bits 6—10 of the instruction encoOding)ccceecvereiiieriieienieeenieeerieee e seie e A-6
BI field (bits 11-14 of the instruction enCOdiNg)cc.eevrueerrieerriieeniie et eree e A-9

€6500 Core Reference Manual, Rev 0

XXVi

Freescale Semiconductor

Table
Number

1-1

1-2

1-3

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38

Tables

Page

Title Number

Summary of €e500v2 and e500mc differencCesceevueirriiiriieiiiiiiinieeseee e 1-15
Summary of e500mc and 5500 differenCes.........occeevuiirviiiiriiiiniiieeeeee e 1-17
Summary of €5500 and 6500 differencCes..........coovueeriiiiiniiiriiiieiieeeeee e 1-18
O4-DIL TEZISTETS 1.t eutieeeiitee ettt ee et ee et ee ettt ee ettt e e sttt e e sttt e sabeee sttt eesebeeessbeaessbeaessbeeessbeesnsbeensaeannseeas 2-4
Special-purpose registers (by SPR abbreviation)...........ccoeceeevuiieniiennieennieeenieeerieeesiie e 2-6
Register mapping in the guest—SUPETVISOT StALEcevveeeiieriiieieeieeesitee st eesiieeesaee e 2-12
Memory-mapped register blocks (DY OffSEt)c.ueevuiiriiiiniiiiiieeie e 2-13
Memory-mapped registers for block ‘shared L2 cluster X’ (by offset)cccceevveerveiennnnn 2-13
Thread management registers (by TMR number)ccccocciviiiiiniiiiniiinniiineeeeeeiieee 2-16
BUGCSR field deSCIIPLIONSuvveiiiieeiiie ettt ettt ettt e se e st eesebe e e sabe e e sabeesssbeeeeee 2-22
HIDO field deSCIIPLIONSeeeiieiieie ettt et ettt et ettt st st e st e e e e e sabeesssbeeeneee 2-23
PVR field deSCIIPLIONS ...ueveiiiieiiie ettt ettt ettt ettt st e e et e e sabe e e sabeessbeeeneee 2-24
LPER Field DESCIIPLIONS ..ecuvveiiiieeiiieeiiieeiie et eteetee et st e saieeesaieeesabeeesabeeesaseesssseennnee 2-30
TVOR QSSTZNIMENLS.......eiiiieiiiie ettt ettt et ete et ee et ee et eesabeeesabeeesebeeessbeeessbeeessseannses 2-31
ESR/GESR field deSCIIPONSeeiiuiiieiiieiiiie ettt ettt st sttt 2-34
MCAR address and MCSR[MAV,MEA] at €ITOr tIMEccooveveveeiieiiieeeeeeeeeeeeeeeeeeeeeeeeee e 2-36
MCSR field AESCIIPLIONS ...eeueiieeiiie et ettt ettt ettt e ee sttt e st eesebeeesabeeesabeeessbeeenees 2-37
SPRGs, GSPRGS, and USPRGOcc.coviiriiiieiieeiiesieceieee ettt st 2-39
LICFGO field deSCTIPtIONSeeitiieeiieeeiieeeiieeetie et estieesiaeeseeeetteeteeesineeeaiteesaeeeeaneeeeane 2-42
LICFGI field deSCTiPtIONSeeevieeiiie ettt ettt eteetee et e e sie e st eesebeeesabeessabeesssbeeeneee 2-42
L2CFGO field deSCTIPtIONSueeeiieeiiieertie ettt eteetee et ee e e st ee st eesebeeesabeeesabeessabeesneee 2-43
L2CSRO field deSCIIPLONSeeeiiieeiieeiie et ettt et et ettt st ee st e e sabe e e sabeessabeeseee 2-45
L2CSR1 e6500-specific field desCriptions.eeeveeriieeriieeiiie ettt 2-47
L2 cache partitioning identifiersccuieriiieiiiiie ittt 2-49
L2PARN field deSCTIPLIONSeeiiiieeiiie ettt ettt et ettt e et e e sabe e e sabeeesbeeeneee 2-52
L2PWRN field deSCIIPLIONSeeueieiiie ettt ettt et ettt e st sabe e e sabe e s sabeeeneee 2-54
L2ERRDIS field deSCIIPLIONSeeeiuiieeiiieeiiie ettt et sttt e st eesabeeesabeesssbeeeneee 2-54
L2ERRDET field deSCIIPHONSeeiuiieeiiie ettt ettt ettt ee st eesabe e e sabeesssbeeeneee 2-56
L2ERRINTEN field deSCIIPtiONScceitiieiiie ettt ettt ettt eeseve e e sabe e e sabeesabeeeneee 2-57
L2ERRCTL Field DEeSCTIPHIONSceuviieiiieeiiieeieeeeiteeieee et ee st e siieeeseveessebeeestbeessaseesnsseennees 2-58
L2ERRATTR field deSCIIPONSccuvieeiiieeiiie ettt ettt ettt et e e e aaeeeneee 2-60
L2ERRINJCTL field deSCTIPtIONS.......cccuvtieitieeieierieeeiteeeitee st eesiieeesireeessieessabeessaseenseeennees 2-61
MMUCSRO field deSCIIPONS.eieiiiieiiieeeiie ettt eet e e stteestaeesaae e baeenraeesnsaeenns 2-63
MMUCEG field deSCTIPLIONSuvveiiiieeiiieeiiie et ete ettt ee st ee st eesebeeesebeessabeesssbeeseee 2-64
TLBNCFG field deSCIIPIONS ...cc.uvieeiiieeitie ettt ettt et ee et e st e st e e sebe e e sabeessabeessaeeenees 2-65
TLBNPS field deSCIIPONSeeiiiieiiie ettt et ettt e e sabe e e sabe e eee 2-66
EPTCFEFG field deSCTIPIONSeeiiuiieiiiieeiie et ettt ettt siie e e st e e sebe e e sabeeesabeessbeenneee 2-67
LRATCFG field deSCTIPLIONSuvveiiiieeiiieeiiie ettt ettt ee st e e sabeeesebeeesabeessabeesssbeennnee 2-68
LRATPS field deSCIiPiONS.ccoouutiriieeiiie ettt ettt ettt st ee st e st eesabeeesabeessabeeeneee 2-69
TLB Selection fI81AScovuiieiiiiiiiiiee e e s 2-70
LRAT SElection fIB1AS....c...eeuiiiiiiiiiiie et 2-70

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor XXvii

Tables

Table Page
Number Title Number
2-39 MASO field descriptions — MMU read/write and replacement control...........c.cccceueeneennee. 2-71
2-40 MAST field descriptions — Descriptor context and configuration controlcc........... 2-72
2-41 MAS? field descriptions — EPN and page attributes...........ccceeeueeeriiiienieennieennieeeniieeeiieenns 2-73
2-42 MAS3 field descriptions — RPN and access CONLrolcccueeevieeiniieenniieenniieeniie e 2-74
2-43 MASA4 field descriptions — Hardware replacement assist configuration.............ccecueeeeuneenn. 2-75
2-44 MASS field dESCTIPLIONS ...eeuuvieeiiieeiiie ettt ettt et ete e st e e st e e sabeeestbeeesabeessbeeennee 2-76
2-45 MASG field dESCTIPLIONS ...eeuueieeiiieeiiie ettt ettt ettt et ee et e e sabe e e ssbeeesabeeesabeessbeennnee 2-77
2-46 MAST field descriptions — High-order RPNccoooiiiiiiiiiieeeee e 2-78
2-47 MASS field AESCTIPLIONS ...eeuvieeiiieiiiie ettt ettt ettt et st ee st st ee st eesaneeeeeee 2-78
2-48 IMASS TEEISLET PAITS ..eeuuveeeiiieeitieeitieeitee et ee et ee et ee st ee et eesateeeesseeesabeeessbeeessbeeessseeessseesnsseanns 2-79
2-49 EPLC field descriptions — External PID load CONteXt...........cceccvevriuierniiinnieennieennieeeiieenne 2-80
2-50 EPSC field descriptions — External PID Store conteXt...........ccccevvieeniiennieennieennieeeiie e 2-81
2-51 DBRRO field deSCIIPLONSveeiiieeiieeiiie et et ee ettt s e saieee st eesabe e e sabeeesabeesssbeeseee 2-82
2-52 EDBRACO field deSCIIPtIONS ...cuvueeriieeiiieeiie et eteette et ettt st e sebeeesabeeesabeesssseeeneee 2-84
2-53 DBCRO field deSCIIPLIONSveiiiieeiiieeitie et et ete et et ee e st ee st eesabeeesabeeesabeesssbeesnene 2-86
2-54 DBCRI field deSCIIPLONSeveeiiieeeiieetie ettt ete et et s e st ee st eesabeeesabeeesabeesesbeeeeee 2-89
2-55 DBCR2 field deSCIIPLONSeveeieieeiieeiiie ettt ete ettt ee e e st ee st eesebeeesabeeesabeesssbeesene 2-91
2-56 DBCRA4 field deSCIIPLONSvveeieieiiieetie et ettt ee et s ee et ee st eesabeeesabeeesabeesssseeeeee 2-93
2-57 DBCRS field deSCIIPLONSvveeieieeiieeitie ettt et ettt et sait e st eesabeeesabeeesabeesssbeeeeee 2-94
2-58 DBSR field deSCIIPLIONS. ...cccuviiiiie ettt eiee et ettt et ettt e st eesebeeesabeeesabeesssbeesneee 2-97
2-59 INSPC field deSCTIPLIONSeeuiieiiiie ettt ettt ettt ettt ee st e e sebe e e sabeeesebeeesabeeenaseenns 2-100
2-60 DEVENT field deSCTIPIONScccuviieiiieeiie ettt ettt ettt ee st ee e e st e s sebe e e saaeessaseens 2-101
2-61 DDAM field d@SCTIPLIONS ..eeuviiiiiieiiiie ettt et ettt ettt ee st ee st e e sabeeesebeeesabeessabeans 2-102
2-62 TEN field deSCIIPLIONS ...uvveiiiieiiiie ettt ettt ettt ettt ee st e e st e e st e e sebeessabeessabeens 2-104
2-63 TENS writable field deSCTIPtIONSeiiiiieiiie ittt ettt sttt essaae e 2-105
2-64 TENC writable field deSCIIPONS.iiiiiieiiie ettt e e e 2-106
2-65 TENSR field deSCIIPONSeeiiiieiiiieiiiie ettt ettt ettt s e st e e st eesabe e e sabe e 2-107
2-66 PPR32 field deSCIIPHONS ...eeuvieiiiie ettt ettt ettt ettt ee st e e sebe e s sabe e e sebeessabeeenaaeanns 2-108
2-67 TMCFGO field deSCIIPLIONS ...eevuvieeiiieeiie ettt et ettt et ee e ee s ee st e e sabeeesabeeesaaeens 2-108
2-68 Performance monitor registers (PMRS)ccooiiiiiiiiiiiiiiceceeeeee e 2-111
2-69 PMGC0/UPMGCO implementation-specific field descriptions...........c.eeveveerviveeriveeneneene 2-112
2-70 PMLCa0-PMLCa5/UPMLCa0-UPMLCa5 field descriptions...........coecueeevveeenveenneveennnnenn 2-113
2-71 PMLCbO-PMLCb5/UPMLCbO-UPMLCDS field descriptions...........ccceevcveerrueernieennneenn. 2-116
2-72 PMCO-PMCS5/UPMCO-UPMCS field desCriptionsc.ceeeveeerueernieennieenniieessiieesseieenns 2-118
3-1 Unsupported Power ISA 2.06 instructions (by CateZOTY)c.ceevuieeriueerrieernieeenieeeriieeesiveeeee 3-2
3-2 Data access synchronization reqUITEIMENLESeerveeriureerrieereeeerreesieeesieeesneeeseneessnneessnnes 3-6
3-3 Instruction fetch and/or execution synchronization reqUIremMentsccccceeevveerrveernuveennnenn 3-7
3-4 Special synchronization reqUITEIMENLScevueerrieeriireerieeeeieeesieeesieeesineeesibeesssseesssaeesssees 3-8
3-5 Integer arithmetic INSIUCHIONS.ccctiieiiieeiiieeieeeeiee et ee et e ettt e e stbeesstbeessae e taesaseeennneeenneee 3-12
3-6 Integer COMPATe INSTIUCTIONS ...eeuvieeriieeiiieeteeeteeete et ee et e et eesabeeesabeeessbeeesabeeessbeessbeennses 3-13
3-7 Integer 10Z1Cal INSIUCHIONSueiuiieeiie ettt ettt et et et ee st esabeeesabe e e sabeeesabeesssbeenneee 3-13
€6500 Core Reference Manual, Rev 0
XXViii Freescale Semiconductor

Table
Number

3-8

3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48

Page

Title Number

INtEZEr TOLtALE INSIIUCTIONS . .ee.utieeitieeitieette et ee et ee e et ee et ee et e sateeesabeeessbeeesabeeesabeesssbeennses 3-14
Integer Shift INSTIUCTIONS. ...ccoviiiiie ettt et ettt sabe e st e e sabe e e sabe e s nsbeeeneee 3-15
Integer 10ad INSIIUCTIONSccoviiiiiieeiiie ettt et sttt e st e e eabe e e sabeeessbeeeneee 3-16
INEZET SLOTE TNSTIUCTIONS ..eeeuiiieeitieeiiieetee et ee et ee et e et ee et ee et eesateeesabeeessbeeesabeeesabeesssseennsee 3-17
Integer load and store with byte-reverse InStruCtIONS.........couveeervreerriieerriieeriieerieeeseeeesreeenns 3-18
Integer load and store Multiple INSTIUCHIONSccuvveerieerriieeeiie e eeee e 3-19
Floating-point 10ad INSIIUCHIONSveeeiiieeiiie ettt ettt et e e e sabe e sabeeeeee 3-19
Floating-point StOT€ INSIITUCTIONSvveeririeeiiieeitieeiteeitee et ee et eesaieeesabeeesebeesssbeesssseesssseennses 3-19
AltIVEC 10ad INSTIIUCTIONS ..c.uveevieeiieiiteetie ettt ettt ettt st ebe e r e sraeeere e s 3-20
AltIVEC StOTE INSTIUCTIONS ..uvenvieeiieeniteetie ettt et ee sttt et et et et e st eeesbe et esareesaaeesreenneen 3-21
Decorated load and StOre INSIIUCTIONSc...eeueertirriieieeriee ettt s eaees 3-22
Floating-point arithmetic INSIUCTIONSeeiuvieiriiieeieetieetee et ee st eesibe e e sabeeesebeeeneee 3-24
Floating-point multiply-add INStIUCHONScceiiiiiiiieiiiie ettt 3-24
Floating-point rounding and cONVersion iNSIIUCHIONS.cc.veeerureeriureeriueeesieeenieeesireesssreennne 3-25
Floating-point COMPAre INSIIUCTIONSeieruiieeieieeiieeitieeitee et eesieeesereeessbeeestbeesssseesssseennsns 3-25
Floating-Point Status and Control (FPSCR) register inStructions.............coecveeerveerniveennnneenns 3-26
Floating-point MOVE INSIIUCTIONS ...c..vveereieeriieeitieeieeeitteeiteeeie e eieeesereeessbeeessbeessaseesssseennsns 3-26
AltiVec integer arithmetic INSIIUCTIONS.ceuveeeirieeiieeitieeitee et eeeieee st ee e e e sibeeesabeesssbeeeneee 3-27
AltiVec integer COMPAre INSIIUCTIONSvveerureeeririeeiteerteeeriteeeireeeieeesreeesebeeesabeesssseesssseessnne 3-29
AltiVec integer 10ZICal INSIIUCTIONSeeuvieeiiieeiiieeite ettt ettt eesabe e sabeeseee 3-29
AltiVec Integer rotate INSIIUCTIONSueeurieeriieeeiteeeieeeitee et ee et eeeieeesabeeessbeeesabeesssseesssseesnnes 3-30
AltiVec integer Shift INSHUCHONS.cuuuieiiieeiie ettt ettt e e e e sabe e 3-30
AltiVec denorm handlingcceeiiiieiiiiiiiiie ettt saae e 3-32
AltiVec floating-point compare, min, and max in non-Java mode...........c.cccoceervveeneenneennen. 3-32
AltiVec floating-point compare, min, and max in Java mode............ccoeceevriiirnieennieennnennn, 3-33
AltiVec round to integer instructions in NON-Java MOdecccceevvuierrieennieinnieenrieeeiieenns 3-34
AltiVec round to integer instructions in Java MoOdecccceevviieriiirniiennieeenieeesie e 3-34
AltiVec floating-point arithmetic INSIIUCIONScccuveeriieeriie ettt 3-35
AltiVec floating-point multiply-add INStrUCHONSccccvieeiiiriiiieiiiienieee e 3-35
AltiVec floating-point rounding and conversion INSIrUCHIONSccecueeerereeeruieersveensiveernieeenns 3-36
AltiVec floating-point COMPAre INSIIUCTIONSvveeureerrieeriieeeireeeieeesreeesireeesebeeesaneesssseesene 3-36
AltiVec floating-point estimate INSIIUCIONSeeerureeriieeriieeieieeiteesieeeseieeesieeesiieesssreeeene 3-37
AltiVec compatibility INSTIUCHIONSeeeueieeiiieeiiieeite et ettt e st eesibe e e sabeeesabeessbeeeneee 3-37
ATIVEC PACK TNSTIUCTIONS ..viiieieiiieeiiie et e ettt ee et e et ee et ee sttt eesabeeesabeeessbeeessbeeessbeessbeenneee 3-38
AltiVec UNPACK INSITUCTIONSeeuuvieiiiieeitieeitee et ete ettt eesaie e e st e e sebeeesabeeesabeesssbeennnee 3-38
AltIVEC METZE INSIIUCTIONS . .teeeuieieeitieeiteeeitee et e eite et ee et ee et eessbeeesabeeessbeeessbeesssseesssseennses 3-39
ATIVEC SPlat TNSTIUCTIONS ...vitieeiiiiecitie ettt ettt ee et ee ettt ee st e e sabeeessbeeessbeeesabeessbeesnees 3-39
AltiVec Permute INSIIUCTIONcccutiriieniie ettt ettt st e e e e eaees 3-39
AltIVEC SeleCt INSIIUCTION. c...ceviieiieirtietie ettt ettt ettt e st et et s e e sreeeebeeaaees 3-40
AltIVec Shift INSIIUCTIONS ..c..veitiieiieiitieiie ettt ettt e e e e s 3-40
Move to/from the AltiVec status and control register inStrucCtions............ocueeerveerrveerseveennnn 3-40

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor XXiX

Table
Number

3-49
3-50
3.51
3.52
3.53
3.54
3.55
3-56
3.57
3.58
3-59
3-60
3-61
3-62
3-63
3-64
3-65
3-66
3-67
3-68
3-69
3-70
3.71
3.72
3.73
3.74
3.75
4-1

42

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10
4-11
4-12
4-13
4-14

Tables

Page

Title Number

Move to vector register from GPR INStruCtionscceeeiiiriiiiiiiiieniienieeeeieeee e 3-41
BO DIt AESCTIPLIONSeieeiiiieeiiie ettt ettt ettt e st ee ettt e ettt e et beesbbeesbbeestaeeaneeennsee s sbeanns 3-41
BO 0perand NCOAINESeeeeuvieeiieeiie ettt ettt et e sttt e esebe e s stbeesbaeesabaesnaeeaneesnnnee 3-41
Branch INSTIUCTIONSccceeiiiiiiieiieet ettt ettt et s 3-42
Integer SEleCt INSIIUCTION. ...cuvteeiieeetieette ettt ete et ee et e et e st eesabeeesabeeesabeeesabeessbeenneee 3-43
Condition register 10ZiCal INSIUCHIONSeeouvieeriieiiieeriie ettt ettt s ee s eeeabeeeeene 3-43
TTAP TNSTIUCTIONS ...ttt ettt et ettt et et ee ettt e sat e ettt eesabeeesebeeesabeeessbeeeesbeeessseeessseensseanns 3-43
System Linkage INStIUCHONc..viiiiiiiiiiieiiie ettt st s 3-44
Hypervisor privilege INSIUCHION.uuierieieeitieeitieeiee et et ee et ee et ee st eesebeeesebeeesabeesssbeesneee 3-44
Move to/from Condition RegiSter INSIIUCHIONS.cueeeriiieeriiieeieeeeieeenieeesiieee e e e sireesiee e 3-44
Move to/from Special-Purpose Register inStruCtiONS.c.eeerueerrieernieenriieeniieeniieereee e 3-45
Wait for INterrupt INSIIUCTION. ...ccc.utieeiiieeiiieeriie ettt e eee et te e ebeeaeeeteesireesnnneeanns 3-45
Performance monitor INSIIUCTIONSoouueeuveeritiriie sttt ettt eiees 3-45
Memory synchronization INSEIUCHONSccceeiiiiieriiieeiiie ettt 3-47
User-level cache INSIIUCTIONScoiiiiriiiiieeieint ettt e 3-53
Cache 10CKING INSTIUCTIONSeeuiieeiiieeiie ettt ettt et ee et ee st e e sabeeessbeeesabeessabeessaeennnee 3-55
Instruction execution based on privilege levelocovveiiiiiiiiiiiiiiniee e 3-56
System linkage instructions—supervisor-1eVeloocucevvuieriiiiiiiiinniiieieceeeee e 3-57
Move to/from Machine State regiSter INSIIUCIONSccuveeerureeeiirieeiiieeniteenieeesieee e essire e 3-57
Thread management INSTIUCTIONSuiereieeriieeetieeteetieeteeee e et ee st eesiie e st eesabeeseabeeeeene 3-58
External PID load and StOre INStIUCHIONS.cc..eeitirriierieiniieniie ettt sttt 3-58
Supervisor-level cache management INStIUCIONc.ceeviuierriiierriieeniieeeieee e e e 3-60
TLB management INSIIUCTIONScccvieeriieeriieeieeeeiteeteeeitee et e siieee st eesebeeesabeessaseesssseesnnne 3-61
Message Clear and Message Send INStrUCHIONS.eeeriieeiiieiiieieeiiee st eiieee e siie e seie e 3-63
Supervisor performance MONItOr INSTIUCHIONScevueeruieeriieerieeesieeesieeesiieeesireessiaeesssreenneee 3-63
dnh debUZ INSIIUCTIONeeuuiieiiiie ettt ettt e e s e e sabe e e sabeeenbbeans 3-64
€6500 COTE TNSTIUCTION SO c.uvenvieeiieiieeetie ettt ettt et et eabe et e et ese e eebe et e s reesraeeebeennees 3-64
INEETTUPE TEZISTETS ...eeeuiiieeniiie ettt ettt et ettt et ee ettt ee ettt eesabe e e sabe e e sabeeesabeessabeeesaseesnsaeannnes 4-5
Interrupt summary by (G)IVORoiiiiieie ettt e 4-9
Critical input INLEITUPEt TEZISTET SELLINES .. .eeeurreeirieeiieeitieeiitee et e et eesereeesebeeestbeeesabeeessseeseee 4-13
Machine check INtEITuPL SELLINESveeeruiieeriieeiiie et ette et ee et ee et e e st eesebeeestbeeesabeesssbeesneee 4-16
Machine check eXCePtiOn SOUITEScciuviieriiieeiiieeiieetie et ee et ee et ee st eesebeeesebeeesabeesssbeesneee 4-16
Synchronous machine check error r€POILScevrueeriiiieriiiriiiee et 4-18
Asynchronous machine check and NMI eXCeptionsccceeevvieiviieniiirniieeniieeiieee e 4-20
Data StOTAZE TNLETTUPL. ...eeurieeiiieeitieeitee et ee et ee et ee et ee et eesiteeesebeeesabeeesabeesssbeesssbeesssbeannsseans 4-21
Data storage interrupt eXception CONAItIONS.........eeeuieeriieeiiiieeieieeieee st e eie e et eesaee e 4-21
Data storage interrupt reZIStET SEILNZS.....veeureerrreeiiieeiiieeiteeeir e et ee st ee st eeseieeesabeeeeareee e 4-23
Instruction storage interrupt eXception CONAItIONSc.ueerieeerrieeiiienieee e eieee e e e sire e 4-24
Instruction storage interrupt re@iSter SELNZS ...c.uvveerureeriieeiiieerieeteeeitee et esibeeesareessebe e 4-24
External Input Interrupt Register SEttNGS........cccceeeuiieiiieeiiieiiieeeieeesie et 4-25
Alignment Interrupt TeZISEr SELMZS . ..ccuvreerieieeririeeieetie ettt et ee st eesebe e e sabeeesabeessabeeeeee 4-28

€6500 Core Reference Manual, Rev 0

XXX

Freescale Semiconductor

Table
Number

4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
6-1
6-2
6-3
6-4

Tables

Page

Title Number

Program interrupt eXception CONAITIONSeeeeiiieeiieeiiie et et et ee e ee e e sabe e sabe e 4-28
Program interrupt reZiSIET SELINESveerurreeriiieeiiiieeieeiieette et ee et ee st saieee st eesabeeesnbeee e 4-29
Floating-point unavailable interrupt regiSter SEtNES.......cccveeerurreriieerieienieeenieeerieeesiveeenee 4-29
System call/hypervisor system call interrupt SeleCtioncceeevveeriiirriiinnieeriieeeeieeen 4-30
System call/hypervisor system call interrupt register SEtngsceevveerrveeerueernveernveennnns 4-30
Decrementer interrupt re@iSter SELNEScccuveeeruireeiieeiiieeiteeeieeeeieeesereeesebeeestreessareesssreesnees 4-31
Fixed-interval timer interrupt regiSter SELNEScccveeriieeriieeieeeeieeeeieee st ee e e e eiieeesabe e 4-32
Watchdog timer interrupt re@iSter SEINZSeeeruuiirreieiieeerieeeeieeesieeesibeeesebeeesereessaaeesseeenns 4-32
Data TLB error interrupt exception CONAItIONceervieeriieiieieniieeniteesieeesieee e eesive e 4-33
Data TLB error interrupt re@iSter SELNZSeeeueieeuieeiiieeiiiieeieeeeieeesiieee st eeeereeesareessaseeneee 4-33
Instruction TLB error interrupt exception CONAItiON.........ccveeriveeriiieeriiieenieee e sieeesiie e 4-34
Instruction TLB error interrupt re@ister SELNESceervreeriieeieieeieeeeiteesieeesiieeesiieessireeenee 4-34
Debug INtEITUPE TEZISIET SELLINES ..veeuuvreeirieeiiieeieeeeiteetee et ee et eesbeeesabeeessbeessabeesssseesssseennses 4-35
AltiVec Unavailable Interrupt RegiSter SEttNESc..veeruveeeiiiiriiiiieeiiee et 4-36
AltiVec assist INLEITUPE TEZISTET SEINZS ..vveeuurreeirieeiieeritieeiteeeieeeeieeesieeesebeeesabeeesabeesssseesnene 4-37
Performance monitor interrupt register SEtNZS.veerurieerieeeiieeeieeeeieeeeieee e e e siieeesire e 4-38
IMIESSAZE LYPES weenvveentieesiieeetieeette et e et e et eeeuttaesatteeasteeeasteesaneeessbeeesabeeessbeeessbeeensbeensseennses 4-38
Processor doorbell interrupt re@ister SEtNZSveeueeeriieeiiiieeieee ettt e e e eae e 4-39
Processor doorbell critical interrupt register SEtNESceeueeeeiueeeriiieenieeenieeenieee e e e siee e 4-40
Guest processor doorbell interrupt regiSter SEHNZS ...cv.veerrvrerrueerrieeeriieerriieeerieeesireensieeennnns 4-40
Guest processor doorbell critical interrupt register SEtNGS.......eeevuveerreveerriieerriieeriieereeeenns 4-41
Guest processor doorbell machine check interrupt register Settingsoccueeeveveerrveernuveennne 4-41
Hypervisor privilege interrupt re@ister SELNZScccuveeruiieeiuieeriieeeeiieenieeesieeesiveeesireessireeneee 4-42
Hypervisor privilege exceptions from the guest-supervisor Stateccoeceeerveerrveennneenns 4-42
LRAT error interrupt reZiSEr SEHINES ...uvveerireerrieerieeitieeriteeeieeeeieeesieeesebeeesebeeesaseesssseesnne 4-45
Operations to avoid before the save/restore registers are saved t0O MEMOTYcceevuveenee. 4-46
ASYNchronous eXCEPION PIIOTILIESveeeurreeirieeirieeteeeiteeeiteesieeesieeesareeesebeesssseessaseesssseenns 4-48
SyNChronous XCEePtION PIIOTILIESeeeeuvieeriieeeriieeerieeeieeeeitee st eesebeeesabeeestbeessabeessabeesssseennene 4-49
Architectural memory acCess OTAETINGccccveeeriiieeiieeiiie et ettt e e e e sabe e 5-18
Cache locking based on MSR[GS,PR,UCLE] and MSRP[UCLEP]cccceecvvirrrirnnnrannen. 5-21
L1 PLRU replacement Way SElECHIONccovuueiriieerieeniieeriie ettt sttt ee s e e sabe e 5-24
PLRU bit Update TUIESeeiiieeiie e ettt s st e e sabe e 5-25
Cache 1ine State defINIIONScccueeriiirriieiie ettt ettt eaees 5-29
L2 1eplacemeEnt POLICY ..cuvveieiieiiiie ettt ettt ettt ettt e st esabe e eabe e e sabe e e stbeeeneee 5-33
L2 PLRU replacement Way SElECHIONccovuveeriieerieeriieeitie et et st ee s s s eesabeeeeeee 5-34
L2 £ @ITOTS .t ettt et et et ettt et sttt e set e st eesabeeesabeeesabeeesabeeessbeeesabeesnsbeensaeanns 5-35
L2 AL ©ITOTS ..ttt ettt sttt eabe et et sa e eabe et et e b eabeenae s 5-36
TLB maintenance programming MOlccccuiiiiiiiiiieiiiiie ettt 6-2
Example indireCt TLB @NLIYc.ceiiiiiiiiieeiie ettt e s 6-6
Page table entry field deSCIIPONSccccuieiiiieiiiie ettt e s 6-9
TLB T PAZE SIZES ..uuveeeieieeiie et ettt et ettt ee sttt et e st eesabeeesabeeesabeeesabeeessbeeessbeesnsaeanns 6-12

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor XXXi

Table
Number

6-5
6-6
6-7
6-8
6-9
6-10
6-11
8-1
8-2
8-3
8-4
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24
9-25
9-26
9-27
9-28
9-29
9-30

Page

Title Number

INAEX OF TLBS .ttt e ettt et et esr e e e es 6-15
TLB entry bit defiNItionS.........eeiiuiiiiiieeiiie ettt et ettt st st st eeeaseeeneee 6-21
LRAT fIELAS ...ttt ettt ettt ettt et e bt ettt et saae st e et enbeente 6-22
LRAT PAZE SIZES +vveeuvveerniieeiiieeiiieestteesteeeitee et tesaiteeiteeeasteesaaeeessseaessseeessbeesssbeeessseesssseennses 6-23
TLB1 entry O values after TESEL......ccouuiiiiieeiiie ettt ettt ettt e sebe e e sabe e e sebe e eee 6-33
Registers used for MMU fUNCHONSccuvvieiiieiiiie ettt 6-35
MMU assist register field UPAALeS........ccveieiuiiriiiieeiie ettt e 6-36
Cluster power management SiZNalS (PET COTE)uerurrrrireriirieeiiieeiteeeieeeeieeesireeesiaeesssreeesaneas 8-2
Core activity (pOWer Management) SLAESeevvveerreerrieerriieerriieersireesssteensreessseeesneeesseesnnnes 8-5
€6500 CIUSLET ACTIVILY STALES ..veeeuurieeiiieeiiieeiteeeieeeetiee ettt eeetteee sttt eessbeeesereeessbeesssbeessaeenseeennnes 8-11
AltiVec unit Iow POWET State TELENTIONccuueeeirieeiieeiiieeitee et e et ee st eesibeeesebeeesabeessabeeeeee 8-13
EDBCRO field deSCIIPtIONScciuiieiiie ettt et ettt ettt ee st e e st e e sabe e e sebeessareeenaaeas 9-7
EDBRRO field deSCIIPtIONSccouvieiiieeiie ettt ettt ettt sttt e st e e sebe e sareeenaae s 9-9
EDBSRO field deSCIIPLIONSceeuiiieiiieeiie et ettt ettt ettt e st e e sabe e e sabe e s eabeeeeee 9-11
EDBSRMSKO field deSCIIPONS.vvieriieeiiieeitieeite ettt sttt st ee s eesabe e e sabeeesase e 9-13
EDBSRI field deSCIIPLIONSeeeuviiiiiieeiie ettt ettt et et e st e s e s e e sabe e e sabeeeeee 9-14
PRSR field deSCIIPLIONS ..eeeuuiieiiiieeiiie ettt ettt ettt et e e et e e e e e sabe e e sbeeeneee 9-16
EEDCRO field deSCIIPLONSeeuvieeiiieeitie ettt ettt ettt eesebe e e sabeessabeeesabeesneee 9-17
PDIR Field DESCIIPLIONS ...eeuuvieiiiieiiiieeitie et ettt et ee et st e st e e sebeeesabe e e sabeeesabeessbeennnee 9-18
DC1 field deSCTIPLIONS.eeieiiie ettt ettt ettt et ee et ee st e st e e sabeeessbeesstbeeesabeeensbeesnnee 9-19
DC2 field deSCTIPLIONS.vieiie ettt ettt et ettt s ee st e st eesebeeesabeeesabeesssbeenneee 9-21
DC3 field deSCTIPLIONS. .. .eeiiiie ettt ettt et et et et et ee et e e st eesabeeesabeeesabeesssbeeennee 9-22
DC4 field deSCTIPLIONS.vveeiieetie ettt et ettt ettt st ee st esabeeesabeeesabeeesabeesssbeenneee 9-23
WTT field deSCIIPHONS ..ccuviiiiiie ettt ettt et st st saeeesaneeeeaseanns 9-24
WT2 field deSCIIPHONS ...c.uvieiiiie ettt ettt et ettt e e st e e sabe e e sabeessbbeeenbbeanns 9-25
WMSK Field DESCIIPLONSvieeuiiieeiiiie ettt ee sttt ee st ee st e e st e e sabeeesabeeesabeeessbeesnsseans 9-27
OVCR field dESCIIPLIONS ..cueveieiiiieriiiieeiitie ettt sttt et ee st e st e e sabeeesabeeestbeesssbeesnabeessbeennnee 9-28
RCCR field deSCTIPLIONS ..eecuuvieiiiiieeiiieeitie ettt ettt ettt ee st esibeeesebeeesebeeesabeeesabeesssbeesnees 9-29
RCVR field dESCIIPLIONS ..euevieeiiiieiiiieeitie ettt ettt st esate e e st e e sebe e e sabeeesabeessbeeennee 9-30
PMSCR Field DESCIIPLIONScccuuviieiiieeiiieeitie ettt et ee et et eesiieee st eesebe e e sabeessabeessaeenneee 9-31
JJCFG field deSCTIPLIONS ...eeuviieiiieeiie ettt ettt ettt ee st ee st eesebe e e sabeeesabeesnsbeesneee 9-32
PMCCO-PMCCS field deSCIIPLONcccuvieeiiieeiiieeiie ettt ettt st eesabe e sabe e 9-34
PCC field deSCTIPLION ...ceeuuiieiiiiieeiitie ettt ettt e ettt e s sabe e e stbe e e sbbeessabeeesbeessbeanns 9-34
Response—IACn, DACn, ICMP, BRT, IRPT, RET, CIRPT, CRETccccccevvueirniiinnnne 9-36
UDE CONAItION TESPOMSES ... uvvieenirieenirieeiitieeiiteeeiiteesteeeuiteeesseeesineeessseeesaseesssseesssseesssseesssseenns 9-42
TRAP debug cONAItion TESPOMNSESeeeeuvrieriiiieriiiienieeeiteesieeesieeesieessireesssseesssseesssseessseeenns 9-43
DNI debug cONAItioN TESPOMSESeeuuvreeririeeiiieeirieeiteeiteeeiteeeieeesieeesareeessbeeessseeessseessssesnsns 9-44
DebUZ EVENTE PIIOTILIES ...uuvveeuirieeiiie ettt ee ettt ee et e et ee et eestteeesabeeesebeeessbeesssbeesssbeessseennses 9-47
Methods for halting the ProCESSOT.......cccuiiiriiiiiiiieeiieete ettt e e 9-49
Methods for StOPPING the PIrOCESSOTcc.uviieiiieeiiieeiie ettt ettt esebe e e sabeessabeeeneee 9-50
Thread SEIECE (T'S) ..ottt e e e e e eeer e e eeeeesesetarbeeeeeseeeennes 9-53

€6500 Core Reference Manual, Rev 0

XXXii

Freescale Semiconductor

Table
Number

9-31
9-32
9-33
9-34
9-35
9-36
9-37
9-38
9-39
9-41
9-42
9-43
9-40
9-44
9-45
9-46
9-47
9-48
9-49
9-50
9-51
9-52
9-53
9-54
9-55
9-56
9-57
9-58
9-59
9-60
9-61
9-62
10-1
10-2
10-3
10-4
11-1
11-2
A-1

A-2

A-3

Page

Title Number

Debug 1resource address MAP ...c.vveeeveeeriie et et etee et et ee st e e sebe e e sabeeesabeeseabeeeeee 9-54
Load/store IJAM transfers (wWhen IIMODE = 1)cccoiiiiiiiiiiiiiieee e 9-60
Instruction jamming addressing MOAES..........ueervieerieeriiie ettt e e 9-62
Implemented IJAM instructions when the processor is halted (with IMODE=0)............... 9-63
Instructions supported only when the processor is halted............cccoceevviiiinniiiiiniinnieinieen, 9-64
Effect of exceptions on Maching State...........cueeovuieiiiiiiiiiieeiiie et 9-65
SUPPOTLEA TCODESccuiiiiiiie ettt et ettt e st e st e e sabe e e stbe e e sabeeessbeenneee 9-72
Data Trace Size (DSZ) encodings (TCODE = 13).....ccccciiiiiiiiiiiiiieneieeieeeeeeese e 9-75
Error Code (ECODE) encodings (TCODE = 8)cccceeiiiiiiiiiiiiieeieiesieeesieeeeeeeie e 9-75
Resource Code (RCODE) encodings (TCODE = 27).......coooviiiiiiiniiienieeeeieeesieeeiie e 9-76
Branch Type (B-TYPE) encodings (TCODE = 28, 29)c.cooooiiiriiiiniiienieeeeeeeeeeee e 9-76
Event Code (EVCODE) encodings (TCODE = 33).......cccoooiiiiiiiiiiieniiieieeeieeeie e 9-76
Error Type (ETYPE) encodings (TCODE = 8).....ccooiiiiiiiiiiiiiieesieeeiie et 9-76
Timestamp Correlation Type (T-TYPE) encodings (TCODE = 56)ccccccocvevveenieencennen. 9-77
CKSRC encodings (TCODE = 35)ccooiiiiiieieieeie ettt ettt sttt 9-77
CKDF encodings (TCODE = 35)......cctiiiiiiie ettt ettt sttt 9-78
SYNC encodings (TCODE = 35)......couiiiiiiiiiieeeieesie ettt ettt e seee e 9-78
Message type priority and message dropped rESPONSEScc.ueeeruveerrueeerieerrieerriieeeniieenaeeas 9-82
Nexus Link Stack OPEIrationscccvueeriieeiiie ittt ettt st s e e eesabe e eee 9-87
Trace reconstructor link stack OPerationcccoeciveiiieeiiieiiiieneeese e 9-87
Branch/predicate hiStOry EVENLScociieiiiieiiiie ittt ettt ettt st 9-89
Indirect Branch mesSage EVENLScuveiuiiiiiiieiiiie ettt et ettt et e e e e eabe e 9-90
Hard synchronization CONAIIONScccueeeiiieiiiieeiie ettt ettt sabe e s sabe e 9-91
Soft synchronization CONAItIONSceevutirriiirrieie ettt ee e ee st e et eesebe e e sabe e e sabeesseeeeneee 9-92
Data Trace MESSAZE EVENLS.eeiuieerireerrieeiteeeiteeeiteesteeeateesaieeessneeessseeessbeesssseesssseessssesnses 9-95
OTM Process field COMPONENLScoovuiiriiiiiiiiieniee ettt sebe e e s sabe e 9-96
Processor debug watchpoint Mappingsc..eecveeeriieeriiieeiiie et 9-99
Performance monitor INSHUCHIONSeiiiieeriieeitie e et ee et st ee st ee st e e sabe e e sabeeesaneeens 9-105
Processor states and PMLCan bit SENEScoecveeeriieeiiieniiienieieeieeesie et essaee e 9-106
EVEIIE LY PES ettt ettt et et et et et st st st st ae st eabeeenbe s 9-110
Performance monitor event selection (bY CAtEZOTY).......ceeerurieeiieeriureeniieenieeenieeesieeesiieenns 9-110
Performance monitor event selection (by NUMDET)ceoveeiiiieriiiieniiienieeesieeesie e 9-124
The effect of operands on divide 1atenCyccceeeviiieiiiiiiiiiiiiiie e 10-20
The effect of operands on multiply latency..........coocveeiiiiiiiiiiiiieiiee e 10-21
Performance effects of operand placement in MEMOTYccevvverriiirriiirniieernieeenieeeieen 10-23
€6500 INSIUCION JALBNCIES ...covvieiriiitiiiie sttt s 10-25
SPRs and TMRs with nOn-zero reset VAlUESocueeviiiiriiiiiiiiirieeesieceiie e 11-3
SPRs to configure the €6500ccuiiiiiiiiiiiiiieieieeee ettt et et 11-4
Subtract immediate sSimplified MNEMONICSueeriiirriieiiiie e A-1
Subtract SIMplified MNEMONICSeerriiiiiiieieiie ettt et sie e s ees A-2
Word rotate and shift simplified MNEMONICSc.eevviiiriiiiiiiiie it A-3

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor XXXiii

Tables

Table Page
Number Title Number
A-4 Doubleword rotate and shift simplified MNEMONICSccccereiiiriiiiriiieeieceeeee e A-3
A-5 Branch INSTIUCTIONScc.eiiiiiiiieiie ettt ettt st et e ee s A-4
A-6 BO DIt @NCOAINES ...cc.ntieiiiie ettt ettt ettt ettt e sttt e s stbe e e bbe e et beentbeennbreeenanes A-6
A-7 BO 0perand €NCOAINESeevruieiiiieeeiie ettt ettt et ee et ee et eeeaaeeesabeeesabeeesebeeesanes A-7
A-8 CRO and CRI fields as updated by integer and floating-point inStructions.............cceeveenne.e. A-9
A-9 BI operand settings for CR fields for branch comparisons...........ccccceeeveeevcieenieennieennnnenn. A-10
A-10 CR field identification SYMDOIS..........ceiiiiiiiiieeiiie ettt e s e A-11
A-11 Branch simplified MNemMONICS.........ccuuiiiiiiiiiie ettt A-11
A-12 Branch INSTIUCTIONSccoeiiiiiiiiiiiie ittt et A-12
A-13 Simplified mnemonics for be and bea without LR update........ooooeveiieiiiiiiinniinicee, A-13
A-14 Simplified mnemonics for belr and beetr without LR updateoooveeieiniiiniiiiinienen. A-13
A-15 Simplified mnemonics for bel and bela with LR update..........ooooveviiiiiiiiiniiniiiee, A-14
A-16 Simplified mnemonics for belrl and beetrl with LR updateooocevviiiniiinnicinneenne. A-14
A-17 Standard coding for branch coOnditionscceeviieiiiiiiriiie i A-15
A-18 Branch Instructions and Simplified Mnemonics that Incorporate CR Conditions A-16
A-19 Simplified Mnemonics with Comparison Conditions............ccccceeeeiuieerieeeniieeenieeenieeesieeenns A-16
A-20 Simplified mnemonics for be and bea without comparison conditions or

LR UPAALE ...ttt e et et et et et e et et e e st e sabe e e sabeeesabeeas A-17
A-21 Simplified mnemonics for belr and beetr without comparison conditions

OF LR UPAALE ...t e et et et st st st e e s as A-18
A-22 Simplified mnemonics for bel and bela with comparison conditions and

LR UPAALE ...ttt e ettt et et et e et et e st eesabe e sabe e e sabeeas A-18
A-23 Simplified mnemonics for belrl and beetrl with comparison conditions

ANA LR UPAALE ...eeiiiiiieiiiee e e et et st st st eas A-19
A-24 Word compare simplified MNEMONICS.........oociiiiiiiriiieiiie ettt A-20
A-25 Doubleword compare simplified MNEMONICScceeriiiiiriiiiriiiieriieerie et esiae e A-20
A-26 Condition register logical simplified MNemMONICScooeviieiiiiiiiiieiiiiereeeeeee e A-21
A-27 Standard codes fOr trap INSIUCHONSeeiivieiriieeiiieeiie ettt s eesee e e sabe e e A-21
A-28 Trap SIMPlified MNEMONICS......cciviieiiie ettt ettt et esebe e sebeeesabeeesabeee e A-22
A-29 TO operand bit ENCOAINE . .ccvueereieeiiie ettt ettt et et et e et ee st ee st eesabeeesabeessabeeees A-23
A-30 Additional simplified mnemonics for accessing SPRGSccccoeoviiiriiiiniiinniiiinnieeniees A-24
B-1 Substantive Changes from Rev. T to Rev. Oocuooviiiiiiiiiiiiiiieeeee e B-1

€6500 Core Reference Manual, Rev 0

XXXiV Freescale Semiconductor

About this book

This core reference manual includes the register model, instruction model, MMU, memory subsystem, and
debug and performance monitor facilities of the e6500 core. The primary objective of this manual is to
describe the functionality of the e6500 embedded microprocessor core for software and hardware
developers. This manual is intended as a companion to the following documents:

* EREF: A Programmer’s Reference Manual for Freescale Power Architecture Processors (hereafter
called EREF),
» AltiVec Technology Programming Environments Manual for Power ISA Processors, and

e Power ISA™ Version 2.06.

These documents describe the architecture to which the 6500 core is implemented and referenced
frequently. This manual focuses on features that are specific to the €6500 microprocessor.

Information in this manual is subject to change without notice, as described in the disclaimers on the title
page of this manual. As with any technical documentation, it is the readers’ responsibility to be sure they
are using the most recent version of the documentation. Updates to this document and errata can be found
at freescale.com.

Audience

It is assumed that the reader understands operating systems, microprocessor system design, and the basic
principles of RISC processing. It is also assumed the reader has access to EREF, AltiVec Technology
Programming Environments Manual for Power ISA Processors, and Power ISA™ Version 2.06 (hereafter
called Power ISA).

Organization

The following is a summary and a brief description of the major sections of this manual:
* Chapter 1, “e6500 Overview,” provides a general description of e6500 functionality.

* Chapter 2, “Register Model,” is useful for software engineers who need a general understanding of
the e6500 register set and details of e6500-specific features.

* Chapter 3, “Instruction Model,” provides a general overview of the addressing modes and a
description of the instructions as defined by the architecture and indicates particular areas in which
the e6500 provides implementation-specific details not described in the EREF. Instructions are
organized by function.

* Chapter 4, “Interrupts and Exceptions,” describes how the e6500 core implements the interrupt
model.

e€6500 Core Reference Manual, Rev 0

Freescale Semiconductor XXXV

* Chapter 5, “Core Caches and Memory Subsystem,” describes the e6500 L1 cache, the shared L2
cache, and the memory subsystem (MSS).

e Chapter 6, “Memory Management Units (MMUs),” describes e6500 memory management,
including the mechanisms and structures associated with address translation.

* Chapter 7, “Timer Facilities,” describes timers provided by the e6500 core.

* Chapter 8, “Power Management,” describes power management facilities provided by the e6500
core.

* Chapter 9, “Debug and Performance Monitor Facilities,” describes the debug and performance
monitor facilities implemented in the e6500 core.

* Chapter 10, “Execution Timing,” describes how instructions are fetched, decoded, issued,
executed, and completed and how instruction results are presented to the processor and memory
system. This chapter also provides tables that indicate latency and repeat rate for each of the
instructions supported by the e6500 core.

e Chapter 11, “Core and Cluster Software Initialization Requirements,” describes the software
initialization requirements after reset.

* Appendix A, “Simplified Mnemonics,” describes extended mnemonics for assembly language
programming.

Suggested reading

This section lists additional reading that provides background for the information in this manual, as well
as general information about the architecture.

General information

The following documentation is available on Power.org:

* Power ISA™ Version 2.06, January 30, 2009
The following documentation, published by Morgan-Kaufmann Publishers, 340 Pine Street, Sixth Floor,
San Francisco, CA, provides useful information about computer architecture in general:

* Computer Architecture: A Quantitative Approach, Third Edition, by John L. Hennessy and David
A. Patterson

* Computer Organization and Design: The Hardware/Software Interface, Second Edition, David A.
Patterson and John L. Hennessy

Related documentation
Freescale documentation is available from the sources listed on the back cover of this manual; the
document order numbers are included in parentheses for ease in ordering:

* EREF—This book provides a higher-level view of the programming model as it is defined by
Power ISA and Freescale implementation standards.

» AltiVec Technology Programming Environments Manual for Power ISA Processors—This book
provides a higher-level view of the programming model for the vector processing provided by
AltiVec technology as it is defined by Power ISA and Freescale implementation standards.

e€6500 Core Reference Manual, Rev 0

XXXVi Freescale Semiconductor

* Integrated device reference manuals—These books provide details about individual
implementations of embedded devices that incorporate embedded cores, such as the e6500 core.

* Addenda/errata to reference manuals—Because some processors have follow-on parts, an
addendum is provided that describes the additional features and functionality changes. These
addenda are intended for use with the corresponding user’s manuals.

* Data sheets—Data sheets provide specific data regarding bus timing, signal behavior, and DC, AC,
and thermal characteristics, as well as other design considerations.

* Product briefs—Each device has a product brief that provides an overview of its features. This
document is roughly equivalent to the Overview chapter (Chapter 1) of an implementation’s user

manual.

* Application notes—These documents address specific design issues useful to programmers and
engineers working with Freescale processors.

Additional literature is published as new processors become available. For a current list of documentation,

visit freescale.com.

Conventions

This manual uses the following notational conventions:

cleared/set

mnemonics

italics

0x0

0b0

rA, rB, rS

rD

frA, frB, frC
frD

VA, vB, vC, vS
vD
REG[FIELD]

X1y
Xy

When a bit takes the value zero, it is said to be cleared; when it takes the value one,
it is said to be set.

Instruction mnemonics are shown in lowercase bold.
Italics indicate variable command parameters, for example, beetrx.
Book titles in text are set in italics.

Internal signals are set in italics, for example, qual BG.
Prefix used to denote a hexadecimal number.

Prefix used to denote a binary number.

Instruction syntax used to identify a source GPR.
Instruction syntax used to identify a destination GPR.
Instruction syntax used to identify a source FPR.
Instruction syntax used to identify a destination FPR.
Instruction syntax used to identify a source VR.
Instruction syntax used to identify a destination VR.

Abbreviations for registers are shown in uppercase text. Specific bits, fields, or
ranges appear in brackets. For example, MSR[PR] refers to the privilege mode bit
in the machine state register.

A bit range from bit x to bit y, inclusive.
A bit range from bit x to bit y, inclusive.

In some contexts, such as signal encodings, an unitalicized x indicates a don’t
care.

e€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

XXXVii

X

n

- NOT logical operator.
& AND logical operator.
I OR logical operator.

Terminology conventions

An italicized x indicates an alphanumeric variable.

An italicized n indicates a numeric variable.

Indicates reserved bits or fields in a register. Although these bits can be written to
as ones or zeros, they are always read as zeros.

This table lists certain terms used in this manual that differ from the architecture terminology conventions.

Table i. Terminology Conventions

Architecture Specification

This Manual

Extended mnemonics

Simplified mnemonics

Privileged mode (or privileged state)

Supervisor level

Hypervisor mode (or hypervisor state)

Hypervisor level

Problem mode (or problem state)

User level

Qut-of-order memory accesses

Speculative memory accesses

Storage (locations)

Memory

Storage (the act of)

Access

e€6500 Core Reference Manual, Rev 0

XXXViii

Freescale Semiconductor

Chapter 1
e6500 Overview

This chapter provides a general overview of the e6500 microprocessor core. It includes the following:
* An overview of architecture features as implemented on the e6500 core
* Summaries of the core feature set and instruction pipeline and flow
* Opverviews of the programming model, interrupts, and exception handling
* A description of the memory management architecture
* High-level details of the e6500 core memory and coherency model
* A brief description of the CoreNet interface
* Alist of differences between different versions of the e500mc/e5500/e6500 cores from e5S00v2

The e6500 core provides features that the integrated device may not implement or may implement in a
more specific way. Differences are summarized in the integrated device’s documentation.

1.1 Overview

The e6500 core is a low-power, 64-bit, multi-threaded implementation of the resources for embedded
processors defined by Power ISA. The core supports the simultaneous execution of two threads
(processors). The core implements two sets of thirty two 64-bit general-purpose registers; however, it
supports accesses to 40-bit physical addresses. The block diagram in Figure 1-1 shows how the e6500
core’s functional units operate independently and in parallel. Note that this conceptual diagram does not
attempt to show how these features are implemented physically.

The e6500 core is a multi-threaded superscalar processor that can decode two instructions and complete
two instructions per thread per clock cycle. Instructions complete in order, but can execute out of order.
Execution results are available to subsequent instructions in the same thread through the rename buffers,
but those results are recorded into architected registers in program order, maintaining a precise exception
model.
The processor core integrates the following execution units:

* Four simple instruction units (SFX0 and SFX1 per thread)

* One multiple-cycle instruction unit (MU)

* Two branch units (BU, one per thread)

* One floating-point unit (FPU)

* One AltiVec unit (VSFX, VCFX, VFPU, VPERM)

* Two load/store units (LSUs, one per thread).

— The LSUs support 64-bit integer and floating-point operands and 128-bit vector operands for
AltiVec operations.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 1-1

€6500 Overview

The ability to execute 12 instructions in parallel and the use of simple instructions with short execution
times yield high efficiency and throughput. Most integer instructions execute in one clock cycle.

The e6500 core includes hardware managed, first-level instruction and data memory management units
(MMUs) and a software managed, on-chip, second-level unified MMU with hardware assisted tablewalk.

The first-level MMUS for both instruction and data translation are each composed of two subarrays:

* An eight-entry fully associative array of translation look-aside buffer (TLB) entries for
variable-sized pages; and
* A 64-entry, four-way set-associative array of TLB entries for fixed-size pages that provide virtual

to physical memory address translation for variable-sized pages and demand-paged fixed pages,
respectively.

NOTE

These TLB arrays are maintained entirely by the hardware with a true
least-recently-used (LRU) algorithm and are a cache of the second-level
MMU. If a second thread is active, the first-level instruction MMU is shared
between threads, but each thread has a dedicated first-level data MMU.

The second-level MMU contains a 64-entry fully associative, unified (instruction and data) TLB that
provides support for variable-sized pages. It also contains a 1024-entry, eight-way set-associative, unified
TLB for 4 KB page size support. These second-level TLBs are maintained by both hardware and software.
The software can enable a hardware tablewalk mechanism to automatically find a page table entry and load
a4 KB TLB entry into the TLB.

The e6500 core includes independent, 32 KB, eight-way set-associative, physically addressed L1 caches
for instructions and data. It also includes a unified 2048 KB, 16-way set-associative, physically addressed
backside L2 cache. The L1 caches are shared between active threads. The L2 cache is shared between cores
in a cluster. Depending on the integrated device, the cluster may contain from one to four e6500 cores, all
of which share the backside L2 cache and the interface to the rest of the memory subsystem.

€6500 Core Reference Manual, Rev 0

1-2 Freescale Semiconductor

€6500 Overview

92In0SaYy djeAlld

924n0SaYy djeAlld

92In0SaYy paleys _H_ | pealyl _H_ 0 peaiyL _H_ :puaba peaiy] Jad 8joA) Jad aiey *
SUONONIISU| OM] WINWIXE]
30BLI9}u] 19N3I0D (Anuz g1))
snanp
0 uonejdwo) |«
ayoe) 21 pateys | <> 515010 Ur s8100 00598 JoLIO OL PO
uie Julle w_c__m sng uons|dwo) »
7 \J
anqg uonoNsU| L sn
¥ < d 440
sng Hdd P sng Hdo
ayoe) g eMay-ze e sisyng < « sng "A
sbe| 1_ B 8 2N4NO B / YyV L + $
T 3 L1 2101S/pEOT | , | , |
L P (— i — X3SA
L)
MyaT1LL1-a ||dSALT-a m w m X4OA
Anue-y9 || Anue-g 19 v9) nun syuun
: (o1) (o1 . wn | NdA
NN elea |1 nd4 ssweuay - ssweuay xejdwod aidwis | WY3dA suun
| 10398\
uonels andudd - wonels }— | edudo || | uoneis uonels g uonels
SaH I uoneniasay _ say Sod soy uonels
T I T (= T |_*|_M|| T say
(og1D) (1) L] M Y
fene gL | | Aene gL L ! 0 B
= =’ =1 1= w
[— i 9L
— (o1d) @nanp (oIs7) @nenp |, (o19) @nanp (o1A) enenp soweuay [|
¥ M1d | | anss anss| [eJjoud anss| 10399, -
T snmm z1 E =1 1ndd anss| 1Sp1 (I 2EUED) 1 A Y
/
(o1n 2Ao14 2 ‘DIST 2 ‘DI 2 OIg 1) PesiyL Jad 9pods(uofonISu] oML
F% =
WrET1LLT- | | dSALT <> M — (o1g) @nanp
Anua-y9 Anue-g — 41
si9)sibay — A3 8 | | Anu3 zis anssj| youeig
NN uononaisul 11 SYIN <= omis yun ga1g H10
- I
" Hun uonvIpaid youeig [V Y
> sbe| ~ |peaiy sed (suononuisul g) (suoponaisul z1) i m w E
ayoe) | alhay-ze ng-9se ananp uononasu] [»> m uun Ao _.v
yaueig saweuay
) N sabelg yole4 \|
un Aiows et uoneis [| FHO
nun N Hun uonodnAsu| b
Ly| soH CIIER- ol

Figure 1-1. e6500 block diagram

€6500 Core Reference Manual, Rev 0

1-3

Freescale Semiconductor

€6500 Overview

Cache lines in the e6500 core are 16 words (64 bytes) wide. The core allows cache-line-based user-mode
locks on cache contents. This provides embedded applications with the capability for locking interrupt
routines or other important (time-sensitive) instruction sequences into the instruction cache. It also allows
data to be locked into the data cache, which supports deterministic execution time.

The e6500 core is designed to be implemented in multicore integrated devices, and many of the features
are defined to support multicore implementations. In particular, to partition the cores in such a way that
multiple operating systems can be run with the integrated device, as shown in the following figure.

Control Plane Data Plane Other Processin
Symmetrical Asymmetrical Multiprocessor OS oS oS
Multiprocessor OS (Shared Code)
[| | ‘ ‘
€6500 €6500 €6500 €6500 €6500 €6500 €6500 €6500
I D I D I D I D I D I D I D I D
Cache|Cache|Cache|Cache | Cache|Cache|Cache|Cache Cache|Cache|Cache|Cache| Cache| Cachg Cache|Cache
Y
; '] ' :
Shared L2 Cache Shared L2 Cache
CoreNet Interface CoreNet Interface
Core cluster Core cluster

CoreNet Interconnect Fabric

Y Y Y Y Y Y Y

Peripheral Peripheral Peripheral Peripheral Peripheral Front-side DDR2/3
Device 1 Device 1 Device 1 Device1 | ®®® | Devicen Platform Cache| | Memory Controller

Figure 1-2. Example partitioning scenario of a multicore integrated device

The CoreNet interface provides the primary on-chip interface between the core cluster and the rest of the
SoC. CoreNet is a tag-based interface fabric that provides interconnections among the cores, peripheral
devices, and system memory in a multicore implementation.

The architecture defines the resources required to allow orderly and secure interactions between thread
processors, the cores, memory, peripheral devices, and virtual machines. These include hypervisor and
guest supervisor privilege levels that determine whether certain activities, such as memory accesses and
management, cache management, and interrupt handling, are to be carried on at a system-wide level
(hypervisor level) or by the operating system within a partition (guest supervisor level).
In particular, the e6500 core implements the following categories as defined in EREF:

* Base

e Embedded (E)

e Alternate Time Base (ATB)

€6500 Core Reference Manual, Rev 0

1-4 Freescale Semiconductor

€6500 Overview

Decorated Storage (DS)
Embedded.Enhanced Debug (E.ED)
Embedded.External PID (E.PID)
Embedded.Hypervisor (E.HV)
Embedded.Hypervisor. LRAT (E.HV.LRAT)
Embedded.Page Table (E.PT)
Embedded.Little-Endian (E.LE)
Embedded.Multi-Threading (E.EM)
Embedded.Performance Monitor (E.PM)
Embedded.Processor Control (E.PC)
Embedded.Cache Locking (E.CL)

External Proxy (EXP)

Floating Point and Floating Point.Record (FP, FP.R)
Vector (V)

Wait (WT)

64-Bit (64)

Data Cache Extended Operations (DEO)
Enhanced Reservations (ER)

Cache Stashing (CS)

The above categories define instructions, registers, and processor behavior associated with a given
category. For a more complete and canonical definition of the e6500 core register and instruction set, see
Chapter 2, “Register Model” and Chapter 3, “Instruction Model,” respectively.

Some categories defined by Power ISA are included as a part of EREF and are not specified by categories
in EREF. Such categories include: Cache Specification, Store Conditional Page Mobility, and Memory
Coherence. In addition, EREF or the e6500 core may implement a subset of a category or provide extra
implementation-dependent capabilities. Such distinctions are described in this manual.

1.2

Feature summary

Key features of the e6500 core are summarized as follows:

64-bit architecture implementation with 40-bit physical addressing

Thirty two 64-bit General Purpose Registers (GPR) per thread

Thirty two 64-bit Floating-Point Registers (FPR) per thread

FPR-based floating-point binary compatible with e300, €600, e500mc, and 5500 cores

Thirty two 128-bit Vector Registers (VR) per thread

Enhanced branch prediction

— 128 sets of four-way associative branch target and local history buffers per thread

— Global history indexed 2048 entry pattern history table per thread

— Eight-entry link stack per thread with stack underflow reversion to the BTB provided target
Multicore architecture support

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 1-5

V¥ ¢
i

€6500 Overview

— Hardware support for the hypervisor programming model to provide partitioning and
virtualization

— Many resources are hypervisor privileged, allowing the hypervisor to completely partition
the system. Performance-sensitive resources used by the guest supervisor are manipulated
directly by hardware while less performance-sensitive resources require hypervisor software
to intervene to provide partitioning and isolation.

— A set of topology-independent interprocessor doorbell interrupts implemented through the
Message Send and Message Clear instructions

— Shared L2 cache and interface to the CoreNet interconnect fabric

— Cores are provided in clusters that share an .2 cache and CoreNet interface. These clusters
reduce the amount of coherency traffic on the CoreNet interface and provide faster coherent
transactions among cores in a cluster.

¢ CoreNet interface fabric

— Provides interconnections among the cores, peripheral devices, and system memory in a
multicore implementation.

* Decorated Storage

— When used with specifically enabled SoC devices, it allows high performance atomic “fire and
forget” operations on memory locations performed directly by the targeted device.

* L1 cache features
— Separate 32 KB, eight-way set-associative level 1 (L.1) instruction and data caches
— 64 eight-way sets of 16 words (See Section 5.4, “L1 cache structure”)
— Enhanced error detection and correction
— Parity checking on L1 tags and data
— One-bit-per-word instruction parity checking
— One-bit-per-byte data parity checking
— Full recoverability from single bit errors in data or tags because modified data is written
through to the inclusive L2 cache
— Two-cycle L1 cache array access and three-cycle load-to-use latency
— FIFO replacement algorithm
— Cache coherency

— Supports valid and invalid states per active thread. Stores are written through to the shared
L2 cache, which implements a full MESI protocol.

— Provides snooping for invalidations coming from the shared L2 cache.

— Accepts cache stashes, which allow devices in the integrated device to push to the cache
information that may be requested in the future by the core, significantly reducing latency.

— 64-byte (16-word) cache line, coherency granule size
— Persistent cache line locking
— Allows instructions and data to be locked into their respective caches on a cache block basis.

€6500 Core Reference Manual, Rev 0

1-6 Freescale Semiconductor

€6500 Overview

— Locking is performed by a set of touch and lock set instructions. Locking is persistent in that
locks are not cleared until software explicitly unlocks them. Cache locking functionality can
be separately enabled for user mode or supervisor mode.

e L2 cache features
— Shared inline L2 cache
— Four independent banks
— Address-mapped accesses to banks
— 2048 KB capacity
— 16-way set-associative
— Four cores per cluster sharing the same cache banks
— Way-partitionable based on cores in cluster
— Inclusive for data stored in cluster cores’ L1 caches
— Streaming Pseudo-LRU (SPLRU) replacement algorithm
— Enhanced error detection and correction
— ECC single-bit correction and double-bit detection on data, tags, and status
— Cache coherency
— Shared, modified, and exclusive data intervention so cache contents can be shared without
requiring a memory update
— Accepts cache stashes, which allow devices in the integrated device to push information to

the cache that may be requested in the future by a core in the cluster, significantly reducing
latency.

— Snoop filtering for cores in the cluster
— 64-byte (16-word) cache line, coherency-granule size
— Persistent cache line locking
— Allows instructions and data to be locked into the cache on a cache block basis.

— Locking is performed by a set of touch and lock set instructions. Locking is persistent in that
locks are not cleared until software explicitly unlocks them. Cache locking functionality can
be separately enabled for user mode or supervisor mode.

* Interrupt model

— Supports base, critical, debug, and machine-check interrupt levels with separate interrupt
resources (save/restore registers and interrupt return instructions).

— Interrupts have an implicit priority by how their enable bits are masked when an interrupt is
taken. Unless software enables or disables the appropriate interrupt enables while in the
interrupt handler, the priority (from highest to lowest) is:

— Machine check
— Debug
— Critical
— Base class
— Standard embedded category interrupts

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 1-7

V¥ ¢
i

€6500 Overview

Interrupt vectors formed by concatenation of interrupt vector prefix register (IVPR) and
interrupt vector offset register (IVORn)

Exception syndrome register (ESR)

— Extended multicore interrupt model to support hypervisor and guest supervisor privilege levels

System call instruction generates a system call or a hypervisor-level system call (hypercall)
interrupt. Executing sc or sc 0 generates a system call, and sc 1 generates a hypercall
interrupt.

Doorbell interrupts allow one processor to signal an interrupt to another core (doorbell,
doorbell critical, guest doorbell, guest doorbell critical, or guest doorbell machine check).
Certain interrupts, including external interrupts, MMU interrupts, and performance monitor
interrupts, can be configured to be delivered directly to the guest-supervisor state or to the
hypervisor state (default).

Embedded hypervisor privilege interrupt captures guest supervisor attempts to access
hypervisor resources.

TLBs can be programmed to always force a DSI to generate a virtualization fault to the
hypervisor state.

— External interrupt proxy

Provides automatic hardware acknowledgement of external interrupts signaled by the
programmable interrupt controller (PIC) on the integrated device, which increases
responsiveness to external interrupts from peripheral devices and reduces interrupt latency.
See Section 4.9.6.1, “External proxy.”

The automatic hardware acknowledgement replaces the “read IACK” step.

— Non-maskable interrupt for soft-reset type capability

— One set of interrupt signal pins from the integrated device interrupt controller for each thread

Memory management unit (MMU)

64-bit effective address to 40-bit physical address translation
Virtual address fields in TLB entries

GS field indicates whether the access is hypervisor or guest address space (also indicates
hypervisor or guest privilege).

AS field indicates one of two address spaces (from IS or DS in the machine state register).
LPID field identifies the logical partition with which the memory access is associated.
PID field identifies the process ID with which the memory access is associated.

External PID translation mechanism

Provides an alternative set of load, store, and cache operations for efficiently transferring
large blocks of memory or performing cache operations across disjunct address spaces, such
as an operating system copying a buffer into a non-privileged area.

TLB entries for variable-sized (4 KB to 1 TB) and fixed-size (4 KB) pages
Data L1 MMU, per thread

Eight-entry, fully-associative TLB array for variable-sized pages
64-entry, four-way set-associative TLB for 4 KB pages

€6500 Core Reference Manual, Rev 0

1-8

Freescale Semiconductor

€6500 Overview

— Instruction L1 MMU, shared between threads
— Eight-entry, fully-associative TLB array for variable-sized pages
— 64-entry, four-way set-associative TLB for 4 KB pages
— Unified L2 MMU, shared between threads
— 64-entry, fully-associative TLB array (TLB1) for variable-sized pages

— 1024-entry, eight-way set-associative, unified (for instruction and data accesses) TLB array
(TLBO) that supports only 4 KB pages with single-bit error detection and auto correction
through hardware invalidation

— Logical to real address translation (LRAT) structure to allow guest supervisor to securely write
TLB entries without hypervisor intervention

— Eight-entry, fully associative
— Supports power-of-two variable page sizes
— Hardware assisted reload for TLBO from a page table in memory
— 14-bit process ID (PID) supporting 16 K simultaneous contexts without TLB flushing
— Real memory support for as much as 1 TB (249
— Support for big-endian and true little-endian memory on a per-page basis
* Performance monitor

— Provides the ability to monitor and count dozens of predefined events, such as processor clocks,
misses in the instruction cache or data caches, decoded instruction types, or mispredicted
branches.

— Can be configured to trigger either a performance monitor interrupt or an event to the Nexus
facility when configured conditions are met.

— Performance Monitor Registers (PMRs) are used to configure and track performance monitor
operations. These registers are accessed with the Move To PMR and Move From PMR
instructions (mtpmr and mfpmr).

— Six performance monitor counters can be programmed from any defined event.
* Power management
— Low-power design
— Multiple power-saving modes
— Static power reduction when core is not busy with fast return to normal operation
— Hardware and software controlled entry and exit for low power states
— Ability to wait in low power states until an interrupt or a store to a specified address occurs
— Dynamic power management
— Capability to power off AltiVec unit when not in use, further reducing static power
* Testability
— MUXD scan design

— Debug Notify Interrupt (dni) instruction provides a debug breakpoint interrupt when executed
and the debugging is enabled, otherwise produces a no-op.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 1-9

€6500 Overview

1.3 Instruction flow

The e6500 core is a pipelined, multi-threaded, superscalar processor with parallel execution units that
allow instructions to execute out of order but record their results in order.

As a multi-threaded processor, the e6500 core appears as two processors to user and guest operating
system software. The two processor threads share some resources, such as execution units and caches, but
not others, such as the architected user-level state. As with pipelining, the execution of two software
threads on one processor increases the overall system throughput.

As a superscalar processor, the e6500 core issues multiple independent instructions into separate execution
units in a single cycle, allowing parallel execution. The e6500 core has ten execution unit types:

* Branch (BU)

e Load/store (LSU)

* Floating-point (FPU)

* Vector (VSFX, VCFX, VFPU, VPERM)
* Complex integer (CFX)

* Simple arithmetic (SFXO0 and SFX1).

Each thread has dedicated branch, load/store, and simple arithmetic execution units, but all threads share
the floating-point, vector, and complex integer execution units.

The parallel execution units allow multiple instructions to execute in parallel and out of order. For example,
a low-latency addition instruction that is issued to an SFX after an integer divide is issued to the CFX may
finish executing before the higher latency divide instruction. Most instructions immediately make results
available to subsequent instructions, but cannot update the architected GPR specified as its target operand
out of program order.

Pipelining breaks instruction processing into discrete stages, so multiple instructions in an instruction
sequence can occupy successive stages: as an instruction completes one stage, it passes to the next, leaving
the previous stage available to a subsequent instruction. Although it may take multiple cycles for an
instruction to pass through all of the pipeline stages, once a pipeline is full, instruction throughput is
increased.

The common pipeline stages are as follows:

* Instruction fetch stage—includes the clock cycles necessary for an active thread to request an
instruction and the time the memory system takes to respond to the request. Instructions retrieved are
latched into the thread’s instruction queue (IQ) for subsequent consideration by the dispatcher.

Instruction fetch timing depends on many variables, such as whether an instruction is in the
instruction cache or the L2 cache. Those factors increase when it is necessary to fetch instructions
from system memory and include the processor-to-bus clock ratio, the amount of bus traffic, and
whether any cache coherency operations are required.

Because there are so many variables, unless otherwise specified, the instruction timing examples
in this chapter assume optimal performance and show the portion of the fetch stage in which the
instruction is in the instruction queue. The fetchl and fetch2 stages are primarily involved in
retrieving instructions.

€6500 Core Reference Manual, Rev 0

1-10 Freescale Semiconductor

€6500 Overview

* Decode/dispatch stage—fully decodes each instruction. Most instructions are dispatched to the
issue queues; however, isync, rfi, rfgi, rfci, rfdi, rfmci, sc, ehpriv, nop, and some other
instructions do not go to issue queues.

* The issue queues, BIQ, GIQ, VIQ, LSIQ, and FIQ can accept one (BIQ) or two instructions (all
other issue queues) in a cycle. The following simplification covers most cases:

— Instructions dispatch only from the two lowest 1Q entries—IQO and 1Q1.
— A total of two instructions can be dispatched to the issue queues per clock cycle.
Dispatch is treated as an event at the end of the decode stage.

— Space must be available in the completion queue (CQ) for an instruction to decode and dispatch.
This includes instructions that are assigned a space in the CQ but not in an issue queue.

* Issue stage—reads source operands from rename registers and register files and determines when
instructions are latched into the execution unit reservation stations. Note that each thread processor
in the e6500 has 16 rename registers, one for each completion queue entry, so instructions cannot
stall because of a shortage of rename registers.

The behavior of the issue queues follows from how dispatch places instructions on the issue
queues. For example, the GIQ operates as follows:

— The GIQ accepts as many as two instructions from the dispatch unit per cycle. Instructions to
be executed in SFXO0, SFX1, and CFX are dispatched to the GIQ, shown in Figure 1-3.

From 1Q0/IQ1

GlQ3

GlQ2
GlQ1 —> Toeither SFX or CFX

V¢ V¢ V¢ V¢

GlQo —> To either SFX or CFX

Figure 1-3. GPR Issue Queue (GIQ)

— Instructions can be issued out of order from the bottom two GIQ entries (GIQ1-GIQO) to either
SEX or CFX.
NOTE

SFX1 executes a subset of the instructions that can be executed in SFXO0.
The ability to identify and dispatch instructions to SFX1 increases the
availability of SFXO0 to execute more computational-intensive instructions.

— An instruction in GIQ1 destined for an SFX need not wait for a CFX instruction in GIQO that
is stalled behind a long-latency divide.

Each thread has its own set of issue queues. Issue queues other than GIQ operate in a similar
manner, each servicing specific execution units:

— LSIQ services the load/store unit (LSU), one LSIQ and one LSU per thread
— FIQ services the floating-point unit (FPU), one FIQ per thread and one shared FPU
— BIQ services the branch unit (BU), one BIQ and one BU per thread

— VIQ services the AltiVec execution units (VSFX, VCFX, VFPU, VPERM), one VIQ per thread
and one set of shared execution units VSFX, VCEX, VFPU, VPERM

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 1-11

|
y

'
A

€6500 Overview

* Execution stage—accepts instructions from its issue queue when the appropriate reservation
stations are not busy. In this stage, the operands assigned from the issue stage are latched.

The execution units execute the instructions (perhaps over multiple cycles), write results on their
result buses, and notify the CQ when the instructions finish. The execution units report any
exceptions to the completion stage. Instruction-generated exceptions are not taken until the

excepting instruction is next to retire.

— The branch unit (BU) executes (resolves) all branch and CR logical instructions in the
execution stage. If a branch is mispredicted, it takes at least five cycles for the next instruction

to reach the execution stage.

— The simple units (SFX0 and SFX1) handle add, subtract, shift, rotate, and logical operations.
The complex integer unit (CFX) executes multiplication and divide instructions.

Most integer instructions have a one-cycle latency, so results of these instructions are available
one clock cycle after an instruction enters the execution unit.

Integer multiply and divide instructions have longer latency, and the multiply and divide can
overlap execution in most cases. Multiply operations are also pipelined.

— The load/store unit (LSU), shown in the following figure, has these features:

instructions, which take four cycles

Fully pipelined
— Load-miss queue

Service for load hits when the load-miss queue is full

serviced

Reservation Station

Three-cycle load latency for most instructions except for AltiVec and floating-point load

Up to eight load misses that can be pipelined in parallel while L1 cache hits continue to be

Load/Store Unit
Three-Stage Pipeline
To completion queue <€——

To GPR/FPR/VR operand buses <———

Queues and Buffers
L1 Store Load

To GPR/FPR/VRs €<—>

«—> To data cache

o

To L2 cache interface

Figure 1-4. Three-stage load/store unit

* Complete and write-back stages—maintain the correct architectural machine state and commit
results to the architecture-defined registers in order. If completion logic detects a mispredicted
branch or an instruction containing an exception status, subsequent instructions in a thread are

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

€6500 Overview

cancelled, their execution results in rename registers are discarded, and the correct instruction
stream is fetched.

The complete stage ends when the instruction is retired. Two instructions per thread can be retired
per clock cycle. If no dependencies exist, as many as two instructions are retired in program order.
Section 10.3.3, “Dispatch, issue, and completion considerations,” describes completion
dependencies.

The write-back stage occurs in the clock cycle after the instruction is retired.

1.4 Programming model overview

In general, the 6500 core implements the registers and instructions as defined by the architecture (Power
ISA and Freescale implementation standards) and are fully described in EREF. The following sections
provide a high-level description and listing of the resources that are implemented on the e6500 core.

1.4.1 Register model overview

In general, registers on the e6500 core are implemented as defined by the architecture. Any e6500-specific
differences from or extensions to the architecture are described in Chapter 2, “Register Model,” of this
manual.

The 6500 core implements the following types of registers:

* Registers that contain values specified by using operands that are part of the instruction syntax
defined by EREF:

— Thirty-two 64-bit general purpose registers (GPRs) per thread

— rD indicates a GPR that is used as the destination or target of an integer computational,
logical, or load instruction.

— rS indicates a GPR that is used as the source of an integer computational, logical, or store
instruction.

— rA, rB, and rC indicate GPRs that are used to hold values that are operated upon for
computational or logical instructions, or that are used for an effective address (EA) or a
decoration.

— Thirty-two 64-bit floating-point registers (FPRs) per thread

— frD indicates an FPR that is used as the destination or target of a floating-point
computational or load instruction.

— frS indicates an FPR that is used as the source of a floating-point computational or store
instruction.

— frA, frB, and frC indicate FPRs that are used to hold values that are operated upon for
floating-point computational instructions.

— Thirty-two 128-bit vector registers (VRs) per thread

— vDindicates a VR that is used as the destination or target of a vector computational, logical,
permute, or load instruction.

— vS indicates a VR that is used as the source of a vector computational, logical, permute, or
store instruction.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 1-13

|
y

'
A

€6500 Overview

— VA, vB, and vC indicate VRs that are used to hold values that are operated upon for vector
computational, permute, or logical instructions.

Registers that are updated automatically to record a condition that occurs as a by-product of a
computation:

— Condition (CR) register
— Consists of eight 4-bit fields that record the results of certain operations that are typically
used for testing and branching.

— Can be accessed with special Move To and Move From instructions. See ***[ADD XREF
HERE!]**%*

— Integer Exception (XER) register
— Records conditions, such as carries and overflows.

— The XER is an SPR and can be accessed with Move To and Move From SPR instructions
(mtspr and mfspr).

— Floating-Point Status and Control (FPSCR) register
— Records and controls exception conditions, such as overflows, controls the rounding mode.
— Indicates the type of result for certain floating-point operations.
— Vector Status and Control (VSCR) register
— Records saturation exceptions.
— Controls which mode vector floating-point operations are performed.
— Machine State (MSR) register

— MSR is a supervisor-level register; however, some fields can be written only by
hypervisor-level software.

— MSR is used to configure operational behavior, such as setting the privilege level and
enabling asynchronous interrupts. When an interrupt is taken, certain MSR bits are stored
into the appropriate save and restore register 1 (xSRR1) as determined by the interrupt type.
The values in the xSRR1 are restored in the MSR when the appropriate return from interrupt
is executed. The MSR, which is not an SPR, is accessed by the Move To and Move From
MSR instructions (mtmsr and mfmsr). The external interrupt enable bit can be written
separately with a Write MSR External Enable instruction (wrtee and wrteei).

Most registers are defined as special-purpose registers (SPRs).

— All SPRs can be accessed by mtspr and mfspr instructions and executed by software running
at the appropriate privilege level, as indicated by the SPR summary in Table 2-2.

— Note that some SPRs are also updated by other mechanisms, such as the save and restore
registers, which record the machine state when an exception is taken, and configuration and
status registers, which are affected by internal signals. SPRs are listed in Section 2.2.2,
“Special-purpose registers (SPRs).”

Performance monitor registers (PMRs)

— Configure and program the core-specific performance monitor.

— PMRs are similar to SPRs in that they are accessed by Move To and Move From PMR
instructions (mtpmr and mfpmr).

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

€6500 Overview

1.4.2 Instruction model overview

In general, instructions on the e6500 core are implemented as defined by the architecture. Any
e6500-specific differences from or extensions to the architecture are described in Chapter 3, “Instruction
Model,” of this manual.

Table 3-75 lists the instructions implemented in the e6500 core.

1.5 Summary of differences between previous €500 family cores

The following sections describe the changes between previous cores in the €500 family. These are
high-level descriptions that are intended to explain the programming model changes.

1.5.1 Changes from e500v2 to e500mc

The e500mc core contains several differences from the e500v2 core. Significant programming model
changes occur from:

* The removal of SPE (and the embedded floating-point functionality)
* The addition of FPR-based floating-point
* The addition of hypervisor partitioning support

User-mode software can be recompiled if the software does not use explicit SPE or embedded
floating-point intrinsics. User-level software that uses any floating-point software must also be re-linked
because the manner in which floating-point arguments are passed to functions is different. The
floating-point model of the e500mc is compatible with the e300 and €600 cores and should provide a
seamless transition when moving software from the e300 or the e600 to the e500mc.

A summary of the changes to the core is show in the following table. This table is intended to be a general
summary and not an explicit list of differences. Users should use this list to understand what major areas
may require changes to their software when porting from the e500v2 to the e500mc.

Table 1-1. Summary of e500v2 and e500mc differences

Feature e500v2 e500mc Notes

Backside L2 cache Not present Present An integrated backside L2 cache is present in
e500mc.

SPE and embedded Present Not present SPE and embedded floating-point (floating-point

floating-point done in the GPRs) is not present in e500mc. This
makes the GPRs 32 bits in size, rather than 64 bits.

FPR-based Not present Present FPR-based floating-point (category Floating-Point)

floating-point is present in e500mc. The floating point is binary

compatible with e300 and e600. See
Section 3.4.4.1, “Floating-point instructions.”

Embedded hypervisor Not present Present A new privilege level and associated instructions
and registers are provided in e500mc to support
partitioning and virtualization.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 1-15

€6500 Overview

Table 1-1. Summary of e500v2 and e500mc differences (continued)

Feature

e500v2

e500mc

Notes

Power management

Uses MSR[WE]
and
HIDO[DOZE,NAP,
SLEEP] to enter
power
management
states

Uses SoC programming
model to control power
management and
removes MSR[WE],

HIDO[DOZE,NAP,SLEEP].

Also adds the wait
instruction.

SoC registers now almost completely control how
power management functions are invoked. See
Chapter 8, “Power Management.”

External proxy

Not present

Present

External proxy is a mechanism that allows the core
to acknowledge an external input interrupt from the
PIC when the interrupt is taken and provide the
interrupt vector in a core register. See

Section 4.9.6.1, “External proxy.”

Additional interrupt level
for Debug interrupts

Not present

Present

A separate interrupt level for Debug interrupts and
the associated save/restore registers
(DSRR0/DSRR1) are provided. See

Section 4.9.16, “Debug interrupt—IVOR15.

Processor signaling

Not present

Present

The msgsnd and msgclr instructions are provided
to perform topology independent core-to-core
doorbell interrupts. See Section 3.4.12.5,
“Message Clear and Message Send instructions.”

External PID load/store

Not present

Present

Instructions are provided for supervisor- and
hypervisor-level software to perform load and store
operations using a different address space context.
See Section 3.4.12.3, “External PID load and store
instructions.”

Decorated storage

Not present

Present

Instructions are provided for performing load and
store operations to devices that include metadata
that is interpreted by the target address. Devices in
some SoCs utilize this facility for performing atomic
memory updates, such increments and
decrements. See Section 3.4.3.2.10, “Decorated
load and store instructions.”

Lightweight
synchronization

Not present

Adds the lwsync
instruction.

The Iwsync instruction is provided for a faster form
of memory barrier for load/store ordering to
memory that is cached and coherent. See
Section 3.4.11.1, “User-level cache instructions,”
and Section 5.5.5, “Load/store operation ordering.

CoreNet

Uses CCB as an

Uses CoreNet as an

CoreNet is a scalable, non-retry based fabric used

interconnect interconnect as an interconnect between cores and other
devices in the SoC.
Cache stashing Not present Present The capability to have certain SoC devices “stash”

or pre-load data into a designated core L1 or L2
data cache is provided. The core is a passive
recipient of such requests. See Section 5.2.2,
“Cache stashing”

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

€6500 Overview

Table 1-1. Summary of e500v2 and e500mc differences (continued)

Feature

e500v2

e500mc

Notes

Machine check

Provides machine

check interruptand

HIDO[RFXE] to
control how the
core treats
machine check
interrupts

Provides error report,
asynchronous machine
check, and NMI interrupts.
HIDO[RFXE] is removed.

Machine check interrupts are divided into
synchronous error reports, asynchronous machine
checks, and NMI interrupts. The ways that errors
are reported are more conducive in a multi-core
environment. See Section 4.9.3, “Machine check
interrupt—IVOR1”

Write shadow

Not present

Present

The capability to have all data written to the L1 data
cache be “written through” to the L2 cache (or to
memory) is provided. This provides a method of
ensuring that any L1 cache error can be recovered
from without loss of data. See Section 5.4.2,
“Write-through cache.”

Cache block size

32 bytes

64 bytes

The e500mc core contains a larger cache
block/line/coherency granule size.

Number of variable size
TLB entries

16

64

The e500mc contains a larger number of
variable-size TLB entries and a larger number of
available page sizes. See Section 6.3.2, “L2 TLB
arrays.”

1.5.2

Changes from e500mc to 5500

The €5500 core contains several differences from the e500mc core. The programming model of the e5500
is compatible with the e500mc in the user, guest supervisor, and hypervisor modes with the exception that
a few hypervisor-level resources that could be read in the e500mc core can no longer be read in the 5500
core (in particular, some registers that are architecturally write-only). All software written for the e500mc
core should run unmodified on the e5500 core.

The e5500 core is a 64-bit implementation and adds the 64-bit mode, as well as several 64-bit instructions.
It also supports 32-bit mode or running 32-bit software on a supervisor or hypervisor that is 64 bits.

A summary of the changes to the core is show in the following table. This table is intended to be a general
summary and not an explicit list of differences.

Table 1-2. Summary of e500mc and 5500 differences

Feature

e500mc

5500

Notes

64-bit execution

Not present

Both 32-bit and 64-bit

The 5500 core provides 64-bit mode and

miss)

(32-bit only) modes several 64-bit instructions. Information about
64-bit features is discussed throughout this
document.

L2 cache size 128 KB 512 KB The 5500 core includes a larger L2 cache.
L2 cache latency (from L1 9 11 The 5500 core has two more cycles of

latency.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

€6500 Overview

Table 1-2. Summary of e500mc and 5500 differences

Feature e500mc e5500 Notes
Floating-point performance | Floating-point is Floating-point is fully The 5500 core uses the same programming
not fully pipelined pipelined model for floating-point as the e500mc core,

but provides a higher performance FPU thatis
fully pipelined. See Section 10.5, “Instruction
latency summary.”

mtspr/mfspr instruction Executed in SFX0 Executed in CFX mtspr/mfspr, as well as some other
execution unit instructions that modify the architected state
of registers, are executed in the CFX unit
instead of the SFXO0 unit.

Branch prediction Uses BTB Uses BTB, link stack, and | The e5500 core improves branch prediction
STIC/STAC for function call and return. See
Section 10.4.1.2, “Branch prediction and
resolution.”

1.5.3 Changes from 5500 to e6500
The programming model of the e6500 core is compatible with the e500mc and €5500 cores in the user,
guest supervisor, and hypervisor modes. The only exceptions are:

* The addition of the AltiVec vector and thread management facilities

* The addition of some cache control

* The addition of cache locking operations

All software, with the exceptions of imprecise debug events and any cache control or cache locking
software written for the e500mc and 5500 cores, should run unmodified on a e6500 processor.

A summary of the changes to the core is show in the following table. This table is intended to be a general
summary and not an explicit list of differences.

Table 1-3. Summary of e5500 and €6500 differences

Feature e5500 6500 Notes
AltiVec vector registers and Not present Present The e6500 core adds AltiVec vector facility for
instructions improved performance using SIMD. The

AltiVec facility is fully described in EIS: Altivec
Technology Implementation Standards for
Power ISA Processors.

Multi-threading Not present Present The 6500 core adds multi-threaded
execution capability for improved throughput.

€6500 Core Reference Manual, Rev 0

1-18 Freescale Semiconductor

€6500 Overview

Table 1-3. Summary of e5500 and e6500 differences

Feature

e5500

€6500

Notes

L2 cache

Private to core

Shared among cores in a
core cluster

The e6500 core provides a shared backside
L2 cache. This changes the L2 cache
configuration on control methods. L2 cache
and configuration is provided through memory
mapped registers. The shared backside L2 is
inline and provides snoop filtering for the
cores in the complex. The L1 data cache now
writes through to the L2 cache. Some MCSR
bits for the integrated backside L2 cache are
removed.

L2 cache size 512 KB 2048 KB The e6500 core includes a larger L2 cache.

Branch prediction Uses BTB, link Uses BTB, link stack, The 6500 core improves branch prediction,
stack, and STIC/STAC, link stack including function call and return prediction.
STIC/STAC underflow, global history,

and pattern history

mfocrf optimization

Executes as mfcr
and is serialized

Executes without
serialization

Improves mfocrf instruction latency and
repeat rate from five cycles to one.

LR and CTR optimization

Some LR/CTR
accesses and
updates are
serialized and can
stall

LR and CTR are fully
renamed, and associated
branches and mtspr and

mfspr instructions execute
without serialization

Improves performance of some subroutine
linkage.

Byte and halfword load and
reserve and store
conditional instructions

Not present

Present

The Ibarx, Iharx, stbcx., and sthex.
instructions are provided for doing byte and
halfword load and reserve and store
conditional operations.

Cache locking query

Cache locking
operations use
L1CSRx[CUL] to
post a status
about whether
cache locking
attempt was
successful

Cache locks can be queried
by using new lock query
instructions, dcblg. and

icblq.

Cache lock query allows software to enquire
about locks and is more consistent with the
way locks are established.

wait instruction

wait instruction
only waits for an
asynchronous
interrupt

wait instruction can wait for
interrupt or reservation to
clear. Additional hint
provided to enter lower
power mode immediately.

The wait instruction can now wait for a store
from another processor, and a programmer
can specify whether to wait in a lower power
mode.

miso instruction

Not present

Present

The miso instruction allows software to hint
that all previous stores should be propagated
to the coherency point to improve
performance.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

€6500 Overview

Table 1-3. Summary of e5500 and e6500 differences

Feature e5500 6500 Notes
Elemental memory barriers Not present, Present sync L,E provides more explicit memory
lightest weight barriers for improved performance using an
memory barrier is additional operand to sync. Software can be
sync 1 (lwsync) coded using the new barriers such that
e500mc and e5500 cores will execute using a
correct memory barrier. Barriers provided are
load with load, load with store, store with load,
and store with store for cacheable non-write
through required memory.
Real address size 36 bits 40 bits Allows for larger physical address space.

Logical to real address
translation (LRAT)

Required to be
performed by

LRAT hardware provides the
translation

On guest supervisor writes to the TLB, the
LRAT structure provides the logical to real

(in powers of 4)

hypervisor address translation, which reduces hypervisor
software overhead. The hypervisor maintains the LRAT
table. A guest OS can now execute tibwe
without causing a hypervisor privilege
interrupt.
TLBO size and associativity 512 entries, 1024 entries, eight-way More TLB entries with greater associativity
four-way associative reduces conflict and capacity TLB misses.
associative
TLB1 entry page sizes 4 KB to 4 GB 4KBto1TB Single page can map all of physical address

(in powers of 2)

space. More page sizes available with
power-of-2 page sizes.

debug events

Hardware page table Not present Present Hardware can resolve certain TLB misses by

loading of TLBO (4 KB performing a hardware tablewalk and load

pages) TLB entries from a page table in memory.

Number of supported bits in 8 14 Supports up to 16 K simultaneous PID values

PID register in use.

TLBO parity Not present Present Parity detection provided. Hardware flushes
the TLB when an error is detected.

CCSRBAR setting Not present Present New SPR SCCSRBAR is added for software

available in SPR to read the current CCSRBAR setting. See
Section 2.7.11, “Shifted CCSRBAR
(SCCSRBAR) register”.

Guest performance monitor Not present Present Performance monitor interrupt can be taken

interrupt directly in the guest OS.

Completion buffer and 14 16 More completion and rename entries

rename register entries increases performance.

Performance monitor 4 6 More performance monitor counters allows for

counters greater flexibility when analyzing performance
issues. See Section 2.16, “Performance
monitor registers (PMRs).”

Debug features: Imprecise Present Not present Imprecise debug events that occur when

MSRI[DE] = 0 are no longer supported.

€6500 Core Reference Manual, Rev 0

1-20

Freescale Semiconductor

€6500 Overview

Table 1-3. Summary of e5500 and e6500 differences

Feature

e5500

€6500

Notes

Debug feature: Instruction
address compare (IAC)
events

4

8

More IAC compares.

Debug feature: Assignment
of debug events between
internal and external
debugger

All debug events

are assigned to

either internal or
external
debugger

Individual assignment of
events to internal or external
debugger

Individual events can be assigned between
internal and external debuggers allowing both
to operate simultaneously.

Debug feature: Watchdog
timer

Runs when halted
in external debug
mode

Is suppressed from causing
timeouts when halted in
external debug mode

Makes it easier to prevent watchdog timeouts
when the external debugger halts the
processor.

Debug feature: dni
instruction

Not present

Present

The dni instruction can be used as a
breakpoint instruction and can trigger external
events.

Debug feature: Nexus trace

Less trace
bandwidth

Improved trace bandwidth
plus additional Nexus

Only transmits indirect branch history
messages for blr-type instructions when link

upper 32-bits of MCAR

features register has changed.

Provides performance profiler counter
message in trace stream, adds timestamp
correlation message, captures PC snapshot
in trace for events such as profile counter
overflow, adds indication of clock frequency
changes to Nexus trace stream, and extends
watchpoint message event field to handle
additional events.

Power management: Wake Not present Present Processor can wake up from power

up on message acceptance management state when a message (from
msgsnd) is received and accepted.

Power management: Power Not present Present New power management control register

management control (PWRMGTCRO) for controlling low power

register modes. See Section 2.7.7, “Power
Management Control 0 (PWRMGTCRO)
register.”

Power management: Static Not present Present New power management states that reduce

power reduction static power consumption while retaining their
state.

Power management: Turn Not present Present See Section 2.7.7, “Power Management

off AltiVec unit or reduce Control 0 (PWRMGTCRO) register.”

AltiVec static power when

not in use

MCARUA as an alias for the Not present Present Both MCARU and MCARUA provide the same

alias. The MCARU alias may be phased out in
future versions of the architecture. See
Section 2.9.9, “Machine-check address
registers (MCAR/MCARU/MCARUA).”

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

1-21

-

€6500 Overview

e€6500 Core Reference Manual, Rev 0

1-22 Freescale Semiconductor

Chapter 2
Register Model

This chapter describes implementation-specific details of the register model as it is implemented on the
€6500 core processors. It identifies all registers that are implemented on the 6500 core, but, with a few
exceptions, does not include full descriptions of those registers and register fields that are implemented
exactly as they are defined by the architecture (the Power ISA and the Freescale implementation
standards). EREF and AltiVec Technology Programming Environments Manual for Power ISA Processors
describe these registers.

It is important to note that a device that integrates the e6500 core may not implement all of the fields and
registers that are defined here and may interpret some fields more specifically than can be defined here.
For specific details, see the e6500 core integration chapter in the reference manual for the device that
incorporates the e6500 core. The register summary chapter in the device reference manual fully describes
all registers and register fields as they are implemented on the device.

Only registers associated with the programming model of the core are described in this chapter.

The e6500 core is a dual-threaded machine and, as such, has some architected states that are duplicated
and private to each thread and other architected states that are shared by the threads. Unless otherwise
noted in this document, architected states are private to each thread, and each thread has its own
independent copy of said state. In general, this document does not explicitly label states as private, but
instead labels states that are shared. Note that writing to shared states may require special synchronization
procedures that may involve disabling and enabling a thread.

2.1 Overview

Although this chapter organizes registers according to their functionality, they can be differentiated
according to how they are accessed, as follows:

* General-purpose registers (GPRs)—used as source and destination operands for integer
computation operations and for specifying the effective address. See Section 2.3.1,
“General-purpose registers (GPRs).”

* Floating-point registers (FPRs)—used as source and destination operands for floating-point
computation operations. See Section 2.4.1, “Floating-point registers (FPRs).”

* Vector registers (VRs)—used as source and destination operands for vector computation
operations. See Section 2.5.1, “Vector registers (VRs).”

* Special-purpose registers (SPRs)—accessed with the Move To Special-Purpose Register (mtspr)
and Move From Special-Purpose Register (mfspr) instructions. Section 2.2.2, “Special-purpose
registers (SPRs),” lists SPRs.

* System-level registers that are not SPRs. These are as follows:

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-1

|
y

'
A

Register Model

2.2

— Machine State (MSR) register—accessed with the Move To Machine State Register (mtmsr)
and Move From Machine State Register (mfmsr) instructions. See Section 2.7.1, “Machine
State (MSR) register.”

— Condition (CR) register—bits are grouped into eight 4-bit fields, CRO-CR7, which are set as
follows:

— Specified CR fields are set by a Move To CR From GPR (mterf) instruction.

— A specified CR field is set by a Move To CR from another CR field (merf) or from XER
(merxr) instruction.

— CRAO is set as the implicit result of an integer instruction.

— CRI is set as the implicit result of a floating-point instruction.

— CRG6 is set as the implicit result of an AltiVec compare instruction.

— A specified CR field is set as the result of an integer or floating-point compare instruction.
See Section 2.6.1, “Condition (CR) register.”

Memory-mapped registers (MMRs)—accessed through load and store instructions. See
Section 2.2.3, “Memory-mapped registers (MMRs).”

Thread management registers (TMRs)—accessed by using dedicated move to and move from
instructions (mttmr and mftmr). See Section 2.15, “Multi-threaded operation management
registers.”

Performance monitor registers (PMRs)—accessed by using dedicated move to and move from
instructions (mtpmr and mfpmr). See Section 2.16, “Performance monitor registers (PMRs).”

e6500 register model

The following sections describe the e6500 core register model as defined by the architecture and the
additional implementation-specific registers unique to the e6500 core.

Freescale processors implement the following types of software-accessible registers:

Registers used for integer operations, such as the general-purpose registers (GPRs) and the Integer
Exception (XER) register. These registers are described in Section 2.3, “Registers for integer
operations.”

Registers used for floating-point operations, such as the floating-point registers (FPRs) and the
Floating-Point Status and Control (FPSCR) register. These registers are described in Section 2.4,
“Registers for floating-point operations.”

Registers used for AltiVec operations, such as the vector registers (VRs) and the Vector Status and
Control (VSCR) register. These registers are described in Section 2.5, “Registers for vector
operations.”

Condition (CR) register—used to record conditions such as overflows and carries that occur as a
result of executing arithmetic instructions. CR is described in Section 2.6, “Registers for branch
operations.”

Machine State (MSR) register—used by the operating system to configure parameters such as
user/supervisor mode, address space, and enabling of asynchronous interrupts. MSR is described
in Section 2.7.1, “Machine State (MSR) register.”

€6500 Core Reference Manual, Rev 0

2-2

Freescale Semiconductor

Register Model

Special-purpose registers (SPRs)—accessed explicitly using mtspr and mfspr instructions. SPRs
are listed in Table 2-2 in Section 2.2.2, “Special-purpose registers (SPRs).”

Thread management registers (TMRs)—accessed explicitly using mttmr and mftmr instructions.
TMRs are listed in Table 2-6 in Section 2.15, “Multi-threaded operation management registers.”

Performance monitor registers (PMRs) — accessed with move to and move from PMR instructions
(mtpmr and mfpmr).

Memory-mapped registers (MMRs)—accessed through load and store instructions. Addresses for
memory-mapped registers are translated through the MMU like normal loads and stores and are
subject to further translation as defined by the SoC. MMRs associated with the processor are shared
L2 control and status registers. See Section 2.2.3, “Memory-mapped registers (MMRs)” and
Section 2.12, “L2 cache registers”.

SPRs, PMRs, and TMRs are grouped by function, as follows:

2.2.1

Section 2.6, “Registers for branch operations.”

Section 2.7, “Processor control registers”

Section 2.8, “Timer registers”

Section 2.9, “Interrupt registers”

Section 2.10, “Software-use SPRs (SPRGs, GSPRGs, and USPRGO0)”
Section 2.7.4, “Branch Unit Control and Status (BUCSR) register”
Section 2.7.5, “Hardware Implementation-Dependent O (HIDO) register”
Section 2.11, “L1 cache registers”

Section 2.13, “MMU registers”

Section 2.14, “Internal debug registers”

Section 2.15, “Multi-threaded operation management registers”
Section 2.16, “Performance monitor registers (PMRs)”

64-bit registers

The e6500 core is a 64-bit implementation of Power ISA. Some registers are defined by the architecture to
be 64 bits. On 32-bit implementations, processors normally implement only the lower 32 bits of these
registers. There are some exceptions, such as Time Base; however, those exceptions allow 32-bit access to
the upper 32 bits of the register through a different register port.

To facilitate porting software from 32-bit mode to 64-bit mode, this table lists the registers that are 64-bit
registers on the e6500 core.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-3

Register Model

Table 2-1. 64-bit registers

Register
Abbreviation

Name

Notes

GPR General-purpose registers (r0 - r31) —
FPR Floating-point registers (fr0 - fr31) FPRs are always 64 bits, even in 32-bit
implementations.

ATBL Alternate Time Base Lower Access to ATBL in 64-bit mode returns the entire

64-bit counter.

CSRRO Critical Save/Restore 0 —

CTR Count —

DACH1 Data Address Compare 1 —

DAC2 Data Address Compare 2 —

DEAR Data Exception Address —

DSRRO Debug Save/Restore 0 —

GDEAR Guest Data Exception Address —
GIVPR Guest Interrupt Vector Prefix —
GSPRGO Guest SPR General 0 —
GSPRG1 Guest SPR General 1 —
GSPRG2 Guest SPR General 2 —
GSPRG3 Guest SPR General 3 —
GSRRO Guest Save/Restore 0 —

IAC1 Instruction Address Compare 1 —

IAC2 Instruction Address Compare 2 —

IAC3 Instruction Address Compare 3 —

IAC4 Instruction Address Compare 4 —

IAC5 Instruction Address Compare 5 —

IAC6 Instruction Address Compare 6 —

IAC7 Instruction Address Compare 7 —

IAC8 Instruction Address Compare 8 —

IVPR Interrupt Vector Prefix —

LPER Logical Page Exception —

LR Link —
MASO_MASH1 MMU Assist 0 and MMU Assist 1 —

MAS2 MMU Assist 2 —
MAS5_MAS6 |MMU Assist 5 and MMU Assist 6 —
MAS7_MAS3 MMU Assist 7 and MMU Assist 3 —
MAS8_MASH1 MMU Assist 8 and MMU Assist 1 —

€6500 Core Reference Manual, Rev 0

2-4

Freescale Semiconductor

Table 2-1. 64-bit registers (continued)

Register Model

Abbreviation Name Notes
MCAR Machine-Check Address —
MCSRRO Machine-Check Save/Restore 0 —
SPRGO SPR General 0 —
SPRG1 SPR General 1 —
SPRG2 SPR General 2 —
SPRG3 SPR General 3 —
SPRG4 SPR General 4 —
SPRG5 SPR General 5 —
SPRG6 SPR General 6 —
SPRG7 SPR General 7 —
SPRG8 SPR General 8 —
SPRG9 SPR General 9 —
SRRO Save/Restore 0 —
TBL(R) Time Base Lower Read access to TBL in 64-bit mode returns the
entire 64-bit counter
XER Integer Exception Architecturally, the XER is a 64-bit register;
however, the upper 32 bits of XER are reserved
and always read as 0.

2.2.2 Special-purpose registers (SPRs)

SPRs are on-chip registers that control the use of the debug facilities, timers, interrupts, memory
management unit, and other architected processor resources. SPRs are accessed with the mtspr and mfspr

instructions.

Access is given by the lowest level of privilege required to access the SPR. The access methods listed in
Table 2-2 are defined as follows:

* User—denotes access is available for both mtspr and mfspr, regardless of privilege level.

* User RO—denotes access is available for only mfspr, regardless of privilege level.

* Guest supervisor—denotes access is available for both mtspr and mfspr when operating in
supervisor mode (MSR[PR] = 0), regardless of the state of MSR[GS]. That is, it is available in
hypervisor state, as well.

* Guest supervisor RO—denotes access is available for only mfspr when operating in supervisor
mode (MSR[PR] = 0), regardless of the state of MSR[GS]. That is, it is available in hypervisor
state, as well.

* Hypervisor—denotes access is available for both mtspr and mfspr when operating in hypervisor
mode (MSR[GS,PR] = 00).

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

2-5

Register Model

* Hypervisor RO—denotes access is available for only mfspr when operating in hypervisor mode
(MSR[GS,PR] = 00).

* Hypervisor WO—denotes access is available for only mtspr when operating in hypervisor mode
(MSR[GS,PR] = 00).

* Hypervisor R/Clear—denotes access is available for both mtspr and mfspr when operating in
hypervisor mode (MSR[GS,PR] =00); however, an mtspr only clears bit positions in the SPR that
correspond to the bits set in the source GPR.

* Shared—denotes an SPR that is shared by all threads.

An mtspr or mfspr instruction that specifies an unsupported SPR number is considered an invalid
instruction. The e6500 takes an illegal-operation program exception on all accesses to undefined SPRs (or
read accesses to SPRs that are write-only and write accesses to SPRs that are read-only), regardless of
MSR[GS,PR] and SPRN[5] values. For supported SPR numbers that are privileged, a mtspr or mfspr
instruction while in user mode (MSR[PR] = 1) causes a privilege operation program exception.

Note that the behavior of the e6500 core in user mode when attempting to access an unsupported,
privileged SPR number causes an illegal-operation program exception, not a privilege operation program
exception as specified by the architecture.

Attempting to access a supported SPR that is hypervisor-privileged while in the guest-supervisor state
causes an embedded hypervisor privilege exception. For example, attempting to read an SPR that has
“Hypervisor RO” privilege while in the guest-supervisor state causes an embedded hypervisor privilege
exception and subsequent interrupt. See Section 4.9.21, “Hypervisor privilege interrupt—IVOR41” for a
complete list of actions that cause embedded hypervisor privilege exceptions.

The table summarizes SPR access methods.

Table 2-2. Special-purpose registers (by SPR abbreviation)

SPR Defined)
Abbreviation Name SPR Access Shared | Section/Page
Number
ATBL Alternate Time Base Lower 526 User RO Yes 2.8.6/2-28
ATBU Alternate Time Base Upper 527 User RO Yes 2.8.6/2-28
BUCSR Branch Unit Control and Status’ 1013 Hypervisor — 2.7.4/2-21
CDCSRO |Core Device Control and Status 696 Hypervisor Yes 2.7.6/2-23
CIR Chip Identification (alias to SVR) 283 Guest supervisor RO Yes 2.7.10/2-25
CSRRO Critical Save/Restore 0 58 Hypervisor — 2.9.1/2-29
CSRR1 Critical Save/Restore 1 59 Hypervisor — 2.9.1/2-29
CTR Count 9 User — 2.6.3/2-18
DACH1 Data Address Compare 11 316 Hypervisor — 2.14.11/2-100
DAC2 Data Address Compare 21 317 Hypervisor — 2.14.11/2-100
DBCRO |Debug Control 0 308 Hypervisor — 2.14.4/2-85
DBCR1 Debug Control 11 309 Hypervisor — 2.14.5/2-88
DBCR2 Debug Control 2! 310 Hypervisor — 2.14.6/2-91

€6500 Core Reference Manual, Rev 0

2-6 Freescale Semiconductor

Table 2-2. Special-purpose registers (by SPR abbreviation) (continued)

Register Model

SPR Defined)
Abbreviation Name SPR Access Shared | Section/Page
Number
DBCR4 Debug Control 41 563 Hypervisor — 2.14.7/2-93
DBCR5 Debug Control 5 564 Hypervisor — 2.14.8/2-94
DBRRO |Debug Resource Request 0’ 700 Hypervisor — 2.14.2/2-82
DBSR Debug Status 1 304 Hypervisor R/Clear — 2.14.9/2-96
DBSRWR |Debug Status Write' 306 Hypervisor — 2.14.9/2-96
DDAM Debug Data Acquisition Message 576 User — 2.14.14/2-102
DEAR Data Exception Address 61 Guest supervisor? — 2.8.5/2-28
DEC Decrementer 22 Hypervisor — 2.8.4/2-28
DECAR Decrementer Auto-Reload 54 Hypervisor WO — 2.8.4/2-28
DEVENT Debug Event 975 User — 2.14.13/2-101
DSRRO Debug Save/Restore 0 574 Hypervisor — 2.9.1/2-29
DSRR1 Debug Save/Restore 1 575 Hypervisor — 2.9.1/2-29
EDBRACO |External Debug Resource Allocation Control 0! 638 Hypervisor RO — 2.14.3/2-83
EPCR Embedded Processor Control 307 Hypervisor — 2.7.3/2-21
EPTCFG Embedded Page Table Configuration 350 Hypervisor RO Yes 2.13.7/2-66
EPLC External PID Load Context' 947 Guest supervisor® — |2.13.11.1/2-79
EPR External Proxy 702 | Guest supervisor RO? | — 2.9.6/2-32
EPSC External PID Store Context! 948 Guest supervisor® — |2.13.11.2/2-80
ESR Exception Syndrome 62 Guest supervisor? — 2.9.7/2-33
GDEAR Guest Data Exception Address 381 Guest supervisor — 2.8.5/2-28
GEPR Guest External Proxy 380 Guest supervisor — 2.9.6/2-32
GESR Guest Exception Syndrome 383 Guest supervisor — 2.9.7/2-33
GIVOR13 |Guest Data TLB Error Interrupt Offset 444 Hypervisor4 — 2.9.4/2-31
GIVOR14 |Guest Instruction TLB Error Interrupt Offset 445 Hypervisor4 — 2.9.4/2-31
GIVOR2 Guest Data Storage Interrupt Offset 440 Hypervisor* — 2.9.4/2-31
GIVORS3 Guest Instruction Storage Interrupt Offset 441 Hypervisor* — 2.9.4/2-31
GIVOR35 |Guest Performance Monitor Interrupt Offset 464 Hypervisor* — 2.9.4/2-31
GIVOR4 Guest External Input Interrupt Offset 442 Hypervisor4 — 2.9.4/2-31
GIVORS8 Guest System Call Interrupt Offset 443 Hypervisor* — 2.9.4/2-31
GIVPR Guest Interrupt Vector Prefix 447 Hypervisor4 — 2.9.4/2-31
GPIR Guest Processor ID 382 Guest supervisor4 — 2.9.8/2-35
GSPRGO |Guest SPR General 0 368 Guest supervisor — 2.10/2-39
GSPRG1 Guest SPR General 1 369 Guest supervisor — 2.10/2-39
€6500 Core Reference Manual, Rev 0
Freescale Semiconductor 2-7

Register Model

Table 2-2. Special-purpose registers (by SPR abbreviation) (continued)

SPR Defined)
Abbreviation Name SPR Access Shared | Section/Page
Number
GSPRG2 |Guest SPR General 2 370 Guest supervisor — 2.10/2-39
GSPRG3 |Guest SPR General 3 371 Guest supervisor — 2.10/2-39
GSRRO Guest Save/Restore 0 378 Guest supervisor — 2.9.1/2-29
GSRR1 Guest Save/Restore 1 379 Guest supervisor — 2.9.1/2-29
HIDO Hardware Implementation Dependent 0! 1008 Hypervisor Yes 2.7.5/2-22
IAC1 Instruction Address Compare 11 312 Hypervisor — 2.14.10/2-99
IAC2 Instruction Address Compare 21 313 Hypervisor — 2.14.10/2-99
IAC3 Instruction Address Compare 3! 314 Hypervisor — 2.14.10/2-99
IAC4 Instruction Address Compare 4! 315 Hypervisor — 2.14.10/2-99
IAC5 Instruction Address Compare 5' 565 Hypervisor — 2.14.10/2-99
IAC6 Instruction Address Compare 6' 566 Hypervisor — 2.14.10/2-99
IAC7 Instruction Address Compare 71 567 Hypervisor — 2.14.10/2-99
IAC8 Instruction Address Compare 8! 568 Hypervisor — 2.14.10/2-99
IVORO Critical Input Interrupt Offset 400 Hypervisor Yes 2.9.5/2-31
IVOR1 Machine Check Interrupt Offset 401 Hypervisor Yes 2.9.5/2-31
IVOR10 Decrementer Interrupt Offset 410 Hypervisor Yes 2.9.5/2-31
IVOR11 Fixed-Interval Timer Interrupt Offset 411 Hypervisor Yes 2.9.5/2-31
IVOR12 Watchdog Timer Interrupt Offset 412 Hypervisor Yes 2.9.5/2-31
IVOR13 Data TLB Error Interrupt Offset 413 Hypervisor Yes 2.9.5/2-31
IVOR14 Instruction TLB Error Interrupt Offset 414 Hypervisor Yes 2.9.5/2-31
IVOR15 Debug Interrupt Offset 415 Hypervisor Yes 2.9.5/2-31
IVOR2 Data Storage Interrupt Offset 402 Hypervisor Yes 2.9.5/2-31
IVOR3 Instruction Storage Interrupt Offset 403 Hypervisor Yes 2.9.5/2-31
IVOR32 AltiVec Unavailable Interrupt Offset 528 Hypervisor Yes 2.9.5/2-31
IVOR33 AltiVec Assist Interrupt Offset 529 Hypervisor Yes 2.9.5/2-31
IVOR35 Performance Monitor Interrupt Offset 531 Hypervisor Yes 2.9.5/2-31
IVOR36 Processor Doorbell Interrupt Offset 532 Hypervisor Yes 2.9.5/2-31
IVOR37 Processor Doorbell Critical Interrupt Offset 533 Hypervisor Yes 2.9.4/2-31
IVOR38 Guest Processor Doorbell Interrupt Offset 432 Hypervisor Yes 2.9.5/2-31
IVOR39 Guest Processor Doorbell Critical and Machine- 433 Hypervisor Yes 2.9.5/2-31
Check Interrupt Offset
IVOR4 External Input Interrupt Offset 404 Hypervisor Yes 2.9.5/2-31
IVOR40 Hypervisor System Call Interrupt Offset 434 Hypervisor Yes 2.9.5/2-31
IVOR41 Hypervisor Privilege Interrupt Offset 435 Hypervisor Yes 2.9.5/2-31

€6500 Core Reference Manual, Rev 0

2-8

Freescale Semiconductor

Table 2-2. Special-purpose registers (by SPR abbreviation) (continued)

Register Model

SPR Defined)
Abbreviation Name SPR Access Shared | Section/Page
Number
IVOR42 LRAT Error Interrupt Offset 436 Hypervisor Yes 2.9.5/2-31
IVOR5 Alignment Interrupt Offset 405 Hypervisor Yes 2.11.5/2-42
IVOR6 Program Interrupt Offset 406 Hypervisor Yes 2.9.5/2-31
IVOR7 Floating-Point Unavailable Interrupt Offset 407 Hypervisor Yes 2.9.5/2-31
IVOR8 System Call Interrupt Offset 408 Hypervisor Yes 2.9.5/2-31
IVOR9 APU Unavailable Interrupt Offset 409 Hypervisor Yes 2.9.5/2-31
IVPR Interrupt Vector Prefix 63 Hypervisor Yes 2.9.4/2-31
L1CFGO L1 Cache Configuration 0 515 User RO Yes 2.11.4/2-41
L1CFG1 L1 Cache Configuration 1 516 User RO Yes 2.11.5/2-42
L1CSRO L1 Cache Control and Status 0' 1010 Hypervisor Yes 2.11.1/2-40
L1CSR1 L1 Cache Control and Status 1 1011 Hypervisor Yes 2.11.2/2-40
L1CSR2 L1 Cache Control and Status 2° 606 Hypervisor Yes 2.11.2/2-40
LPIDR Logical PID’ 338 Hypervisor — 2.13.1/2-62
LR Link 8 User — 2.6.2/2-18
LRATCFG |Logical to Real Address Translation Configuration 342 Hypervisor RO Yes 2.13.8/2-67
LRATPS Logical to Real Address Translation Page Size 343 Hypervisor RO Yes 2.13.9/2-69
LPER Logical Page Exception 56 Hypervisor — 2.9.3/2-30
LPERU Logical Page Exception Upper 57 Hypervisor — 2.9.3/2-30
MASO MMU Assist 0 624 Guest supervisor — |2.13.10.1/2-70
MASO_MAS1 |[MMU Assist 0 and MMU Assist 1’ 373 Guest supervisor — 12.13.10.10/2-7
9
MASH1 MMU Assist 1° 625 Guest supervisor — | 2.13.10.2/2-71
MAS2 MMU Assist 2° 626 Guest supervisor — 12.13.10.3/2-72
MAS3 MMU Assist 3" 627 Guest supervisor — |2.13.10.4/2-73
MAS4 MMU Assist 4' 628 Guest supervisor — |2.13.10.5/2-75
MAS5 MMU Assist 5' 339 Hypervisor — |2.13.10.6/2-76
MAS5_MAS6 |MMU Assist 5 and MMU Assist 6' 348 Hypervisor — |2.13.10.10/2-7
9
MAS6 MMU Assist 6 630 Guest supervisor — |2.13.10.7/2-76
MAS7 MMU Assist 7' 944 Guest supervisor — 12.13.10.8/2-77
MAS7_MAS3 |MMU Assist 7 and MMU Assist 3' 372 Guest supervisor — 12.13.10.10/2-7
9
MASS8 MMU Assist 8' 341 Hypervisor — 12.13.10.9/2-78
MAS8_MAS1 |[MMU Assist 8 and MMU Assist 1° 349 Hypervisor — 12.13.10.10/2-7

9

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

2-9

Register Model

Table 2-2. Special-purpose registers (by SPR abbreviation) (continued)

SPR Defined)
Abbreviation Name SPR Access Shared | Section/Page
Number
MCAR Machine-Check Address 573 Hypervisor RO — 2.9.9/2-35
MCARU Machine-Check Address Upper 569 Hypervisor RO — 2.9.9/2-35
MCARUA |Machine-Check Address Upper Alias 637 Hypervisor RO — 2.9.9/2-35
MCSR Machine-Check Syndrome 572 Hypervisor — 2.9.10/2-36
MCSRRO |Machine-Check Save/Restore 0 570 Hypervisor — 2.9.1/2-29
MCSRR1 Machine-Check Save/Restore 1 571 Hypervisor — 2.9.1/2-29
MMUCFG |MMU Configuration 1015 Hypervisor RO Yes 2.13.4/2-63
MMUCSRO |MMU Control and Status 0' 1012 Hypervisor Yes 2.13.3/2-62
MSRP MSR Protect! 311 Hypervisor — 2.7.2/2-20
NIA Next Instruction Address 559 External debugger — 9.2.5.2/99-5
NPIDR® Nexus Processor ID 517 User — 2.14.15/2-102
NSPC Nexus SPR Access Configuration 984 Hypervisor — | 2.14.12/2-100
NSPD Nexus SPR Access Data 983 Hypervisor — 2.14.12/2-100
PID Process ID’ 48 Guest supervisor — 2.13.2/2-62
PIR Processor ID 286 Guest supervisor — 2.9.8/2-35
PPR32 Processor Priority 898 User — |2.15.1.6/2-107
PVR Processor Version 287 Guest supervisor RO Yes 2.7.8/2-24
PWRMGTCRO | Power Management Control O 1019 Hypervisor Yes 2.7.7/2-24
SCCSRBAR |Shifted CCSRBAR from SoC 1022 Hypervisor RO Yes 2.7.11/2-25
SPRGO SPR General 0 272 Guest supervisor — 2.10/2-39
SPRG1 SPR General 1 273 Guest supervisor — 2.10/2-39
SPRG2 SPR General 2 274 Guest supervisor — 2.10/2-39
SPRG3 SPR General 3 259 User RO? — 2.10/2-39
SPRG3 SPR General 3 275 Guest supervisor — 2.10/2-39
SPRG4 SPR General 4 260 User RO — 2.10/2-39
SPRG4 SPR General 4 276 Guest supervisor — 2.10/2-39
SPRG5 SPR General 5 261 User RO — 2.10/2-39
SPRG5 SPR General 5 277 Guest supervisor — 2.10/2-39
SPRG6 SPR General 6 262 User RO — 2.10/2-39
SPRG6 SPR General 6 278 Guest supervisor — 2.10/2-39
SPRG7 SPR General 7 263 User RO — 2.10/2-39
SPRG7 SPR General 7 279 Guest supervisor — 2.10/2-39
SPRGS8 SPR General 8 604 Hypervisor — 2.10/2-39

€6500 Core Reference Manual, Rev 0

2-10

Freescale Semiconductor

Table 2-2. Special-purpose registers (by SPR abbreviation) (continued)

Register Model

SPR Defined)
Abbreviation Name SPR Access Shared | Section/Page
Number
SPRG9 SPR General 9 605 Guest supervisor — 2.10/2-39
SRRO Save/Restore 0 26 Guest supervisor? — 2.9.1/2-29
SRR1 Save/Restore 1 27 Guest supervisor? — 2.9.1/2-29
SVR System Version 1023 | Guest supervisor RO | Yes 2.7.9/2-25
TBL(R) Time Base Lower (Read) 268 User RO Yes 2.8.3/2-27
TBL(W) Time Base Lower (Write) 284 Hypervisor WO Yes 2.8.3/2-27
TBU(R) Time Base Upper (Read) 269 User RO Yes 2.8.3/2-27
TBU(W) Time Base Upper (Write) 285 Hypervisor WO Yes 2.8.3/2-27
TCR Timer Control 340 Hypervisor — 2.8.1/2-27
TENC Thread Enable Clear 439 Hypervisor Yes 2.15.1/2-1083
TENS Thread Enable Set 438 Hypervisor Yes 2.15.1/2-1083
TENSR Thread Enable Status 437 Hypervisor RO Yes 2.15.1/2-1083
TIR Thread Identification 446 Hypervisor RO — 2.15.1/2-1083
TLBOCFG |TLB 0 Configuration 688 Hypervisor RO Yes 2.13.5/2-64
TLBOPS TLB 0 Page Size 344 Hypervisor RO Yes 2.13.6/2-66
TLB1CFG |TLB 1 Configuration 689 Hypervisor RO Yes 2.13.5/2-64
TLB1PS TLB 1 Page Size 345 Hypervisor RO Yes 2.13.6/2-66
TSR Timer Status 336 Hypervisor R/Clear — 2.8.2/2-27
USPRGO |User SPR General 0° 256 User — 2.10/2-39
(VRSAVE)
XER Integer Exception 1 User — 2.3.2/2-16

N

Writing to these registers requires synchronization, as described in Section 3.3.3, “Synchronization requirements.”
When these registers are accessed in the guest-supervisor state, the accesses are mapped to their analogous guest SPRs

(for example, DEAR is mapped to GDEAR). See Section 2.2.2.1, “Register mapping in the guest—supervisor state.”

o o~ W

2221

Certain fields in this register are only writeable when in the hypervisor state.

This register is only writeable in the hypervisor state, but can be read in the guest-supervisor state.
NPIDR contents are transferred to the Nexus port whenever it is written.
USPRGO is a separate physical register from SPRGO.

Register mapping in the guest—supervisor state

To improve emulation efficiency while providing a common programming model for operating systems
that may want to run either under control of a hypervisor or directly on the hardware without a hypervisor,
accesses to certain hypervisor-state registers are automatically redirected to the appropriate guest-state
registers when in the guest—supervisor state. This removes the requirement for the hypervisor-state
software to handle hypervisor privilege interrupts for these registers and to make the required emulated

changes to the guest state for these high-use registers.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

Register Model

Accesses to the registers listed in Table 2-3 are changed by the processor to the registers given in the table
when MSR[PR] =0 and MSR[GS] = 1. Accesses to these registers are not mapped when in the hypervisor
state (MSR[PR] = 0 and MSR[GS] = 0) or when operating unprivileged (MSR[PR] = 1). The exception is
that an unprivileged access to SPRG3 (SPR 259) is also mapped to GSPRG3.

Note that in the guest-supervisor state, execution of rfi is mapped to rfgi, and indirect accesses to SRRO
and SRR1 through execution of the rfgi instruction are handled through instruction mapping.

This table provides register mapping in the guest-supervisor state.

Table 2-3. Register mapping in the guest-supervisor state

Register Accessed Register Mapped to Notes
SRRO GSRRO0 Access is mapped during mtspr and mfspr.
SRR1 GSRR1 Access is mapped during mtspr and mfspr.
EPR GEPR Access is mapped during mfspr.

ESR GESR Access is mapped during mtspr and mfspr.
DEAR GDEAR Access is mapped during mtspr and mfspr.
PIR GPIR Access is mapped during mfspr.
SPRGO GSPRGO Access is mapped during mtspr and mfspr.
SPRG1 GSPRG1 Access is mapped during mtspr and mfspr.
SPRG2 GSPRG2 Access is mapped during mtspr and mfspr.
SPRG3 GSPRG3 Access is mapped during mtspr and mfspr.
SPRG3 (259) GSPRG3 Access is mapped during mfspr.

2.2.3 Memory-mapped registers (MMRs)

MMRs are on-chip registers implemented on the processor core or within a cluster of processor cores.
They are used to control and configure devices within the integrated device. MMRs are defined for the
shared backside L2 cache.

This section describes the MMR address assignments that are supported by the e6500 core complex. The
definitions of each MMR are found later in this chapter and are organized by function.

MMRs are accessed by performing loads and stores to the assigned address of the MMR. The MMR
address is specified as an offset from a base address. The base address is a block of addresses defined by
the SoC architecture and can be determined by consulting the integrated device reference manual as part
of the CCSR Address Map. For MMRs defined in this document, both the name of the block of addresses
and the offset within that block are used to identify the address.

MMRs do not have privilege associated with them and are accessible if mapped by a valid TLB entry.
Therefore, system software should take care when mapping MMRs to address spaces.

MMRs located at address A, which are defined as 64 bits, are accessed with load or store doubleword
instructions to address A. The two 32-bit portions may be accessed by two load or store word instructions

€6500 Core Reference Manual, Rev 0

2-12 Freescale Semiconductor

Register Model
that address the upper 32 bits at address A and the lower 32 bits at address A+4. MMRs that are defined as
32 bits are accessed with load or store word instructions at address A.

The following table summarizes the MMR blocks and each block’s offset from CCSRBAR. The starting
real address of the block is determined by reading the SCCSRBAR, shifting the contents left by 24 bits,
and adding the block offset.

Table 2-4. Memory-mapped register blocks (by offset)

B'°‘(’:"ccs’2‘°’£;'°m MMR Block Name
0xC2_0000 Shared L2 cluster 1
0xC6_0000 Shared L2 cluster 2
0xCA_0000 Shared L2 cluster 3
0xCE_0000 Shared L2 cluster 4
0xD2_0000 Shared L2 cluster 5
0xD6_0000 Shared L2 cluster 6
0xDA_0000 Shared L2 cluster 7
OxDE_0000 Shared L2 cluster 8
O0xE2_0000 Shared L2 cluster 9
0xE6_0000 Shared L2 cluster 10
OxEA_0000 Shared L2 cluster 11
OxEE_0000 Shared L2 cluster 12
0xF2_0000 Shared L2 cluster 13
0xF6_0000 Shared L2 cluster 14
0xFA_0000 Shared L2 cluster 15
OxFE_0000 Shared L2 cluster 16

The following table summarizes MMRs for the shared L2, which is Shared L2 cluster x, where x identifies
the shared L2 cluster from 1 to the number of clusters in the integrated device.

Table 2-5. Memory-mapped registers for block ‘shared L2 cluster x’ (by offset)

Defined
Abblylxii:tion of!\fnsl\g? in Name (Ii-r(;3 r:a?tt:) Section/ Page
block
L2CSRO 0x000 |L2 Cache Control and Status 0 32 2.12.2/2-44
L2CSR1 0x004 |L2 Cache Control and Status 1 32 2.12.3/2-47
L2CFGO 0x008 (L2 Cache Configuration 0 32 2.12.1/2-43
L2PIRO 0x200 L2 Cache Partitioning ID 0 32 2.12.4.1/2-50

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-13

V¥ ¢
i

Register Model

Table 2-5. Memory-mapped registers for block ‘shared L2 cluster x’ (by offset) (continued)

Defined
Abblylxii:tion of!\fnsl\:? in Name (Ii-: r:a?tt:) Section/ Page
block
L2PARO 0x208 |L2 Cache Partitioning Allocation 0 32 2.12.4.2/2-51
L2PWRO 0x20c |L2 Cache Partitioning Way 0 32 2.12.4.3/2-53
L2PIR1 0x210 L2 Cache Partitioning ID 1 32 2.12.4.1/2-50
L2PAR1 0x218 |L2 Cache Partitioning Allocation 1 32 2.12.4.2/2-51
L2PWR1 0x21c |L2 Cache Partitioning Way 1 32 2.12.4.3/2-53
L2PIR2 0x220 L2 Cache Partitioning ID 2 32 2.12.4.1/2-50
L2PAR2 0x228 |L2 Cache Partitioning Allocation 2 32 2.12.4.2/2-51
L2PWR2 0x22c¢ |L2 Cache Partitioning Way 2 32 2.12.4.3/2-53
L2PIR3 0x230 L2 Cache Partitioning ID 3 32 2.12.4.1/2-50
L2PARS 0x238 |L2 Cache Partitioning Allocation 3 32 2.12.4.2/2-51
L2PWR3 0x23c |L2 Cache Partitioning Way 3 32 2.12.4.3/2-53
L2PIR4 0x240 L2 Cache Partitioning ID 4 32 2.12.4.1/2-50
L2PAR4 0x248 |L2 Cache Partitioning Allocation 4 32 2.12.4.2/2-51
L2PWR4 0x24c |L2 Cache Partitioning Way 4 32 2.12.4.3/2-53
L2PIR5 0x250 L2 Cache Partitioning ID 5 32 2.12.4.1/2-50
L2PARS 0x258 |L2 Cache Partitioning Allocation 5 32 2.12.4.2/2-51
L2PWR5 0x25¢ |L2 Cache Partitioning Way 5 32 2.12.4.3/2-53
L2PIR6 0x260 L2 Cache Partitioning ID 6 32 2.12.4.1/2-50
L2PAR6 0x268 |L2 Cache Partitioning Allocation 6 32 2.12.4.2/2-51
L2PWR6 0x26¢c |L2 Cache Partitioning Way 6 32 2.12.4.3/2-53
L2PIR7 0x270 L2 Cache Partitioning ID 7 32 2.12.4.1/2-50
L2PAR7 0x278 |L2 Cache Partitioning Allocation 7 32 2.12.4.2/2-51
L2PWR7 0x27c¢ |L2 Cache Partitioning Way 7 32 2.12.4.3/2-53
L2ERRINJHI 0xe00 L2 Cache Error Injection Mask High 32 2.12.5.10/2-61
L2ERRINJLO 0xe04 [L2 Cache Error Injection Mask Low 32 2.12.5.10/2-61
L2ERRINJCTL 0xe08 |L2 Cache Error Injection Control 32 2.12.5.9/2-60
L2CAPTDATAHI 0xe20 |L2 Cache Error Capture Data High 32 2.12.5.6/2-59
L2CAPTDATALO 0xe24 |L2 Cache Error Capture Data Low 32 2.12.5.6/2-59
L2CAPTECC 0xe28 |L2 Cache Error Capture ECC Syndrome 32 2.12.5.7/2-59
L2ERRDET 0xe40 |L2 Cache Error Detect 32 2.12.5.2/2-55
L2ERRDIS Oxed44 |L2 Cache Error Disable 32 2.12.5.1/2-54
L2ERRINTEN Oxe48 L2 Cache Error Interrupt Enable 32 2.12.5.3/2-57
L2ERRATTR Oxed4c |L2 Cache Error Attribute 32 2.12.5.8/2-59

€6500 Core Reference Manual, Rev 0

2-14 Freescale Semiconductor

Register Model

Table 2-5. Memory-mapped registers for block ‘shared L2 cluster x’ (by offset) (continued)

Defined
Abblylxii:tion of!\fnsl\g? in Name (Ii-r(;3 r:a?tt:) Section/ Page
block
L2ERREADDR 0xe50 |L2 Cache Error Extended Address 32 2.12.5.5/2-59
L2ERRADDR 0xe54 |L2 Cache Error Address 32 2.12.5.5/2-59
L2ERRCTL 0xe58 |L2 Cache Error Control 32 2.12.5.4/2-58

2.2.31 Synchronization requirements for memory-mapped registers

MMRs associated with the e6500 core complex require synchronization to ensure that operations are
performed when an MMR is written with a store instruction. The general synchronization requirement is
to follow a store to an MMR with a load to the same MMR and verify that the operation is complete. Other
synchronizations or actions that may be required are specific to each MMR and are documented in EREF
and in the specific register descriptions in Chapter 2, “Register Model.”

224 Thread management registers (TMRs)

TMRs are on-chip registers implemented in the processor core that are used to control the use of threads
in the e6500 core and other architected processor resources related to threads.

This section describes the TMRs that are implemented in the ¢6500. The definition of each individual
TMR is contained in Section 2.15.2, “Thread management registers (TMRs)” organized by function. Note
that the e6500 implementation of a TMR may be a subset of the architectural definition.

TMRs are accessed with the mttmr and mftmr instructions. Access is given by the lowest level of
privilege required to access the TMR. Unlike SPRs, TMRs do not use bit 5 to denote privilege. The access
methods listed in Table 2-6 are defined as follows:

* Hypervisor—denotes access is available for both mttmr and mftmr when operating in hypervisor
mode (MSR[GS,PR] = 00).

* Hypervisor RO—denotes access is available for only mftmr when operating in hypervisor mode
(MSR[GS,PR] = 00).

* Hypervisor WO—denotes access is available for only mttmr when operating in hypervisor mode
(MSR[GS,PR] = 00).

* Hypervisor R/Clear—denotes access is available for both mttmr and mftmr when operating in
hypervisor mode (MSR[GS,PR] =00); however, an mttmr only clears bit positions in the SPR that
correspond to the bits set in the source GPR.

* Shared—denotes the register is shared among all the threads of a multi-threaded processor;
otherwise, each thread has a private copy of the register.

An mttmr or mftmr instruction that specifies an unsupported TMR number is considered an invalid
instruction. In user mode, the processor takes an illegal operation program exception on all accesses to

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-15

wr
PRt

Register Model

unsupported, unprivileged TMRs (or read accesses to TMRs that are write-only and write accesses to
TMRs that are read-only). In supervisor or hypervisor mode, such accesses are boundedly undefined.

Table 2-6. Thread management registers (by TMR number)

Difl\llln:d TMB . Name I_.em_:_;th Access Shared | Section/ Page

Number Abbreviation (in bits) (shared)
16 TMCFGO |Thread Management Configuration 0 32 Hypervisor RO Yes |2.15.2.1/2-108
192 TPRIO Thread 0 Priority 32 Hypervisor Yes |2.15.2.4/2-110
193 TPRI Thread 1 Priority 32 Hypervisor Yes |2.15.2.4/2-110
288 IMSRO Thread 0 Machine State 32 Hypervisor WO Yes |2.15.2.2/2-109
289 IMSR1 Thread 1 Machine State 32 Hypervisor WO Yes |2.15.2.2/2-109
320 INIAO Thread 0 Next Instruction Address 64 Hypervisor WO Yes |2.15.2.2/2-109
321 INIA1 Thread 1 Next Instruction Address 64 Hypervisor WO Yes |2.15.2.2/2-109

2.3 Registers for integer operations

The following sections describe registers defined for integer computational instructions.

2.3.1 General-purpose registers (GPRs)

GPRO-GPR31 provide operand space for support integer operations. The instruction formats provide 5-bit
fields for specifying GPRs to be used in the execution of the instruction. Each GPR is a 64-bit register and
can be used to contain effective address and integer data.

GPRs are implemented as defined by Power ISA and as described in EREF.

The 6500 core has two independent sets of GPRs, one set for each thread.

2.3.2 Integer Exception (XER) register

XER bits are set based on the operation of an instruction considered as a whole, not based on intermediate
results. For example, the Subtract from Carrying (subfc) instruction specifies the result as the sum of three
values. This final sum is actually accomplished with an intermediate sum of two values, which is then
added to the third to produce the final sum. The bits in XER are only set based on the entire instruction
operation, not the intermediate value produced during the operation.

Note that XER is an SPR.
The 6500 core implements XER as defined in EREF.

The 6500 core has two independent XERs, one for each thread.

2.4 Registers for floating-point operations

The following sections describe registers defined for floating-point computational instructions.

€6500 Core Reference Manual, Rev 0

2-16 Freescale Semiconductor

Register Model

2.4.1 Floating-point registers (FPRs)

FPRO-FPR31 provide operand space for supporting floating-point operations. The instruction formats
provide 5-bit fields for specifying FPRs to be used in the execution of the instruction. Each FPR is a 64-bit
register and can be used to contain single-precision or double-precision floating-point data.

The €6500 core implements FPRs as defined by Power ISA and as described in EREF.

The 6500 core has two independent sets of FPRs, one set for each thread.

24.2 Floating-Point Status and Control (FPSCR) register

FPSCR contains all floating-point exception signal bits, exception summary bits, exception enable bits,
and rounding control bits needed for compliance with the IEEE 754 standard.

If FPSCR[NI] is set for a specific thread in the e6500 core, denormalized values are treated as
appropriately signed 0 values. That is, if a denormalized number is an input to a floating point operation,
that denormalized number is treated as 0 with the same sign as the denormalized number. If the result of a
floating point operation produces a denormalized number, the result produced and written to the
destination register is an appropriately signed O.

The 6500 core implements FPSCR as defined by Power ISA and described in EREF.
The 6500 core has two independent FPSCRs, one for each thread.

2.5 Registers for vector operations

The following sections describe registers defined for vector computational instructions.

2.5.1 Vector registers (VRs)

VRO0-VR31 provide operand space for supporting vector (AltiVec) operations. The instruction formats
provide 5-bit fields for specifying the VRs to be used in the execution of the instruction. Each VR is a
128-bit register and can be used to contain a vector of integer or single-precision floating-point data.

The 6500 core implements VRs as defined by Power ISA and as described in EREF.

The 6500 has two independent sets of VRs, one set for each thread.

2.5.2 Vector Status and Control (VSCR) register
VSCR is a 32-bit register that is read and written in a manner similar to the FPSCR.

VSCR has two defined bits:
e AltiVec non-Java mode bit—VSCR][111]
e AltiVec saturation bit—VSCR][127]

The remaining bits are reserved.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-17

Register Model

Special Move To Vector Status and Control Register (mfvser) and Move From Vector Status and Control
Register (mtvscr) instructions are provided to move the contents of VSCR to and from a vector register.
When moved to or from a vector register, the 32-bit VSCR is right-justified in the 128-bit vector register.
When moved to a vector register, the upper 96 bits VRn [0-95] of the vector register are cleared.

VSCR is more completely defined in the AltiVec Technology Programming Environments Manual for
Power ISA Processors.

The e6500 core has two independent VSCRs, one for each thread.

2.6 Registers for branch operations

This section describes registers used by branch and condition register operations.

2.6.1 Condition (CR) register

The €6500 core implements CR as defined in EREF for integer instructions.

The 6500 core has two independent CRs, one for each thread.

2.6.2 Link (LR) register

LR can be used to provide the branch target address for a Branch Conditional to LR instruction. It also
holds the return address after branch and link instructions.

Note that LR is an SPR.
The 6500 core implements LR as defined in EREF.

The 6500 core has two independent LLRs, one for each thread.

2.6.3 Count (CTR) register

CTR can be used to hold a loop count that can be decremented and tested during execution of branch
instructions that contain an appropriately encoded BO field. If the count register value is 0 before being
decremented, it is —1 afterward. The count register can be used to hold the branch target address for a
Branch Conditional to CTR (bectrx) instruction.

Note that the count register is an SPR.
The 6500 core implements CTR as defined in EREF.
The 6500 core has two independent CTRs, one for each thread.

2.7 Processor control registers

This section describes registers associated with identifying and controlling thread and core features. In
particular, it describes the following registers:

e Machine State (MSR)
* Machine State Register Protect (MSRP)

€6500 Core Reference Manual, Rev 0

2-18 Freescale Semiconductor

Register Model

* Embedded Processor Control (EPRC)

e Branch Unit Control (BUCSR)

* Hardware Implementation-Dependent 0 (HIDO)
e Core Device Control and Status (CDCSRO)

* Power Management Control 0 (PWRMGTCRO)
* Processor Version (PVR)

* System Version (SVR)

* Chip Identification (CIR)

* Shifted CCSRBAR (SCCSRBAR)

2.7.1 Machine State (MSR) register

MSR, shown in Figure 2-1, is used to define the processor state, which includes:
* Enabling and disabling of interrupts and debugging exceptions
* Address translation for instruction and data memory accesses
* Enabling and disabling some functionality
* Controlling whether the processor is in 32-bit or 64-bit mode
* Specifying whether the processor is in supervisor or user mode
* Specifying whether the processor is in hypervisor or guest state

The e6500 core has two independent MSRs, one for each thread. The MSR for each thread controls the
machine state for that thread.

When a thread runs in the guest—supervisor state (MSR[GS] = 1, MSR[PR] = 0), some MSR bits are not
writable. If MSR is written in the guest—supervisor state in any manner, including using mtmsr, rfgi, or
rfi, or as the result of taking an interrupt serviced in guest state, MSR[GS] is not changed.

Certain MSR bits for a thread may be changed in the guest—supervisor state if permission to do so is
enabled by the hypervisor program. MSR[UCLE,DE,PMM] are writable if the corresponding
MSRP-defined bits are cleared. See Section 2.7.2, “Machine State Register Protect (MSRP) register.”
MSREP is writable only in the hypervisor state. When MSR is written in the guest state, bits protected by
set MSRP bits are not written and remain unmodified. All other MSR bits are written with the updated
values. An attempt to write the MSRP in the guest—supervisor state results in a hypervisor privilege
exception.

Changing CM, PR, GS, IS, or DS using the mtmsr instruction requires a context-synchronizing operation
before the effects of the change are guaranteed to be visible. Prior to the context synchronization, these bits
can change at any time and with any combination. Changes in CM, GS, or IS can cause an implicit branch
because these bits are used to compute the virtual address for instruction translation. Instructions may be
fetched and executed from any context and from any permutation of these bits. Software should guarantee
that a translation exists for each of the permutations of these address space bits and that translation has the
same characteristics, including permissions and Real Page Number (RPN) fields. For this reason, it is
unwise to use mtmsr to change these bits. Such changes should only be done using

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-19

Register Model

return-from-interrupt-type instructions, which provide the context synchronization atomically with
instruction execution.

Guest supervisor

32 3334 35 |36 37 38 39‘ ‘45 46 47|48 49 50 51 | 52 53 54 55 |56 57 58 59 |60 61 62 63

R
W CM GS |—|UCLE | SPV — CE|—|EE|PR|FP|ME|FEO|—|DE|FE1| — |IS|DS|—|PMM |RI|—
Reset All zeros

Figure 2-1. Machine State (MSR) register

When an interrupt occurs, MSR contents of the interrupted process are automatically saved to the
Save/Restore 1 (xSRR1) register appropriate to the interrupt, and the MSR is altered to predetermined
values for the interrupt taken. At the end of the interrupt handler, the appropriate return-from-interrupt
instruction restores the values in xSRR1 to the thread’s MSR.

MSR contents are read into a GPR using mfmsr. The contents of a GPR can be written to MSR using
mtmsr. The write MSR external enable instructions (wrtee and wrteei) can be used to set or clear
MSRI[EE] without affecting other MSR bits.

MSR[CM] controls whether a thread is in 32-bit mode or 64-bit mode. Power ISA defines two methods of
a 64-bit implementation providing 32-bit mode. EREF provides 32-bit mode in a manner compatible with
Power Architecture® processors that implement the server category. EREF calls this “hybrid 32-bit mode.”
In both 32-bit and 64-bit modes, instructions that set a 64-bit register affect all 64 bits. The computational
mode controls:

* How the effective address is interpreted
* How CR bits and XER bits are set
* How LR is set by branch instructions in which LK =1
* How CTR is tested by branch conditional instructions
In both modes, effective address computations use all 64 bits of the relevant registers and produce a 64-bit

result. However, in 32-bit mode, the high-order 32 bits of the computed effective address are ignored for
the purpose of addressing storage.

When executing in 32-bit mode, the upper 32 bits of the fetch address, effective addresses, DACx, [ACx,
IVPR, and GIVPR are ignored. When transitioning from 64-bit to 32-bit mode, the upper 32 bits of the
fetch address are set to 0, regardless of whether the transition is the result of a return from interrupt
instruction or a mtmsr instruction.

The 6500 core does not implement the WE bit found in some previous €500 cores. Power management
operations on SoCs using the e6500 are handled through the PWRMGTCRO register and an SoC
programming model. See the reference manual for the integrated device for additional details.

2.7.2 Machine State Register Protect (MSRP) register

MSRP provides the ability to write MSR[UCLE,DE,PMM] when the machine is in the guest—supervisor
state (MSR[PR] = 0 and MSR[GS] = 1) by any operation that modifies MSR (mtmsr, rfi, rfgi, and MSR
change on an interrupt directed to the guest state). An attempt to read or write MSRP when not in the

€6500 Core Reference Manual, Rev 0

2-20 Freescale Semiconductor

Register Model

hypervisor state results in a hypervisor privilege exception when MSR[PR] = 0 and a privilege exception
when MSR[PR] = 1.

MSREP settings also affect the execution of cache locking instructions and mtpmr/mfpmr instructions.

A change to MSRP requires a context synchronizing operation to be performed before the effects of the
change are guaranteed to be visible in the current context.

The 6500 core implements the MSRP as defined in EREF.
The e6500 core has two independent MSRPs, one for each thread.

2.7.3 Embedded Processor Control (EPCR) register

EPCR controls whether certain interrupts are directed to the hypervisor state or to the guest—supervisor
state and whether the processor executes in 32-bit or 64-bit mode when an interrupt occurs. It also
suppresses debug events when in the hypervisor state.

The 6500 core implements EPCR as defined in EREF.
The e6500 core has two independent EPCRs, one for each thread.

274 Branch Unit Control and Status (BUCSR) register

BUCSR, shown in Figure 2-2, is an e6500-specific register used for general control and status of the
branch prediction mechanisms, which include the branch target buffer (BTB), the segment target index
cache (STIC), and the segment target address cache (STAC). Writing to BUCSR requires synchronization,
as described in Section 3.3.3, “Synchronization requirements.”

The 6500 core has two independent BUCSRs, one for each thread.

NOTE

EREF allows implementations to choose whether BUCSR is shared among
threads or private to each thread. Software should take this into account
when devising strategies for updating BUCSR.

SPR 1013 Hypervisor
32 ‘ 38 39 40 41 42 ‘ ‘ ‘ 53 54 55 62 63
R
W — STAC_EN |—|LS_EN BBFI — BPEN
Reset All zeros

Figure 2-2. Branch Unit Control and Status (BUCSR) register

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-21

Register Model

This table describes the BUCSR fields.

Table 2-7. BUCSR field descriptions

Bits Name Description
32-38 — Reserved
39 STAC_EN |Segment Target Address Cache Enable. When enabled, the segment target address cache predicts the
upper 32 bits of branches (that is, a segment is an aligned 4-GB section of effective address space). If
disabled, prediction does not occur and branches that occur outside the current 4-GB effective address
segment incur a performance penalty. Note that both the STAC and STIC are enabled and disabled by this
bit. This bit has no effect if BPEN is not 1.
0 Segment target address cache is disabled.
1 Segment target address cache is enabled.
40 — Reserved
41 LS_EN Link Stack Enable. When enabled, the link stack is used to predict function call and return branch target
addresses. If disabled, prediction does not occur and function call and return branches are predicted by the
BTB. This bit has no effect if BPEN is not 1.
0 Function call and return branch prediction using the link stack is disabled.
1 Function call and return branch prediction using the link stack is enabled.
42-53 — Reserved
54 BBFI Branch Buffer Flash Invalidate. Setting BBFI flash clears the valid bit of all entries in the branch prediction
mechanisms; clearing occurs independently from the value of the enable bit (BPEN). BBFI is cleared by
hardware and always reads as 0.
55-62 — Reserved
63 BPEN Branch Prediction Enable
0 Branch prediction is disabled.
1 Branch prediction is enabled (enables BTB to predict branches).
2.7.5 Hardware Implementation-Dependent 0 (HIDO) register

This section describes HIDO, shown in Figure 2-3, as it is implemented on the e6500 core.

HIDO is used for configuration and control and is shared by both threads. Writing to HIDO requires
synchronization, as described in Section 3.3.3, “Synchronization requirements.”

SPR 1008 Hypervisor
32 33 34 ‘ ‘ ‘ ‘ ‘ ‘ 58 59 60 62 63
R
EMCP |EN_L2MMU _MHD — CIGLSO — |NOPTI
W
Reset All zeros

Figure 2-3. Hardware Implementation-Dependent 0 (HIDO) register

This table describes the HIDO fields.

€6500 Core Reference Manual, Rev 0

2-22

Freescale Semiconductor

Register Model

Table 2-8. HIDO field descriptions

Bits Name Description

32 EMCP Enable Machine Check Signal. Used to mask out further machine check exceptions caused by

asserting the internal machine check signal from the integrated device.

0 Machine check signalling is disabled.

1 Machine check signalling is enabled. If HIDO[EMCP] = 1, asserting the machine check signal
from the integrated device causes MCSR[MCP] to be setto 1. If MSR[ME] = 1 or MSR[GS] =1,
a machine check exception and subsequent interrupt occurs.

33 EN_L2MMU_MHD |Enable L2MMU Multiple-Hit Detection. An L2ZMMU multiple hit occurs when more than one entry

in the L2 MMU or the LRAT matches a given translation. This most likely occurs when software

mistakenly loads the TLB with more than one entry that matches the same translation, but can also

occur if a soft error occurs in a TLB entry.

0 Machine check signalling is disabled.

1 A multiple L2 MMU or LRAT hit writes 1 to MCSR[L2MMU_MHIT]. If MSR[ME] = 1 or
MSR[GS] = 1, a machine check exception and subsequent interrupt occurs.

34-58 — Reserved

59 CIGLSO Cache-Inhibited Guarded Load/Store Ordering

0 Loads and stores to storage that are marked as cache inhibited and guarded have no ordering
implied except what is defined in the rest of the architecture.

1 Loads and stores to storage that are marked as cache inhibited and guarded are ordered.

60-62 — Reserved

63 NOPTI No-Op the Data and Instruction Cache Touch Instructions. Note that “cache and lock set” and

“cache and lock clear” instructions are not affected by the setting of this bit.

0 dcbt, dcbtst, and icbt are enabled, and operate as defined by the architecture and the rest of
this document.

1 dcbt, dcbtep, dcbtst, dcbtstep, and icbt are treated as no-ops.

When touch instructions are treated as no-ops because HIDO[NOPTI] is set, they do not cause

DAC debug events. That is, if a DAC comparison would have caused a debug event, the debug

event is also no-oped and does not occur.

Note that data stream touch and data stream stop (dss*/dst*) instructions are always no-oped.

2.7.6 Core Device Control and Status (CDCSRO) register

CDCSRO, shown in Figure 2-4, is implemented as described in EREF and is shared by both threads. The
€6500 core is aware of the following device programming models:
* Floating-point device—the device is aware, present and ready.

* AltiVec device—the device is aware and present. The device can be transitioned from the following
states: Ready or Standby. For more information, see Section 8.6, “AltiVec power down and power

2

up.
For the €6500 core, writes to CDCSRO device fields other than the AltiVec device are ignored.

SPR 696 Hypervisor
32 ‘ 39 | 40 ‘ 47 | 48 ‘ 55 56 ‘ 63

W Floating Point Device AltiVec Device — SPE Device
Reset1100\10001100\1ooooooo\oooooooo\oooo

Figure 2-4. Core Device Control and Status 0 (CDCSRO) register

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-23

Register Model

2.7.7 Power Management Control 0 (PWRMGTCRO) register

PWRMGTCRO, shown in Figure 2-5, is shared by both threads and provides fields for software control of
specific power management features associated with core power management states. The fields in
PWRMGTCRO associated with AltiVec core device power management (AV_IDLE_PD_EN,
AV_IDLE_CNT_P) and the fields associated with the PW20 core activity state control
(PW20_INV_ICACHE, PW20_WAIT, PW20_ENT_P) are implemented as described in EREF'.

The fields associated with floating-point and SPE core device power management are not implemented.

SPR 1019 Hypervisor
32 40 41 42 47 48 49 50 55 56 63
i
R Z T
W Y 2 =
2 SE
— w'| AV_IDLE_CNT_P ;' o PW20_ENT_P —
él 1 g
N a
< =
o

Reset All zeros

Figure 2-5. Power Management Control 0 (PWRMGTCRO) register

2.7.8 Processor Version (PVR) register

The PVR, shown in Figure 2-6, is shared by both threads (processors), and is implemented as defined by
the architecture. The read-only value identifies the version of the core and revision level of the processor,
distinguishing between processors with different attributes that may affect software.

SPR 287 Guest supervisor RO
32 ‘ ‘ ‘ 47 | 48 ‘ ‘ ‘ 63
R Version Revision
w
Reset 1 000‘0000‘01 00‘0000 xxxx‘xxxx‘xxxx‘xxxx’

Figure 2-6. Processor Version (PVR) register

T xxxx may represent different revisions or manufacturing information for the core. Normally software will use the upper 16 bits
of PVR to identify the core.

This table describes the PVR fields.
Table 2-9. PVR field descriptions

Bits Name Description

32-47 | Version | A 16-bit number that identifies the version of the processor. Different version numbers indicate major
differences between processors, such as which optional facilities and instructions are supported.

48-63 | Revision | A 16-bit number that distinguishes between implementations of the version. Different revision numbers
indicate minor differences between processors having the same version number, such as clock rate and
engineering change level.

€6500 Core Reference Manual, Rev 0

2-24 Freescale Semiconductor

Register Model

2.7.9 System Version (SVR) register

SVR, shown in Figure 2-7, is shared by both threads and contains a read-only SoC-dependent value. For
additional details, see the supporting documentation for the integrated device.

SVR is an alias to the Chip Identification (CIR) register.

SPR 1023 Guest supervisor read only
52 | | | | 63
R System version
W
Reset SoC-dependent value

Figure 2-7. System Version (SVR) register

2.7.10 Chip ldentification (CIR) register

CIR, shown in Figure 2-8, is shared by both threads and contains a read-only SoC-dependent value. For
additional details, see the supported documentation for the integrated device.

CIR is an alias to SVR.

SPR 283 Guest supervisor read only
32 ‘ 63
R System version
W
Reset SoC-dependent value

Figure 2-8. Chip ldentification Register (CIR)

2.7.11 Shifted CCSRBAR (SCCSRBAR) register

SCCSRBAR, shown in Figure 2-9, is shared by both threads and contains a read-only SoC-dependent
value that represents the CCSRBAR value currently in use by the SoC.

The 6500 core implements SCCSRBAR as defined in EREF.

This SPR register, when concatenated with 24 bits of 0, represents the value of the CCSRBAR SoC
register.

For a description of how SCCSRBAR is interpetted, see the supporting documentation for the integrated
device.

SPR 1022 Hypervisor RO
32 47 48 63
R — CCSRBAR upper 16 of 40 bits
w
Reset SoC-dependent value

Figure 2-9. Shifted CCSRBAR (SCCSRBAR) register

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-25

Register Model

2.8 Timer registers

The time base (TB), decrementer (DEC), fixed-interval timer (FIT), and watchdog timer provide timing
functions for the system. The e6500 core provides the ability to select any of the TB bits to trigger
watchdog and fixed-interval timer events, as shown in Figure 2-10.

The e6500 core has two independent sets of decrementer, fixed-interval timer, and watchdog timer, one set
for each thread. However, the time base itself is shared by both threads.

1 Time base (incrementer)

|
1 32 63 32 63 |
: TBU TBL L—o Timer clock
Lo - - - - - -—--——-—--_-—-—-—=-—=-= e e s N (Time base clock)
(j tbelk
Watchdog timer events based on one of the TB bits .
selected by concatenating TCR[WPEXT] with TCR[WP] .
(WPEXT Il WP). o
&
Fixed-interval timer events based on one of the TB bits <.—
selected by concatenating TCR[FPEXT] with TCR[FP] .
(FPEXT Il FP). o
<
DEC —
Decrementer event = 0/1 detect - Auto-reload
32 63
DECAR

Figure 2-10. Relationship of timer facilities to the time base

Note the following characteristics of the e6500 time base implementation:
* The e6500 time base is clocked only by the SoC (TBCLK).

* The only enable/disable control over the time base is the TBEN core signal and when the time base
is frozen due to a debug event (see Section 2.14.4, “Debug Control 0 (DBCRO) register”). The time
base is controlled by the SoC through a memory-mapped register, allowing control of stopping and
starting the time base on any core. See the reference manual for the integrated device, for additional
details.

* The mftb instruction works as it did in the original PowerPC architecture.

The e6500 registers involved in timing are described as follows:
* The TB is a long-period counter shared by both threads, driven at an implementation-dependent
frequency.

* A private DEC for each thread provides a way to signal an exception after a specified period of time
base tics.

* Software can select from one of 64 TB bits to signal a fixed-interval interrupt whenever the bit
transitions from O to 1. It is typically used to trigger periodic system maintenance functions.

* A private watchdog timer per thread and a selected TB bit provide a way to signal a critical
exception when the selected bit transitions from O to 1. It is typically used for system error recovery.
If software does not respond in time to the initial interrupt by clearing the associated status bits in

€6500 Core Reference Manual, Rev 0

2-26 Freescale Semiconductor

Register Model

the TSR before the next expiration of the watchdog timer interval, a watchdog timer-generated
processor reset may result, if so enabled.

All timer facilities must be initialized during start-up.

2.8.1 Timer Control (TCR) register

The 6500 core implements TCR as defined in EREF. The implementation of the integrated device
determines the behavior of TCR[WRC]. For additional details, see the register summary chapter in the core
section of the integrated device’s reference manual.

The 6500 has two independent TCRs, one for each thread.

2.8.2 Timer Status (TSR) register

The €6500 core implements the TSR as defined in EREF. This 32-bit register contains the status of timer
events and the most recent watchdog timer-initiated processor reset. All TSR bits function as
write-1-to-clear.

The 6500 has two independent TSRs, one for each thread.

2.8.2.1 Watchdog Timer Reset Status (WRS) field

On the 6500 core, TSR[WRS] is nonwriteable (nonclearable) by software. As a write-1-to-clear register,
TSR can be changed only by software by writing a mask of 1 bits indicating which bit positions are to be
cleared. When TSR is written by an mtspr instruction, WRS bits are not cleared, regardless of the mask
bits supplied with GPR used for writing. Logically, the instruction mtspr TSR,rA becomes the following:

mask = RA & Oxcfffffff;
TSR = TSR & ~mask;

This change prevents software from clearing a watchdog time-out that should result in the action defined
in TCR[WRC] in which these bits are reflected into TSR[WRS] when the watchdog times out. Without
this change, it is theoretically possible that these bits could be cleared prior to the SoC seeing the bits
change, causing the watchdog action to fail.

2.8.2.2 Watchdog Interrupt Status (WIS) and Enable Next Watchdog (ENW)
fields

On the e6500 core, when the core is in debug halt mode, the watchdog timer continues to run. However,
the watchdog interrupt and watchdog reset are blocked from occurring by holding the TSR[WIS] and
TSR[ENW] bits in reset (TSR state 00) while the core is in debug halt mode. When the core exits debug
halt mode (to continue software execution), those bits are no longer held in reset, allowing subsequent
time-outs to transition the state machine as normal.

2.8.3 Time base registers (TBU and TBL)

The 6500 core implements the time base registers as defined in EREF. The time base (TB) is a 64-bit
register, but the architecture provides SPRs to access the upper 32 bits and lower 32-bits. Reading the lower

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-27

Register Model

32 bits of the time base (TBL, SPR 268) places the entire 64 bits of the time base into the destination GPR.
Reading the upper 32 bits of the time base (TBU, SPR 269) places the upper 32 bits of the time base into
the lower 32 bits of the destination GPR, setting the upper 32 bits of the destination GPR to 0. Writing the
time base is done only through writing the upper 32 bits (SPR 285) and lower 32 bits (SPR 284) using two
separate mtspr instructions. The time base register provides timing functions for the system.

The time base register is a volatile resource and must be initialized during start-up. The time base will
continue incrementing, if enabled, when the processor is in any core activity state during power
management. The time base does not increment when clocks are stopped in the cluster.

The 6500 has one set of time base registers shared among both threads.

2.8.4 Decrementer (DEC) register

The €6500 core implements DEC per thread as defined in EREF. DEC is a 32-bit decrementing counter
that decrements at the same rate that the time base increments. It provides a way to signal a decrementer
interrupt after a specified number of time base tics have occurred. It can be configured to signal an interrupt
when DEC decrements from 1 to 0. TCR can configure DEC to perform the following actions when it
decrements from 1 to O:

* Stop decrementing

* Auto-reload from DECAR (see Section 2.8.5, “Decrementer Auto-Reload (DECAR) register.”)

* Signal a decrementer exception and take an asynchronous interrupt when External Interrupts are
enabled or when the processor is in guest state (MSR[GS]=1).

DEC is typically used as a general-purpose software timer. Note that writing DEC with zeros by using an
mtspr DEC,rA does not automatically generate a decrementer exception.

The 6500 core has two independent DECs, one for each thread.

2.8.5 Decrementer Auto-Reload (DECAR) register

The €6500 core implements DECAR as defined in EREF'. If the auto-reload function is enabled
(TCR[ARE] = 1), the auto-reload value in DECAR is written to DEC when it decrements from 1 to 0.

The 6500 core has two independent DECARSs, one for each thread.

2.8.6 Alternate time base registers (ATBL and ATBU)

The €6500 core implements the Alternate Time Base (ATB) counter register as defined in EREF. ATB is
a 64-bit counter that increments at an implementation-dependent frequency. ATB is a 64-bit register, but
the architecture provides SPRs to access the upper 32 bits and lower 32 bits. Reading the lower 32 bits of
the Alternate Time Base Lower (ATBL) register places the entire 64 bits of the time base into the
destination GPR. Reading the upper 32 bits of the Alternate Time Base Upper (ATBU) register places the
upper 32 bits of the time base into the lower 32 bits of the destination GPR, writing O to the upper 32 bits
of the destination GPR.

€6500 Core Reference Manual, Rev 0

2-28 Freescale Semiconductor

Register Model

On the e6500 core, the frequency of ATB increment equals the core frequency. ATB is read-only accessible
in user and supervisor mode. When the core is in power management states PW?20, PH20, or PH30, ATB
does not increment. In PH30, the value of ATB will reset to O when the core is reset to exit PH30.

The e6500 core has one set of alternate time base counter registers shared among both threads.

2.9 Interrupt registers

This section describes the following register bits and their fields:

2.9.1 Save/restore registers (xXSRR0O/xSRR1)

Each thread in the 6500 core implements the following sets of save/ restore registers, which support the
different types of interrupts implemented on the e6500 core:

* Standard save/restore registers (SRR0 and SRR1)

* Critical save/restore registers (CSRRO and CSRR1)

* Debug save/restore registers (DSRR0O and DSRR1)

* Machine-check save/restore registers (MCSRRO and MCSRR1)

* QGuest save/restore registers (GSRRO and GSRR1). Note that when executing in guest state
(MSR[GS] = 1), accesses to SRRO/SRR1 are mapped to GSRRO/GSRR1 when any mfspr or
mtspr instruction is executed. See Section 2.2.2.1, “Register mapping in the guest—supervisor
state.”

These registers are implemented as defined by the architecture and described in EREF.

On an interrupt, xSRRO holds the address of the instruction where the interrupted process should resume,
typically either the current or subsequent instruction. The instruction is interrupt-specific; however, for
instruction-caused exceptions, it is typically the address of the instruction that causes the interrupt. When
the appropriate Return from Interrupt instruction (rfi, rfci, rfdi, rfmci, or rfgi) executes, instruction
execution continues at the address in xXSRRO.

On the e6500 core, xSRRO registers are 64-bit registers.
The e6500 core has two independent sets of save/restore registers (xSRRO/xSRR1), one for each thread.

When rfi is executed from the guest-supervisor state, the instruction is mapped to rfgi and uses GSRRO
and GSRRI1.

xSRR1 is provided to save the machine state when an interrupt is taken and to restore it when control is
passed back, typically to the interrupted process. When an interrupt is taken, certain MSR settings specific
to the interrupt are placed in xXSRR1. When the appropriate Return from Interrupt instruction executes,
xSRR1 contents are placed into MSR. xSRR1 bits that correspond to reserved MSR bits are also reserved.

Note that a pair of save/restore registers is affected only by the corresponding interrupt or an mtspr
instruction that explicitly targets one of the registers. Reserved MSR bits may be altered by Return from
Interrupt instructions if set in the xXSRR1 register.

For specific information about how the save/restore registers are set, see the individual interrupt
descriptions in Chapter 4, “Interrupts and Exceptions.”

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-29

Register Model

2.9.2 (Guest) Data Exception Address (DEAR/GDEAR) registers

Each thread of the e6500 core implements DEAR/GDEAR as defined in EREF. DEAR is loaded with the
effective address (EA) of a data access (caused by a load, store, or cache management instruction) that
results in an alignment, data TLB miss, or DSI exception.

GDEAR is the same as the DEAR. When a DSI or a data TLB error interrupt is taken in the guest state,
GDEAR is set to the EA of the data access causing the exception instead of to DEAR.

GDEAR is supervisor privileged (MSR[PR] =0) and is read/write. Accesses to DEAR in guest—supervisor
state (MSR[GS,PR] = 10) are mapped to GDEAR for mtspr and mfspr instructions in the same manner
as other guest registers.

Note that even when DSI interrupts are directed to the guest state by means of EPCR[DSIGS], the DSI
may be directed to the hypervisor if a virtualization fault is set on the TLB entry that caused the DSI.
Therefore, DEAR should be set instead of GDEAR.

On the €6500 core, DEAR/GDEAR are 64-bit registers.
The 6500 core has two independent sets of DEAR/GDEARS, one for each thread.

2.9.3 Logical Page Exception (LPER/LPERU) register

LPER, shown in Figure 2-11, gives information from the page table entry (PTE) that was used to translate
a virtual address during a page table translation, which subsequently results in an LRAT error interrupt.
The information in LPER is used by software to determine why the LRAT translation failed and to
determine how page table management (or LRAT replacement) should proceed.

LPER is a 64-bit, hypervisor-privileged register. LPERU is an alias for the upper 32 bits of LPER.
The €6500 core only implements the low-order 28 bits of the architected 40-bit ALPN field.
The e6500 core has two independent LPERs/LPERUs, one for each thread.

SPR 56 (LPER); 57 (LPERU) Hypervisor
0 23 24 51 52 56 57 59 60 63
— ALPN WIMGE — LPS
w
Reset All zeros

Figure 2-11. Logical Page Exception (LPER) register

This table describes the LPER fields.
Table 2-10. LPER Field Descriptions

Bits Name Description

0-23 — Reserved

24-51 ALPN | Abbreviated Logical Page Number. The abbreviated real page number field from the PTE (PTE[ARPN]) that
caused the LRAT error interrupt.

€6500 Core Reference Manual, Rev 0

2-30 Freescale Semiconductor

Register Model

Table 2-10. LPER Field Descriptions (continued)

Bits Name Description

52-56| WIMGE |WIMGE bits. The WIMGE field from the PTE (PTE[WIMGE]) that caused the LRAT error interrupt.

57-59 — Reserved

60-63 LPS Logical Page Size. The logical page size from the PTE (PTE[PS]) that caused the LRAT error interrupt. To
convert LPS to a full page size, 0b0 is prepended to LPS to form the page size.

2.9.4 (Guest) Interrupt Vector Prefix (IVPR/GIVPR) registers

The 6500 core implements IVPR and guest IVPR (GIVPR) as defined in EREF. These registers are used
with Interrupt Vector Offset (IVORs/GIVORs) registers, respectively, to determine the vector address.
(G)IVPR[0:47] provides the high-order 48 bits of the address of the exception processing routines. The
16-bit vector offsets (IVORs) are concatenated to the right of IVPR/GIVPR to form the address of the
exception processing routine.

When an interrupt is directed to the hypervisor state, [VPR and IVOR# are used to form the address of the
exception processing routine. When an interrupt is directed to the guest—supervisor state, GIVPR and
GIVORn are used to form the address of the exception processing routine.

IVPR and GIVPR are 64 bit registers on the 6500 core.
The e6500 core has two independent GIVPRs, one for each thread. The IVPR is shared by both threads.

2.9.5 (Guest) Interrupt Vector Offset (IVORs/GIVORS) registers

The €6500 core implements the IVORs and guest IVORs (GIVORs) as defined in EREF. IVORs/GIVORs
use only (G)IVOR~n[48-59], as shown in Figure 2-12, to hold the quad-word index from the base address
provided by the IVPR for each interrupt type.

The 6500 core has two independent sets of GIVORs, one for each thread. The IVORs are shared by both
threads.

SPR (See Table 2-11.) Hypervisor
32 ‘ ‘ ‘ 47 48‘ ‘ ‘ 59 | 60 63
R
— Interrupt vector offset —
w
Reset All zeros

Figure 2-12. (Guest) Interrupt Vector Offset (IVORs/GIVORS) registers

This table lists the (G)IVORs implemented on the e6500 core.
Table 2-11. IVOR assignments

IVOR Number Interrupt Type
IVORO Critical input
IVOR1 Machine check

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-31

Register Model

Table 2-11. IVOR assignments (continued)

IVOR Number Interrupt Type

IVOR2 Data storage

IVORS3 Instruction storage

IVOR4 External input

IVOR5 Alignment

IVOR6 Program

IVOR7 Floating-point unavailable

IVORS System call

IVOR9 APU unavailable

IVOR10 Decrementer

IVOR11 Fixed-interval timer interrupt
IVOR12 Watchdog timer interrupt

IVOR13 Data TLB error

IVOR14 Instruction TLB error

IVOR15 Debug

IVOR32 AltiVec unavailable

IVOR33 AltiVec assist

IVOR35 Performance monitor

IVOR36 Processor doorbell interrupt
IVOR37 Processor doorbell critical interrupt
IVOR38 Guest processor doorbell

IVOR39 Guest processor doorbell critical and machine check
IVOR40 Hypervisor system call

IVOR41 Hypervisor privilege

IVOR42 LRAT error

Guest-Type IVORs

GIVOR2 Guest data storage interrupt
GIVOR3 Guest instruction storage interrupt
GIVOR4 Guest external input

GIVORS8 Guest system call
GIVOR13 Guest data TLB error
GIVOR14 Guest instruction TLB error
GIVOR35 Guest performance monitor

2.9.6 (Guest) External Proxy (EPR/GEPR) registers

EPR and GEPR are implemented as defined in EREF'. These registers are used to convey the
peripheral-specific interrupt vector associated with the external input interrupt triggered by the

€6500 Core Reference Manual, Rev 0

2-32

Freescale Semiconductor

Register Model

programmable interrupt controller (PIC) in the integrated device. The external proxy facility is described
in Section 4.9.6.1, “External proxy.”

When executing in the guest-supervisor state, any read accesses to the EPR are mapped to GEPR upon
executing mfspr. See Section 2.2.2.1, “Register mapping in the guest—supervisor state,” for more details.

EPR is not writable; however, GEPR is writable.
The 6500 core has two independent sets of EPR/GEPRs, one for each thread.

2.9.7 (Guest) Exception Syndrome (ESR/GESR) registers

ESR and GESR are implemented as defined by the architecture and described in EREF, with the following
exception:
* The e6500 core does not implement AP, PUO, VLEMI, MIF, TLBI, or XTE.

Figure 2-13 shows ESR and GESR as they are implemented on the e6500 core. GESR is used to post
exception syndrome status when an interrupt is taken that is directed to the guest state. ESR is used to post
exception syndrome status when an interrupt is taken that is directed to the hypervisor state. GESR fields
are identical to those in ESR.

When executing in the guest-supervisor state, any accesses to ESR are mapped to GESR upon executing
mtspr or mfspr. See Section 2.2.2.1, “Register mapping in the guest—supervisor state,” for more details.

ESR and GESR provide a way to differentiate among exceptions that can generate an interrupt type. When
an interrupt is generated, bits corresponding to the specific exception that generated the interrupt are set
and all other ESR/GESR bits are cleared. Other interrupt types do not affect ESR/GESR contents. The
(G)ESR does not need to be cleared by software. Table 2-12 shows ESR/GESR bit definitions. For
machine-check exceptions, the e6500 core uses MCSR, described in Section 2.9.10, “Machine Check

Syndrome (MCSR) register.”
The 6500 core has two independent sets of ESR/GESRs, one for each thread.

SPR 62 (ESR); 383 (GESR) Guest supervisor
32 35|36 37 38 39|40 41 42 43|44 45 46 47|48 ‘52 53 54 55|56 57 58 63
R || X < s
— = o |- |_ x| _ |0|— _ E || = —
o |~ _ o
w o g (o |L|@ al=) < a5 (5
Reset All zeros

Figure 2-13. (Guest) Exception Syndrome (ESR/GESR) registers

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-33

V¥ ¢
i

Register Model

This table describes ESR/GESR fields and associated interrupts.

NOTE

ESR/GESR information is incomplete, so system software may need to
identify the type of instruction that causes an interrupt, examine the TLB
entry, and examine ESR/GESR to identify the exception or exceptions fully.
For example, a data storage interrupt may be caused both by a protection
violation exception and by a byte-ordering exception. System software
would have to look beyond (G)ESR[BO], such as the state of MSR[PR] in
SRR1/ GSRR1 and the TLB entry page protection bits, to determine
whether a protection violation also occurred.

Table 2-12. ESR/GESR field descriptions

Bits | Name Syndrome Interrupt Types
32-35| — |Reserved —

36 PIL |lllegal instruction exception Program

37 PPR | Privileged instruction exception Program

38 PTR | Trap exception Program

39 FP Floating-point operations Alignment, data
storage, data TLB,
program

40 ST | Store operation Alignment, DSI,
DTLB error

41 — | Reserved —

42 DLK | Data cache locking (DLKO). Set when a DSI occurs because dcbtls, dcbtstls, or deblcis | DSI
executed in user mode while MSR[UCLE] = 0.

43 ILK | Instruction cache locking (DLK1). Set when a DSI occurs because icbtls or icblc is DSI
executed in user mode while MSR[UCLE] = 0.

44 — | Not supported on the e6500 core. Defined by the architecture as auxiliary processor —
operation (AP).

45 — | Not supported on the e6500 core. Unimplemented operation exception. On the e6500 Program
core, unimplemented instructions are handled as illegal instructions.

46 BO |Byte-ordering exception DSI, 1Sl

47 — | Not supported on the e6500 core. Imprecise exception. On the e6500 core, imprecise Program
exceptions are never reported, even when a delayed floating-point-enabled exception
occurs.

48-52| — |Reserved —

53 DATA | Data access. Indicates on an LRAT error exception from a page table translation that the | LRAT error
access was a data access and not an instruction fetch.

54 — | Reserved —
55 PT | Page table translation. Indicates that the exception occurred during a page table Data storage,
translation and no TLB entry was created from the page table translation. Instruction storage,

LRAT error

€6500 Core Reference Manual, Rev 0

2-34 Freescale Semiconductor

Register Model

Table 2-12. ESR/GESR field descriptions (continued)

Bits | Name Syndrome Interrupt Types

56 SPV | AltiVec Instruction. Indicates that the exception was caused by an AltiVec instruction. Data storage, Data
TLB, AltiVec
unavailable,

AltiVec assist

57 EPID | External PID instructions. Indicates whether translation was performed using context from | Data storage,
EPLC or EPSC. Set when a DSI, DTLB, or Alignment error occurs during execution of an | Data TLB, or
external PID instruction. Alignment error

58-63| — |Reserved —

2.9.8 (Guest) Processor ID (PIR/GPIR) registers

The €6500 core implements PIR/GPIR as defined in EREF. The processor sets the initial value of PIR at
reset driven from signal pins from the SoC, after which it is writable by hypervisor software. The initial
value of the PIR is a processor-unique value within the coherence domain and is described in EREF. The
initial value of GPIR at reset is 0. Hypervisor software is expected to initialize GPIR to a reasonable value
when a partition is initialized.

When executing in the guest-supervisor state, any mfspr accesses to the PIR are mapped to GPIR. mtspr
accesses are not mapped, and guest supervisor attempts to change PIR or GPIR cause an embedded
hypervisor privilege interrupt. See Section 2.2.2.1, “Register mapping in the guest—supervisor state,” for
more details.

The 6500 has two independent sets of PIR/GPIRs, one for each thread.

2.9.9 Machine-check address registers (MCAR/MCARU/MCARUA)

When a thread takes a machine-check interrupt, MCAR may indicate the address of the data associated
with the machine check exception. MCAR is a 64-bit address and may contain a logical address, real
(physical) address, or an effective address. MCARUA and MCARU are 32-bit aliases to the upper 32 bits
of MCAR. 32-bit software should use MCARUA to address the upper 32 bits. MCARU is provided for
compatibility with older processors. Not all machine check (or error report) interrupts that occur have
addresses associated with them. Errors that cause MCAR contents to be updated are
implementation-dependent.

MCAR is implemented as defined in the architecture, except as follows:

* For acertain subset of asynchronous machine check exception causes, MCAR indicates the address
of the data or instruction access associated with the machine check.

* The MCSR[MAV] and MCSR[MEA] status bits indicate whether hardware has updated the
MCAR and whether the MCAR contains an effective address or a real address.

* MCAR is not modified if a machine check occurs and at the time of the interrupt, MCSR[MAV] is
already set.

The e6500 core has two independent sets of MCAR/MCARU/MCARUAs, one for each thread.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-35

Register Model

This table shows the MCAR address and MCSR[MAV,MEA] at error time.
Table 2-13. MCAR address and MCSR[MAV,MEA] at error time

MCSR[MAV] State

MCSRIMEAL: | o pR/MCARU Comment
Next State
Current | Next
1 X X Unaltered MCAR is unmodified if currently valid (hold value if already valid).
0 1 0 MCAR[24-63] | Updated with a logical (in the case of a LRAT multi-way hit) or real
(physical) address.
0 1 1 MCAR[0-63] |Updated with the EA associated with the error. If the detected error is a

multi-way hit in the L2ZMMU (MCSR[L2MMU_MHIT]), the lower 12 bits of
the EA are cleared, providing an EPN for the translation.

2.9.10 Machine Check Syndrome (MCSR) register

In addition to the MCSR fields defined in EREF', the e6500 core implements a number of other
implementation-specific fields, as shown in Table 2-14. When a thread in the core takes a machine-check
interrupt, it updates its MCSR to differentiate between machine check conditions. MCSR indicates the
type of error detected. Software can use this information to determine whether the error is recoverable and
what steps may be necessary to correct the error.

The 6500 has two independent MCSRs, one for each thread.

MCSR is shown in the following figure.

SPR 572 Hypervisor, Write 1 to Clear
32 33 34 35 36 37
R MCP ICPERR DCPERR TLBPERR |L2MMU_MHIT
wl wic wic wic wic wic o
Reset All zeros
40 42 43 44 45 46 47
R NMI MAV MEA IF
w N wic wic wic N wic
Reset All zeros
48 49 50 51 55
R LD ST LDG
w| wic wic wic N
Reset All zeros
56 59 60 61 63
R LRAT_MHIT
w - wic o
Reset All zeros

Figure 2-14. Machine Check Syndrome (MCSR) register

This table describes the MCSR fields.

€6500 Core Reference Manual, Rev 0

2-36

Freescale Semiconductor

Table 2-14. MCSR field descriptions

Register Model

. s Exception Additional Gating
Bit Name Description Type1 Condition?2
32 MCP Machine check input signal asserted. Set immediately on Async HIDO[EMCP]

recognition of assertion of the MCP input. This input comes
from the SoC and is a level-sensitive signal. This usually
occurs as the result of an error detected by the SoC.
33 ICPERR Instruction cache tag or data array parity error Async L1CSR1[ICECE] and
L1CSRI1[ICE]
34 DCPERR Data cache data or tag parity error due to a load Async L1CSRO[CECE] and
L1CSRO[DCE]
35 TLBPERR TLBO array parity error Async —
36 | L2LMMU_MHIT | L2 MMU simultaneous hit. Async HIDO[EN_L2MMU_MHD]
Multi-way hits in the LRAT are also reported using this bit.
37-42 — Reserved — —
43 NMI Nonmaskable interrupt NMI None
44 MAV MCAR address valid. The address contained in the MCAR is Status —
updated by the processor and corresponds to the first
detected error condition that contains an associated address.
Subsequent machine check errors that have associated
addresses are not placed in MCAR unless MAV is 0 at the time
the error is logged.
0 The address contained in MCAR is not valid.
1 The address contained in MCAR is valid.
Note: Software should first read MCAR before clearing MAV.
MAV should be cleared before writing 1 to MSR[ME].
45 MEA MCAR effective address. Meaningful only if MAV=1. Status —
0 The MCAR contains a logical or physical (real) address.
1 The MCAR contains an EA.
46 — Reserved — —
47 IF Instruction fetch error report. An error occurred during the Error None
attempt to fetch the instruction corresponding to the address report
in MCSRRO or during an attempted fetch of a younger
instruction than that pointed by MCSRRO.
48 LD Load instruction error report. An error occurred during the Error None
attempt to execute the load instruction at the address report
contained in MCSRRO.
49 ST Store instruction error report. An error occurred during an Error None
attempt to translate the address of the store type instruction report
(or instruction that is processed by the store queue) located at
the address in MCSRRO.
50 LDG Guarded load instruction error report. Set along with LD if the Error None
load encountering the error was a guarded load (WIMGE = report
xxx1x) and that guarded load did not encounter one of the
data cache errors. Set only if the error encountered by the load
was an L2 or CoreNet error.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

2-37

Register Model

Table 2-14. MCSR field descriptions (continued)

Bit Name Description Ex;:;:;ion Addéﬂ‘:}g?,:is:zt ing
51-59 — Reserved — —
60 LRAT_MHIT |LRAT translation during a tlbwe instruction hit in more than Async HIDO[EN_L2MMU_MHD]
one entry
61-63 — Reserved — —

1 “Exception Type” indicates which of the following exception types causes the update of a given MCSR bit:

— Error report—indicates that this bit is set only for error report exceptions that cause machine check interrupts. These bits are
only updated when the machine check interrupt is taken. Error report exceptions are not gated by MSR[ME]. These are
synchronous exceptions.

— NMI—indicates that this bit is only set for the nonmaskable interrupt type exceptions which cause machine check interrupts.
This bit is only updated when the machine check interrupt is taken. NMI exceptions are not gated by MSR[ME]. This is an
asynchronous exception.

— Async—indicates that this bit is set for an asynchronous machine check exception. These bits are set immediately upon
detection of the error in the MCSR. Once bit is set in the MCSR, a machine check interrupt occurs if MSR[ME]=1. If
MSR[ME]=0, the MCSR bits remain set unless cleared by software, and a machine check occurs when MSR[ME] is set.

— Status—indicates that this bit provides additional status about the logging of an asynchronous machine check exception.

“Additional Gating Condition” indicates any other state that, if not enabled, inhibits the recognition of this particular error

condition.

2

The settings of MCSR[LD] and MCSR[ST] that identify the type of instruction are implementation
dependent. For the e6500 core, LD is set by instructions that load data into a register and complete when
the load data is committed to the architected register. ST is set by instructions that perform store operations
and instructions that are processed through the store queue in the LSU. The treatment of an instruction as
a load or store for the purposes of permission checking and debug events may differ depending on whether
LD or ST is set for an error report.

The following instructions set MCSR[LD] if an error report occurs:

dcbt, dcbtst, icbt, 1bz, 1bzu, 1bzx, Ibzux, 1d, ldarx, ldbrx, 1ddx, ldepx, 1du, ldux, 1dx, lha, lhau,
lhax, lhaux, lhz, lhzu, lhzx, lhzux, lhbrx, Imw, lwa, lwarx, Iwaux, lwax, lwz, Iwzu, lwzx, Iwzux,
Iwbrx, Ibepx, lhepx, Iwepx, dcbtep, dcbtstep, Ibdx, lhdx, lwdx, Ifddx, Ifd, Ifdu, Ifdux, Ifdx,
Ifdepx, Ifs, Ifsu, Ifsux, Ifsx, Ivebx, lvehx, lvepx, Ivepxl, lvewx, Ivexbx, Ivexhx, lvexwx, Ivtlx,
Ivtlxl, Ivtrx, Ivtrxl, Ivswx, lvswxl, lvx, lvxIl

The following instructions set MCSR[ST] if an error report occurs:

dcba, dcbal, dcbf, dcbi, dcblc, dcbst, dcbtls, debtstls, dcbz, debzl, dsn, ichbi, icble, icbtls, stb,
stbu, stbx, stbux, std, stdbrx, stdcx., stddx, stdepx, stdu, stdux, stdx, sth, sthu, sthx, sthux,
sthbrx, stmw, stw, stwu, stwx, stwux, stwbrx, stwcx., stbepx, sthepx, stwepx, dcbfep, dcbstep,
icbiep, dcbzep, dcbzlep, sthdx, sthdx, stwdx, stfddx, stfd, stfdu, stfdux, stfdx, stfdepx, stfiwx,
stfs, stfsu, stfsux, stfs, stvebx, stvehx, stvepx, stvepxl, stvewx, stvexbx, stvexhx, stvexwx,
stvflx, stvflxl, stvfrx, stvfrxl, stvswx, stswxl, stvx, stvxl

€6500 Core Reference Manual, Rev 0

2-38 Freescale Semiconductor

Register Model

2.10 Software-use SPRs (SPRGs, GSPRGs, and USPRGO)

The 6500 core implements the software-use SPRs (SPRGO-SPRG7, SPRGS8, SPRGY,
GSPRGO-GSPRG3, USPRGO) as defined in EREF.

The e6500 core has two independent sets of software-use SPRs, one for each thread.

Their functionality is defined by the user and they are accessed as shown in the following table.
Table 2-15. SPRGs, GSPRGs, and USPRGO

Abbreviation Name SPR Number Access
GSPRGO Guest SPR General 0 368 Guest supervisor
GSPRG1 Guest SPR General 1 369 Guest supervisor
GSPRG2 Guest SPR General 2 370 Guest supervisor
GSPRG3 Guest SPR General 3 371 Guest supervisor

SPRGO SPR General 0 272 Guest supervi:sor1
SPRG1 SPR General 1 273 Guest supervisor
SPRG2 SPR General 2 274 Guest supervisor
SPRG3 SPR General 3 259 User RO!
SPRG3 SPR General 3 275 Guest supervisor
SPRG4 SPR General 4 260 User RO
SPRG4 SPR General 4 276 Guest supervisor
SPRG5 SPR General 5 261 User RO
SPRG5 SPR General 5 277 Guest supervisor
SPRG6 SPR General 6 262 User RO
SPRG6 SPR General 6 278 Guest supervisor
SPRG7 SPR General 7 263 User RO
SPRG7 SPR General 7 279 Guest supervisor
SPRG8 SPR General 8 604 Hypervisor
SPRG9 SPR General 9 605 Guest supervisor
USPRGO User SPR General 02 256 User
(VRSAVE)

' When these registers are accessed in the guest-supervisor state, the accesses are mapped to their analogous guest SPRs
(for example, SPRGO is mapped to GSPRGO). See Section 2.2.2.1, “Register mapping in the guest—supervisor state.”

2 USPRGOis a separate physical register from SPRGO.

Operating system software should always use SPRG0O, SPRG1, SPRG2, SPRG3 when accessing GSPRGO,
GSPRG1, GSPRG2, and GSPRG3 because, in the guest—supervisor state, these accesses are mapped to
their equivalent guest registers. This allows the programming model for the operating system software to
be the same regardless of whether the operating system is operating in guest state under a hypervisor or is
executing directly on the bare metal.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-39

Register Model

SPRGs and GSPRGs are 32 bits for 32-bit implementations and 64 bits for 64-bit implementations. For
the 6500 core, these registers are 64 bits. USPRGO (VRSAVE) is a 32-bit register regardless of whether
the processor is a 32-bit or 64-bit implementation.

2.11 L1 cache registers

The L1 cache registers provide control, configuration, and status information for the L1 cache
implementation. These registers are shared by the e6500 core threads.

2.11.1 L1 Cache Control and Status 0 (L1CSRO0) register

L1CSRO is used for general control and status of the L1 data cache. The e6500 core implements L1CSRO
fields as defined in EREF, except for the following:

* (Cache way partitioning bits—L1CSR0[32-42]
e Data cache lock overflow allocate (CLOA) bit—LI1CSRO[56]
* Cache snoop lock clear (CSLC) bit—LI1CSRO[52]. Cache locking is persistent.

* Cache unable to lock (CUL) bit—L1CSRO[53]. Cache lock status can be queried with the dcblq.
instruction.

* (Cache operation aborted (CABT) bit—L1CSRO[61]. Cache operations are never aborted on €6500.

For LICSRO[CEA], the e6500 core only supports the value Ob00 and always invalidates the entire contents

(tags and data arrays) and generates a machine check or error report on the occurrence of a parity error
when L1CSRO[CECE] = 1. Any other value written to this field is ignored.

The 6500 core only supports LICSRO[CEDT] = 0b00 for parity detection on data arrays and tags and
supports LICSRO[CEIT] = 0b00 for setting the cache error injection type to inject single bit data error.
Any other values written to CEDT and CEIT are ignored.

Note that on the e6500 core, when writing 1 to L1CSRO[CEI], it is required that L1ICSRO[CECE] also be
set with the same mtspr instruction. If LICSRO[CECE] is not set, the processor will clear L1CSRO[CEI].

After the L1 data cache has been enabled, if LICSRO[CE] = O (that is, the L.1 data cache is disabled), any
stashing to the L1 data cache must first be disabled by writing 0 to LICSR2[DCSTASHID] and performing
the appropriate synchronization.

Writing to L1CSRO requires isolated shared synchronization, as described in Section 3.3.3,
“Synchronization requirements.”

2.11.2 L1 Cache Control and Status 1 (L1CSR1) register
L1CSR1 is used for general control and status of the L1 instruction cache. The e6500 core implements the
LICSRI fields as they are defined in EREF, except for the following:

e Instruction cache lock overflow allocate (ICLOA) bit—L1CSR1[56]

* Instruction cache unable to lock (ICUL) bit—L1CSR1[53]. Cache lock status can be queried with
the icblq. instruction.

* Instruction cache snoop lock clear bit, [CSLC, (L1CSR1[52]). Cache locking is persistent.

€6500 Core Reference Manual, Rev 0

2-40 Freescale Semiconductor

Register Model

* (Cache operation aborted (ICABT) bit—LI1CSR1[61]. Cache operations are never aborted on
€6500.

For LICSRI[ICEA], the e6500 core only supports the value Ob00 and always invalidates the entire
contents (tags and data arrays) and generates a machine check or error report on the occurrence of a parity
error when L1ICSRI[ICECE] = 1. Any other value written to this field is ignored.

Only implementation-specific error detection type (ICEDT = 0b00), parity detection on data and tags, is
supported for the 6500 core. Only single-bit error injection type (ICEIT = 0b00) is supported on the e6500
core. Any other values written to ICEDT and ICEIT are ignored.

Note that on the e6500 core, when writing 1 to LICSRI[ICEI], it is required that L1CSRO[ICECE] also
be set with the same mtspr instruction. If LICSRI[ICECE] is not set, the processor will clear
L1CSRI1[ICEI].

The 6500 core has one L1CSR1 shared by both threads.

Writing to LICSR1 requires isolated shared synchronization, as described in Section 3.3.3,
“Synchronization requirements.”

2.11.3 L1 Cache Control and Status 2 (L1CSR2) register

L1CSR2 provides additional control and status for the primary L.1 data cache of the processor. The e6500
core implements L1CSR2 as defined in EREF, with the following exceptions:

* Data cache write shadow, DCWS, (L1CSR2[33]) is not implemented. Writing to the L1 data cache
is always written through to the shared backside L2 cache.

* Although the architecture defines DCSTASHID as L1CSR2[54-63], the e6500 core implements
only 8 bits (L1CSR2[56—63]) and supports only stash ID values of 8 to 255.

The 6500 has one L1CSR2 shared by both threads.

Writing to LICSR2 requires synchronization, as described in Section 3.3.3, “Synchronization
requirements.”

2.11.4 L1 Cache Configuration 0 (L1CFGO) register

L1CFGO, shown in the following figure, provides configuration information for the L1 data cache.

SPR 515 User RO
32 33 34 35 36 37 38 39 ‘40 41 42 43 | 44 45 ‘ ‘52 53 ‘ ‘ 63
R|CARCH| CWPA | CFAHA | CFISWA CBSIZE|CREPL|CLA| CPA CNWAY CSIZE
w _ |
Reset 0 O 0 0 0 oo o 1 1 1 A1 1 00000111 00000100000

Figure 2-15. L1 Cache Configuration 0 (L1CFGO) register fields implemented on the e6500

EREF describes the L1GCFGO fields as they are defined in the architecture. The following table describes
how they are implemented on the e6500 core.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-41

Register Model

Table 2-16. L1CFGO field descriptions

Bits Name Description

32-33 CARCH |Cache architecture. 0 indicates Harvard (split instruction and data).
34 CWPA Cache way partitioning available. 0 indicates unavailable.
35 CFAHA Cache flush all by hardware available. 0 indicates unavailable.
36 CFISWA |Direct cache flush available. 0 indicates unavailable.

37-38 — Reserved

39-40 CBSIZE |Cache block size. 1 indicates 64 bytes.

41-42 CREPL Cache replacement policy. 3 indicates FIFO policy.
43 CLA Cache locking available. 1 indicates available.
44 CPA Cache parity available. 1 indicates available.

45-52 CNWAY | Cache number of ways. 7 indicates eight ways.

53-63 CSIZE Cache size. 32 indicates 32 KB.

The 6500 core has one L1CFGO shared by both threads.

2.11.5 L1 Cache Configuration 1 (L1CFG1) register

L1CFG1, shown in Figure 2-16, provides configuration information for the L1 instruction cache.

SPR 516 User RO
32 35 36 37 38 39 ‘ 40 41 42 43 | 44 45 ‘ ‘52 53 ‘ ‘ 63
R ICFISWA ICBSIZE|ICREPL|ICLA | ICPA ICNWAY ICSIZE
w

Reset 0 00 O 0 00 0 1 0 A1 1 1 0000O0O1T1T100000100O0O0OO

Figure 2-16. L1 Cache Configuration 1 (L1CFG1) register

This table describes the L1CFG1 fields.
Table 2-17. L1CFG1 field descriptions

Bits Name Description
32-35 — Reserved
36 ICFISWA |Direct cache flush available. 0 indicates unavailable.
37-38 — Reserved
39-40 ICBSIZE Instruction cache block size. 1 indicates 64 bytes.
41-42 ICREPL Instruction cache replacement policy. 1 indicates pseudo-LRU policy.
43 ICLA Instruction cache locking available. 1 indicates available.
44 ICPA Instruction cache parity available. 1 indicates available.

€6500 Core Reference Manual, Rev 0

2-42

Freescale Semiconductor

Register Model

Table 2-17. L1CFG1 field descriptions (continued)

Bits Name Description
45-52 ICNWAY Instruction cache number of ways. 7 indicates eight ways.
53-63 ICSIZE Instruction cache size. 32 indicates 32 KB.

The 6500 core has one L1CFGI shared by both threads.

2.12 L2 cache registers

L2 cache status, control, and error handling is accomplished through MMRs. Shared L2 configuration and
control uses the same general formats as the integrated backside L2 cache provided in previous Freescale
cores, although those controls were performed through SPRs.

2.12.1

L2 Configuration 0 (L2CFGO) register

L2CFGQO is provided for software to determine the organization and capabilities of the secondary cache.
The 6500 core implements L2CFGO as defined by the architecture and described in EREF..

L2CFGO, shown in Figure 2-17, provides configuration information for the L2 cache.

MMR block offset 0x008

32 33 34 35 ‘ 36 37 38 ‘ 40 41 4 43 |44 45 ‘ 49 50 ‘ ‘ ‘ 63
R L2CTEHA|L2CDEHA | L2CIDPA | L2CBSIZE | L2CREPL | L2CLA L2CNWAY L2CSIZE
wl™ —
Reset 0 1 0 1 0 0 0O 0 1 0 0 1 001111 00000000100000

Figure 2-17. L2 Cache Configuration 0 (L2CFGO0) register

This table provides the L2CFGO field descriptions.

Table 2-18. L2CFGO field descriptions

Bits Name Description
32 — Reserved

33-34 | L2CTEHA |L2 cache tags error handling available. Ob10 indicates single-bit ECC correction, double-bit ECC
detection is available.

35-36 | L2CDEHA |L2 cache data error handling available. 0b10 indicates single-bit ECC correction, double-bit ECC
detection is available.

37 L2CIDPA |Cache instruction and data partitioning available. 0 indicates not available.

38-40 | L2CBSIZE |Cache line size. 1 indicates 64 bytes.

41-42 L2CREPL |Cache default replacement policy. This is the default line replacement policy at power-on-reset. If an
implementation allows software to change the replacement policy, it is not reflected here. 0 indicates
streaming pseudo-LRU.

43 L2CLA Cache line locking available. 1 indicates available.
44 — Reserved

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

2-43

Register Model

Table 2-18. L2CFGO field descriptions (continued)

Bits Name Description

45-49 | L2CNWAY |Number of cache ways minus one. 15 indicates 16 ways.

50-63 L2CSIZE |Cache size as a multiple of 64 KB. 32 indicates 2048 KB cache.

2.12.2 L2 Cache Control and Status 0 (L2CSRO0) register

L2CSRO, shown in Figure 2-18, provides general control and status for the L2 cache of the processor. The
€6500 core implements L2CSRO as defined by the architecture and described in EREF, with the following
exceptions:

* It does not implement the following fields: L2ZWP, L2CM, L2I0O, L2DO, L2FCID. Note that these
fields are notated in parentheses in Table 2-19.

MMR block offset 0x000

32 33 34 35 37 38 41 42 43 44 46 47
R
L2E | L2PE| --- — L2FI —
w
Reset All zeros
48 49 50 51 52 53 54 55 56 57 58 59 63
R
— L2REP L2FL|L2LFC — L2LOA| — |L2LO —
w
Reset All zeros

Figure 2-18. L2 Cache Control and Status 0 (L2CSRO) register

€6500 Core Reference Manual, Rev 0

2-44 Freescale Semiconductor

Register Model

This table describes the L2CSRO fields.

Table 2-19. L2CSRO field descriptions

Bits

Name

Description

32

L2E

L2 cache enable. Implemented as defined in EREF. The e6500 core requires software to continue to read

this bit after setting it to ensure the desired value has been set before continuing.

Note: L2E should not be set when the L2 cache is disabled until after the L2 cache has been properly
initialized by flash invalidating the cache and locks. This applies both to the first time the L2 cache is
enabled as well as sequences that want to re-enable the cache after software has disabled it.

33

L2PE

L2 cache parity/ECC error checking enable. Implemented as defined in EREF.

Note: L2PE should not bet set until after the L2 cache has been properly initialized out of reset by flash
invalidation. Doing so can cause erroneous detection of errors because the state of the error
detection bits are random out of reset. See Section 11.7, “L2 cache state,” for more details on L2
cache initialization.

Note: When error injection is being performed, the value of L2PE and individual error disables are ignored
and errors are always detected. Software should ensure that L2PE is set when performing error
injection.

Note: The value of L2PE must not be changed while the L2 cache is enabled.

34

Reserved

35-37

(L2WP)

L2 instruction/data way partitioning. This field is not implemented in the e6500 core and always reads as 0.

38-39

(L2CM)

L2 cache coherency mode. This field is not implemented in the e6500 core and always reads as 0.

40-41

Reserved

42

L2FI

L2 cache flash invalidate. Implemented as defined in EREF. Note that Lock bits are not cleared by a L2

cache flash invalidate. Lock bits should be cleared by software at boot time to ensure that random states of

the lock bits for each line do not limit allocation of those lines. See L2ZCSRO[L2LFC].

Note: Writing a 1 during any sequential operation causes undefined results. Writing a 0 during an
invalidation operation is ignored.

Note: If L2FI and L2LFC are set with the same register write operation, then the flash invalidate and the
lock flash clear functions are performed simultaneously.

43

(L210)

L2 cache instruction only. This field is not implemented in the e6500 core and always reads as 0. Similar
functionality can be accomplished using L2 cache partitioning, which is described in Section 2.12.4, “L2
cache partitioning registers.”

44-46

Reserved

47

(L2DO)

L2 cache data only. This field is not implemented in the e6500 core and always reads as 0. Similar
functionality can be accomplished using L2 cache partitioning, which is described in Section 2.12.4, “L2
cache partitioning registers.”

48-49

Reserved

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-45

Register Model

Table 2-19. L2CSRO field descriptions (continued)

Bits Name Description
50-51 L2REP |L2 line replacement algorithm.

00 Streaming Pseudo Least Recently Used (SPLRU) with Aging. With this algorithm, the pseudo LRU state
for a given index is updated to mark a given way most recently used on each L2 cache hit. On L2 cache
allocations, the pseudo LRU state is updated to an intermediate state between least recently used and
most recently used on most L2 cache allocations and to the most recently used state on the remainder
of L2 cache allocations.

01 First-in-first-out (FIFO).

10 Streaming Pseudo Least Recently Used (SPLRU). With this algorithm, the pseudo LRU state for a given
index is updated to mark a given way most recently used on each L2 cache hit. On L2 cache allocations,
the pseudo LRU state is updated to an intermediate state between least recently used and most recently
used on all L2 cache allocations.

11 Pseudo Least Recently Used (PLRU). With this algorithm, the pseudo LRU state for a given index is
updated to mark a given way most recently used on each L2 cache hit and all L2 cache allocations.

Locks for cache lines locked with cache locking instructions are never selected for line replacement unless

they are explicitly unlocked, regardless of the replacement algorithm.

52 L2FL |L2 cache flush. Implemented as defined in EREF. On the e6500 core, L2FL should not be set when the L2
cache is not currently enabled (L2E should already be 1). If L2FL is set and the L2 cache is not enabled,
the flush does not occur and the L2FL bit remains set.

Note: To flush the L2 cache and ensure that no valid entries exist after the flush, the following sequence

should be used:

Clear all the bits of L2PARO - L2PARS to prevent further allocations.
Read L2PARO - L2PAR3 to ensure that the changes are in effect.
Write 1 to L2CSRO[L2FL].

Continue to read L2CSRO[L2FL] until it reads 0.

53 L2LFC |L2 cache lock flash clear. On boot, the processor should set this bit to clear any lock state bits that may be
randomly set out of reset, prior to enabling the L2 cache.

54-55 | (L2FCID) |Not implemented on the e6500 core. L2LFC lock clearing always behaves as if L2FCID = 0b11 and all locks
are cleared.

56 L2LOA |L2 cache lock overflow allocate. Implemented as defined in EREF. Note that cache line locking in the e6500
L2 is persistent.

57 — Reserved

58 L2LO |L2 cache lock overflow. Implemented as defined in EREF.

59-63 — Reserved

€6500 Core Reference Manual, Rev 0

2-46

Freescale Semiconductor

Register Model

2.12.3 L2 Cache Control and Status 1 (L2CSR1) register

L2CSR1, shown in Figure 2-19, provides general control and status for the L2 cache of the processor. The
€6500 core implements L2CSR1 as defined by the architecture and described in EREF, with the following
exceptions:

* It implements only the 8 least significant bits of the L2ZSTASHID (L2CSR1[L2STASHID]).
e It does not support stash ID values less than eight.

In addition, it implements the implementation-specific fields DYNAMICHARVARD, L2BHM, and
L2STASHRSRV.

MMR block offset: 0x004

32 33 34 35 ‘ 36 37 ‘ ‘ 47
R| DYNAMIC
w/| HARVARD L2BHM| — |L2STASHRSRV —
Reset All zeros
48 55 56 63
R
_ L2STASHID
w
Reset All zeros

Figure 2-19. L2 Cache Control and Status 1 (L2CSR1) register

This table describes the L2CSR1 fields.
Table 2-20. L2CSR1 e6500-specific field descriptions

Bits Name Description

32 DYNAMICHARVARD |Dynamic Harvard Mode

0 Enabled. Cacheable instruction fetches requested by the processor that miss are
requested from CoreNet as non coherent (Memory coherence required = 0). When the line
is allocated it is marked to allow a hit from instruction fetches but not data accesses.

1 Disabled. Cacheable instruction fetches requested by the processor that miss are
requested from CoreNet as coherent (Memory coherence required = 1). When the line is
allocated it is marked to allow a hit from instruction fetches and data accesses.

33 L2BHM Bank Hash Mode
0 Use decode hash (bits 56:57 of real address).
1 Use XOR hash (bits 42:57 of real address).

34 — Reserved

35-36 L2STASHRSRV L2 Stashing Reserved Resources. The number of resources per bank in which to allocate
only stashes.

00 Allocate opportunistically with general resources (default)

01 One resource

10 Two resources

11 Three resources

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-47

Register Model

Table 2-20. L2CSR1 e6500-specific field descriptions (continued)

Bits Name Description
37-55 — Reserved
56-63 L2STASHID L2 Cache Stash ID. Contains the cache target identifier to be used for external stash

operations directed to this processor’s L2 cache. A value of 0 for L2ZSTASHID prevents the L2
cache from accepting external stash operations. Note that the e6500 supports only stash ID
values of 8 and larger (that is values between 8 and 255); values from 1 to 7 are illegal.

2.12.4 L2 cache partitioning registers

L2PIRn, L2PAR#n, and L2PWR~ are sets of registers that are used to define how individual transactions
performed by the L2 cache are allocated. The number of registers n may vary between implementations,
but for any given value n supported by an implementation, the same number of registers exist for L2PIR,
L2PAR, and L2PWR. The number of registers n implemented represents the number of different allocation
policies that can be applied at any given time.

Each transaction sent to the L2 cache by a processor is tagged with an identifier. The identifier is used to
distinguish which allocation policies should be used when the L2 cache processes transactions. On the
€6500 core, the identifier is set to the value of the Processor ID register PIR[59:63] at reset. The identifiers
for L2 cache partitioning do not change if software changes the value in PIR. This allows for a unique
identifier for each core and thread in the cluster. Software can change the identifier by changing the PIR
register.

Let ID be the identifier for a transaction presented to the 1.2 cache and n be the number of different
allocation policies implemented (that is, the number n of registers implemented). id + 32 corresponds to a
column of bits in the L2PIR# registers and is used to determine which allocation policies are to be applied
as follows:

bit_num « ID + 32
ways ¢« 0

for reg_num = 0 ton -1
if L2PIR[reg_numly;c num = 1 | stash then
policy « L2PAR[reg_num]
if instruction fetch & policyrgparroc then
ways ¢ ways | L2PWR[reg_num]
else if data read & policyprpanroc then
ways ¢ ways | L2PWR[reg_num]
else if data store & policypgrarroc then
ways ¢ ways | L2PWR[reg_num]
else if stash & policygrarroc then
ways ¢ ways | L2PWR[reg_num]
endfor
if ways #0 then
allocate line in ways
else
line is not allocated

L2PIRn maps a possible set of 32 identifiers to specific allocation policies. L2ZPARn and L2ZPWRn are used

to process the allocation. L2ZPAR#n determines what allocation policy is used. LZPWR#n determines in
which ways the allocation may occur.

€6500 Core Reference Manual, Rev 0

2-48 Freescale Semiconductor

Register Model

L2PIRn, L2PAR~n, and L2ZPWR# are initialized by hardware at reset to allow all types of accesses from any
identifier to allocate in any way (that is, any request that could perform an allocation does allocate and can
be allocated in any way).

Note that stash transactions that are targeted to the L2 or any of the processor L1 caches in the cluster do
not provide identifiers for the purpose of determining allocation policy and way selection. Instead, stashes
behave as if the identifier for the transaction has bits set in all of L2PIRn. Stashes that are targeted to the
L1 cache of a processor, but that cannot allocate in the L.2 cache because of the setting of
L2PARn[STALLOC] (or other reasons), are invalidated in the processor’s L1 cache.

L2 cache partitioning only affects when a line in the cache may be allocated or not and in which ways it
may be allocated. Transactions to the L2 cache that do not require allocation (for example, a load operation
to an address that is present in the L2 cache) are unaffected by the settings of L2PIR#n, L2ZPAR#, and
L2PWRan.

For the €6500 core, the ID for partitioning transactions to the L2 cache is dependent on the integrated
device; however, if the integrated device initializes PIR as defined by EREF (for each L2 cache), then the
ID for partitioning in a four core cluster is as listed in the following table.

Table 2-21. L2 cache partitioning identifiers

ID Core Thread
0b00000 0 0
0b00001 0 1
0b01000 1 0
0b01001 1 1
0b10000 2 0
0b10001 2 1
0b11000 3 0
0b11001 3 1

Integrated devices with less than four cores per L2 cache cluster do not use the IDs for cores that are not
present on the cluster. In all cases, the core number is encoded in the first 2 bits and the thread number in
the core is encoded in the lower 3 bits.

Partitioning the L2 cache can prevent one processor from victimizing lines established by other processors.
This may be important to protect lines established by a processor that may be running a real-time
application that needs a more predictable performance characteristic and can be programmed to limit how
many lines can be allocated by other processors by choosing the ways in the cache that each processor can
allocate into. To accomplish this, each processor can be assigned the L2 cache ways in which it will
allocate.

To partition the L2 cache ways, first decide which L2 cache ways and what types of accesses are desired
to allocate in those L2 cache ways. Each distinct set of these should be considered a partitioning policy.
Each of these distinct policies should be encoded into a set of LZPARx and L2ZPWRx registers. The

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-49

Register Model

L2PARXx register contains the types of accesses that are allowed to allocate for this policy, and the LZPWRx
register contains the list of L2 cache ways to which these accesses can allocate. For example, a policy that
only allows allocation to L2 cache ways 0 and 1 for loads and stores is encoded as:

L2PARx = 0x00000440
L2PWRx = 0xC0000000

The bits set in the L2ZPARX register reflect the types of access. To change this policy to also have instruction
fetches and stashes use this policy, L2ZPARx changes to 0x000004C1.

Once policies are established, the designation of which processor uses those policies should be encoded in
L2PIRx registers, where the ID of the processor is used to index a bit in the L2PIRx register. Using the
previous example, to have core 0, thread 1 and core 1, thread O use the policy to only allow allocation to
L2 cache ways 0 and 1 for loads and stores the L2PIRx, L2PARx, L2ZPWRXx register triple should be set to:

L2PIRx = 0x40800000
L2PARx = 0x00000440
L2PWRx = 0xC0000000

The bit indexing using the ID is done directly on the 32 bits of the register (when all bits in the register are
numbered from O to 31). Because all registers are documented using 64-bit notation, the 64-bit index is
ID+32.

Note that each distinct policy uses a set of L2PIRx, L2PARx, LZPWRXx registers. L2PIR0, L2PARO, and
L2PWRO define a policy and which processors use that policy. Similarly, there are 7 more policies that can
be defined using the other L2PIRx, L2PARx, L2ZPWRXx registers.

Note also that a policy does not explicitly deny allocation into L2 cache ways, but allows allocation into
L2 cache ways. The full allocation policy for a given transaction from a given processor is the logical OR
of all the policies that have the appropriate processor ID bit set in the L2PIRx for the policy. Care should
be taken to ensure that all processor IDs have at least one policy that allows them to allocate into L.2 cache
ways unless it is desired that those processors should not allocate any lines in the 1.2 cache.

2.12.4.1 L2 cache partitioning identification registers (L2PIRn)

L2PIRn, shown in Figure 2-20, provides controls for partitioning the L2 cache based on identifiers
attached to the L2 cache transactions from processors. L2PIR# is a set of registers, each containing a bit
vector of 32 bits. The identifier sent with each transaction to the L2 cache is used to select the same relative
bit (id + 32) in each of the L2PIR# registers. If a bit is set in a L2PIRn register, then that register number
is used to index among the allocation policies represented by L2PARn and L2PWRn.

If more than one bit for each identifier is set among the group of L2PIR# registers, the allocation policy
used is the logical OR of the corresponding L2PARn registers, and the ways available for allocation is the
logical OR of the LZPWRn~ registers for which the corresponding L2PARn registers allow allocation. For
example, if L2PIRO[35] = 1 and L2PIR1[35] = 1, then the allocation policy is LZPARO | L2PAR1 and the
ways available for allocation are defined by the OR of the L2ZPWR registers that correspond to the L2PAR
register that allows the allocation.

The €6500 implements L2PIRO—L2PIR7 as defined by the architecture and described in EREF.

€6500 Core Reference Manual, Rev 0

2-50 Freescale Semiconductor

Register Model

Writing to these registers requires synchronization.

MMR block offset: 0x200 (L2PIRO
block offset: 0x210 (L2PIR1
block offset: 0x220 (L2PIR2
block offset: 0x230 (L2PIR3
block offset: 0x240 (L2PIR4
block offset: 0x250 (L2PIR5
block offset: 0x260 (L2PIR6
block offset: 0x270 (L2PIR7

—_ = O T T — — —

32 63
R .)
bits indexed by id + 32
w
Reset All set for L2PIRO, All zeros for other L2PIRn

Figure 2-20. L2 cache partitioning identification registers (L2PIRn)

2.12.4.2 L2 cache partitioning allocation registers (L2PARn)

L2PARn, shown in Figure 2-21, provides controls for partitioning the L2 cache based on which allocation
policy is determined from the L2PIR# registers. If the bit associated with an id of a transaction sent to the
L2 cache is set in one of the L2PIR#n registers, then that register number (O -) is used to index among the
allocation policies represented by L2PAR#n and L2PWRax.

L2PAR~n controls whether a line should be allocated based on the type of transaction to be performed by
the L2 cache. The types of distinguished transactions are:

* Store type operations (store, store conditional, or dcbz[l][ep])
* Load type operations (load, touch, and lock set)

* Instruction fetch

* Stash operations targeted to the L2 cache

The €6500 core implements L2ZPARO—L2PAR7 as defined by the architecture and described in EREF.

Writing to these registers requires synchronization.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-51

Register Model

MMR block offset

: 0x208 (L2PARO

)
block offset: 0x218 (L2PAR1)
block offset: 0x228 (L2PAR2)
block offset: 0x238 (L2PAR3)
block offset: 0x248 (L2PAR4)
block offset: 0x258 (L2PARS5)
block offset: 0x268 (L2PAR6)
block offset: 0x278 (L2PAR7)
32 47
R
w
Reset All zeros
48 52 53 54 55 56 57 58 62 63
R]
S 8|9 Q
w = 4 | 2 2
_ 2 _ 2 = _ -
5 5| 2 z
[a] D_: =) n
Reset All zeros 1 All zeros 1 1 All zeros 1

Figure 2-21. L2 cache partitioning allocation registers (L2PARnN)

This table describes the L2PAR# fields.

Table 2-22. L2PARnN field descriptions

Bits Name Description
32-52 — Reserved, should be 0
53 DSTALLOC Data store allocation control

0 Cacheable store and store conditional instructions that miss in the L2 do not allocate unless
enabled by another L2ZPARN[DSTALLOC].

1 Cacheable store and store conditional instructions that miss in the L2 attempt to allocate in one of
the ways defined by L2PWRn[WAY].

54-55 — Reserved, should be 0
56 IRDALLOC Instruction read (fetch) allocation control

0 Cacheable instruction fetches that miss in the L2 do not allocate unless enabled by another
L2PARN[IRDALLOC].

1 Cacheable instruction fetches that miss in the L2 attempt to allocate in one of the ways defined by
L2PWRnN[WAY].

57 DRDALLOC Data read allocation control

0 Cacheable load and touch instructions that miss in the L2 do not allocate unless enabled by another
L2PARN[DRDALLOC].

1 Cacheable load and touch instructions that miss in the L2 attempt to allocate in one of the ways
defined by L2PWRnA[WAY].

Note: Any cache locking operation with CT = 2 that has DRDALLOC = 0 will not have the line locked

because the L2 does not attempt to allocate the line.

€6500 Core Reference Manual, Rev 0

2-52

Freescale Semiconductor

Register Model

Table 2-22. L2PARnN field descriptions (continued)

Bits Name Description
58-62 — Reserved, should be 0
63 STALLOC Stashing allocation control

0 Stash requests that miss in the L2 do not allocate unless enabled by another L2ZPARN[STALLOC].
1 Stash requests that miss in the L2 attempt to allocate in one of the ways defined by L2PWRn[WAY].

Note: Stash requests do not supply id values that index into L2PIRn registers, but instead examine all
L2PARN registers to determine the allocation policy.

2.12.4.3 L2 cache partitioning way registers (L2PWRn)

L2PWRn, shown in Figure 2-22, provides controls for partitioning of the L2 cache based on which
allocation policy is determined from the L2PIR# registers. If the bit associated with an id of a transaction
sent to the L2 cache is set in one of the L2PIR# registers, then that register number (0 -) is used to index
among the allocation policies represented by L2PAR#n and L2PWRn.

L2PWRn controls which ways are available for a line to allocate into should allocation for the transaction
be allowed by L2PAR~n. The ways are represented as a bit vector where way x is represented by bit x + 32.
Only bits 32:32+(w-1) are implemented in each L2ZPWRu register, where w represents the number of ways
in the L2 cache that are implemented.

The €6500 core implements LZPWRO—L2PWR?7 as defined by the architecture and described in EREF,
except only 16 bits of the WAY field are implemented in each register.

Writing to these registers requires synchronization.

MMR block offset: 0x20C (L2PWRO)
block offset: 0x21C (L2PWRH1)
block offset: 0x22C (L2PWR?2)
block offset: 0x23C (L2PWRS3)
block offset: 0x24C (L2PWR4)
block offset: 0x25C (L2PWR5)
block offset: 0x26C (L2PWR®6)
block offset: 0x27C (L2PWR7)

32 47 48 63
R
WAY —
w
Reset All set for L2ZPWRO, all zeros for other L2ZPWRn All zeros

Figure 2-22. L2 cache partitioning way registers (L2PWRn)

This table describes the L2PWR# fields.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-53

Register Model

Table 2-23. L2PWRn field descriptions

Bits Name Description

32-47 WAY Each bit that is set represents a way number into which the transaction can allocate. Multiple bits can
be set, representing multiple ways that are available for allocation using this allocation policy.

0 The ways corresponding to bits set to 0 are not available for allocation.

1 The ways corresponding to bits set to 1 are available for allocation.

48-63 — Reserved, should be cleared.

2.12.5 L2 error registers

L2 cache error detection, reporting, and injection allow flexible handling of ECC and parity errors in the
L2 data and tag arrays. The e6500 core implements the L2 error detection registers as they are defined by
the architecture and described in EREF'. Deviations from the architecture are described in this section.

2.12.5.1 L2 Cache Error Disable (L2ERRDIS) register

L2ERRDIS, shown in Figure 2-23, provides general control for disabling error detection in the L2 cache
of the processor. The e6500 implements L2ERRDIS as defined by the architecture and described in EREF,
with the following exceptions:

* It does not implement the TPARDIS and PARDIS fields.
* It implements the implementation-specific field TMHITDIS.

MMR block offset: Oxe44

32 ‘ ‘ ‘ ‘ ‘ 55 56 57 58 59 60 61 62 63

R
— TMHITDIS | TMBECCDIS | TSBECCDIS | — | MBECCDIS |[SBECCDIS| — |L2CFGDIS
w
Reset All Zeros

Figure 2-23. L2 Cache Error Disable (L2ERRDIS) register

This table describes the LZERRDIS field descriptions.
Table 2-24. L2ERRDIS field descriptions

Bits Name Description
32-56 — Reserved
56 TMHITDIS Tag/status multi-way hit error disable

0 Tag multi-way hit detection is enabled.

1 Tag multi-way hit error detection is disabled.

Note: This field is not part of EREF.

Note: While error injection is performed, the values of TMHITDIS and L2CSRO[L2PE] are ignored
and errors are always detected. Software should ensure that L2PE is set and TMHITDIS is
clear when performing error injection to the tags.

€6500 Core Reference Manual, Rev 0

2-54 Freescale Semiconductor

Register Model

Table 2-24. L2ERRDIS field descriptions (continued)

Bits Name Description

57 TMBECCDIS |Tag multiple-bit ECC error disable

0 Tag Multiple-bit ECC error detection is enabled.

1 Tag Multiple-bit ECC error detection is disabled.

Note: While error injection is performed, TMBECCDIS = 0 and L2CSRO[L2PE] = 1 should always
be configured to ensure that errors are always detected. If they are not set when error
injection is performed, the result is undefined.

58 TSBECCDIS |Tag ECC error disable

0 Tag Single-bit ECC error detection is enabled.

1 Tag Single-bit ECC error detection is disabled.

Note: While error injection is performed, TSBECCDIS = 0 and L2CSRO[L2PE] = 1 should always
be configured to ensure that errors are always detected. If they are not set when error
injection is performed, the result is undefined.

59 (TPARDIS) Tag parity error disable. This field is not implemented in the e6500 core and always reads as 0.

60 MBECCDIS Data multiple-bit ECC error disable

0 Data Multiple-bit ECC error detection is enabled.

1 Data Multiple-bit ECC error detection is disabled.

Note: While error injection is performed, the values of MBECCDIS and L2CSRO[L2PE] are ignored
and errors are always detected. Software should ensure that L2PE is set and MBECCDIS is
clear when performing error injection to the data.

61 SBECCDIS Data single-bit ECC error disable

0 Data Single-bit ECC error detection is enabled.

1 Data Single-bit ECC error detection is disabled.

Note: While error injection is performed, the values of SBECCDIS and L2CSRO[L2PE] are ignored
and errors are always detected. Software should ensure that L2PE is set and SBECCDIS is
clear when performing error injection to the data.

62 (PARDIS) Data parity error disable.This field is not implemented in the e6500 core and always reads as 0.

63 L2CFGDIS L2 configuration error disable
0 L2 configuration error detection is enabled.
1 L2 configuration error detection is disabled.

2.12,5.2 L2 Cache Error Detect (L2ERRDET) register

L2ERRDET, shown in Figure 2-24, provides general status and information for errors detected in the L2
cache of the processor. The e6500 core implements LZERRDET as defined by the architecture and
described in EREF, with the following exceptions:

* It does not implement the TPARERR and PARERR fields.
* It implements the implementation-specific fields MULL2ERR and TMHITERR.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-55

Register Model

MMR block offset: 0xe40

W
N

33 ‘

59

[0}
o
o
=

62

o
a
o
>
o
N
o
@

MULL2ERR

W| wic

TMHITERR
TMBECCERR
TSBECCERR | &
MBECCERR

SBECCERR

L2CFGERR

2
o
2
o

wic wic | wic wilc

Reset

All Zeros
Figure 2-24. L2 Cache Error Detect (L2ERRDET) register

This table describes the L2ERRDET fields.

Table 2-25. L2ERRDET field descriptions

Bits Name Description
32 MULL2ERR Multiple L2 errors. Writing a 1 to this bit location resets the bit.
0 Multiple L2 errors of the same type are not detected.
1 Multiple L2 errors of the same type are detected.
Note: This field is not part of EREF.
33-55 — Reserved
56 TMHITERR Tag multi-way hit error detected. Writing a 1 to this bit location resets the bit.
0 Tag multi-way hit is not detected.
1 Tag multi-way hit is detected.
Note: This field is not part of EREF.
57 TMBECCERR |Tag multiple-bit ECC error detected. Writing a 1 to this bit location resets the bit.
0 Tag Multiple-bit ECC error is not detected.
1 Tag Multiple-bit ECC error is detected.
58 TSBECCERR |Tag single-bit ECC error detected. Writing a 1 to this bit location resets the bit.
0 Tag Single-bit ECC is not detected.
1 Tag Single-bit ECC error is detected.
59 (TPARERR) Tag parity error detected. This field is not implemented in the e6500 core and always reads as 0.
60 MBECCERR |Data multiple-bit ECC error detected. Writing a 1 to this bit location resets the bit.
0 Tag Multiple-bit ECC error is not detected.
1 Tag Multiple-bit ECC error is detected.
61 SBECCERR |Data single-bit ECC error detected. Writing a 1 to this bit location resets the bit.
0 Tag Single-bit ECC error is not detected.
1 Tag Single-bit ECC error is detected.
62 (PARERR) Data parity error detected. This field is not implemented in the e6500 core and always reads as 0.
63 L2CFGERR L2 configuration error detected. Writing a 1 to this bit location resets the bit.
0 L2 configuration error not detected.
1 L2 configuration error detected.
€6500 Core Reference Manual, Rev 0
2-56 Freescale Semiconductor

2.125.3

Register Model

L2 Cache Error Interrupt Enable (L2ERRINTEN) register

L2ERRINTEN, shown in Figure 2-25, provides general status and information for errors detected in the
L2 cache of the processor. The e6500 core implements LZERRINTEN as defined by the architecture and
described in EREF, with the following exceptions:

* It does not implement the TPARINTEN and PARINTEN fields.

* It does implement the implementation-specific field TMHITINTEN.

MMR block offset: O0xe48

32

o
(o}
ul
@©

59

[}
o
o
=

‘ ‘ 55 62

[0}
()

TMHITINTEN

TMBECCINTEN| &

TSBECCINTEN
|
MBECCINTEN

SBECCINTEN
|

L2CFGINTEN

Reset

All Zeros

Figure 2-25. L2 Cache Error Interrupt Enable (L2ERRINTEN) register

This table describes the L2ZERRINTEN fields.

Table 2-26. L2ZERRINTEN field descriptions

Bits

Name

Description

32-55

Reserved

56

TMHITINTEN

Tag multi-way hit interrupt reporting enable

0 Tag multi-way hit interrupt reporting is disabled.
1 Tag multi-way hit interrupt reporting is enabled.
Note: this field is not part of EREF.

57

TMBECCINTEN

Tag multiple-bit ECC error interrupt reporting enable
0 Tag multiple-bit ECC error interrupt reporting is disabled.
1 Tag multiple-bit ECC error interrupt reporting is enabled.

58

TSBECCINTEN

Tag ECC interrupt reporting enable
0 Tag single-bit ECC error interrupt reporting is disabled.
1 Tag single-bit ECC error interrupt reporting is enabled.

59

(TPARINTEN)

Tag parity error interrupt reporting enable. This field is not implemented in the €6500 core and

always reads as 0.

60

MBECCINTEN

Data multiple-bit ECC error interrupt reporting enable. Valid only if L2ZCFGO[L2CDEHA] = 0b10.

0 Data Multiple-bit ECC error interrupt reporting is disabled.
1 Data Multiple-bit ECC error interrupt reporting is enabled.

61

SBECCINTEN

Data ECC error interrupt reporting enable. Valid only if L2ZCFGO[L2CDEHA] = 0b10.
0 Data Single-bit ECC error interrupt reporting is disabled.
1 Data Single-bit ECC error interrupt reporting is enabled.

€6500 Core Reference Manual, Rev 0

Freescale

Semiconductor

2-57

Register Model

Table 2-26. L2ERRINTEN field descriptions (continued)

Bits Name Description

62 (PARINTEN) |Data parity error interrupt reporting enable. This field is not implemented in the e6500 core and
always reads as 0.

63 L2CFGINTEN |L2 configuration error interrupt reporting enable

0 L2 configuration interrupt reporting is disabled.
1 L2 configuration error interrupt reporting is enabled.

2.12.5.4 L2 Cache Error Control (L2ERRCTL) register

L2ERRCTL, shown in Figure 2-26, provides thresholds and counts for errors detected in the L2 cache of
the processor. The e6500 core implements L2ZERRCTL as defined by the architecture and described in

EREF.
MMR block offset: 0xe58
32 39 | 40 47 | 48 55 | 56 63
R
— L2CTHRESH L2TCCOUNT T2CCOUNT
w
Reset All Zeros

Figure 2-26. L2 Cache Error Control (L2ERRCTL) register

This table describes the L2ZERRCTL fields.

Table 2-27. L2ZERRCTL Field Descriptions

Bits

Name

Description

32-39

Reserved

40-47

L2CTHRESH

L2 cache threshold. Threshold value for the number of ECC single-bit errors that are detected
before reporting an error condition. L2ZCTHRESH is compared to L2ZTCCOUNT and L2ZCCOUNT
each time a single-bit ECC error is detected. A value of 0 in this field causes the reporting of a
single-bit ECC error upon the first occurrence of such an error.

48-55

L2TCCOUNT

L2 tag ECC single-bit error count. L2ZTCCOUNT counts the number of single-bit errors in the L2 tags
which are detected. If LZTCCOUNT equals the ECC single-bit error trigger threshold
(L2ZCTHRESH), an error is reported if single-bit error reporting for tags is enabled. Software should
clear this value when such an error is reported to reset the count. e6500 always increments this
count when a single-bit ECC error is detected in the tags, regardless of whether single-bit error
reporting for tags is enabled.

56-63

L2CCOUNT

L2 data ECC single-bit error count. L2ZCCOUNT counts the number of single-bit errors in the L2 data
which are detected. If LZCCOUNT equals the ECC single-bit error trigger threshold (L2ZCTHRESH),
an error is reported if single-bit error reporting for data is enabled. Software should clear this value
when such an error is reported to reset the count. e6500 always increments this count when a
single-bit ECC error is detected in the data, regardless of whether single-bit error reporting for data
is enabled.

€6500 Core Reference Manual, Rev 0

2-58

Freescale Semiconductor

Register Model

2.12,5.5 L2 cache error capture address registers (L2ERRADDR and
L2ERREADDR)

L2ERRADDR and L2ERREADDR provide the real address of a captured error detected in the L2 cache
of the processor. The e6500 core implements these registers as defined by the architecture and described
in EREF. The real address is 40 bits.

2.12.5.6 L2 cache error capture data registers (L2ZCAPTDATALO
and L2CAPTDATAHI)

L2CAPTDATALO and L2CAPTDATAHI provide the array data of a captured error detected in the L2
cache of the processor. LZCAPTDATALO captures the lower 32 bits of the doubleword, and
L2CAPTDATAHI captures the upper 32 bits of the doubleword. The e6500 core implements these registers
as defined by the architecture and described in EREF.

If the captured error is a data ECC error, then these registers contain the data associated with the error. If
the captured error is a tag/status ECC error, then L2ZCAPTDATALO contains the following:
L2CAPTDATALO = low-order 19 bits of the tag Il 0b00000 Il status[0:7]
L2CAPTDATAHI = 0x000000 Il high-order 8 bits of the tag

2.12,5.7 L2 Cache Capture ECC Syndrome (L2ZCAPTECC) register

L2CAPTECC provides both the calculated and stored ECC syndrome of a captured error detected in the
L2 cache of the processor. The e6500 core implements this register as defined by the architecture and
described in EREF'. Tag and status ECC syndromes are left-padded with the appropriate number of zeros.

2.12,5.8 L2 Cache Error Attribute (L2ERRATTR) register

L2ERRATTR, shown in Figure 2-27, provides extended information for errors detected in the L2 cache of
the processor. The e6500 implements L2ZERRATTR as defined by the architecture and described in EREF.
It also implements the implementation-specific fields DWNUM, TRANSSRC, TRANSTYPE, and CORE.

MMR block offset: Oxe4c

32 35 |36 ‘ 42 43‘ 47 |48 49 50 51 |52 59|60 62 63
R
DWNUM — TRANSSRC — | TRANSTYPE — CORE | VALINFO
w
Reset All Zeros

Figure 2-27. L2 Cache Error Attribute (L2ERRATTR) register

This table describes the L2ZERRATTR fields.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-59

Register Model

Table 2-28. L2ERRATTR field descriptions

Bits

Name

Description

32-35

DWNUM

For data ECC errors, contains the doubleword number of the detected error. For tag/status ECC errors,
contains which way of the tag/status encountered the error.
Note: This field is not part of EREF.

36-42

Reserved

43-47

TRANSSRC

Transaction source for detected error
00000 External (snoop)

10000 Internal (instruction)

10001 Internal (data)

00001-01111 Not Implemented
10010-11111 Not Implemented
Note: This field is not part of EREF.

48-49

Reserved

50-51

TRANSTYPE

Transaction type for detected error
00 Snoop

01 Write

10 Read

11 Not Implemented

Note: This field is not part of EREF.

52-59

Reserved

60-62

CORE

Core ID that issued TRANSTYPE. If the transaction was from a snoop, this field is undefined.
Note: This field is not part of EREF.

63

VALINFO

L2 capture registers valid

0 L2 capture registers contain no valid information or no enabled errors are detected.

1 L2 capture registers contain information of the first detected error that has reporting enabled.
Software must clear this bit to unfreeze error capture so error detection hardware can overwrite the
capture address/data/attributes for a newly detected error.

2.12.5.9

L2 Cache Error Injection Control (L2ERRINJCTL) register

L2ERRINJCTL, shown in Figure 2-28, provides control for injecting errors into both the tags and data

array for the L2 cache of the processor. The contents of LZERRINJCTL as defined by the architecture and
described in EREF are implementation dependent, and all fields of this register are €6500 implementation
specific.

NOTE

While error injection is performed, the values of specific error disables in
L2ERRDIS and L2CSRO[L2PE] are ignored and errors are always detected.
Software must ensure that L2PE is set and individual disables in LZERRDIS
are clear when performing error injection to the data or tags.

€6500 Core Reference Manual, Rev 0

2-60

Freescale Semiconductor

MMR block offset: 0xe08

Register Model

32 ‘ ‘ ‘ 46 47 48 54 55 56 63
R
— TERRIEN — DERRIEN ECCERRIM
w
Reset All Zeros

Figure 2-28. L2 Cache Error Injection Control (L2ERRINJCTL) register

This table describes the L2ZERRINJCTL fields.

Table 2-29. L2ERRINJCTL field descriptions

Bits

Name

Description

32-46

Reserved, should be 0

47

TERRIEN

L2 tag error injection

0 No tag errors are injected.

1 All subsequent entries written to the L2 tag array have the tag ECC bits inverted as specified in the
ECC error injection masks.

Tag error injection is determined by L2ERRINJHI[59:63] and L2ERRINJLO[32:63].
Note: This field is not part of EREF.

48-54

Reserved, should be 0

55

DERRIEN

L2 data error injection

0 No data errors are injected.

1 Subsequent entries written to the L2 data array have data or data ECC bits inverted as specified in
the data and ECC error injection masks.

Data error injection is determined by L2ZERRINJHI[32:63] and L2ZERRINJLO[32:63].
Note: This field is not part of EREF.

56-63

ECCERRIM

Error injection mask for the ECC syndrome bits. When DERRIEN = 1, the eight ECCERRIM bits map
to the eight data ECC bits for each 64 bits of data. When TERRIEN = 1, the low-order seven ECCERIM
bits map to the seven tag ECC bits.
Note: This field is not part of EREF.

2.12.5.10 L2 cache error injection mask registers (L2ERRINJLO and L2ERRINJHI)

L2ERRINJLO and L2ERRINJHI provide the injection mask describing how errors are to be injected into
the data path doubleword in the L2 cache of the processor. L2ZERRINJLO provides the mask for the lower
32 bits of the doubleword, and LZERRINJHI provides the mask for the upper 32 bits of the doubleword.
A set bit in the injection mask causes the corresponding data path bit to be inverted on data array writes
when L2ZERRINJCTL[DERRIEN] = 1 or tag array writes when L2ZERRINJCTL[TERRIEN] = 1.

The contents of LZERRINJLO and L2ERRINJHI as defined by the architecture and described in EREF
are implementation dependent, and all fields of these registers are e6500 implementation specific.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-61

V¥ ¢
i

Register Model

2.13 MMU registers

This section describes the following MMU registers and their fields:
* Logical Partition ID (LPIDR) register
* Process ID (PID) register
* MMU Control and Status 0 (MMUCSRO) register
* MMU Configuration (MMUCEFQG) register
* TLB configuration registers (TLBrnCFG)
» TLB page size registers (TLBnPS)
* Embedded Page Table Configuration (EPTCFG) register
* MMU assist registers (MASO-MASS)
* LRAT Configuration (LRATCFGO) register
* LRAT Page Size (LRATPS) register
* Logical Page Exception (LPER) register

Note that the e6500 core supports MMU architecture version 2 and some fields within registers are
different from MMU architecture version 1 and previous cores.

2.13.1 Logical Partition ID (LPIDR) register
LPIDR is implemented for each thread as described in EREF'.

LPIDR contains the logical partition ID in use for the processor. LPIDR is part of the virtual address and
is used during address translation comparing LPID to the TLPID field in the TLB entry to determine a
matching TLB entry.

Only the low-order 6 bits of LPIDR are implemented on the e6500 core.

When LPIDR is written, the results of the change to LPIDR are not guaranteed to be seen until a context
synchronizing event occurs.

2.13.2 Process ID (PID) register
PID is implemented for each thread as described in EREF.

The architecture specifies that the value of PID be associated with each effective address (instruction or
data) generated by the processor. PID values, defined by the PID register, are used to construct virtual
addresses for accessing memory.

The 6500 core implements all 14 bits for PID values. Writing to PID requires synchronization, as
described in Section 3.3.3, “Synchronization requirements.”

2.13.3 MMU Control and Status 0 (MMUCSRO0) register

MMUCSRO, shown in Figure 2-29, is used to control the L2 MMUs. The e6500 core implements the
L2TLBO_FI, L2TLB1_FI TLB flash invalidate bits, and TLB_EI as defined in EREF.

€6500 Core Reference Manual, Rev 0

2-62 Freescale Semiconductor

Register Model

The 6500 core has one MM UCSRO shared among both threads.

MMUCSRO synchronization is described in Section 3.3.3, “Synchronization requirements.”

SPR 1012 Hypervisor
(shared)
32 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 60 61 62 63
R
W — L2TLBO_FI|L2TLB1_FI| TLB_EI
Reset All zeros

Figure 2-29. MMU Control and Status 0 (MMUCSRO) register

This table describes the MM UCSRO fields.
Table 2-30. MMUCSRO field descriptions

Bits Name Description

32-60 — Reserved

61 L2TLBO_FI |TLBO flash invalidate (write 1 to invalidate)

0 No flash invalidate. Writing a 0 to this bit during an invalidation operation is ignored.

1 TLBO invalidation operation. Hardware initiates a TLBO invalidation operation. When this operation is
complete, this bit is cleared. Writing a 1 during an invalidation operation causes an undefined operation.

This invalidation typically takes one cycle.

62 L2TLB1_FI |TLB1 flash invalidate (write 1 to invalidate)

0 No flash invalidate. Writing a 0 to this bit during an invalidation operation is ignored.

1 TLB1 invalidation operation. Hardware initiates a TLB1 invalidation operation. When this operation is
complete, this bitis cleared. Writing a 1 during an invalidation operation causes an undefined operation.
This invalidation typically takes 1 cycle.

63 TLB_EI |TLB error injection enable. If set, any writes that occur to TLB entries in TLBO will inject errors.

0 TLBO error injection is disabled (normal operation)
1 TLBO error injection is enabled. Any writes to TLBO have errors injected.

2.13.4 MMU Configuration (MMUCFG) register

MMUCEG, shown in Figure 2-30, provides configuration information about the ¢6500 MMU and is
implemented as defined in EREF.

The 6500 core has one MMUCFG shared among both threads.
Hypervisor RO

SPR 1015
(shared)
32 35| 36 39 | 40 ‘ 46 47|48 49 ‘52 53 57 58 59| 60 61 62 63
=10
R LPIDSIZE RASIZE é = NPIDS PIDSIZE NTLBS | MAVN
- | —
w

Reset 0 0 0 0O O110OT11O0OT1TO0OO0OO0OT1TO0OOOOTYTO1®TI1TO0OT1TO0OOTO 1 0 1

Figure 2-30. MMU Configuration (MMUCFG) register

This table describes MMUCEFG fields.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-63

Register Model

Table 2-31. MMUCFG field descriptions

Bits Name Description

32-35 — Reserved

36-39 |LPIDSIZE |LPID size. The number of LPID bits implemented. The processor implements only the least significant
LPIDR bits. (Ob0110 indicates LPIDR is 6 bits, LPIDR[58-63].)

40-46 | RASIZE |Real address size supported by the implementation. (0b0101000 indicates 40 physical address bits.)

47 LRAT |LRAT present. (Ob1 indicates that LRAT translation is supported for guest supervisor writes to the TLBO
array.)

48 TWC |TLB write conditional. Indicates whether the TLB write conditional and tlbsrx. instruction are supported.
0 TLB write conditional and tlbsrx. instruction are not supported.
1 TLB write conditional and tlbsrx. instruction are supported.

49-52 | NPIDS |Number of PID registers. Indicates the number of PID registers provided by the processor. (0b0001
indicates one PID register implemented.)

53-57 | PIDSIZE |PID register size. PIDSIZE is one less than the number of bits in each of the PID registers implemented by
the processor. The processor implements only the least significant PIDSIZE+1 bits in the PID. (0b01101
indicates PID is 14 bits, PID[50—63].)

58-59 — Reserved

60-61 | NTLBS |Number of TLBs. The value of NTLBS is one less than the number of software-accessible TLB structures
that are implemented by the processor. NTLBS is set to one less than the number of TLB structures so that
its value matches the maximum value of MASO[TLBSEL]. (Ob01 indicates two TLBs.)

62—-63 MAVN [MMU architecture version number. Indicates the version number of the architecture of the MMU

implemented by the processor. (0b01 indicates Version 2.0.)

2.13.5 TLB configuration registers (TLBnCFG)

TLBnrCFG, shown in Figure 2-31, are shared by threads and implemented as defined in EREF. TLBnCFG
registers provide configuration information for TLBO and TLB1 of the L2 MMU.

The e6500 core has one set of TLBnCFG registers shared among both threads.

Reset: TLBO O 0 0 0 1 0 0 0 O O O O O 1
TLB1 0 1

SPR 688 (TLBOCFG); 689 (TLB1CFG) Hypervisor RO
(shared)
32 ‘ 39|40 ‘44 45 46 47 48 49 50 51|52 ‘ ‘ 63
R wl 5 *
ASSOC FI2IE| & L NENTRY
_ ElE | — _
w

0 1 001000O0OO0OO0OO0OOODO
00o000O0O0OOOOGCOOT11TO A 0 00O0OO0OO0COO1TO0OOOOODO

Figure 2-31. TLB configuration registers (TLBOCFG, TLB1CFG)

o
-
o

€6500 Core Reference Manual, Rev 0

2-64

Freescale Semiconductor

Register Model

This table describes the TLBnCFG fields and shows the values for the e6500 core.

Table 2-32. TLBnCFG field descriptions

Bits Name Description
32-39 ASSOC |Associativity of TLBn
TLBO: 0x08Indicates associativity is 8-way set associative.
TLB1: 0x40 Indicates TLB1 is fully associative (because ASSOC = NENTRY).
40-44 — Reserved
45 PT Page table. Indicates that the TLB array can be loaded as a result of a hardware tablewalk.
0 The TLB array can not be loaded from a hardware page tablewalk.
1 The TLB array can be loaded from a hardware page tablewalk.
TLBO: 1 Indicates TLBO can be loaded from a hardware page tablewalk.
TLB1: 0 Indicates TLB1 can not be loaded from a hardware page tablewalk.
46 IND Indirect. Indicates that the TLB array can be loaded with an indirect TLB entry and that there is
a corresponding EPTCFG register that defines the page size and subpage size.
0 The TLB array can not be loaded with an indirect TLB entry.
1 The TLB array can be loaded with an indirect TLB entry.
TLBO: 0 Indicates TLBO can not be loaded with an indirect TLB entry.
TLB1: 1 Indicates TLB1 can be loaded with an indirect TLB entry.
47 GTWE Guest TLB write entry supported. Indicates that the TLB array can be written (with LRAT translation) by
a guest-supervisor tibwe instruction.
0 The TLB array can not be written by a guest-supervisor tlbwe instruction.
1 The TLB array can be written by a guest-supervisor tlbwe instruction.
TLBO: 1 Indicates TLBO can be written using a guest-supervisor tlbwe instruction.
TLB1: 0 Indicates TLB1 can not be written using a guest-supervisor tlbwe instruction.
A tlbwe instruction causes a hypervisor privilege exception if it targets an array that does not support
GTWE or if EPCR[DGTMI] = 1.
48 IPROT Invalidate protect capability of TLBn
0 The TLB array does not support invalidate protection capability.
1 The TLB array supports invalidate protection capability.
TLBO: 0 Indicates that TLBO does not support invalidate protection capability.
TLB1: 1 Indicates that TLB1 supports invalidate protection capability.
49 — Reserved
50 HES Hardware entry select. Indicates that the TLB array supports MASO[HES] where hardware determines
which TLB entry is written based on MAS2[EPN].
0 The TLB array does not support hardware entry select.
1 The TLB array supports hardware entry select.
TLBO: 1 Indicates that TLBO supports hardware entry select.
TLB1: 0 Indicates that TLB1 does not supports hardware entry select.
51 — Reserved
52-63 NENTRY |Number of entries in TLBn

TLBO: 0x400 TLBO contains 1024 entries.
TLB1: 0x040 TLB1 contains 64 entries.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-65

Register Model

2.13.6 TLB page size registers (TLBnPS)

TLBnPS, shown in Figure 2-32, gives configuration information about which page sizes are supported in
each TLB array. TLBnPS consists of 32 bits, each of which represents whether a page size is supported. If
bit k is set, then page size 263k KB is supported. Page sizes of 4 KB to 1 TB are supported (in power of 2
increments).

This register is hypervisor privileged.
The e6500 core has one set of TLBnPS registers shared among both threads.

Note that the method of how page size information is encoded is the same as LRATPS.

SPR 344 (TLBOPS); 345 (TLB1PS) Hypervisor RO
(shared)
32 33 61 62 63

— TLBn page size supported bits —

w

TBO O 0 0 0O OO OOOOOOOOOOOOOOOOOOOOOOO 1t 0o

mwBet o 1+ 1 11 1+ 1 1}/1 1 1 11 1 1 1{1 11 111 1 1|1 1111 1 0 O
Figure 2-32. TLB page size registers (TLBnPS)

This table describes the TLB#PS fields.
Table 2-33. TLBnPS field descriptions

Bits Name Description

32 — Reserved, should be 0.

33-61 | TLB page | Page size supported bits for TLB array n. When bit k of TLBnPS is set, page size 263-kKB is supported by
size TLB array n. For any bit kin the register:

supported | 0 Page size 283K KB is not supported for TLB array n.
bits 1 Page size 283K KB is supported for TLB array n.

TLBO: 0x00000004 indicates only 4 KB pages are supported.
TLB1: Ox7FFFFFFC indicates 4 KB to 1 TB pages are supported.

62—-63 — Reserved, should be 0.

2.13.7 Embedded Page Table Configuration (EPTCFG) register

EPTCFG, shown in Figure 2-33, gives configuration information about the hardware tablewalk
implementation. Each pair of PSn and SPSn fields describes a page size and sub-page size pair for which
the implementation supports. Any SPSn field that contains O denotes that the pair (and the associated PSn)
has no information supplied by the pair. A PSn value that contains 0 and is paired with a non-zero SPSn
value denotes that any valid page size supported by the TLB array is allowed for that sub-page size.

PSn describes the page size of the indirect TLB entry and the resulting virtual address space that the
indirect entry covers. SPSn describes the page size of a TLB entry that is written as a result of a successful

€6500 Core Reference Manual, Rev 0

2-66 Freescale Semiconductor

Register Model

page table translation. The e6500 core only supports 4 KB sub-page sizes (that is, each PTE doubleword
in a page table always describes a 4 KB page.)

This register is hypervisor privileged.

The 6500 core has one EPTCFG shared among both threads.

Note that the notion that a PSn can be 0 and be paired with a non-zero SPSn is not part of Power ISA 2.06
and takes advantage of the fact that indirect TLB entries are written to a TLB array that supports variable
sizes.

SPR 350 Hypervisor RO
(shared)
32 33 34 38 39 43 44 48 49 53 54 58 59 63
— PS2 SPS2 PS1 SPS1 PSO SPSO
W

Reset 0 0 O 0|0 0 O 0|0 O O O|O O O OJO O O O|O O O O/O0OO0OOO O 1 O
Figure 2-33. Embedded Page Table Configuration (EPTCFG) register

This table describes the EPTCFG fields.
Table 2-34. EPTCFG field descriptions

Bits Name Description

32-33 — Reserved

34-38 PS2 Page size supported for an indirect TLB entry when paired with the corresponding sub-page size (SPSn). If
44-48 PS1 both PSn and SPSn are zero, the pairing conveys no information. If PSnis 0 and SPSn is non-zero, then all
54-58 PSO page sizes supported by the TLB array are supported for indirect TLB entries for that array with the
corresponding sub-page size.

39-43| SPS2 | Sub-page size supported for an indirect TLB entry when paired with the corresponding page size (PSn). If
49-53| SPS1 both PSn and SPSn are zero, the pairing conveys no information. If PSnis 0 and SPSn is non-zero, then all
59-63| SPS0 |page sizes supported by the TLB array are supported for indirect TLB entries for that array with the
corresponding sub-page size.

2.13.8 Logical to Real Address Translation Configuration (LRATCFG)
register

LRATCEFG, shown in Figure 2-34, gives configuration information about the implementation’s LRAT and
is implemented as defined in EREF.

This register is hypervisor privileged and shared by the threads.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-67

Register Model

SPR 342 Hypervisor RO
(shared)
32 39 40 46 47 49 50 51 52 63
ASSOC LASIZE — Q— NENTRY
-
W
Reset 0 0 0 O/1 0 0 0/0 1 0 1,0 0 0 0O/0O O 10/ 0O0UO0OGO0|/0O0O0O 1 0 0 O

Figure 2-34. Logical to Real Address Translation Configuration (LRATCFG) register
This table describes the LRATCFG fields.

Table 2-35. LRATCFG field descriptions

Bits Name

Description

32-39| ASSOC

LRAT associativity. Number of ways of associativity of the LRAT array. 0b00001000 indicates fully associative
(as it equals NENTRY).

40-46 | LASIZE

Logical address size. Number of bits in a logical address supported by the implementation. 0b0101000
indicates 40 bits of logical address.

47-49 — Reserved, should be 0.
50 LPID LPID supported. Indicates whether the LPID field in the LRAT is supported. Ob1 indicates that the LPID field
in the LRAT is supported.
51 — Reserved, should be 0.

52-63 | NENTRY

Number of entries. Number of entries in the LRAT array. 0b000000001000 indicates 8 entries.

€6500 Core Reference Manual, Rev 0

2-68

Freescale Semiconductor

Register Model

2.13.9 Logical to Real Address Translation Page Size (LRATPS) register

LRATPS, shown in Figure 2-35, gives configuration information about which page sizes an
implementation’s LRAT supports and is implemented as defined in EREF. LRATPS consists of 32 bits,
each of which represents whether a page size is supported. If bit & is set, then page size 263k KB is
supported. Page sizes of 4 KB to 1 TB are supported (in power of 2 increments).

This register is hypervisor privileged and is shared by the threads.

SPR 343 Hypervisor RO

32 33 61 62 63

— LRAT page size supported bits —

w

Reset 0 1 1 1|1 1 11|11 1 1|1 1111111111 1/1 1111 1 0 O

Figure 2-35. Logical to Real Address Translation Page Size (LRATPS) register

This table describes the LRATPS fields.
Table 2-36. LRATPS field descriptions

Bits Name Description

32 — Reserved, should be 0.

33-61 LRAT |Page size supported bits for the LRAT. For any bit k in the register:
page size |0 Page size 263K KB is not supported by the LRAT.
supported | 1 Page size 263K KB is supported by the LRAT.

bits 0x7FFFFFFC indicates 4 KB to 1 TB pages are supported.

62—-63 — Reserved, should be 0.

2.13.10 MMU assist registers (MAS0-MASS8)
MASnH registers are used to manage TLBs and the LRAT.
Each thread has a private set of MASn registers.

MAS register contents are written to the TLBs when MASO[ATSEL] = 0 and a TLB Write Entry (tlbwe)
instruction executes and are read from the TLBs when MASO[ATSEL] = 0 and a TLB Read Entry (tlbre)
instruction or a TLB Search (tlbsx) instruction executes. MAS register contents are written to the LRAT
when MASO[ATSEL] =1 and a TLB Write Entry (tlbwe) instruction executes and are read from the LRAT
when MASO[ATSEL] = 1 and a TLB Read Entry (tlbre) instruction.

Writing to any MAS register requires synchronization prior to executing a TLB manipulation instruction
(tlbwe, tlbre, tlbilx) that uses values in the MAS register to perform TLB operations. However, multiple
MAS register updates can be performed and a single context synchronization instruction prior to the
execution of the TLB manipulation instruction is sufficient to synchronize all the MAS register changes.
Synchronization is described in Section 3.3.3, “Synchronization requirements”.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-69

Register Model

TLB read (tlbre) and TLB write (tlbwe) instructions use MASO[TLBSEL], MASO[ESEL], and
MAS2[EPN] to select which TLB entry to read from or write to. On the e6500 core, these fields are used
as described in the following table:

Table 2-37. TLB selection fields

TLB Write TLB Array
MASO[ATSEL] | MASO[TLBSEL] MASO[ESEL] MAS2[EPN] MASO[NV]

0 0 MASOQ[45:47] selects way | MAS2[45:51] selects set MASO0[61:63] indicates Next
(low-order 3 bits of ESEL). | (low-order 7 bits of EPN). | Victim (NV) value for ESEL
If MASO[HES] = 1, these (low order 3 bits of NV).
bits are ignored and If MASO[HES] = 1, these bits are
hardware selects the way. ignored and hardware selects the

NV value.

0 1 MASOQ[42:47] selects entry | Not used because TLB1 is | NV field not defined for this TLB

(low-order 6 bits of ESEL). |fully associative array.

TLB read (tlbre) and TLB write (tlbwe) instructions use MASO[ESEL] and MAS2[EPN] to select which
LRAT entry to read from or write to. On the e6500 core, these fields are used as described in the following

table:
Table 2-38. LRAT selection fields
TLB Write TLB Array
MASO[ATSEL] | MASO[TLBSEL] MASO[ESEL] MAS2[EPN] MASO[NV]

1

Not used for
LRAT

MASOQ[45:47] selects entry
(low-order 3 bits of ESEL).

Not used because LRAT is
fully associative.

Not used for LRAT.

2.13.10.1 MMU Assist 0 (MASO) register

MASQO, shown in Figure 2-36, is implemented as defined by the architecture. Only the low-order bit of
TLBSEL, the low-order 6 bits of ESEL, and the low-order 3 bits of NV are implemented. The WQ field is
not implemented.

Writing to MASO requires synchronization, as described in Section 3.3.3, “Synchronization

b

requirements.
SPR 624 Guest supervisor
32 33 34 35 36 ‘ 41 42 ‘ 47 |48 49 50 51|52 ‘ 60 61 63
Rlm 0
»n| — |TLBSEL — ESEL — || — — NV
Wi I
<
Reset All zeros

Figure 2-36. MMU Assist 0 (MASO) register

This table describes the MASO fields.

€6500 Core Reference Manual, Rev 0

2-70

Freescale Semiconductor

Register Model

Table 2-39. MASO field descriptions — MMU read/write and replacement control

Bit Name Description
32 | ATSEL |Array type select. Selects LRAT or TLB for access by tilbwe or tlbre instructions. This field is always treated as
0 in guest state (MSR[GS] = 1).
0 TLB. tibwe and tlbre write and read entries out of the TLB arrays.
1 LRAT. tlbwe and tlbre write and read entries out of the LRAT array.
33-34 — Reserved
35 |TLBSEL|Selects TLB for access.
0 TLBO
1 TLBA1
36—41 — Reserved
42-47| ESEL |Entry select. Number of the entry in the selected array to be used for tibwe. Updated on TLB error exceptions
(misses) and tlbsx hit and miss cases. Only certain bits are valid, depending on the array selected in TLBSEL.
Other bits should be 0. Entry selection selects one of the entries defined by the set selected by TLBSEL and
MAS2[EPN].
ESEL is ignored if TLBNnCFG[HES] = 1 and MASO[HES] = 1 and entry selection within the set defined by
TLBSEL and MAS2[EPN] is performed by hardware. (
Note: The n of TLBnCFG is defined by TLBSEL.
48 — Reserved
49 HES |Hardware entry select. Valid only for tlbwe whenTLBnCFG[HES] = 1 and ATSEL = 0.
Note: The nof TLBnCFG is defined by TLBSEL. Hardware selects which entry in the TLB to write from the set
selected by TLBSEL and MAS2[EPN].
0 Entry selection within the set selected by TLBSEL and MAS2[EPN] is determined by ESEL.
1 Entry selection within the set selected by TLBSEL and MAS2[EPN] is determined by hardware and ESEL is
ignored.
Note: hardware entry select occurs only when:
e A TLB write occurs due to a successful hardware page tablewalk, or
e n=TLBSEL, a tlbwe occurs, and TLBnCFG[HES] = 1, HES = 1 and ATSEL = 0.
50-60 — Reserved
61-63| NV |Next victim. Can be used to identify the next victim to be targeted for a TLB miss replacement operation for

those TLBs that support the NV field.

For the e6500 core, NV is the next victim value to be written to TLBO[NV] on execution of tibwe. This field is
also updated on TLB error exceptions (misses), tibsx hit and miss cases, and on execution of tlbre.

This field is updated based on the calculated next victim value for TLBO (based on the round-robin replacement
algorithm, described in Section 6.3.2.2, “Replacement algorithms for L2 MMU entries”).

Note: This field is not defined for operations that specify TLB1 (when TLBSEL = 1).

2.13.10.2 MMU Assist 1 (MAS1) register

MASTI, shown in Figure 2-37, is implemented as defined in EREF. Only 4 KB through 1 TB page sizes are
supported for TSIZE (when using TLB1). Only LRAT 4 KB through 1 TB page sizes are supported for
TSIZE.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-71

Register Model

Writing to MAS1 requires synchronization, as described in Section 3.3.3, “Synchronization
requirements.”

SPR 625 Guest supervisor
32 33 34 ‘ ‘ ‘ 47 |48 49 50 51 |52 ‘56 57 63
R o
W V | IPROT TID — |=|TS TSIZE —
Reset All zeros

Figure 2-37. MMU Assist 1 (MAS1) register

This table describes the MAS]1 fields.

Table 2-40. MAS1 field descriptions — Descriptor context and configuration control

Bits | Name Descriptions

32 V | TLB valid bit
0 This TLB entry is invalid.
1 This TLB entry is valid.

33 |IPROT |Invalidate protect. Set to protect this TLB entry from invalidate operations from tlbivax, tibilx, or MMUCSRO TLB
flash invalidates. Note that not all TLB arrays are necessarily protected from invalidation with IPROT. Arrays that
support invalidate protection are denoted as such in the TLB configuration registers.

0 Entry is not protected from invalidation.

1 Entry is protected from invalidation.

34-47| TID |Translation identity. Defines the process ID for this TLB entry. TID is compared to the process ID in the PID
register during translation. A TID value of 0 defines an entry as global and matches with all process IDs.

48-49| — |Reserved

50 IND |Indirect. Defines this TLB entry as an indirect entry that is used to find a page table when a hardware page
tablewalk is performed. IND is ignored and assumed to be 0 if TLBnCFG[IND] = 0.

0 This TLB entry is not an indirect entry and is used for normal translation.

1 This TLB entry is an indirect entry and is used for page table translation.

Note: The nof TLBnCFG is defined by TLBSEL.

51 TS |Translation space. Compared with MSR][IS] (instruction fetch) or MSR[DS] (memory reference) to determine if
this TLB entry may be used for translation.

52-56 | TSIZE | Translation size. Defines the page size of the TLB entry and defines the page size of the LRAT entry. For TLB
arrays with fixed-size TLB entries, TSIZE is ignored. For variable-size arrays, the page size is 21 5'2E KB. The
6500 core supports TLB page sizes from 4 KB to 1 TB (0b00010 to Ob11110). For LRAT entries, the page size
is 2TSIZE KB. The e6500 core supports LRAT page sizes defined by EREF from 4 KB to 1 TB (0b00010 to
0b11110).

57-63| — |Reserved

2.13.10.3 MMU Assist 2 (MAS2) register

MAS?2, shown in Figure 2-38, is implemented as defined in EREF. MAS?2 is a 64-bit register. The ACM
and VLE fields are not implemented.

Writing to MAS2 requires synchronization, as described in Section 3.3.3, “Synchronization
requirements.”

€6500 Core Reference Manual, Rev 0

2-72 Freescale Semiconductor

Register Model

SPR 626 Guest supervisor
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 51|52 56 57 58 59 |60 61 62 63
R EPN — X0 X1|W|I|M|G|E
w
Reset All zeros

Figure 2-38. MMU Assist 2 (MAS2) register

This table describes the MAS?2 fields.

Table 2-41. MAS2 field descriptions — EPN and page attributes

Bits |Name Description
0-51 | EPN |Effective page number. Depending on page size, only the bits associated with a page boundary are valid. Bits that
represent offsets within a page are ignored and should be zero.
52-56| — |Reserved
57 X0 |Implementation-dependent page attribute. Implemented as storage.
58 X1 |Implementation-dependent page attribute. Implemented as storage.
59 W |Write-through
0 This page is considered write-back with respect to the caches in the system.
1 All stores performed to this page are written through the caches to main memory.
60 | |Caching-inhibited

0 Accesses to this page are considered cacheable.

1 The page is considered caching-inhibited. All loads and stores to the page bypass the caches and are
performed directly to main memory. A read or write to a caching-inhibited page affects only the memory
element specified by the operation.

Note: Cache-inhibited loads may hit in the L1 cache, but the transaction is always performed over CoreNet,

ignoring the hit (although the hit may have other unarchitected side effects).

Note: Cache-inhibited (non-decorated, and non-guarded) loads execute speculatively on the e6500 core.

61 M |Memory coherency required

0 Memory coherency is not required.

1 Memory coherency is required. This allows loads and stores to this page to be coherent with loads and stores
from other processors (and devices) in the system, assuming all such devices are participating in the
coherency protocol.

62 G |Guarded

0 Accesses to this page are not guarded and can be performed before it is known if they are required by the
sequential execution model.

1 All loads and stores to this page are performed without speculation (that is, they are known to be required).

Guarded loads (that are not cache inhibited) execute speculatively out of the core caches but will execute

non-speculatively if required to go off core to execute.

63 E |Endianness. Determines endianness for the corresponding page. Little-endian operation is true little-endian,

which differs from the modified little-endian byte ordering model available in the original PowerPC architecture.
0 The page is accessed in big-endian byte order.
1 The page is accessed in true little-endian byte order.

2.13.10.4 MMU Assist 3 (MAS3) register
MAS3, shown in Figure 2-39, is implemented as defined in EREF.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-73

Register Model

NOTE

When an operating system executing as a guest on a hypervisor uses the
RPN fields of MAS3 and MAS7, the RPN should be interpreted by the
hypervisor as a logical address or a guest physical address. The hypervisor
or the LRAT will write a logical to real translated RPN field with a real
physical address obtained from translating the logical address to a real
physical address when emulating tlbwe instructions.

Writing to MAS3 requires synchronization, as described in Section 3.3.3, “Synchronization

requirements.”

There are two definitions for MAS3 depending on whether an indirect entry is being read or written
(MASI[IND] = 1). If the entry is not an indirect entry (MAS1[IND] = 0), then bits 58-63 are defined as
permission bits. Otherwise, bits 58-62 are defined as the SPSIZE field and bit 63 is undefined.

SPR 627 Guest supervisor
32 ‘ ‘ ‘ ‘ 51|52 53 54 ‘ 57 58 59|60 61 62 63
R
W RPN — uo-uUs3 UX|SX|UW|SW |UR|SR
Reset All zeros
When MAS1[IND] = 1 and TLBnCFG[IND] = 1, where n = MASO[TLBSEL] Guest supervisor
32 ‘ ‘ ‘ ‘ 51|52 53 54 57 58 62 63
R o)
RPN — uo-uUs3 SPSIZE Z
w o)
Reset All zeros

Figure 2-39. MMU Assist 3 (MAS3) register

This table describes the MAS3 fields.

Table 2-42. MASS field descriptions — RPN and access control

Bits

Name

Description

32-51

RPN

Real page number. Depending on page size, only the bits associated with a page boundary are valid. Bits that
represent offsets within a page are ignored and should be zero. MAS3[RPN] contains only the low-order bits
of the real page number. The high-order bits of the real page number are located in MAS7. See

Section 2.13.10.8, “MAS Register 7 (MAS7),” for more information.

For indirect entries, the valid RPN bits are a function of the page size of the indirect entry. The page size as it
applies to the RPN in this case is the page size of the indirect entry - 9 (TSIZE - 9).

52-53

Reserved

€6500 Core Reference Manual, Rev 0

2-74

Freescale Semiconductor

Register Model

Table 2-42. MAS3 field descriptions — RPN and access control (continued)

Bits | Name Description

54-57| U0-U3 |User attribute bits. These bits are associated with a TLB entry and can be used by system software. For
example, these bits may be used to hold information useful to a page scanning algorithm or be used to mark
more abstract page attributes.

58-63| UX,SX |Permission bits. User and supervisor read, write, and execute permission bits. See EREF for more information
UW,SW, |on the page permission bits as they are defined by the architecture.
UR,SR

58-62 | SPSIZE |Sub-page size. The sub-page size, if the entry is an indirect entry. The entry is only an indirect entry if
MAS1[IND] = 1 and TLBnCFG[IND] = 1, where n = MASO[TLBSEL]. The e6500 core only supports sub-page
sizes of 4 KB. An attempt to write an indirect entry with a value other than 0b00010 for SPSIZE causes the
entry to be created with a SPSIZE of 0b00010. A read of an indirect entry always returns 0b00010 in SPSIZE.

63 UND |Contains an undefined value when the entry is an indirect entry.

2.13.10.5 MMU Assist 4 (MAS4) register

MAS4, shown in Figure 2-40, is implemented as defined in EREF. Only the low-order bit of TLBSELD
is implemented and only 4 KB through 1 TB page sizes are supported for TSIZED (when using TLB1).
The ACMD and VLED fields are not implemented

Writing to MAS4 requires synchronization, as described in Section 3.3.3, “Synchronization
requirements.”

SPR 628 Guest supervisor
32 34 35 36 ‘ ‘ 4748 49 51 |52 ‘56 57 58 59 | 60 61 62 63
R [m)
wl — TLBSELD — % — TSIZED X0D [X1D (WD | ID (MD|GD |ED
Reset All zeros

Figure 2-40. MMU Assist 4 (MAS4) register

This table describes the MAS4 fields.

Table 2-43. MAS4 field descriptions — Hardware replacement assist configuration

Bits Name Description
32-34 — Reserved
35 |TLBSELD | TLBSEL default value. Specifies the default value to be loaded in MASO[TLBSEL] on a TLB miss exception.
3647 — Reserved
48 INDD |IND default value. Specifies the default value to be loaded in MAS1[IND] and MASG6[IND] on a TLB miss
exception.
49-51 — Reserved
52-56| TSIZED |Default TSIZE value. Specifies the default value to be loaded into MAS1[TSIZE] on a TLB miss exception.
57 X0D Default X0 value. Specifies the default value to be loaded into MAS2[X0] on a TLB miss exception.
58 X1D Default X1 value. Specifies the default value to be loaded into MAS2[X1] on a TLB miss exception.
59 WD Default W value. Specifies the default value to be loaded into MAS2[W] on a TLB miss exception.
60 ID Default | value. Specifies the default value to be loaded into MAS2[I] on a TLB miss exception.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-75

Register Model

Table 2-43. MAS4 field descriptions — Hardware replacement assist configuration (continued)

Bits Name Description

61 MD Default M value. Specifies the default value to be loaded into MAS2[M] on a TLB miss exception.
62 GD Default G value. Specifies the default value to be loaded into MAS2[G] on a TLB miss exception.
63 ED Default E value. Specifies the default value to be loaded into MAS2[E] on a TLB miss exception.

2.13.10.6 MMU Assist 5 (MAS5) register

MASS, shown in Figure 2-41, is implemented as defined in EREF. MASS contains hypervisor fields for
specifying LPID and GS values to be used to search TLB entries with a tlbsx instruction and for specifying
LPID values to invalidate TLB entries with a tlbilx instruction. Only the low-order 6 bits of SLPID are
implemented.

Writing to MASS requires synchronization, as described in Section 3.3.3, “Synchronization
requirements.”

SPR 339 Hypervisor
32 33 ‘ ‘ ‘ ‘ ‘ ‘ 57 58 63
R SGS — SLPID
w
Reset All zeros

Figure 2-41. MMU Assist 5 (MAS5) register

This table describes the MASS fields.
Table 2-44. MASS field descriptions

Bits | Name Description

32 SGS |Search GS. Specifies the GS value used when searching the TLB during execution of tlbsx. The SGS field is
compared with the TGS field of each TLB entry to find a matching entry.

33-55 — | Reserved

56—63 | SLPID |Search LPID. Specifies the LPID value used when searching the TLB during execution of tlbsx. The SLPID
field is compared with the TLPID field of each TLB entry to find a matching entry.

2.13.10.7 MMU Assist 6 (MAS6) register
MAS®6, shown in Figure 2-42, is implemented as defined in EREF.
Note that the SPID field was previously named SPID0. Both names refer to the same field.

Writing to MASG6 requires synchronization, as described in Section 3.3.3, “Synchronization
requirements.”

€6500 Core Reference Manual, Rev 0

2-76 Freescale Semiconductor

Register Model

SPR 630 Guest supervisor
32 33 34 47 | 48 51 |52 56 57 61 62 63
[a)
R _ SPID — ISIZE — =z 2
n| N
Reset All zeros

Figure 2-42. MMU Assist 6 (MAS6) register

This table describes the MASG6 fields.
Table 2-45. MASG6 field descriptions

Bits | Name Description

32-33| — |Reserved

34-47| SPID |Search PID. Specifies the value of PID used when searching the TLB during execution of tlbsx.

48-51 — | Reserved

52-56 | ISIZE |Invalidation size. Specifies the page size when a tlbilx T = 3 or tlbivax is executed. The e6500 core does not
require ISIZE to be set and ignores it when performing invalidations. Software should set ISIZE to maintain
portability with other implementations.

57-61 — | Reserved

62 | SIND |Indirect (IND) value for searches and invalidates. Specifies the value of IND used when searching the TLB during
execution of tlbsx or performing invalidations during execution of tlbilx T=3 or tibivax.

63 SAS |Address space (AS) value for searches. Specifies the value of AS used when searching the TLB during
execution of tibsx.

2.13.10.8 MAS Register 7 (MAS7)

MAST7, shown in Figure 2-43, is implemented as defined by the EREF. MAS7 contains the high-order
32-bits of the real (physical) page number. Since e6500 supports 40 bits of physical address, only the
low-order 8 bits of the high-order 32-bits of the real address (RPN) are implemented.

NOTE

When an operating system executing as a guest on a hypervisor uses the
RPN fields of MAS3 and MAS7, the RPN should be interpreted by the
hypervisor as a logical address or a guest physical address. The hypervisor
or the LRAT will write a logical to real translated RPN field with a real
physical address obtained from translating the logical address to a real
physical address when emulating tlbwe instructions.

Writing to MAS7 requires synchronization, as described in Section 3.3.3, “Synchronization
requirements.”

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-77

'
A

Register Model

SPR 944 Guest supervisor
32 55 | 56 63
R
— RPN
w
Reset All zeros

Figure 2-43. MMU Assist 7 (MAS7) register

This table describes the MAS7 fields.
Table 2-46. MASY field descriptions — High-order RPN

Bits |Name Description

32-55| — |Reserved

56-63| RPN |Real page number, 8 high-order bits. MAS3 holds the remainder of the RPN. The byte offset within the page is
provided by the EA and is not present in MAS3 or MAS?7.

2.13.10.9 MMU Assist 8 (MASS8) register

MASS, shown in Figure 2-44, is implemented as defined in EREF. MASS contains hypervisor-state fields
used for selecting a TLB entry during translation. Only the low-order 6 bits of TLPID are implemented.

Writing to MASS requires synchronization, as described in Section 3.3.3, “Synchronization
requirements.”

SPR 341 Hypervisor
32 33 34 ‘ ‘ ‘ ‘ ‘ ‘ 57 58 63
"ltes|v — TLPID
W
Reset All zeros

Figure 2-44. MMU Assist 8 (MAS8) register

This table describes the MASS fields.
Table 2-47. MASS field descriptions

Bits | Name Description

32 TGS |Translation guest space. During translation, TGS is compared with MSR[GS] to select a TLB entry.

33 VF |Virtualization fault. If set, data accesses that translate through this TLB entry cause a virtualization fault and

subsequent DSI, which is directed to the hypervisor, regardless of the permission bit settings. Instruction

accesses that translate through this TLB entry are not affected by this bit. If set in an indirect TLB entry that

performs a page table translation, a virtualization fault occurs if the translation is for a data access, and an

instruction virtualization fault occurs if the translation is for an instruction fetch access.

0 Accesses translated by this TLB entry occur normally.

1 Accesses translated by this TLB entry always cause a virtualization fault or an instruction virtualization fault
(for indirect TLB entry only) and subsequent data or instruction storage interrupt.

34-57| — |Reserved

58-63 | TLPID | Translation logical partition ID. During translation, TLPID is compared with the LPIDR to select a TLB entry. A
TLPID value of 0 defines an entry as global and matches all values of LPIDR.

€6500 Core Reference Manual, Rev 0

2-78 Freescale Semiconductor

Register Model

2.13.10.10 64-bit access to MAS register pairs

Certain MAS registers can be accessed in pairs with single mfspr or mtspr instruction. The register pairs
are listed in Table 2-48. Software should take special consideration when using MAS register pairs because
the programming model is only available on 64-bit implementations. For mtspr, all 64 bits are written
from the source GPR to the MAS pair. For mfspr, all 64 bits are read from the MAS pair and are written
to the GPR, regardless of computation mode. If compatibility with 32-bit implementations is desired, MAS
register pairs should not be used, and the MAS registers should be addressed individually.

Table 2-48. MAS register pairs

Name SPR Number Privilege Bits 0-31 Bits 32-63
MASO_MAS1 373 Guest supervisor MASO MASH1
MAS5_MAS6 348 Hypervisor MAS5 MAS6
MAS7_MAS3 372 Guest supervisor MAS7 MAS3
MAS8_MASH1 349 Hypervisor MAS8 MASH1

2.13.11 External PID registers

Each e6500 thread implements private, external PID load and store context registers (EPLC and EPSC) as
defined in EREF.

2.13.11.1 External PID Load Context (EPLC) register

EPLC, shown in Figure 2-45, contains fields to provide the context for external PID load instructions. Only
the low-order 6 bits of the ELPID field are implemented.

Writing to EPLC requires synchronization, as described in Section 3.3.3, “Synchronization requirements.”

SPR 947 Guest supervisor
32 33 34 35‘ ‘ 41 42 ‘ 47 |48 49 50 ‘ ‘ ‘ 63
R
W EPR|EAS |[EGS — ELPID — EPID
Reset All zeros

Figure 2-45. External PID Load Context (EPLC) register

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-79

Register Model

This table describes the EPLC fields.
Table 2-49. EPLC field descriptions — External PID load context

Bits | Name Descriptions

32 EPR |External load context PR bit. Used in place of MSR[PR] for load permission checking when an external PID
load instruction is executed.

0 Supervisor mode

1 User mode

33 EAS |External load context AS bit. Used in place of MSR[DS] for load translation when an external PID load
instruction is executed. Compared with TLB[TS] during translation.

0 Address space 0

1 Address space 1

34 EGS |External load context GS bit. Used in place of MSR[GS] for load translation when an external PID load
instruction is executed. Compared with TLB[TGS] during translation.This field is only writable in the hypervisor
state (MSR[PR] = 0 and MSR[GS] = 0)

0 Hypervisor address space

1 Guest address space

3541 — Reserved

42-47 | ELPID |External load context LPID value. Used in place of LPIDR value for load translation when an external PID load
instruction is executed. Compared with TLB[TLPID] during translation. This field is only writable in the
hypervisor state (MSR[PR] = 0 and MSR[GS] = 0).

48-49 — Reserved

50-63 | EPID |External load context PID value. Used in place of all PID register values for load translation when an external
PID load instruction is executed. Compared with TLB[TID] during translation.

2.13.11.2 External PID Store Context (EPSC) register

EPSC, shown in Figure 2-46, contains fields to provide the context for external PID store instructions. The
field encoding is the same as EPLC. Only the low-order 6 bits of the ELPID field are implemented.

Writing to EPSC requires synchronization, as described in Section 3.3.3, “Synchronization requirements.”

SPR 948 Guest supervisor
32 33 34 35‘ ‘ 41 42 ‘ 4748 49 50 ‘ ‘ ‘ 63
R
W EPR|EAS |EGS — ELPID — EPID
Reset All zeros

Figure 2-46. External PID Store Context (EPSC) register

€6500 Core Reference Manual, Rev 0

2-80 Freescale Semiconductor

Register Model

This table describes the EPSC fields.
Table 2-50. EPSC field descriptions — External PID store context

Bits | Name Descriptions

32 EPR |External store context PR bit. Used in place of MSR[PR] for store permission checking when an external PID
store instruction is executed.

0 Supervisor mode

1 User mode

33 EAS |External store context AS bit. Used in place of MSR[DS] for store translation when an external PID store
instruction is executed. Compared with TLB[TS] during translation.

0 Address space 0

1 Address space 1

34 EGS |External store context GS bit. Used in place of MSR[GS] for load translation when an external PID store
instruction is executed. Compared with TLB[TGS] during translation.This field is only writable in the hypervisor
state (MSR[PR] = 0 and MSR[GS] = 0).

0 Hypervisor address space

1 Guest address space

35-41 — Reserved

42-47 | ELPID |External store context LPID value. Used in place of LPIDR value for load translation when an external PID store
instruction is executed. Compared with TLB[TLPID] during translation. This field is only writable in the
hypervisor state (MSR[PR] = 0 and MSR[GS] = 0).

48-49 — Reserved

50-63 | EPID |External store context PID value. Used in place of all PID register values for store translation when an external
PID store instruction is executed. Compared with TLB[TID] during translation.

2.14 Internal debug registers

This section describes debug-related registers that are accessible to software running on the processor via
the SPR interface. These registers are intended for use by special debug tools and debug software and not
by general application or operating system code.

The register descriptions listed in this section show the register organization, addressing information, and
offer a small amount of detail for the bits implemented. For a more comprehensive description of the debug
facilities, including how these registers interact with other debug registers and components, see Chapter 9,
“Debug and Performance Monitor Facilities.”

Each thread in the e6500 core has a private set of debug registers, including nexus related and instruction
and data address compare registers.

The 6500 core implements the category Embedded Enhanced Debug from EREF, which provides a
separate set of save/restore registers for debug interrupts (DSRRO/DSRR1, see Section 2.9.1,
“Save/restore registers (xXSRRO/xSRR1)”), an rfdi instruction to return from debug interrupts, and
additional debug events for Critical Interrupt Taken and Critical Interrupt Return.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-81

Register Model

2.141 Unimplemented internal debug registers
The €6500 core does not implement the following internal debug registers defined in EREF':

« DBCR3
« DVC1,DVC2

2.14.2 Debug Resource Request 0 (DBRRO0) register

DBRRO, shown in Figure 2-47, allows an internal software debug agent to request debug resources. After
writing this register to request debug resources, reading this register back indicates which ones were
granted. This register does not affect the actual allocation of debug resources. Allocation is handled by the

EDBRACO register.

SPR 700 Hypervisor
32 33 34 35(36 37 38 39|40 41 42 43|44 45 47|48 49 50 51|52 53 54 55|56 57 58 59|60 61 62 63
R1 a o < q © w O | [|||«
AR R R - = T N I B Flw | als Ols|O|la|w|z|0|0|0 |0
wl — 1213318 [&E12|78|°1R] — |2/§|°12] ~ |EEEIEE B 55 EE
= = F|< < a < < = w|O|O |||

Reset All zeros

Figure 2-47. Debug Resource Request 0 (DBRRO) register

' Reads 0 for resources not granted to the software debug agent (either not requested or previously owned and released). Reads

1 for resources that are granted to the software debug agent.
2 Write 0 for resources not being requested or to release previously owned resources. Write 1 to request a resource be granted

to the software debug agent.

This table describes the DBRRO fields.
Table 2-51. DBRRO field descriptions

Bits Name Description
32-33 — Reserved

34 RST | Reset Field Control (DBCRO[RST])

35 UDE | Unconditional Debug Event

36 ICMP | Instruction Complete Debug Event (DBCRO[ICMPY])

37 BRT | Branch Taken Debug Event (DBCRO[BRT])

38 IRPT | Interrupt Taken Debug Condition Enable (DBCRO[IRPT])

39 TRAP | Trap Debug Event (DBCRO[TRAP])

40 IAC1/2 |Instruction Address Compare 1 and 2

41 — Reserved

42 IAC3/4 | Instruction Address Compare 3 and 4

43 — Reserved

44 DAC1/2 | Data Address Compare 1 and 2

45-47 — Reserved

€6500 Core Reference Manual, Rev 0

2-82 Freescale Semiconductor

Register Model

Table 2-51. DBRRO field descriptions (continued)

Bits Name Description

48 RET | Return Debug Event (DBCRO[RET])

49 IAC5/6 | Instruction Address Compare 5 and 6

50 — Reserved
51 IAC7/8 | Instruction Address Compare 7 and 8
52-53 — Reserved

54 TRACE | e6500 Nexus Trace

55 PM Performance Monitor

56 | EVTOO' | Event Output 0

57 CIRPT | Critical Interrupt Taken Debug Event (DBCRO[CIRPT])

58 CRET | Return From Critical Interrupt Debug Event (DBCRO[CRET])

59 DNI Debug Notify Interrupt (dni) instruction

60 | EVTO12 |Event Output 1

61 EVTO2? | Event Output 2

62 | EVTO3? | Event Output 3

63 | EVTO42 | Event Output 4

Does not have a corresponding bit in the External Debug Resource Allocation Control (EDBRACO) register and, thus, is only
provided to identify if the resource is currently in use. Allocation of this resource is not possible and, thus, internal and external
debuggers should make every effort to not overwrite the configuration once the resource has been granted.

Does not have a corresponding bit in the External Debug Resource Allocation Control (EDBRACO) register and, thus, is only
provided to identify if the resource is currently being used. Allocation of this resource is not possible and, thus, internal and
external debuggers should make every effort to not overwrite the configuration once the resource has been granted. The
configuration of multiple event output bits is located in one register (DC3). If these events are shared, it is recommended that
the external debugger configure these resources only when the core is halted. Otherwise, read-modify-write problems arise
when both the internal and external debugger write to this register, and the results are unpredictable.

2.14.3 External Debug Resource Allocation Control 0 (EDBRACO) register

EDBRACO, shown in Figure 2-48, allows an external host debugger to allocate debug resources for its
usage.

When EDM mode is not enabled (EDBCRO[EDM] = 0), this register is ignored and an internal software
debug agent can use any debug resources.

When EDM mode is enabled (EDBCRO[EDM]=1), debug resources that are allocated to the internal
software debug agent (that is, the corresponding bit in this register is set) are usable by software only and
are not accessible by the external host debugger. Similarly, debug resources that are allocated to the
external host debugger (that is, the corresponding bit in this register is clear) are usable by the external host
debugger only and are not accessible by an internal software debug agent.

Only the external host debugger can write to this register. However, this register is readable by the software
via the SPR interface.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-83

Register Model

SPR 638 Hypervisor RO
32 33 34 35|36 37 38 39|40 41 42 43|44 45 47 |48 49 50 51|52 53 54 55|56 57 58 59 |60 63
Qq < Q © © L [
EEHAN S E RS slg R - Bl _klElz|
w—la|21218(5|zlz|C|lle|—|] — |®le|—le| — IZIE|TE | |B
- = = | |<Z < la) < < - 0|0
Reset All zeros

Figure 2-48. External Debug Resource Allocation Control 0 (EDBRACO) register

This table describes the EDBRACO fields.
Table 2-52. EDBRACO field descriptions

Bits Name Description
32 — Reserved
Internal Debug Mode Control (DBCRO[IDM])
33 IDM 0 Internal Debug Mode enable/disable is owned exclusively by an external debug host.

1 Internal Debug Mode enable/disable is owned exclusively by an internal debug agent.

Reset Field Control (DBCRO[RST])
34 RST 0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

Unconditional Debug Event (DBCRO[UDE])
35 UDE |0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

Instruction Complete Debug Event (DBCRO[ICMP])
36 ICMP |0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

Branch Taken Debug Event (DBCRO[BRT])
37 BRT 0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

Interrupt Taken Debug Condition Enable (DBCRO[IRPT])
38 IRPT |0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

Trap Debug Event (DBCRO[TRAP])
39 TRAP |0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

Instruction Address Compare 1 and 2
40 IAC1/2 |0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

41 — Reserved

Instruction Address Compare 3 and 4
42 IAC3/4 |0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

43 — Reserved

Data Address Compare 1 and 2
44 DAC1/2 |0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

€6500 Core Reference Manual, Rev 0

2-84 Freescale Semiconductor

Register Model

Table 2-52. EDBRACO field descriptions (continued)

Bits Name Description

45-47 — Reserved

Return Debug Event (DBCRO[RET])
48 RET 0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

Instruction Address Compare 5 and 6
49 IAC5/6 |0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

50 — Reserved

Instruction Address Compare 7 and 8
51 IAC7/8 |0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

52-53 — Reserved

6500 Processor Nexus Trace
54 TRACE' |0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

Performance Monitor
55 PM 0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

56 — Reserved

Critical Interrupt Taken Debug Event (DBCRO[CIRPT])
57 CIRPT |0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

Return From Critical Interrupt Debug Event (DBCRO[CRET])
58 CRET |0 Debug resource is owned exclusively by an external debug host.
1 Debug resource is allocatable/usable by an internal debug agent.

Debug Notify Interrupt (dni) instruction
0 Debug resource is owned exclusively by an external debug host. Execution of the dni instruction results
in entry into debug halt mode (if EDBSRMSKO[DNIM] = 0).

59 DNI 1 Debug resource is allocatable/usable by an internal debug agent. Execution of the dni instruction results
in either a debug interrupt (DBCRO[IDM] = 1 and MSR[DE] = 1) or a nop (DBCRO[IDM] = 0 or MSR[DE]
=0).

60-63 — Reserved

' Does not include ownership of the DC2 and DC3 registers (for EVTOO0-4 configuration). Those two registers are unprotected.

2.14.4 Debug Control 0 (DBCRO) register

DBCRO, shown in Figure 2-49, is used to enable debug modes and control which debug events are allowed
to set DBSR or EDBSRO flags, reset the thread, and control timer operation during debug events.

All bits in this register (except EDM and FT) are writable only by the owner (as defined in the EDBRACO
register when EDM is enabled). When EDM is disabled, the internal software debug agent has access to
all resources, but should make sure to request the resources it is using via the DBRRO register prior to
configuring them.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-85

Register Model

EDM is read only in this register and FT is writable via an SPR access only. The external debugger must
halt the core and access FT via SPR.

When DBCRO[EDM] or DBCRO[IDM] are enabled, the debug resources in this register that are not
enabled (excluding RST and FT) generate a watchpoint when the debug event occurs. Debug resources that
are enabled (excluding RST and FT) cause the appropriate status register bit to be set (DBSR for debug

events allocated to IDM, and EDBSRO for debug events allocated to EDM) and will cause exception
processing to begin (for debug events allocated to IDM) or the core to halt (for debug events allocated to

EDM).

SPR 308 Hypervisor
32 33 34 35(36 37 38 39(40 41 42 43|44 45 46 47 |48 49 50 51|52 53 ‘56 57 58 59‘ 62 63
R(= —
Sls| k [2|F|E sl 5 N | w|o|~]|o i
w w |[Slxja|LjlolOo|Q|o| @Q Q |w|Q|olo|Q — — =
1A o < < oC | [
w = 2 |Qo|E(E ||| F A EREY R G lo
Reset All zeros

Figure 2-49. Debug Control 0 (DBCRO) register

' Individual bits in DBCRO that are owned by an external debugger (as configured in the EDBRACO register) are unaffected by
a write via mtspr. Similarly, individual bits in DBCRO that are owned by a software debug agent (as configured in the

EDBRACO register) are unaffected by a write via the memory-mapped interface.

This table describes the DBCRO fields.
Table 2-53. DBCRO field descriptions

Bits Name Description

External Debug Mode. This bit is read only by software. It reflects the status of EDBCRO[EDM].

0 External debug mode is disabled. Internal debug events are not mapped into external debug events.
32 EDM |1 External debug mode is enabled. Hardware-owned debug events do not cause the CPU to vector to
interrupt code. Software is not permitted to write to debug registers {DBCRO0-5, IAC1-8, DAC1-2} unless
permitted by settings in DBRRO. Hardware-owned events set status bits in EDBSRO.

Internal Debug Mode

0 Debug exceptions are disabled. Debug events do not affect DBSR.

33 IDM |1 Debug exceptions are enabled. Enabled debug events owned by software update the corresponding bit
in the DBSR. If MSR[DE] = 1, the occurrence of a debug event, or the recording of an earlier UDE debug

event in the DBSR when MSR[DE] was cleared, causes a debug interrupt.

Reset.
The 6500 core implements these bits as follows:

0x Default (no action)

34-35 RST 1x Core reset. Requests a core hard reset.

When owned by an internal software debug agent (EDBRACO[RST] = 1), a write of DBCRO[RST] = 1x
requests a core hard reset if MSR[DE] and DBCRO[IDM] are set.
Always cleared on subsequent cycle.

Instruction Complete Debug Condition Enable

36 ICMP |0 ICMP debug conditions are disabled.
1 ICMP debug conditions are enabled.

€6500 Core Reference Manual, Rev 0

2-86 Freescale Semiconductor

Register Model

Table 2-53. DBCRO field descriptions (continued)

Bits

Name

Description

BRT

Branch Taken Debug Condition Enable
0 BRT debug conditions are disabled.
1 BRT debug conditions are enabled.

38

IRPT

Interrupt Taken Debug Condition Enable. This bit affects only non-critical, non-debug, and non-machine
check interrupts.

0 IRPT debug conditions are disabled.

1 IRPT debug conditions are enabled.

39

TRAP

Trap Debug Condition Enable
0 TRAP debug conditions are disabled.
1 TRAP debug conditions are enabled.

40

IAC1

Instruction Address Compare 1 Debug Condition Enable
0 IAC1 debug conditions are disabled.
1 IAC1 debug conditions are enabled.

41

IAC2

Instruction Address Compare 2 Debug Condition Enable
0 IAC2 debug conditions are disabled.
1 IAC2 debug conditions are enabled.

42

IAC3

Instruction Address Compare 3 Debug Condition Enable
0 IAC3 debug conditions are disabled.
1 IAC3 debug conditions are enabled.

43

IAC4

Instruction Address Compare 4 Debug Condition Enable
0 IAC4 debug conditions are disabled.
1 1AC4 debug conditions are enabled.

44-45

DAC1

Data Address Compare 1 Debug Condition Enable

00 DAC1 debug conditions are disabled.

01 DAC1 debug conditions are enabled only for store-type data storage accesses.

10 DAC1 debug conditions are enabled only for load-type data storage accesses.

11 DAC1 debug conditions are enabled for load-type or store-type data storage accesses.

46-47

DAC2

Data Address Compare 2 Debug Condition Enable

00 DAC?2 debug conditions are disabled.

01 DAC2 debug conditions are enabled only for store-type data storage accesses.

10 DAC2 debug conditions are enabled only for load-type data storage accesses.

11 DAC2 debug conditions are enabled for load-type or store-type data storage accesses.

48

RET

Return Debug Condition Enable

This bit affects only non-critical, non-debug, and non-machine check interrupts.
0 RET debug conditions are disabled.

1 RET debug conditions are enabled.

49

IAC5

Instruction Address Compare 5 Debug Condition Enable
0 IACS5 debug conditions are disabled.
1 IAC5 debug conditions are enabled.

50

IAC6

Instruction Address Compare 6 Debug Condition Enable
0 IAC6 debug conditions are disabled.
1 1ACG6 debug conditions are enabled.

51

IAC7

Instruction Address Compare 7 Debug Condition Enable
0 IAC7 debug conditions are disabled.
1 IAC7 debug conditions are enabled.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-87

Register Model

Table 2-53. DBCRO field descriptions (continued)

Bits Name Description
Instruction Address Compare 8 Debug Condition Enable
52 IAC8 |0 IACS8 debug conditions are disabled.
1 IAC8 debug conditions are enabled.
53-56 — Reserved
Critical Interrupt Taken Debug Condition Enable
57 CIRPT |0 CIRPT debug conditions are disabled.
1 CIRPT debug conditions are enabled.
Return From Critical Interrupt Debug Condition Enable
58 CRET |0 CRET debug conditions are disabled.
1 CRET debug conditions are enabled.
59-62 — Reserved
Freeze Timers on Debug Event
0 Timebase counters are unaffected by DBSR bits.

63 ET 1 Disable clocking of TimeBase counters whenever a DBSR bit is set (excluding DBSR[MRR]).
Note: The FT bit applies to all timers, including the shared TB and ATB, and each thread’s DEC, FIT, and
watchdog timers.

2.14.5 Debug Control 1 (DBCR1) register

DBCRI1, shown in Figure 2-50, is implemented as defined by the architecture and described in EREF, with
the following exceptions:

TAC1- TAC4 comparisons must be based on effective addresses. Comparisons based on real
addresses are not supported

When IAC12M != 00, IAC2US and IAC2ER settings are ignored and IAC1US and IAC1ER values

are used.
* When IAC34M !=00, IAC4US and IAC4ER settings are ignored and IAC3US and IAC3ER values
are used.
SPR 309 Hypervisor
32 33 34 35|36 37 38 39|40 41 42 ‘ 47 |48 49 50 51|52 53 54 55|56 57 58 ‘ 63
Rl @ o 1) o s 1) o 1) o s
(28348 2 |82 |Y 3
wil = - S — —
2] 2|2]2 |82 2|2 |2]28 |82
Reset All zeros

Figure 2-50. Debug Control 1 (DBCR1) register

1 Software writes are not allowed to EDM-owned resources (as configured in the EDBRACO register) and are ignored.

€6500 Core Reference Manual, Rev 0

2-88

Freescale Semiconductor

Register Model

This table describes the DBCR1 fields.

Table 2-54. DBCR1 field descriptions

Bits Name Description
32-33 | IAC1US | Instruction Address Compare 1 User/Supervisor Mode

00 IAC1 debug conditions are unaffected by MSR[PR], MSR[GS].

01 Reserved on 6500

10 IAC1 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).

11 IAC1 debug conditions can occur only if MSR[PR] = 1 (user mode).

34-35 | IAC1ER |Instruction Address Compare 1 Effective/Real Mode

00 IAC1 debug conditions are based on effective addresses.

01 Reserved on 6500

10 IAC1 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0.

11 IAC1 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1.

36-37 | IAC2US | Instruction Address Compare 2 User/Supervisor Mode

00 IAC2 debug conditions are unaffected by MSR[PR], MSR[GS].

01 Reserved on 6500

10 IAC2 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).

11 IAC2 debug conditions can occur only if MSR[PR] = 1 (user mode).

38-39 | IAC2ER | Instruction Address Compare 2 Effective/Real Mode

00 IAC2 debug conditions are based on effective addresses.

01 Reserved on 6500

10 IAC2 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0.

11 IAC2 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1.

40-41 | IAC12M | Instruction Address Compare 1/2 Mode'

00 Exact address compare. IAC1 debug conditions can occur only if the address of the instruction fetch is
equal to the value specified in IAC1. IAC2 debug conditions can occur only if the address of the
instruction fetch is equal to the value specified in IAC2. IAC1US, IAC1ER, and DBCRO[IAC1] are used
for IAC1 conditions. IAC2US, IAC2ER, and DBCRO[IAC2] are used for IAC2 conditions.

01 Address bit match. IAC1 debug conditions can occur only if the address of the instruction fetch ANDed
with the contents of IAC2 is equal to the contents of IAC1, also ANDed with the contents of IAC2. IAC2
debug conditions do not occur. The DBCRO[IAC 1] setting is used. The value of DBCRO[IAC2] is ignored.
IAC1US and IAC1ER are used to define the comparison, and IAC2US and IAC2ER are ignored.

10 Inclusive address range compare. IAC1 debug conditions can occur only if the address of the instruction
fetch is greater than or equal to the value specified in IAC1 and less than the value specified in IAC22.
IAC2 debug conditions do not occur. The DBCRO[IAC1] setting is used. The value of DBCRO[IAC2] is
ignored. IAC1US and IAC1ER are used to define the comparison, and IAC2US and IAC2ER are
ignored.

11 Exclusive address range compare. IAC1 debug conditions can occur only if the address of the
instruction fetch is less than the value specified in IAC1 or is greater than or equal to the value specified
in 1AC23, IAC2 debug conditions do not occur. The DBCRO[IAC1] setting is used. The value of
DBCRO[IAC2] is ignored. IAC1US and IAC1ER are used to define the comparison, and IAC2US and
IAC2ER are ignored.

The e6500 core sets both DBSR[IAC1] and DBSR[IAC2] if IAC12M is set to anything other than 0b00 and

an instruction address compare 1 or 2 event occurs.

42-47 — Reserved
48-49 | IAC3US | Instruction Address Compare 3 User/Supervisor Mode

00 IAC3 debug conditions unaffected by MSR[PR], MSR[GS].

01 Reserved on 6500

10 IAC3 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).
11 IAC3 debug conditions can occur only if MSR[PR] = 1 (user mode).

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-89

Register Model

Table 2-54. DBCR1 field descriptions (continued)

Bits Name Description
50-51 | IAC3ER | Instruction Address Compare 3 Effective/Real Mode

00 IAC3 debug conditions are based on effective addresses

01 Reserved on 6500

10 IAC3 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0

11 IAC3 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1

52-53 | IAC4US | Instruction Address Compare 4 User/Supervisor Mode

00 IAC4 debug conditions unaffected by MSR[PR], MSR[GS].

01 Reserved on 6500

10 IAC4 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).

11 IAC4 debug conditions can occur only if MSR[PR] = 1 (user mode).

54-55 | IAC4ER | Instruction Address Compare 4 Effective/Real Mode

00 IAC4 debug conditions are based on effective addresses.

01 Reserved on 6500

10 IAC4 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0.

11 1AC4 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1.

56-57 | IAC34M | Instruction Address Compare 3/4 Mode*

00 Exact address compare. IAC3 debug conditions can occur only if the address of the instruction fetch is
equal to the value specified in IAC3. IAC4 debug conditions can occur only if the address of the
instruction fetch is equal to the value specified in IAC4. IAC3US, IAC3ER, and DBCRO[IAC3] are used
for IAC3 conditions. IAC4US, IAC4ER, and DBCRO[IACA4] are used for IAC4 conditions.

01 Address bit match. IAC3 debug conditions can occur only if the address of the instruction fetch ANDed
with the contents of IAC4 is equal to the contents of IAC3, also ANDed with the contents of IAC4. IAC4
debug conditions do not occur. The DBCRO[IACS3] setting is used. The value of DBCRO[IACA4] is ignored.
IAC3US and IAC3ER are used to define the comparison, and IAC4US and IAC4ER are ignored.

10 Inclusive address range compare. IAC3 debug conditions can occur only if the address of the instruction
fetch is greater than or equal to the value specified in IAC3 and less than the value specified in IAC4°.
IAC4 debug conditions do not occur. The DBCRO[IACS3] setting is used. The value of DBCRO[IAC4] is
ignored. IAC3US and IAC3ER are used to define the comparison, and IAC4US and IAC4ER are
ignored.

11 Exclusive address range compare. IAC3 debug conditions can occur only if the address of the
instruction fetch is less than the value specified in IAC3 or is greater than or equal to the value specified
in 1AC4%. IAC4 debug conditions do not occur. The DBCRO[IAC3] setting is used. The value of
DBCRO[IACA4] is ignored. IAC3US and IAC3ER are used to define the comparison, and IAC4US and
IAC4ER are ignored.

The e6500 core sets both DBSR[IAC3] and DBSR[IAC4] if IAC34M is set to anything other than 0b00 and

an instruction address compare 3 or 4 event occurs.

58-63 — Reserved

When MSR[CM] = 0, IACn[0:31] are treated as zero for the purpose of comparison with the fetch effective address. When

MSR[CM] = 1, bits 0-61 of the fetch effective address are compared to IACn[0:61].
2 If IAC1 > IAC2 or IAC1 = IAC2, a valid condition never occurs.
3 If IAC1 > IAC2 or IAC1 = IAC2, a valid condition may occur on every instruction fetch.

When MSR[CM] = 0, IACn[0:31] are treated as zero for the purpose of comparison with the fetch effective address. When
MSR[CM] = 1, bits 0-61 of the fetch effective address are compared to IACn[0:61].

5 | IAC3 > IAC4 or IAC3 = IAC4, a valid condition never occurs.

If IAC3 > IAC4 or IAC3 = IAC4, a valid condition may occur on every instruction fetch.

€6500 Core Reference Manual, Rev 0

2-90

Freescale Semiconductor

Register Model

2.14.6 Debug Control 2 (DBCR2) register

DBCR2, shown in Figure 2-51, is implemented as defined by the architecture and described in EREF, with
the following exceptions:

* DAC comparisons are based on effective addresses only.

* Data Value Compare is not implemented.
* DACLINKI and DACLINK?2 are implemented.

SPR 310 Hypervisor
32 33 34 35|36 37 38 39(40 41 42 43|44 ‘ 63
Rl o o w i s &€
w2 |23 | %852
Q Q Q Q O |olo -
< < < < < 212
(@) (@) (@) (@) a 518
Reset All zeros

Figure 2-51. Debug Control 2 (DBCRZ2) register

' When EDM is enabled (DBCRO[EDM] = 1), software writes are not allowed to EDM-owned resources (as configured in the
EDBRACO register) and are ignored.

This table describes the DBCR?2 fields.

Table 2-55. DBCR2 field descriptions

Bits Name

Description

32-33 | DAC1US

Data Address Compare 1 User/Supervisor Mode

00 DAC1 debug conditions are unaffected by MSR[PR].

01 Reserved on 6500

10 DAC1 debug conditions can occur only if MSR[PR] = 0 supervisor mode).
11 DAC1 debug conditions can occur only if MSR[PR] = 1 (user mode).

34-35 | DAC1ER

Data Address Compare 1 Effective/Real mode

00 DAC1 debug conditions are based on effective addresses.

01 Reserved on 6500

10 DAC1 debug conditions are based on effective addresses and can occur only if MSR[DS] = 0.
11 DAC1 debug conditions are based on effective addresses and can occur only if MSR[DS] = 1.

36-37 | DAC2US

Data Address Compare 2 User/Supervisor Mode

00 DAC2 debug conditions are unaffected by MSR[PR], MSR[GS].

01 Reserved on 6500

10 DAC2 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).
11 DAC2 debug conditions can occur only if MSR[PR] = 1 (user mode).

38-39 | DAC2ER

Data Address Compare 2 Effective/Real mode

00 DAC?2 debug conditions are based on effective addresses.

01 Reserved on 6500

10 DAC2 debug conditions are based on effective addresses and can occur only if MSR[DS] = 0.
11 DAC2 debug conditions are based on effective addresses and can occur only if MSR[DS] = 1.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

2-91

Register Model

Table 2-55. DBCR2 field descriptions (continued)

Bits

Name

Description

40-41

DAC12M

Data Address Compare 1/2 Mode

00 Exact address compare. DAC1 debug conditions can occur only if the data storage address is equal
to the value specified in DAC1. DAC2 debug conditions can occur only if the data storage address is
equal to the value specified in DAC2. DAC1US, DAC1ER, and DBCRO[DAC1] are used for DAC1
conditions. DAC2US, DAC2ER, and DBCRO[DAC2] are used for DAC2 conditions. 1

01 Address bit match. DAC1 debug conditions can occur only if the data storage address ANDed with
the contents of DAC2 is equal to the contents of DAC1, also ANDed with the contents of DAC2. DAC2
debug conditions do not occur. The DBCRO[DAC1] setting is used. The value of DBCRO[DAC2] is
ignored. DAC1US and DAC1ER values are used, and DAC2US and DAC2ER values are ignored.

10 Inclusive address range compare. DAC1 debug conditions can occur only if the data storage address
is greater than or equal to the value specified in DAC1 and less than the value specified in DAC2.2
DAC2 debug conditions do not occur. The DBCRO[DAC1] setting is used. The value of DBCRO[DAC?2]
is ignored. DAC1US and DAC1ER values are used, and DAC2US and DAC2ER values are ignored.

11 Exclusive address range compare. DAC1 debug conditions can occur only if the data storage
address is less than the value specified in DAC1 or is greater than or equal to the value specified in
DAC2.3 DAC2 debug conditions do not occur. The DBCRO[DAC1] setting is used. The value of
DBCRO[DAC?2] is ignored. DAC1US and DAC1ER values are used, and DAC2US and DAC2ER
values are ignored.

The e6500 core sets both DBSR[DAC1] and DBSR[DAC2] if DAC12M is set to anything other than 0b00
and a data address compare 1 or 2 event occurs.

DBCR2[DACLINK2] is ignored when DBCR2[DAC12M] is anything other than 0b00.

42

DACLINK1

Data Address Compare 1 Link to Instruction Address Compare 1

0 No effect

1 DAC1 debug events are linked to IAC1 debug conditions. IAC1 and IAC2 debug events are not
generated when DACLINKT1 is set irrespective of the DBCR1[IAC12M] setting. When linked to IAC1,
the DAC1 debug event is qualified based on whether the instruction also generated an IAC1 debug
condition.

43

DACLINK2

Data Address Compare 2 Link to Instruction Address Compare 3

0 No effect

1 DAC2 debug events are linked to IAC3 debug conditions. IAC3 and IAC4 debug events are not
generated when DACLINK2 is set irrespective of the DBCR1[IAC34M] setting. When linked to IAC3,
the DAC2 debug event is qualified based on whether the instruction also generated an IAC3 debug
condition.

DBCR2[DACLINK2] is ignored when DBCR2[DAC12M] is anything other than 0b00.

44-63

Reserved

1 See Section 2.14.7, “Debug Control 4 (DBCR4) register,” for extensions to the exact address match (range defined).
2 If DAC1 > DAC2 or DAC1 = DAC2, a valid condition never occurs.
3 If DAC1 > DAC2 or DAC1 = DAC2, a valid condition may occur on every data storage address.

€6500 Core Reference Manual, Rev 0

2-92

Freescale Semiconductor

Register Model

2.14.7 Debug Control 4 (DBCRA4) register

DBCR4 is used to extend the data address matching functionality, as described in the following figure.

SPR 563 Hypervisor
32 ‘ ‘ 47| 48 51| 52 55|56 57 58 59|60 61 62 63
R Ty Ty
w' — DAC1XM pAc2xM | — | € | — | §
O)
< <
a a
Reset All zeros

Figure 2-52. Debug Control 4 (DBCRA4) register

' When EDM is enabled (DBCRO[EDM] = 1), software writes are not allowed to EDM-owned resources (as configured in the
EDBRACO register) and are ignored.

This table describes the DBCR4 fields.

Table 2-56. DBCRA4 field descriptions

Bits Name Description
32-47 — Reserved
Data Address Compare 1—Extended Mask Control
0000 No additional masking when DBCR2[DAC12M] = 00.
0001-1100
48-51 DAG1XM Exact Match Bit Mask. Number of low-order bits masked in DAC1 when comparing the storage
address with the value in DAC1 for exact address compare (DBRCR2[DAC12M] = 00). The e6500
core supports ranges up to 4 KB.
1101-1111
Reserved
Data Address Compare 2—Extended Mask Control
0000 No additional masking when DBCR2[DAC12M] = 00.
0001-1100
52-55 | DAC2XM Exact Match Bit Mask. Number of low order bits masked in DAC2 when comparing the storage
address with the value in DAC2 for exact address compare (DBRCR2[DAC12M] = 00). The e6500
core supports ranges up to 4 KB.
1101-1111
Reserved
56-57 — Reserved
Data Address Compare 1 Configuration
00 DAC1 debug watchpoints (when DBCRO[DAC1] = 00) are enabled for load-type or store-type
storage accesses.
58-59 | DAC1CEG 01 DAC1 debug watchpoints (when DBCRO[DAC1RD] = 00) are disabled for load-type storage
accesses.
10 DAC1 debug watchpoints (when DBCRO[DAC1WR] = 00) are disabled for store-type storage
accesses.

11 DAC1 debug watchpoints (when DBCRO[DAC1] = 00) are disabled.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

2-93

Register

Model

Bits Name Description
6061 — Reserved
Data Address Compare 2 Configuration
00 DAC2 debug watchpoints (when DBCRO[DAC2] = 00) are enabled for load-type or store-type
storage accesses.
62-63 | DAC2CEG 01 aD(,?c(;isclesbug watchpoints (when DBCRO[DAC2RD] = 00) are disabled for load-type storage
10 DAC2 debug watchpoints (when DBCRO[DAC2WR] = 00) are disabled for store-type storage
accesses.

11 DAC2 debug watchpoints (when DBCRO[DAC2] = 00) are disabled.

2.14.8 Debug Control 5 (DBCR5) register

DBCRS, shown in Figure 2-53, is used to configure instruction address compare operation for [AC5-8.
This register is implemented as defined by the architecture and described in EREF, with the following
exceptions:

IACS5- TACS8 comparisons must be based on effective addresses. Comparisons based on real
addresses are not supported.

When IAC56M != 00, TAC6US and IAC6ER settings are ignored and IAC5US and TACSER values
are used.

When IAC78M != 00, TAC8US and IACS8ER settings are ignored and IAC7US and IAC7ER values
are used.

SPR 564 Hypervisor
32 33 34 35(36 37 38 39|40 41 42 ‘ 47|48 49 50 51|52 53 54 55|56 57 58 ‘ 63
) o) o) o) o
R) w) [% D i o) [%
w818 18|18 |8 - c|o |88 |08 -
< < < < < < < < < <
Reset All zeros

Figure 2-53. Debug Control 5 (DBCR5) register

' When EDM is enabled (DBCRO[EDM] = 1), software writes are not allowed to EDM-owned resources (as
configured in the EDBRACO register) and are ignored.

This table describes the DBCRS fields.

Table 2-57. DBCRS field descriptions

Bits

Name Description

32-33

IAC5US | Instruction Address Compare 5 User/Supervisor Mode

00 IACS5 debug conditions are unaffected by MSR[PR], MSR[GS].

01 Reserved on 6500

10 IAC5 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).
11 IAC5 debug conditions can occur only if MSR[PR] = 1 (user mode).

€6500 Core Reference Manual, Rev 0

2-94

Freescale Semiconductor

Register Model

Table 2-57. DBCRS5 field descriptions (continued)

Bits Name Description
34-35 | IAC5ER | Instruction Address Compare 5 Effective/Real Mode

00 IAC5 debug conditions are based on effective addresses.

01 Reserved on 6500

10 IAC5 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0.

11 IAC5 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1.

36-37 | IAC6US | Instruction Address Compare 6 User/Supervisor Mode

00 IAC6 debug conditions are unaffected by MSR[PR], MSR[GS].

01 Reserved on 6500

10 IAC6 debug conditions can occur only if MSR[PR]=0 (supervisor mode).

11 IAC6 debug conditions can occur only if MSR[PR]=1 (user mode).

38-39 | IAC6ER | Instruction Address Compare 6 Effective/Real Mode

00 IAC6 debug conditions are based on effective addresses.

01 Reserved on 6500

10 IAC6 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0.

11 IAC6 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1.

40-41 | IAC56M | Instruction Address Compare 5/6 Mode'

00 Exact address compare. IAC5 debug conditions can occur only if the address of the instruction fetch is
equal to the value specified in IAC5. IAC6 debug conditions can occur only if the address of the
instruction fetch is equal to the value specified in IAC6. IAC5US, IAC5ER, and DBCRO[IACS5] are used
for IAC5 conditions. IAC6US, IAC6ER, and DBCRO[IAC6] are used for IAC6 conditions.

01 Address bit match. IAC5 debug conditions can occur only if the address of the instruction fetch ANDed
with the contents of IAC6 is equal to the contents of IAC5, also ANDed with the contents of IAC6. IAC6
debug conditions do not occur. The DBCRO[IACS5] setting is used. The value of DBCRO[IACS6] is ignored.
IAC6US and IAC6ER settings are ignored, and IAC5US and IAC5ER values are used.

10 Inclusive address range compare. IAC5 debug conditions can occur only if the address of the instruction
fetch is greater than or equal to the value specified in IAC5 and less than the value specified in IAC6.2
IAC6 debug conditions do not occur. The DBCRO[IACS5] setting is used. The value of DBCRO[IACE] is
ignored. IAC6US and IAC6ER settings are ignored, and IAC5US and IAC5ER values are used.

11 Exclusive address range compare. IAC5 debug conditions can occur only if the address of the
instruction fetch is less than the value specified in IAC5 or is greater than or equal to the value specified
in IAC6°. IAC6 debug conditions do not occur. The DBCRO[IACS5] setting is used. The value of
DBCRO[IACS] is ignored. IAC6US and IAC6ER settings are ignored, and IAC5US and IAC5ER values
are used.

The e6500 core sets both DBSR[IAC5] and DBSR[IAC6] bits if IAC56M is set to anything other than 0b00

and an instruction address compare 5 or 6 event occurs.

42-47 — Reserved
48-49 | IAC7US | Instruction Address Compare 7 User/Supervisor Mode

00 IAC7 debug conditions are unaffected by MSR[PR], MSR[GS].

01 Reserved on 6500

10 IAC7 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).

11 IAC7 debug conditions can occur only if MSR[PR] = 1 (user mode).

50-51 | IAC7ER |Instruction Address Compare 7 Effective/Real Mode

00 IAC7 debug conditions are based on effective addresses.

01 Reserved on 6500

10 IAC7 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0.
11 IAC7 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-95

Register Model

Table 2-57. DBCRS5 field descriptions (continued)

Bits Name Description

52-53 | IAC8US | Instruction Address Compare 8 User/Supervisor Mode

00 IAC8 debug conditions unaffected by MSR[PR], MSR[GS].

01 Reserved on 6500

10 IAC8 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).
11 IAC8 debug conditions can occur only if MSR[PR] = 1 (user mode.)

54-55 | IAC8ER | Instruction Address Compare 8 Effective/Real Mode

00 IAC8 debug conditions are based on effective addresses.

01 Reserved on 6500

10 IAC8 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0.
11 IAC8 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1.

56-57 | IAC78M | Instruction Address Compare 7/8 Mode*

00 Exact address compare. IAC7 debug conditions can occur only if the address of the instruction fetch is
equal to the value specified in IAC7. IAC8 debug conditions can occur only if the address of the
instruction fetch is equal to the value specified in IAC8. IAC7US, IAC7ER, and DBCRO[IAC7] are used
for IAC7 conditions. IAC8US, IAC8ER, and DBCRO[IAC8] are used for IAC8 conditions.

01 Address bit match. IAC7 debug conditions can occur only if the address of the instruction fetch ANDed
with the contents of IAC8 is equal to the contents of IAC7, also ANDed with the contents of IAC8. IAC8
debug conditions do not occur. The DBCRO[IAC7] setting is used. The value of DBCRO[IACS8] is ignored.
IAC8US and IAC8ER settings are ignored, and IAC7US and IAC7ER values are used.

10 Inclusive address range compare. IAC7 debug conditions can occur only if the address of the instruction
fetch is greater than or equal to the value specified in IAC7 and less than the value specified in IAC8.5
IAC8 debug conditions do not occur. The DBCRO[IAC7] setting is used. The value of DBCRO[IACS8] is
ignored. IAC8US and IAC8ER settings are ignored, and IAC7US and IAC7ER values are used

11 Exclusive address range compare. IAC7 debug conditions can occur only if the address of the
instruction fetch is less than the value specified in IAC7 or is greater than or equal to the value specified
in IAC8.5 1AC8 debug conditions do not occur. The DBCRO[IAC7] setting is used. The value of
DBCRO[IACS] is ignored. IAC8US and IAC8ER settings are ignored, and IAC7US and IAC7ER values
are used.

The e6500 core sets both DBSR[IAC7] and DBSRJ[IACS8] bits if IAC78M is set to anything other than 0b00
and an instruction address compare 7 or 8 event occurs.

58-63 — Reserved

When MSR[CM] = 0, IACn[0:31] are treated as zero for the purpose of comparison with the fetch effective address. When
MSR[CM] = 1, bits 0-61 of the fetch effective address are compared to IACn[0:61].

2 If IAC5 > IAC6 or IAC5 = IACS, a valid condition never occurs.
3 If IAC5 > IAC6 or IAC5 = IACS, a valid condition may occur on every instruction fetch.

4 When MSR[CM] = 0, IACn[0:31] are treated as zero for the purpose of comparison with the fetch effective address. When
MSR[CM] = 1, bits 0-61 of the fetch effective address are compared to IACn[0:61].

5 If IAC7 > IAC8 or IAC7 = IACS8, a valid condition never occurs.
If IAC7 > IAC8 or IAC7 = IACS8, a valid condition may occur on every instruction fetch.

2.14.9 Debug Status (DBSR/DBSRWR) register

DBSR provides status information for debug events when DBCRO[IDM] = 1 and the corresponding
DBCRO bit is set, and for the most recent processor reset.

DBSR is implemented as defined by the architecture and described in EREF, with the following exception:
* Two additional debug events are possible: CIRPT and CRET

€6500 Core Reference Manual, Rev 0

2-96 Freescale Semiconductor

Register Model

DBSRWR is a write-only register that generally is a write port into DBSR used by the hypervisor to restore
delayed debug interrupt state during partition switch. However, the e6500 core does not support delayed

debug interrupts, so write capability is not needed. Writes to DBSRWR on the e6500 core are silently
dropped and do not affect the value of DBSR.

DBSR is a write-one-to-clear register. Software should normally write DBSR with a mask specifying
which bits of DBSR to clear.

This figure shows the Debug Status Register Write (DBSRWR) register.
SPR 306 (DBSRWR)

Hypervisor WO
32 63
R
w No effect
Reset Contents can be read through DBSR only
Figure 2-54. Debug Status Register Write (DBSRWR) register
This figure shows the Debug Status (DBSR) register.
SPR 304 (DBSR) Hypervisor
32 33 34 35(36 37 38 39|40 41 42 43|44 45 46 47 |48 49 50 51|52 53 56 57 58 59|60 63
R/W! wl| o T N B I - B 1 4 B (VY PN B ElEl =
—|alc Sicla oo olgloldldw el olgl o — Flw =z
|l < << < < << < Tl
ol s L_)m_'_____<DK<D(<D(<D(CE____ 35| o
Reset 0 0 1 0 0 O

000O0OO0OOOOOOOOOOOOOOOOOOOOODO

Figure 2-55. Debug Status (DBSR) register
1 Writing a 1 to DBSR bits that are set clears the bits (write-one-to-clear).

This table describes the DBSR fields.

Table 2-58. DBSR field descriptions
Bits Name

Description

Reserved

Unconditional Debug Event

Set when an unconditional debug event has occurred while:
e DBCRO[IDM] =1, and

33 Upe | * EDBCRO[EDM] = 0 or EDBRACO[ICMP] = 1

An unconditional debug event can occur when the UDE signal (level sensitive, active low) is asserted to
the core.

Note: Unconditional debug events are not affected by EPCR[DUVD] on the 6500 core

Most Recent Reset. The 6500 implements MRR as follows:

00 No hard reset occurred because this bit was last cleared by software.
34-35 MRR |01 Reserved

10 The previous reset was a hard reset (default value on power-up).
11 Reserved

€6500 Core Reference Manual, Rev 0
Freescale Semiconductor

2-97

Register Model

Table 2-58. DBSR field descriptions (continued)

Bits Name Description
Instruction Complete Debug Event

36 ICMP | Set if an instruction complete debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or
EDBRACO[ICMP] = 1, and DBCRO[ICMP] = 1.
Branch Taken Debug Event

37 BRT Set if a branch taken debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or
EDBRACO[BRT] = 1, and DBCRO[BRT] = 1.
Interrupt Taken Debug Event

38 IRPT Set if an interrupt taken debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or
EDBRACO[IRPT] = 1, and DBCRO[IRPT] = 1.
Trap Instruction Debug Event

39 TRAP | Set if a trap instruction debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or
EDBRACO[TRAP] = 1, and DBCRO[TRAP] = 1.
Instruction Address Compare 1 Debug Event

40 IACA Set if an IAC1 debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or EDBRACO[IAC1] =
1, and DBCRO[IAC1] = 1.

41 IAC2 Instruction Address Compare 2 Debug Event
Set if an IAC2 debug condition occurs while DBCRO[IDM] = 1, EDBRACO[IAC2] = 1, and DBCRO[IAC2] = 1.
Instruction Address Compare 3 Debug Event

42 IAC3 Set if an IAC3 debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or EDBRACO[IAC3] =
1, and DBCRO[IAC3] = 1.
Instruction Address Compare 4 Debug Event

43 IAC4 Set if an IAC4 debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or EDBRACO[IAC4] =
1, and DBCRO[IAC4] = 1.
Data Address Compare 1 Read Debug Event

44 DAC1R |Set if a read-type DAC1 debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or
EDBRACO[DAC1] = 1, and DBCRO[DAC1] = 0b10 or Ob11.
Data Address Compare 1 Write Debug Event

45 DAC1W | Set if a write-type DAC1 debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or
EDBRACO[DAC1] = 1, and DBCRO[DAC1] = 0b01 or Ob11.
Data Address Compare 2 Read Debug Event

46 DAC2R |Set if a read-type DAC2 debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0, or
EDBRACO[DAC2] = 1, and DBCRO[DAC2] = 0b10 or Ob11.
Data Address Compare 2 Write Debug Event

47 DAC2W | Set if a write-type DAC2 debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0, or
EDBRACO[DAC2] = 1, and DBCRO[DAC2] = 0b01 or Ob11.
Return Debug Event

48 RET Set if a return debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or EDBRACO[RET] =1,
and DBCRO[RET] = 1.
Instruction Address Compare 5 Debug Event

49 IAC5 Set if an IAC5 debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or EDBRACO[IAC5] =
1, and DBCRO[IAC5] = 1.
Instruction Address Compare 6 Debug Event

50 IAC6 Set if an IAC6 debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or EDBRACO[IACE] =

1, and DBCRO[IAC6] = 1.

€6500 Core Reference Manual, Rev 0

2-98

Freescale Semiconductor

Register Model

Table 2-58. DBSR field descriptions (continued)

Bits Name Description
Instruction Address Compare 7 Debug Event
51 IAC7 Set if an IAC7 debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or EDBRACO[IAC7] =
1, and DBCRO[IAC7] = 1.
Instruction Address Compare 8 Debug Event
52 IAC8 Set if an IAC8 debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or EDBRACO[IACS8] =
1, and DBCRO[IAC8] = 1.
53-56 — Reserved
Critical Interrupt Taken Debug Event
57 CIRPT | Set if a critical interrupt debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or
EDBRACO[CIRPT] = 1, and DBCRO[CIRPT] = 1.
Critical Return Debug Event
58 CRET | Set if a critical return debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or
EDBRACO[CRET] = 1, and DBCRO[CRET] = 1.
Debug Notify Interrupt (dni) instruction
59 DNI Set if a dni instruction debug condition occurs while DBCRO[IDM] = 1, EDBCRO[EDM] = 0 or
EDBRACO[DNI] = 1, and MSR[DE] = 1.
60-63 — Reserved

2.14.10 Instruction address compare registers (IAC1-1AC8)

IAC1-IACS, shown in Figure 2-56, are implemented as defined by the architecture and described in EREF,
with one exception: software writes to an [ACr register that is owned by an external debugger are ignored
while the e6500 core is not halted.

IAC1-IACS are 64-bit registers on the e6500 core.

SPR 312 (IACH
SPR 313 (IAC2
SPR 314 (IAC3),

SPR 315

IAC4

SPR 566 (IAC6) ,
SPR 567 (IAC7
SPR 568 (IAC8

(
(
(
(
SPR 565 (
(
(
(

)
)
)
)
IACS)
)
)
)

Hypervisor

I S O (O S O O S S N SO 1N Y

Instruction Address —

All zeros

Figure 2-56. Instruction address compare registers (IAC1-1AC8)

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-99

Register Model

2.14.11 Data address compare registers (DAC1-DAC2)

DACI1-DAC?2, shown in Figure 2-57, are implemented as defined by the architecture and described in
EREF, with one exception: software writes to a DACn register that is owned by an external debugger are
ignored while the e6500 core is not halted.

DACI and DAC?2 are 64-bit registers on the e6500 core.

SPR 316 (DAC1)

SPR 317 (DAC2) / Hypervisor
o | e
) Data Address
w
Reset All zeros

Figure 2-57. Data address compare registers (DAC1-DAC2)

2.14.12 Nexus SPR access registers

The architecture defines the Nexus SPR access registers to provide access to the memory-mapped registers
implemented as part of the core and described in Section 9.5, “Nexus registers.” The index offset for these
registers can be specified in the Nexus SPR Configuration (NSPC) register, after which, access to these
registers can be made by using mtspr and mfspr instructions to read and write the Nexus SPR Data
(NSPD) register.

2.14.12.1 Nexus SPR Configuration (NSPC) register

NSPC, shown in Figure 2-58, provides a mechanism for software to access Nexus debug resources through
SPR instructions. See Section 9.10.3.2, “Special-purpose register access (Nexus only),” for details on
accessing Nexus resources through NSPC.

SPR 984 Hypervisor
32 51 | 52 ‘ ‘ 63
R
— INDX
W
Reset All zeros

Figure 2-58. Nexus SPR Configuration (NSPC) register

This table describes the NSPC fields. See Table 9-31 for the list of Nexus registers that can be accessed.
Table 2-59. NSPC field descriptions

Bits Name Description

32-51 — Reserved

52-63 | INDX |Register index'

! See to Table 9-31 for appropriate index values for accessing Nexus registers.

€6500 Core Reference Manual, Rev 0

2-100 Freescale Semiconductor

Register Model

2.14.12.2 Nexus SPR Data (NSPD) register

NSPD, shown in Figure 2-59, provides a mechanism to transfer data to and from SPR resources. The
Nexus resource to be accessed is determined by the programming of NSPC. For write operations, the write
data should be loaded into the NSPD. For read operations, the read data may be acquired from the NSPD.

Writing to NSPD requires an isync instruction immediately following the mtspr instruction to NSPD to
ensure that the write is completed.

SPR 983 Hypervisor
32 63
R
Nexus SPR Read/Write Data
w
Reset All zeros

Figure 2-59. Nexus SPR Data (NSPD) register

2.14.13 Debug Event Select (DEVENT) register

DEVENT, shown in Figure 2-60, allows instrumented software to internally generate signals when an
mtspr instruction is executed and this register is accessed. The value written to this register determines
which processor output signals fire upon access. These signals are used for internal core debug resources,
such as the performance monitor, as well as for SoC-level cross-triggering. See the SoC reference manual
for more information on use cases.

The upper 8 DEVENT bits also provide the IDTAG used to identify channels within Data Acquisition
Messages. See Section 9.11.17, “Data Acquisition Trace,” for more details on the IDTAG.

SPR 975 User
32 39 | 40 55 | 56 63
R
DQTAG — DEVNT
w
Reset All zeros

Figure 2-60. Debug Event (DEVENT) register

This table describes the DEVENT fields.
Table 2-60. DEVENT field descriptions

Bits Name Description

32-39 DQTAG |IDTAG channel identifier used in Data Acquisition Messages

40-55 — Reserved

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-101

Register Model

Table 2-60. DEVENT field descriptions (continued)

Bits Name Description

Debug Event Signals

00000000 = No signal is asserted
xxxxxxx1 = DVTO is asserted
xxxxxx1x = DVT1 is asserted
xxxxx1xx = DVT2 is asserted
xxxx1xxx = DVT3 is asserted
xxx1xxxx = DVT4 is asserted
xx1xxxxx = DVT5 is asserted
x1xxxxxx = DVT6 is asserted
1xxxxxxx = DVT7 is asserted

56-63 DEVNT

2.14.14 Debug Data Acquisition Message (DDAM) register

DDAM, shown in Figure 2-61, allows instrumented software to generate real-time data acquisition
messages (as defined by Nexus) when an mtspr instruction is executed and this register is written. See
Section 9.11.17, “Data Acquisition Trace,” for details.

SPR 576 User WO
32 ‘ ‘ 63
R
w DDAM
Reset All zeros

Figure 2-61. Debug Data Acquisition Message (DDAM) register

This table describes the DDAM fields.
Table 2-61. DDAM field descriptions

Bits Name Description

32-63 DDAM Data value to be transmitted in a Data Acquisition Message (DQM)

2.14.15 Nexus Process ID (NPIDR) register

NPIDR, shown in Figure 2-62, allows the full process ID utilized by the OS to be transmitted within Nexus
Ownership Trace Messages.

€6500 Core Reference Manual, Rev 0

2-102 Freescale Semiconductor

Register Model

SPR 517 User
32 63
R
Full OS Process ID
w
Reset All zeros

Figure 2-62. Nexus Process ID (NPIDR) register

NOTE

OS accesses to NPIDR must be performed in addition to writes to the PID
register used to create translated addresses in the MMU for Nexus
messaging.

2.15 Multi-threaded operation management registers

A combination of SPRs and TMRs manages threads and thread execution on the e6500 core.

2.15.1 Thread (processor) management SPRs

The TENSR, TENS, and TENC SPRs provide thread control within the multi-threaded e6500. The TIR
SPR register gives a unique thread identifier within a multi-threaded processor. The PPR32 register allows
software to assign priorities to the current thread in execution.

2.15.1.1 Thread Identification (TIR) register

TIR, shown in Figure 2-63, contains a read-only, thread-dependent value, with valid values of 0 and 1, that
represents a unique thread number within the multi-threaded e6500 core. A thread for which TIR = n is
referred to as “thread n.”

Each thread has a private TIR.

Software Note
The value of TIR is the same as the initial value of PIR[THREAD_ID)].

SPR 446 Hypervisor RO
32 63
R Thread number
w
Reset Thread-specific enumerated value

Figure 2-63. Thread Identification (TIR) register

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-103

Register Model

2.15.1.2 Thread Enable (TEN) register

TEN is a 64-bit register, shown in Figure 2-64, that represents which threads are enabled in a

multi-threaded processor. For 7 < 2 (e6500 implements two threads), bit 63-f of TEN corresponds to thread
L.

The 6500 has a single TEN that is shared by the threads.

TEN is not directly accessible. TEN is written by writing to TENS or the TENC registers, which set or
clear bits in TEN, respectively. TEN is read by reading either TENS or TENC. Reading TEN (through
TENS or TENC) represents the current set of values from the last writes to TENS and TENC. Reading
TEN through the TENSR register represents the current state of the threads. (That is, when a thread is
disabled by writing TENC, software can determine when a thread has been disabled by polling TENSR.)

Bits representing threads that are not implemented are ignored and always return O when read through
TENS, TENC, or TENSR.

Software Note

To enable a thread, software sets its associated bit in TENS. More than one
thread may be enabled with a single write to TENS if multiple bits are set.

To disable a thread, software sets its associated bit in TENC. More than one
thread may be disabled with a single write to TENC if multiple bits are set.

SPR none, accessed through TENS, TENC Hypervisor
(shared)

0 61 62 63

R =

- W w

w el
Reset 0 0 0 0|0 0 O O/O O O O|O O O OO O O O|O OOOOOO OT OO OO

Figure 2-64. Thread Enable (TEN) register

This table describes the TEN fields.
Table 2-62. TEN field descriptions

Bits | Name Description

0-61 — Reserved, should be 0.
62 TEN1 |Thread 1 is enabled.
63 TENO |Thread 0 is enabled.

2.15.1.3 Thread Enable Set (TENS) register

TENS is a 64-bit register, shown in Figure 2-65, that allows software to enable threads in the dual-threaded
€6500 processor. For ¢ < 2 (6500 implements two threads), bit 63-¢ corresponds to thread . When TENS
is written, threads for which the corresponding bits in TENS are 1 are enabled; threads for which the

corresponding bits in TENS are 0 are unaffected. Reading TEN (through TENS) represents the current set

€6500 Core Reference Manual, Rev 0

2-104 Freescale Semiconductor

Register Model

of values from the last writes to TENS and TENC. Bits representing threads that are not implemented are
ignored and always return O when read through TENS.

The e6500 core has a single TENS that is shared by both threads.

For the 6500 core, software should not attempt to enable a thread that it previously disabled unless the
TENSR value of that thread shows that it is completely disabled. A write of 1 to bit x of TENS is ignored
unless bit x of TENSR is 0.

Software Note

To enable a thread, software sets its associated bit in TENS. More than one
thread may be enabled with a single write to TENS if multiple bits are set.

SPR 438 Hypervisor
(shared)

0 61 62 63

—| O

R — Z 2

| w

| -

w — m| @
| -

Reset All zeros 0 1

Figure 2-65. Thread Enable Set (TENS) register

This table describes the writable TENS fields. See Table 2-66 for descriptions of the TENS read fields.
Table 2-63. TENS writable field descriptions

Bits | Name Description

0-61 — Reserved, should be 0.
62 TE1 Enable (set) thread 1.
63 TEO |Enable (set) thread 0.

2.15.1.4 Thread Enable Clear (TENC) register

TENC is a 64-bit register, shown in Figure 2-66, that allows software to disable threads in the
dual-threaded e6500 processor. For ¢ < 2 (6500 implements two threads), bit 63-f corresponds to thread z.
When TENC is written, threads for which the corresponding bits in TENC are 1 are disabled; threads for
which the corresponding bits in TENC are 0 are unaffected. Reading TEN (through TENC) represents the
current set of values from the last writes to TENS and TENC. Bits representing threads that are not
implemented are ignored and always return 0 when read through TENS.

The e6500 core has a single TENC that is shared by both threads.

Software Note

To disable a thread, software sets its associated bit in TENC. More than one
thread may be disabled with a single write to TENC if multiple bits are set.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-105

V¥ ¢
i

Register Model

SPR 439

Reset

Hypervisor
(shared)

61

(o2}
N

© |TD1|TEN1
~ |TDO|TENO| 8

All zeros

Figure 2-66. Thread Enable Clear (TENC) register

This table describes the writable TENC fields. See Table 2-66 for descriptions of the writable TENC fields.

Table 2-64. TENC writable field descriptions

Bits | Name Description
0-61 — Reserved, should be 0.

62 TD1 |Disable (clear) thread 1.

63 TDO |Disable (clear) thread 0.

2.15.1.5 Thread Enable Status (TENSR) register

TENSR is a 64-bit register, shown in Figure 2-67, that allows software to determine which threads in a
multi-threaded processor are enabled or disabled. For 7 < 2 (e6500 implements 2 threads), bit 63-¢
corresponds to thread . When TENSR is read, threads for which the corresponding bits in TENS are 1 are
enabled; threads for which the corresponding bits in TENSR are 0 are disabled or unimplemented. When
a thread is disabled by writing to TENC, software can determine when the thread actually is disabled by
polling the appropriate bit in TENSR.

The 6500 core has a single TENSR that is shared by both threads.

Software Note

When a thread T, disables other threads, T, it writes I to the TENC bits
corresponding to T,. In order to ensure that all updates to the shared state
among threads in a processor core (SPRs and other state such as caches and
TLBs) caused by instructions being performed by threads T, have been
performed with respect to all threads on a processor core, thread T, reads
the TENSR until all the bits corresponding to the disabled threads, T, are 0s.

€6500 Core Reference Manual, Rev 0

2-106

Freescale Semiconductor

Register Model
SPR 437 Hypervisor RO
(shared)
0 61 62 63
—| O
R — 0 0
|
w
Reset All zeros 0 1

Figure 2-67. Thread Enable Status (TENSR) register

This table describes the TENSR fields.
Table 2-65. TENSR field descriptions

Bits | Name Description

0-61 — Reserved, should be 0.

62 TS1 |Thread 1 is enabled. A value of 1(0) means that thread 1 is enabled (disabled).

63 TS0 |Thread O is enabled. A value of 1(0) means that thread 0 is enabled (disabled).

2.15.1.6 Processor Priority (PPR32) register

PPR32, shown in Figure 2-68, specifies what priority a thread has in relation to other threads in a
multi-threaded processor. For priority, lower numeric values denote lower priority and higher numeric
values denote higher priority. Thread priority may be used to determine which threads have priority when
arbitrating for shared resources in a multi-threaded processor. The number of bits implemented in the PRI
field is three. The number of bits implemented is defined by TMCFGO[NPRIBITS].

Each of the threads in the e6500 core has a private PPR32.

The PRI field may be set by executing mtspr or by executing special forms of the or instruction (or
rx,rx,rx). In user mode, only values two through four may be set. In the guest-supervisor state, only values

one through six can be set. If software attempts to set a value that is not allowed, the PRI field remains
unchanged.

The priority of another thread can be changed by writing the TPRIn associated with the thread.
The PRI field is an alias for the TMR TPRIn register associated with the executing thread.

Note: Thread priorities are not used by the e6500 core multi-threaded processor.

SPR 898 User
32 45 46 63
R
— PRI —
w
Reset All zeros

Figure 2-68. Processor Priority (PPR32) register

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-107

Register Model

This table describes the PPR32 fields.
Table 2-66. PPR32 field descriptions

Bits | Name Description

3242 — Reserved, should be 0.

43-45| PRI | Thread priority. The following values are defined:

000 Default (hypervisor only). This value should only be used out of reset.
001 Very low (supervisor or hypervisor only)

010 Low

011 Medium-low

100 Medium

101 Medium-high (supervisor or hypervisor only)

110 High (supervisor or hypervisor only)

111 Very high (hypervisor only)

46-63 — Reserved, should be 0.

2.15.2 Thread management registers (TMRs)

TMRs are on-chip registers accessed with the mttmr and mftmr instructions and are used to control the
use of threads in the e6500 multi-threaded processor and other architected processor resources related to
threads.

The e6500 core has a single set of TMRs, all of which are shared by both threads.

2.15.2.1 Thread Management Configuration 0 (TMCFGO) register

TMCFGO, shown in Figure 2-69, contains read-only configuration information about the multi-threading
implementation.

TMR 16 Hypervisor RO
(shared)
32 41 42 47 48 49 50 55 56 57 58 61 62 63
R — NPRIBITS — NATHRD — NTHRD
w
Reset All zeros 0o 0/0OO1T 1|0 OOOO0OT1T1TO0O|(O0OO0OO0OTO0OO0O0T1TO0

Figure 2-69. Thread Management Configuration 0 (TMCFGO) register

This table describes TMCFGO fields.
Table 2-67. TMCFGO field descriptions

Bits Name Description

32-41 — Reserved, should be 0.

42-47 | NPRIBITS | Number of bits of thread priority implemented. These are the number of least significant bits of each TPRIn
register. The e6500 core implements three thread priority bits.

48-49 — Reserved, should be 0.

€6500 Core Reference Manual, Rev 0

2-108 Freescale Semiconductor

Register Model

Table 2-67. TMCFGO field descriptions

Bits Name Description

50-55 | NATHRD |Number of active threads implemented. The e6500 core implements two simultaneously active threads.

56-57 — Reserved, should be 0.

58-63 | NTHRD |Number of threads implemented. The 6500 core implements two threads.

2.15.2.2 Thread Initial Next Instruction Address n (INIAn) registers

INIAnR registers, shown in Figure 2-70, are 64-bit registers that contain the current fetch address of a
thread, where INIA#n corresponds to thread n. INIA# registers specify what address should be used to fetch
instructions for each thread. An INIAn register may only be written when the associated thread is disabled.
Thus, a thread cannot write its own NIA, and writing to the INIAn register of any thread »n that is enabled
is ignored on the e6500 core. The facility is expected to be used only in initialization to position threads
prior to first execution. Writing to an INIA# register in 32-bit mode causes the upper 32 bits in the
destination register to be set to 0. Bits 62 and 63 of the INIAn registers are not writable and always
maintain a value of 0. INIAn is an alias for the SPR NIA, which is private to thread n.

TMR 320 (INIAO) Hypervisor WO
(shared)
321 (INIAT1)
0 61 62 63
R
w Instruction address 0|0
Reset 0x0000_0000_ffff_fffc (address to start execution out of reset)

Figure 2-70. Thread Initial Next Instruction Address n (INIAn) registers

2.15.2.3 Thread Initial Machine State Register n (IMSRn) registers

IMSR# registers, shown in Figure 2-71, contain the current machine state register of a thread, where
IMSR# corresponds to thread n. IMSR# registers specify the MSR for each thread. An IMSR# register may
only be written when the associated thread is disabled. Thus, a thread cannot write its own MSR, and
writing to the IMSR# register of any thread » that is enabled is ignored on the e6500 core. The facility is
expected to be used only in initialization to set the initial machine state of threads prior to first execution.
IMSRu~ is an alias for the MSR, which is private to thread n.

TMR 288 (IMSRO0) Hypervisor WO
(shared)
289 (IMSR1)
32 63
R
w For bit definition see Section 2.7.1, “Machine State (MSR) register”
Reset all zeros

Figure 2-71. Thread Initial Machine State n (IMSRn) registers

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-109

Register Model

2.15.2.4 Thread Priority n (TPRIn) registers

TPRIn registers, shown in Figure 2-72, allow threads to change the priority of any thread, where TPRIn
corresponds to thread n. TPRIn registers specify what priority a thread has in relation to other threads in a
multi-threaded processor. For priority, lower numeric values denote lower priority and higher numeric
values denote higher priority. Thread priority may be used to determine which threads have priority when
arbitrating for shared resources in a multi-threaded processor. Three bits are implemented in the TPRIn
registers of the e6500 core. The number of bits implemented is defined by TMCFGO[NPRIBITS].

TPRIn is an alias for the SPR PPR32[PRI] field, which is private to thread n.

Note: Thread priorities are not used by the e6500 multi-threaded processor.

TMR 192 (TPRIO) Hypervisor
(shared)
193 (TPRI1)
32 60 61 63
R _ Thread
W priority
Reset All zeros

Figure 2-72. Thread Priority n (TPRIn) registers

2.16 Performance monitor registers (PMRs)

The performance monitor provides a set of performance monitor registers (PMRs) per thread for defining,
enabling, and counting conditions that trigger the performance monitor interrupt. PMRs are defined in
EREF.

The performance monitor also defines (G)IVOR35 (see Section 2.9.5, “(Guest) Interrupt Vector Offset
(IVORs/GIVORs) registers”) for providing the address of the performance monitor interrupt vector.
(G)IVOR3S is described in the interrupt model chapter of EREF. The 6500 core implements a single
IVOR35 that is shared by both threads and a private GIVOR35 per thread.

€6500 Core Reference Manual, Rev 0

2-110 Freescale Semiconductor

Register Model

PMRs are similar to SPRs and are accessed using mtpmr and mfpmr instructions. As shown in the

following table, the contents of the PMRs are reflected to a read-only user-level equivalent.

Each thread in the 6500 core has a private set of PMRs.

Table 2-68. Performance monitor registers (PMRs)

Supervisor User
Name Section/Page
Abbreviation PMRn Abbreviation PMRn

Performance monitor counter 0 PMCO 16 UPMCO 0 2.16.4/2-118
Performance monitor counter 1 PMCH1 17 UPMC1 1
Performance monitor counter 2 PMC2 18 UPMC2 2
Performance monitor counter 3 PMC3 19 UPMC3 3
Performance monitor counter 4 PMC4 20 UPMC4 4
Performance monitor counter 5 PMC5 21 UPMC5 5
Performance monitor local control a0 PMLCa0 144 UPMLCa0 128 2.16.2/2-112
Performance monitor local control a1 PMLCa1 145 UPMLCat1 129
Performance monitor local control a2 PMLCa2 146 UPMLCa2 130
Performance monitor local control a3 PMLCa3 147 UPMLCa3 131
Performance monitor local control a4 PMLCa4 148 UPMLCa4 132
Performance monitor local control a5 PMLCa5 149 UPMLCa5 133
Performance monitor local control b0 PMLCbO 272 UPMLCbO 256 2.16.3/2-114
Performance monitor local control b1 PMLCb1 273 UPMLCb1 257
Performance monitor local control b2 PMLCb2 274 UPMLCb2 258
Performance monitor local control b3 PMLCb3 275 UPMLCb3 259
Performance monitor local control b4 PMLCb4 276 UPMLCb4 260
Performance monitor local control b5 PMLCb5 277 UPMLCb5 261
Performance monitor global control 0 PMGCO 400 UPMGCO 384 2.16.1/2-112

Attempting to access a supervisor PMR from user mode (MSR[PR] = 1) results in a privileged instruction
exception. Attempting to access a non-existent PMR in any privilege mode results in an illegal instruction

exception.

If MSRP[PMMP] = 1, access to PMRs can cause embedded hypervisor privilege exceptions or return a
value of 0 in the target register. This behavior is described in EREF.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor

2-111

Register Model

2.16.1 Performance Monitor Global Control 0 (PMGCO0) and User
Performance Monitor Global Control 0 (UPMGCO) registers

PMGCO, shown in Figure 2-73, controls all performance monitor counters. PMGCO contents are reflected
to UPMGCO, which is readable by user-level software. The e6500 core implements these registers as
defined in EREF, with the exception of the following implementation-specific fields:

e Time base selector (TBSEL), bits 51-52, selects the time base bit that can cause a time base
transition event (the event occurs when the selected bit changes from O to 1).

* Time base transition event exception enable (TBEE), bit 55.

PMR PMGCO (PMR400)UPMGCO0 (PMR384) PMGCO: Guest supervisor
UPMGCO: User RO
32 33 34 35‘ ‘ ‘ ‘ 50 51 ‘ 52 53 54 55 |56 63
R
W FAC |PMIE |FCECE — TBSEL | — | TBEE —
Reset All zeros

Figure 2-73. Performance Monitor Global Control 0 (PMGCO0) and
User Performance Monitor Global Control 0 (UPMGCO) registers

PMGCO is cleared by a hard reset. Reading this register does not change its contents. This table describes
the e6500-specific PMGCO and UPMGCO fields.

Table 2-69. PMGCO0/UPMGCO0 implementation-specific field descriptions

Bits | Name Description

51-52 | TBSEL | Time base selector. Selects the time base bit that can cause a time base transition event (the event occurs when
the selected bit changes from 0 to 1).

00 TB[63] (TBL[31])

01 TB[55] (TBL[23])

10 TB[51] (TBL[19])

11 TB[47] (TBL[15])

Time base transition events can be used to periodically collect information about processor activity. In
multi-processor systems in which TB registers are synchronized among processors, time base transition events
can be used to correlate the performance monitor data obtained by several processors. For this use, software
must specify the same TBSEL value for all processors in the system. Because the time-base frequency is
implementation-dependent, software should invoke a system service program to obtain the frequency before
choosing a value for TBSEL.

55 | TBEE |Time base transition event exception enable

0 Exceptions from time base transition events are disabled.

1 Exceptions from time base transition events are enabled. A time base transition is signaled to the performance
monitor if the TB bit specified in PMGCO[TBSEL] changes from 0 to 1. Time base transition events can be
used to freeze the counters (PMGCO[FCECE]) or signal an exception (PMGCO[PMIE]).

Changing PMGCO[TBSEL] while PMGCO[TBEE] is enabled may cause a false 0-to-1 transition that signals
the specified action (freeze, exception) to occur immediately. Although the interrupt signal condition may occur
with MSR[EE] = 0, the interrupt cannot be taken until MSR[EE] = 1 or MSR[GS] = 1.

2.16.2 Local control A registers (PMLCa0-PMLCa5/UPMLCa0-UPMLCa5)

PMLCa0-PMLCa5 function as event selectors and give local control for the corresponding performance
monitor counters. PMLCan works with the corresponding PMLCbr. PMLCan contents are reflected to

€6500 Core Reference Manual, Rev 0

2-112 Freescale Semiconductor

Register Model

UPMLCan. The e6500 core implements these registers as they are defined by the architecture and
described in EREF, with the following exception:

The EVENT field only implements the low-order 9 bits of the EREF-defined field.

PPMLCa0 (PMR144) / UPMLCa0 (PMR128) PMLCa0-PMLCa5: Guest supervisor
PMLCal (PMR145) / UPMLCa1 (PMR129) , UPMLCa0-UPMLCa5: User RO
PMLCa2 (PMR146) / UPMLCa2 (PMR130)
PMLCa3 (PMR147) / UPMLCa3 (PMR131)
PMLCa4 (PMR148) / UPMLCa4 (PMR132)
PMLCa5 (PMR149) / UPMLCa5 (PMR133)
32 33 34 35 3 37 38 39‘ ‘ 47|48 ‘ ‘ ‘ 61 62 63
R
W FC|FCS|FCU|FCM1|FCMO|CE|— EVENT — FCGS1 |FCGS0
Reset All zeros

Figure 2-74. Local control A (PMLCa0-PMLCa5/UPMLCa0-UPMLCab5) registers

This table describes the PMLCa fields.

Table 2-70. PMLCa0-PMLCa5/UPMLCa0-UPMLCab5 field descriptions

Bits | Name Description
32 FC |Freeze counter
0 PMC is incremented (if permitted by other PM control bits).
1 PMC is not incremented.
33 FCS |Freeze counter in supervisor state
0 PMC is incremented (if permitted by other PM control bits).
1 PMC is not incremented if MSR[PR] = 0.
34 FCU |Freeze counter in user state
0 PMC is incremented (if permitted by other PM control bits).
1 PMC is not incremented if MSR[PR] = 1.
35 | FCM1 |Freeze counter while mark = 1
0 PMC is incremented (if permitted by other PM control bits).
1 PMC is not incremented if MSR[PMM] = 1.
36 | FCMO |Freeze counter while mark =0
0 PMC is incremented (if permitted by other PM control bits).
1 PMC is not incremented if MSR[PMM] = 0.
37 CE |Condition enable
0 PMCx overflow conditions cannot occur. (PMCx cannot cause interrupts or freeze counters.)
1 Overflow conditions occur when the most significant bit of PMCx is equal to one.
It is recommended that CE be cleared when counter PMCx is selected for chaining.
38 — |Reserved
39-47 | EVENT |Event selector. Up to 511 events are selectable. When this field is 0, the PMC is not incremented.
48-61 — |Reserved

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-113

Register Model

Table 2-70. PMLCa0-PMLCa5/UPMLCa0-UPMLCab5 field descriptions (continued)

Bits | Name Description

62 |FCGSH1|Freeze counters in guest state
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[GS] = 1.

63 |FCGSO0|Freeze counters in hypervisor state
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[GS] = 0.

2.16.3 Local control b registers (PMLCb0-PMLCb5/UPMLCb0-UPMLCDb5)

PMLCbO-PMLCbS5, shown in Figure 2-75, specify a threshold value and a multiple to apply to a threshold
event selected for the corresponding performance monitor counter. For the e6500 core, thresholding is
supported only for PMCO and PMC1. PMLCbn works with the corresponding PMLCan. PMLCbn
contents are reflected to UPMLCan. The e6500 core implements these registers as they are defined in
EREF, except for the following e6500-specific fields:

* TRIGONCTL and TRIGOFFCTL is available for triggering control.

* PMCC and PMP are available for triggering status.

PMLCbO (PMR272) / UPMLCb0 (PMR256) PMLCbO-PMLCb5: Guest supervisor
PMLCb1 (PMR273) / UPMLCb1 (PMR257) UPMLCbO-UPMLCb5: User RO
PMLCb2 (PMR274) / UPMLCb2 (PMR258)
PMLCb3 (PMR275) / UPMLCb3 (PMR259)
PMLCb4 (PMR276) / UPMLCb4 (PMR260)
PMLCb5 (PMR277) / UPMLCb5 (PMR261)
32 35| 36 39 40 41 ‘ 47 | 48 50 51|52 53 55 |56 57 58 63
R PMCC
W TRIGONCTL | TRIGOFFCTL — PMP — THRESHMUL | — THRESHOLD
Reset All zeros

Figure 2-75. Local control b registers (PMLCb0-PMLCb5/UPMLCb0-UPMLCDb5)
Table 2-71 describes the PMLCb fields.

The implementation-specific fields TRIGONCTL and TRIGOFFCTL provide a method for certain
conditions in the processor from the debug facility or the performance monitor facility to start and stop
performance monitor counting when a certain programmed condition occurs and the counter is not frozen.

NOTE

For the purposes of this section, “frozen” means the counter is frozen by
means of either PMLCax[FC] or PMGCO[FAC].

The trigger state is either set to ON or OFF depending on how the controls are programmed and when the
programmed conditions occur in the processor. When the trigger state is ON, events are enabled for
counting in PMCx if counting is enabled by all other performance monitor controls. If the trigger state is
OFF, counting is disabled for PMCx. For both controls, the following applies to how the trigger state is
determined:

€6500 Core Reference Manual, Rev 0

2-114 Freescale Semiconductor

Register Model

* When the counter is frozen by means of either PMLCax[FC] = 1 or PMGCO[FAC] = 1, the trigger
state is set to OFF. The trigger state remains off until the counter is unfrozen and a subsequent
condition sets the trigger state to ON.

e If TRIGONCTL = 0b0000, the trigger state is always set to ON when the counter is not frozen.
This setting is used to make triggers inactive and all other performance monitor controls determine
whether events are counted. Note that if PMLCax[EVENT] = 0, the counter is considered frozen.

» Ifacondition occurs that is programmed via TRIGONCTL and the counter is not frozen, the trigger
state is set to ON.

* If a condition occurs that is programmed via TRIGOFFCTL and the counter is not frozen, the
trigger state is set to OFF.

e Other methods of freezing PMCx from a counter other than PMLCax[FC] or PMGCO[FAC] have
no effect on the trigger state. However, such methods can prevent the counter from counting. That
is, the trigger state may be ON, but PMCx is not counting events because it is frozen from some
other method.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-115

Register Model

Table 2-71. PMLCb0-PMLCb5/UPMLCb0-UPMLCDbS5 field descriptions

Bits

Name

Description

32-35

TRIGONCTL

Counter Trigger ON control

0000 No ON triggering active. This means that the counter is always considered to be triggered ON
when it is not frozen.

0001 Trigger ON when rise of PMCn Qual Pin is detected .

0010 Trigger ON when previous Performance Monitor Counter overflow condition (bit 32 only)

0011 Trigger ON when IAC1 match (only requires the debug condition, not the event)

0100 Trigger ON when IAC2 match (only requires the debug condition, not the event)

0101 Trigger ON when DAC1 match (only requires the debug condition, not the event)

0110 Trigger ON when DAC2 match (only requires the debug condition, not the event)

0111-1110
Trigger ON when DVTn is asserted.

1111 Reserved

Note: DVTn (DVTO, DVT1, .. DVT7) are asserted by writing to the DEVENT register. See
Section 2.14.13, “Debug Event Select (DEVENT) register.”

The counter trigger ON control uses certain conditions in the processor as signals to start counting
when those conditions occur. Triggers associated with debug events require only the debug condition
to be present and does not require that the debug event occurs. For example, an IAC1 match occurs,
which does not result in a debug event because DBCRO[IDM] is not set, but still causes counting to
begin if the appropriate trigger ON control is set. For a graphic representation of performance monitor
counter controls, see Figure 9-34.

36-39

TRIGOFFCTL

Counter Trigger OFF control
0000 Never trigger OFF due to a condition.
0001 Trigger OFF when fall of PMCn Qual Pin
0010 Trigger OFF when previous Performance Monitor Counter overflow condition (bit 32 only)
0011 Trigger OFF when IAC1 match (only requires the debug condition, not the event)
0100 Trigger OFF when IAC2 match (only requires the debug condition, not the event)
0101 Trigger OFF when DAC1 match (only requires the debug condition, not the event)
0110 Trigger OFF when DAC2 match (only requires the debug condition, not the event)
0111-1110
Trigger OFF when DVTn is asserted.
1111 Reserved
Note: DVTn (DVTO, DVT1, .. DVT7) are asserted by writing to the DEVENT register. See
Section 2.14.13, “Debug Event Select (DEVENT) register.”

The counter trigger OFF control uses certain conditions in the processor as signals to stop counting
when those conditions occur. Triggers associated with debug events require only the debug condition
to be present and does not require that the debug event occurs. For example, an IAC1 match occurs,
which does not result in a debug event because DBCRO[IDM] is not set, but still causes counting to stop
if the appropriate trigger OFF control is set. For a graphic representation of performance monitor
counter controls, see Figure 9-34.

40

PMCC

PMCx trigger state

0 PMCx trigger state is OFF.

1 PMCx trigger state is ON.

Note: This is a status bit that shows the trigger state controlled by TRIGONCTL and TRIGOFFCTL.
When PMCC = 1, PMCx may still not be counting if it is frozen by other means such as
PMLCax{FC] or PMGCO[FAC].

41-47

Reserved

€6500 Core Reference Manual, Rev 0

2-116

Freescale Semiconductor

Register Model

Table 2-71. PMLCb0—-PMLCb5/UPMLCb0-UPMLCDbS5 field descriptions (continued)

Bits

Name

Description

48-50

PMP

Performance Monitor Overflow Periodicity Select 1

000 Performance Monitor Watchpoint (PMWXx) triggers on any change to counter bit 32 (period = 231).
001 Performance Monitor Watchpoint (PMWXx) triggers on any change to counter bit 43 (period = 220).
010 Performance Monitor Watchpoint (PMWXx) triggers on any change to counter bit 49 (period = 214).
011 Performance Monitor Watchpoint (PMW x) triggers on any change to counter bit 55 (period = 28).
100 Performance Monitor Watchpoint (PMWx) triggers on any change to counter bit 59 (period = 24).
101 Performance Monitor Watchpoint (PMWx) triggers on any change to counter bit 61 (period = 22).
110 Performance Monitor Watchpoint (PMWx) triggers on any change to counter bit 62 (period = 21).
111 Performance Monitor Watchpoint (PMWx) triggers on any change to counter bit 63 (period = 20).

51-52

Reserved

53-55

THRESHMUL

Threshold multiple

000 Threshold field is multiplied by 1 (PMLCbx[THRESHOLD] x 1).

001 Threshold field is multiplied by 2 (PMLCbx[THRESHOLD] x 2).

010 Threshold field is multiplied by 4 (PMLCbXx[THRESHOLD] x 4).

011 Threshold field is multiplied by 8 (PMLCbx[THRESHOLD] x 8).

100 Threshold field is multiplied by 16 (PMLCbX[THRESHOLD] x 16).
101 Threshold field is multiplied by 32 (PMLCbX[THRESHOLD] x 32).
110 Threshold field is multiplied by 64 (PMLCbX[THRESHOLD] x 64).
111 Threshold field is multiplied by 128 (PMLCbx[THRESHOLD] x 128).

56-57

Reserved

58-63

THRESHOLD

Threshold. Only events that exceed this value are counted. Events to which a threshold value applies
are implementation-dependent as are the dimension (for example, duration in cycles) and the
granularity with which the threshold value is interpreted.

By varying the threshold value, software can profile event characteristics. For example, if PMC1 is
configured to count cache misses that last longer than the threshold value, software can obtain the
distribution of cache miss durations for a given program by monitoring the program repeatedly using a
different threshold value each time.

1

Performance Monitor Counter overflow generates a watchpoint (PMWHx) that can be used for triggering or to generate

Watchpoint Messages (if enabled).

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-117

Register Model

2.16.4 Performance monitor counter registers
(PMCO0-PMC5/UPMC0-UPMCY5)

PMCs and UPMCs, shown in Figure 2-76, are 32-bit counters that can be programmed to generate
interrupt signals when they overflow. Each counter is enabled to count 255 events. The 6500 core

implements these registers as defined in EREF.

Reset

This table describes the PMC register fields.

PMCO
PMC1
PMC2
PMC3
PMC4
PMC5

PMR16) / UPMCO
PMR17) / UPMC1
PMR18) / UPMC2
PMR19) / UPMC3
PMR20) / UPMC4
PMR21) / UPMC5

PMRO)
PMR1)
PMR2)
PMR3)
PMR4)
PMR5)

AAAAAA
Py

32 33 ‘ ‘

PMCO0-PMC5: Guest supervisor
UPMCO0-UPMC5: User RO

63

ov

Counter value

Figure 2-76. Performance monitor counter (PMC0-PMC5/UPMCO0-UPMCY5) registers

Table 2-72. PMC0-PMC5/UPMCO0-UPMCS field descriptions

Bits

Name

Description

32

ov Overflow. When this bit is set, it indicates this counter reaches its maximum value.

33-63 | Counter Value [Indicates the number of occurrences of the specified event.

The minimum counter value is 0x0000_0000; 4,294,967,295 (OxFFFF_FFFF) is the maximum. A counter
can increment by 0, 1, 2, 3, or 4 up to the maximum value and then wrap to the minimum value.

The counters will stop counting (freeze) when the core enters debug halt
mode, or when the core enters a low-power mode where the core clock is
disabled. The counters will resume counting when debug halt mode is
exited, or when the clocks are turned back on as the low power mode is

exited.

A counter enters the overflow state when the high-order bit is set by entering the overflow state at the
halfway point between the minimum and maximum values. A performance monitor interrupt handler can
easily identify overflowed counters, even if the interrupt is masked for many cycles (during which the
counters may continue incrementing). A high-order bit is set normally only when the counter increments
from a value below 2,147,483,648 (0x8000_0000) to a value greater than or equal to 2,147,483,648
(0x8000_0000).

€6500 Core Reference Manual, Rev 0

2-118

Freescale Semiconductor

Register Model

NOTE

Initializing PMCs to overflowed values is strongly discouraged. If an
overflowed value is loaded into PMCn that held a non-overflowed value
(and PMGCO[PMIE], PMLCan|[CE], and (MSR[EE] or MSR[GS]) are set),
an interrupt is generated before any events are counted.

The response to an overflow depends on the configuration, as follows:

* If PMLCan[CE] is clear, no special actions occur on overflow: the counter continues incrementing,
and no exception is signaled.

e If PMLCan[CE] and PMGCO[FCECE] are set, all counters are frozen when PMCrn overflows.

e [If PMLCan[CE] and PMGCO[PMIE] are set, an exception is signaled when PMCr reaches
overflow. If the performance monitor interrupt is directed to the guest state, interrupts are masked
when MSR[EE] = 0 or MSR[GS] = 0. If the performance monitor interrupt is directed to the
hypervisor, interrupts are masked when MSR[EE] = 0 and MSR[GS] = 0. An exception may be
signaled while the interrupt is masked, but the interrupt is not taken until it is fully enabled and only
if the overflow condition is still present and the configuration has not been changed in the
meantime to disable the exception.

However, if the interrupt masking condition remains until after the counter leaves the overflow state
(msb becomes 0), or until after PMLCan[CE] or PMGCO[PMIE] are cleared, the exception is not
signaled.
The following sequence is recommended for setting counter values and configurations:
1. Set PMGCO[FAC] to freeze the counters.
2. Initialize counters and configure control registers using mtpmr instructions.
3. Release the counters by clearing PMGCO[FAC] with a final mtpmr instruction.
Software is expected to use mtpmr to explicitly set PMCs to non-overflowed values. Setting an
overflowed value may cause an erroneous exception. For example, if both PMGCO[PMIE] and

PMLCan|[CE] are set and the mtpmr loads an overflowed value into PMCr, an interrupt may be generated
without an event counting having taken place.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-119

-

Register Model

e€6500 Core Reference Manual, Rev 0

2-120 Freescale Semiconductor

Chapter 3
Instruction Model

This chapter provides a listing and general description of instructions implemented on the e6500 processor
core, grouping the instructions by general functionality. It provides the syntax and briefly describes the
functionality as defined by the architecture. Full descriptions of these instructions are provided in EREF.

3.1 Overview

This chapter provides information about the instruction set as implemented on the 6500 core, which is an
implementation of the 64-bit Power ISA.The e6500 core implements extensions that define additional
instructions, registers, and interrupts. The architecture defines several instructions in a general way,
leaving some details of the execution up to the implementation. Those details are described in this chapter.

3.1.1 Supported Power ISA categories and unsupported instructions

The 6500 core implements the following categories, as defined in EREF:
* Base
* Embedded
* Alternate Time Base
* (Cache Specification
* Cache Stashing
» Data Cache Block Extended Operations
* Decorated Storage
* Embedded.Enhanced Debug
* Embedded.External PID
* Embedded.Hypervisor
* Embedded.Hypervisor. LRAT
* Embedded.Page Table
* Embedded.Little-Endian
* Embedded.Multi-Threading
* Embedded.Performance Monitor
* Embedded.Processor Control
* Embedded.Cache Locking
* Enhanced Reservations
* External Proxy

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 3-1

Instruction Model

* Floating Point and Floating Point.Record

e Vector
e Wait
e 064-Bit

The following table lists Power ISA 2.06 instructions defined in the previous Power ISA categories list that
are not supported on the e6500 core. Attempting to execute unsupported instructions results in an illegal
instruction exception-type program exception.

Table 3-1. Unsupported Power ISA 2.06 instructions (by category)

Category Mnemonic Name Notes
64 divde[o][.] Divide Doubleword Extended —
64 divdeu[o][.] |Divide Doubleword Extended Unsigned —
Base divwe[o][.] |Divide Word Extended —
Base divweu[o][.] |Divide Word Extended Unsigned —
Embedded.External PID eviddepx Vector Load Doubleword into Doubleword by Category SPE not
External Process ID Indexed supported
Embedded.External PID evstddepx |Vector Store Doubleword into Doubleword by Category SPE not
External Process ID Indexed supported
Floating Point fefids[.] Floating Convert from Integer Doubleword Single —
Floating Point fefidul.] Floating Convert from Integer Doubleword —
Unsigned
Floating Point fcfidus|.] Floating Convert from Integer Doubleword —
Unsigned Single
Floating Point fcpsgn[.] Floating Copy Sign —
Floating Point fetidul.] Floating Convert to Integer Doubleword Unsigned —
Floating Point fetiduz[.] Floating Convert to Integer Doubleword Unsigned —
with Round Toward Zero
Floating Point fctiwul.] Floating Convert to Integer Word Unsigned —
Floating Point fctiwuz[.] Floating Convert to Integer Word Unsigned with —
Round Toward Zero
Floating Point fre Floating Reciprocal Estimate —
Floating Point frim[.] Floating Round to Integer Minus —
Floating Point frin[.] Floating Round to Integer Nearest —
Floating Point frip[.] Floating Round to Integer Plus —
Floating Point friz[.] Floating Round to Integer Toward Zero —
Floating Point frsqrtes[.] Floating Reciprocal Square Root Estimate Single —
Floating Point fsqrt[s][.] Floating Square Root [Single] —
Floating Point ftdivl[.] Floating Test for Software Divide —
Floating Point ftsqri[.] Floating Test for Software Square Root —
Floating Point Ifiwax Load Floating-Point as Integer Word Algebraic —
Indexed
Floating Point Ifiwzx Load Floating-Point as Integer Word and Zero —
Indexed

€6500 Core Reference Manual, Rev 0

3-2

Freescale Semiconductor

Instruction Model

Table 3-1. Unsupported Power ISA 2.06 instructions (by category) (continued)

Category Mnemonic Name Notes
Floating Point mifsfi[.] Move to FPSCR Immediate W field is not implemented.
(W field) Always behaves as if W = 0.
Floating Point mtfsf].] Move to FPSCR W and L fields are not
(W and L fields) implemented. Always
behaves asif W=L=0.

3.2 Computation mode

EREF defines two major computation modes selectable through the state of the Computation Mode bit in
the MSR (MSR[CM]). The €6500 core supports both 32-bit mode (MSR[CM] = 0) and 64-bit mode
(MSR[CM] =1). EREF defines two methods of a 64-bit implementation providing 32-bit mode. The e6500
core provides 32-bit mode in a manner compatible with Power Architecture processors, which implement
the Server category. EIS calls this “hybrid 32-bit mode”. In both 32-bit and 64-bit mode, instructions that
set a 64-bit register affect all 64 bits. The computational mode controls how the effective address is
interpreted, how condition register bits and XER bits are set, how the Link (LR) register is set by branch
instructions in which LK = 1, and how the Count (CTR) register is tested by branch conditional
instructions. In both modes, effective address computations use all 64 bits of the relevant registers and
produce a 64-bit result. However, in 32-bit mode, the high-order 32 bits of the computed effective address
are ignored for the purpose of addressing storage.

When executing in 32-bit mode, the upper 32 bits of the fetch address, effective addresses, DACx, [ACx,
IVPR, and GIVPR are ignored. Record forms of instructions (commonly called “dot” forms because they
are specified with a “.” at the end of the mnemonic) produce different Condition (CR) register results for
an instruction that sets a GPR based on whether the thread is in 32-bit mode or 64-bit mode. In 32-bit
mode, the CR result is set based on the signed comparison of the low-order 32 bits of the result to 0. In

64-bit mode, the CR result is set based on the signed comparison of all 64 bits of the result to O.

3.3 Instruction set summary

The 6500 core instructions are presented in the following functional categories:

* Integer instructions—These include arithmetic and logical instructions. For more information, see
Section 3.4.3.1, “Integer instructions.”

* Floating-point instructions—These include floating-point arithmetic and logical instructions. See
Section 3.4.4, “Floating-point execution model.”

* AltiVec instructions—These include vector integer, logical, and single-precision floating-point
arithmetic instructions. See Section 3.4.5, “AltiVec instructions.”

* Load and store instructions—These include integer, floating-point, AltiVec, external PID, and
decorated storage load and store instructions, along with memory synchronization instructions. See
Section 3.4.3.2, “Load and store instructions.”

* Flow control instructions—These include branching instructions, CR logical instructions, trap
instructions, and other instructions that affect the instruction flow. See Section 3.4.6, “Branch and
flow control instructions.”

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 3-3

|
y

'
A

Instruction Model

* Processor control instructions—These instructions are used for performing various tasks
associated with moving data to and from special registers, system linkage instructions, and so on.
See Section 3.4.7, “Processor control instructions.”

* Memory synchronization instructions—These instructions are used for memory synchronizing.
See Section 3.4.9, “Memory synchronization instructions.”

* Memory control instructions—These instructions provide control of caches and TLBs. See
Section 3.4.11, “Memory control instructions,” and Section 3.4.12.4, “Supervisor-level memory
control instructions.”

Note that instruction groupings used here do not indicate the execution unit that processes a particular
instruction or group of instructions. This information, which is useful for scheduling instructions most
effectively, is provided in Chapter 10, “Execution Timing.”

Instructions are 4 bytes long and are word-aligned. Byte, halfword, word, and doubleword loads and stores
occur between memory and a set of thirty-two 64-bit general-purpose registers (GPRs).

Integer instructions operate on word operands that specify GPRs as source and destination registers.
Floating-point instructions operate on doubleword operands, which may contain single- or
double-precision values, and use thirty-two 64-bit floating-point registers (FPRs) as source and destination
registers. AltiVec instructions operate on quad-word operands, which may contain integer byte, halfword,
word, single-precision floating-point vector elements, and use thirty-two 128-bit vector registers (VRs) as
source and destination registers.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory
location in a computation and then modify the same or another location, the memory contents must be
loaded into a register, modified, and then written to the target location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands. To simplify
assembly language programming, a set of simplified mnemonics and symbols is provided for some of the
frequently used instructions (see Appendix A, “Simplified Mnemonics,” for a complete list). Programs
written to be portable across the various assemblers for the Power ISA should not assume the existence of
mnemonics not described in that document.

3.3.1 Instruction decoding

Reserved fields in instructions are ignored by the e6500 core. If an instruction contains a defined field for
which some values of that field are reserved, and that instruction is coded with those reserve values, that
instruction form is considered an invalid form. Execution of an invalid form instruction is boundedly
undefined.

3.3.2 Definition of boundedly undefined

When a boundedly undefined execution of an instruction takes place, the resulting undefined results are
bounded in that a spurious change in privilege state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded. Boundedly
undefined results for a given instruction can vary between implementations and between execution
attempts in the same implementation.

€6500 Core Reference Manual, Rev 0

3-4 Freescale Semiconductor

Instruction Model

3.3.3 Synchronization requirements

This section discusses synchronization requirements for special registers, certain instructions, and TLBs.
The synchronization described in this section refers to the state of the thread that is performing the
synchronization.

Changing a value in certain system registers and invalidating TLB entries can have the side effect of
altering the context in which data addresses and instruction addresses are interpreted and in which
instructions are executed. For example, changing MSR[IS] from O to 1 has the side effect of changing
address space. These effects need not occur in program order (that is, the strict order in which they occur
in the program) and may require explicit synchronization by software. When multiple changes are made
that affect context to different values, even within the same register, those changes are not guaranteed to
occur at the same time unless the instruction itself is context synchronizing. For example, changing both
MSR[IS] and MSR[GS] with the same mtmsr instruction causes multiple changes to how fetched
instructions are translated. The change to MSR[IS] may occur in a different cycle than MSR[GS], but both
are guaranteed to be complete when a context synchronizing event occurs.

An instruction that alters the context in which data addresses or instruction addresses are interpreted, or in
which instructions are executed, is called a context-altering instruction. This section covers all of the
context-altering instructions. The software synchronization required for each is shown in Table 3-2 and
Table 3-3. Instructions that are not listed do not require explicit synchronization.

The notation “CSI” in the tables means any context-synchronizing instruction (sc, isync, rfi, rfgi, rfci,
rfdi, or rfmci). A context-synchronizing interrupt (that is, any interrupt) can be used instead of a
context-synchronizing instruction, in which case references in this section to the synchronizing instruction
should be interpreted as meaning the instruction at which the interrupt occurs. If no software
synchronization is required either before or after a context-altering instruction, the phrase “the
synchronizing instruction before (or after) the context-altering instruction” should be interpreted as
meaning the context-altering instruction itself.

The synchronizing instruction before the context-altering instruction ensures that all instructions up to and
including that synchronizing instruction are fetched and executed in the context that existed before the
alteration. The synchronizing instruction after the context-altering instruction ensures that all instructions
after that synchronizing instruction are fetched and executed in the context established by the alteration.
Instructions after the first synchronizing instruction, up to and including the second synchronizing
instruction, may be fetched or executed in either context.

When modifying registers shared between threads, shared resource synchronization may be required as
described in Section 3.3.3.1, “Shared resource synchronization.”

Care must be taken when altering context associated with instruction fetch and instruction address
translation. Altering INIA, IMSR, MSR[IS], MSR[GS], MSR[CM], LPIDR, or PID can cause an implicit
branch, where the change in translation or how instructions are fetched causes the thread to fetch
instructions from a different real address than what would have resulted if the context was not changed.
Implicit branches are not supported by the architecture. It is recommended that MSR[IS], MSR[GS], and
MSR[CM] context changes be performed through a return from interrupt instruction (rfi, rfgi, rfci, rfdi,
or rfmci), which changes all the MSR context atomically and is completely context synchronizing.
Because the INIA and IMSR associated with a thread can only be written when that thread is disabled, it

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 3-5

Instruction Model

is recommended that altering the context of that thread via its INIA or IMSR be performed only after that
thread is known to be disabled by polling the appropriate TENSR bit.

If a sequence of instructions contains context-altering instructions and contains no instructions that are
affected by any of the context alterations, no software synchronization is required within the sequence.

Sometimes advantage can be taken of the fact that certain instructions that occur naturally in the program,
such as the rfi at the end of an interrupt handler, provide the required synchronization.

No software synchronization is required before altering MSR because mtmsr is execution synchronizing.
No software synchronization is required before most other alterations shown in Table 3-2, because all
instructions before the context-altering instruction are fetched and decoded before the context-altering
instruction is executed. (The processor must determine whether any of the preceding instructions are
context-synchronizing.)

This table identifies the software synchronization requirements for data access for context-altering
instructions that require synchronization.

Table 3-2. Data access synchronization requirements

Context Altering Instruction or Event Required Before Required After Notes
mfspr (L1CSRO, L1ICSR1) sync None 1
mtmsr (CM) None (O] —
mtmsr (DE) None (O] —
mtmsr (DS) None (O] —
mtmsr (GS) None (O] —
mtmsr (ME) None (O] 2
mtmsr (PR) None (O] —
mtpmr (all) None (O] —
mtspr (EPLC) None (O] —
mtspr (EPSC) None CSl —
mtspr (L1CSRO, L1CSR1) sync followed by isync isync s
mtspr (L1CSR2) sync followed by isync isync followed by sync? s
mtspr (LPIDR) (O] (O] —
mtspr (PID) (O] (O] —
tibivax CSl sync followed by CSI 567
tibilx csl csl 56
tibwe csl csl 56

T A sync prior to reading L1CSRO or L1CSR1 is required to examine any cache locking status from prior cache locking
operations. The sync ensures that any previous cache locking operations have completed prior to reading the status.

2 A context-synchronizing instruction is required after altering MSR[ME] to ensure that the alteration takes effect for subsequent
machine check interrupts, which may not be recoverable and, therefore, may not be context synchronizing.

3 lsolated shared synchronization is required. See Section 3.3.3.1, “Shared resource synchronization.

4 The additional sync following the isync after the mtspr is done is required if software is turning off stashing by writing 0 to
the stash ID field of the register. The sync ensures that any pending stash operations have finished.

€6500 Core Reference Manual, Rev 0

3-6 Freescale Semiconductor

Instruction Model

For data accesses, the context-synchronizing instruction before tibwe, tibilx, or tlbivax ensures that all memory accesses
due to preceding instructions have completed to a point at which they have reported all exceptions they cause.

The context-synchronizing instruction after tlbwe, tlbilx, or tibivax ensures that subsequent accesses (data and instruction)
use the updated value in any TLB entries affected. It does not ensure that all accesses previously translated by TLB entries
being updated have completed with respect to memory; if these completions must be ensured, tibwe, tibilx, or tibivax must
be followed by a sync and by a context-synchronizing instruction. Note that such synchronization does not guarantee these
completions for other threads in the processor core. If these completions must be ensured on other threads on the processor
core, either tibbsync must be used for tibivax invalidations or tlbilx; isync; sync must be executed on the other threads.

To ensure that all TLB invalidations are completed and seen in all processors in the coherence domain, the global invalidation
requires that a tlbsync be executed after the tlbivax as follows: tibivax; sync; tibsync; sync; isync. For the e6500 core, this
code should be protected by a mutual exclusion lock such that only one processor at a time is executing this sequence
because multiple tlbsync operations on the CoreNet interface may cause the integrated device to hang.

This table identifies the software synchronization requirements for instruction fetch and/or execution for
context-altering instructions that require synchronization.

Table 3-3. Instruction fetch and/or execution synchronization requirements

Context-Altering Instruction or Event Required Before Required After Notes
mtmsr (CM) None (O] —
mtmsr (DE) None (O] —
mtmsr (FEO) None (O] —
mtmsr (FE1) None (O] —
mtmsr (FP) None (O] —
mtmsr (IS) None (O] —
mtmsr (GS) None (O] —
mtmsr (PR) None (O] —
mtpmr (all) None (O] —
mtspr (CDCSRO) None csl 1
mtspr (IVORn) None (O] 1
mtspr (IVPRn) None (O] 1
mtspr (L1CSRO, L1CSR1, L1ICSR2) sync followed by isync isync 2
mtspr (LPIDR) None (O] —
mtspr (MASn) None csl 3
mtspr (PID) None (O] —
mtspr (PWRMGTCRO) None csl 1
mttmr (INIAn) mtspr TENC confirmed by | mtspr TENS confirmed by mfspr —

mfspr TENSR TENSR*
tibivax None csl 56
tibilx None csl 5
tibwe None csl 5

' Shared synchronization is required to synchronize the change in the other threads.

2 Isolated shared synchronization is required. See Section 3.3.3.1, “Shared resource synchronization.”

3 MAS register changes require a CSI before subsequent instructions that use those updated values, such as a tlbwe, tibre,
tibilx, tibsx, and tibivax. Typically, software performs several MAS updates and then performs a single isync prior to executing
the TLB management instruction.

€6500 Core Reference Manual, Rev 0

Freescale Semiconductor 3-7

Instruction Model

This sequence is required to enable the thread once the new NIA has been written.

The context-synchronizing instruction after tibwe, tlbilx, or tibivax ensures that subsequent accesses (data and instruction)
use the updated value in any TLB entries affected. It does not ensure that all accesses previously translated by TLB entries
being updated have completed with respect to memory; if these completions must be ensured, tibwe, tibilx, or tibivax must
be followed by a sync and by a context-synchronizing instruction.

To ensure that all TLB invalidations are completed and seen in all processors in the coherence domain, the global invalidation
requires that a tlbsync be executed after the tibivax as follows: tibivax; sync; tibsync; sync; isync. For the e6500 core, this
code should be protected by a mutual exclusion lock such that only one processor at a time is executing this sequence because
multiple tlbsync operations on the CoreNet interface may cause the integrated device to hang.

This table identifies the software synchronization requirements for non-context-altering instructions that
require synchronization.

Table 3-4. Special synchronization requirements

Non-Context-Altering Instruction or Event Required Before Required After Notes
mtspr (BUCSR) None isync —
mtspr (DACn) None CSl and changing MSR[DE] from 0 to 1 1
mtspr (DBCRn) None CSl and changing MSR[DE] from 0 to 1 1
mtspr (DBSR) None CSl and changing MSR[DE] from 0 to 1 1
mtspr (DBSRWR) None CSl and changing MSR[DE] from 0 to 1 1
mtspr (EPCR[DUVD]) None CSl and changing MSR[DE] from0to 1| 12
mtspr (HIDn) msync followed by isync isync 3
mtspr (IACn) None CSl and changing MSR[DE] from 0 to 1 1
mtspr (MMUCSRO) None isync 3
mtspr (NSPD) None isync —
mtspr (PPR32) None (O] —
mttmr (TPRIn) None executing thread: isync; other thread: 3

shared register synchronization

Synchronization requirements for changing any debug facility registers require that the changes be followed by a CSl and a
transition of MSR[DE] from 0 to 1 before the results of the changes are guaranteed to be seen. Normally, changes to the debug
registers occur in the debug interrupt routine when MSR[DE] = 0, and the subsequent return via rfdi from the debug routine is
likely to write MSR[DE] back to 1, which accomplishes the required synchronization. Software should only make changes to
the debug facility registers when MSR[DE] = 0. Note that results of changing debug registers may be seen at any time after the
debug facility is changed, but are not guaranteed until the required synchronization is performed. This means that changing
debug resources that cause debug events to trigger in the current instruction stream is an unreliable construct for software to
use.

Note that the special synchronization requirement applies only to changes to EPCR[DUVD]. If this bit is not changed, the
synchronization requirements for EPCR is as described in the earlier data or instruction execution tables.

Shared synchronization is required to synchronize the change in the other threads.

Synchronization requirements for updating memory-mapped registers (MMRs) are described in
Section 2.2.3.1, “Synchronization requirements for memory-mapped registers.”

3.3.3.1 Shared resource synchronization

When modifying SPRs or TMRs, which are shared between threads (shown as shared in Table 2-2), if the
change in the register must be synchronized in other threads, shared resource synchronization must be

€6500 Core Reference Manual, Rev 0

3-8 Freescale Semiconductor

Instruction Model

performed after any required synchronization operations are performed in the executing thread. One thread
can context-synchronize any other thread within in the 6500 core by first disabling and then re-enabling
the other thread using the following process:

1. Write to the appropriate bit of the TENC SPR.
2. Poll the corresponding TENSR bit.
3. Write the TENS bit associated with the other thread.

Some registers require that the thread performing the mtspr must be the only enabled thread during
instruction execution and synchronization. This is called “isolated shared synchronization.” To perform
isolated shared synchronization, the thread first disables all other threads by writing the TENC register and
polls the TENSR register to determine that all other threads are disabled. It then can perform the mtspr
and appropriate synchronization before re-enabling the other threads by writing to the TENS register.

3.3.3.2 Synchronization with tibwe, tibivax, and tlbilx instructions

The following sequence shows why, for data accesses, all memory accesses due to instructions before the
tibwe or tlbivax must complete to a point at which they have reported any exceptions. Assume valid TLB
entries exist for the target memory location when the sequence starts.

1. A program issues a load or store to a page.

2. The same program executes a tlbwe, tlbilx, or tlbivax instruction, which invalidates the
corresponding TLB entry.

3. The load or store instruction finally executes and gets a TLB miss exception.

The TLB miss exception is semantically incorrect. To prevent it, a context-synchronizing instru