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About this book
This core reference manual includes the register model, instruction model, MMU, memory subsystem, and 
debug and performance monitor facilities of the e6500 core. The primary objective of this manual is to 
describe the functionality of the e6500 embedded microprocessor core for software and hardware 
developers. This manual is intended as a companion to the following documents: 

• EREF: A Programmer’s Reference Manual for Freescale Power Architecture Processors (hereafter 
called EREF), 

• AltiVec Technology Programming Environments Manual for Power ISA Processors, and 

• Power ISA™ Version 2.06. 

These documents describe the architecture to which the e6500 core is implemented and referenced 
frequently. This manual focuses on features that are specific to the e6500 microprocessor.

Information in this manual is subject to change without notice, as described in the disclaimers on the title 
page of this manual. As with any technical documentation, it is the readers’ responsibility to be sure they 
are using the most recent version of the documentation. Updates to this document and errata can be found 
at freescale.com. 

Audience
It is assumed that the reader understands operating systems, microprocessor system design, and the basic 
principles of RISC processing. It is also assumed the reader has access to EREF, AltiVec Technology 
Programming Environments Manual for Power ISA Processors, and Power ISA™ Version 2.06 (hereafter 
called Power ISA).

Organization
The following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “e6500 Overview,” provides a general description of e6500 functionality. 

• Chapter 2, “Register Model,” is useful for software engineers who need a general understanding of 
the e6500 register set and details of e6500-specific features.

• Chapter 3, “Instruction Model,” provides a general overview of the addressing modes and a 
description of the instructions as defined by the architecture and indicates particular areas in which 
the e6500 provides implementation-specific details not described in the EREF. Instructions are 
organized by function.

• Chapter 4, “Interrupts and Exceptions,” describes how the e6500 core implements the interrupt 
model. 
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• Chapter 5, “Core Caches and Memory Subsystem,” describes the e6500 L1 cache, the shared L2 
cache, and the memory subsystem (MSS).

• Chapter 6, “Memory Management Units (MMUs),” describes e6500 memory management, 
including the mechanisms and structures associated with address translation.

• Chapter 7, “Timer Facilities,” describes timers provided by the e6500 core.

• Chapter 8, “Power Management,” describes power management facilities provided by the e6500 
core.

• Chapter 9, “Debug and Performance Monitor Facilities,” describes the debug and performance 
monitor facilities implemented in the e6500 core.

• Chapter 10, “Execution Timing,” describes how instructions are fetched, decoded, issued, 
executed, and completed and how instruction results are presented to the processor and memory 
system. This chapter also provides tables that indicate latency and repeat rate for each of the 
instructions supported by the e6500 core. 

• Chapter 11, “Core and Cluster Software Initialization Requirements,” describes the software 
initialization requirements after reset.

• Appendix A, “Simplified Mnemonics,” describes extended mnemonics for assembly language 
programming.

Suggested reading
This section lists additional reading that provides background for the information in this manual, as well 
as general information about the architecture. 

General information

The following documentation is available on Power.org:

• Power ISA™ Version 2.06, January 30, 2009

The following documentation, published by Morgan-Kaufmann Publishers, 340 Pine Street, Sixth Floor, 
San Francisco, CA, provides useful information about computer architecture in general:

• Computer Architecture: A Quantitative Approach, Third Edition, by John L. Hennessy and David 
A. Patterson 

• Computer Organization and Design: The Hardware/Software Interface, Second Edition, David A. 
Patterson and John L. Hennessy 

Related documentation

Freescale documentation is available from the sources listed on the back cover of this manual; the 
document order numbers are included in parentheses for ease in ordering:

• EREF—This book provides a higher-level view of the programming model as it is defined by 
Power ISA and Freescale implementation standards. 

• AltiVec Technology Programming Environments Manual for Power ISA Processors—This book 
provides a higher-level view of the programming model for the vector processing provided by 
AltiVec technology as it is defined by Power ISA and Freescale implementation standards.
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• Integrated device reference manuals—These books provide details about individual 
implementations of embedded devices that incorporate embedded cores, such as the e6500 core. 

• Addenda/errata to reference manuals—Because some processors have follow-on parts, an 
addendum is provided that describes the additional features and functionality changes. These 
addenda are intended for use with the corresponding user’s manuals. 

• Data sheets—Data sheets provide specific data regarding bus timing, signal behavior, and DC, AC, 
and thermal characteristics, as well as other design considerations. 

• Product briefs—Each device has a product brief that provides an overview of its features. This 
document is roughly equivalent to the Overview chapter (Chapter 1) of an implementation’s user 
manual. 

• Application notes—These documents address specific design issues useful to programmers and 
engineers working with Freescale processors. 

Additional literature is published as new processors become available. For a current list of documentation, 
visit freescale.com.

Conventions
This manual uses the following notational conventions:

cleared/set When a bit takes the value zero, it is said to be cleared; when it takes the value one, 
it is said to be set.

mnemonics Instruction mnemonics are shown in lowercase bold. 

italics Italics indicate variable command parameters, for example, bcctrx.

Book titles in text are set in italics.

Internal signals are set in italics, for example, qual BG.

0x0 Prefix used to denote a hexadecimal number.

0b0 Prefix used to denote a binary number.

rA, rB, rS Instruction syntax used to identify a source GPR.

rD Instruction syntax used to identify a destination GPR.

frA, frB, frC Instruction syntax used to identify a source FPR.

frD Instruction syntax used to identify a destination FPR.

vA, vB, vC, vS Instruction syntax used to identify a source VR.

vD Instruction syntax used to identify a destination VR.

REG[FIELD] Abbreviations for registers are shown in uppercase text. Specific bits, fields, or 
ranges appear in brackets. For example, MSR[PR] refers to the privilege mode bit 
in the machine state register.

x:y A bit range from bit x to bit y, inclusive.

x-y A bit range from bit x to bit y, inclusive.

x In some contexts, such as signal encodings, an unitalicized x indicates a don’t 
care. 
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x An italicized x indicates an alphanumeric variable. 

n An italicized n indicates a numeric variable.

¬ NOT logical operator.

& AND logical operator.

| OR logical operator.

Indicates reserved bits or fields in a register. Although these bits can be written to 
as ones or zeros, they are always read as zeros. 

Terminology conventions
This table lists certain terms used in this manual that differ from the architecture terminology conventions.

Table i. Terminology Conventions

Architecture Specification This Manual

Extended mnemonics Simplified mnemonics

Privileged mode (or privileged state) Supervisor level 

Hypervisor mode (or hypervisor state) Hypervisor level 

Problem mode (or problem state) User level 

Out-of-order memory accesses Speculative memory accesses

Storage (locations) Memory

Storage (the act of) Access 

—
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Chapter 1  
e6500 Overview
This chapter provides a general overview of the e6500 microprocessor core. It includes the following:

• An overview of architecture features as implemented on the e6500 core

• Summaries of the core feature set and instruction pipeline and flow

• Overviews of the programming model, interrupts, and exception handling

• A description of the memory management architecture

• High-level details of the e6500 core memory and coherency model

• A brief description of the CoreNet interface

• A list of differences between different versions of the e500mc/e5500/e6500 cores from e500v2

The e6500 core provides features that the integrated device may not implement or may implement in a 
more specific way. Differences are summarized in the integrated device’s documentation.

1.1 Overview
The e6500 core is a low-power, 64-bit, multi-threaded implementation of the resources for embedded 
processors defined by Power ISA. The core supports the simultaneous execution of two threads 
(processors). The core implements two sets of thirty two 64-bit general-purpose registers; however, it 
supports accesses to 40-bit physical addresses. The block diagram in Figure 1-1 shows how the e6500 
core’s functional units operate independently and in parallel. Note that this conceptual diagram does not 
attempt to show how these features are implemented physically.

The e6500 core is a multi-threaded superscalar processor that can decode two instructions and complete 
two instructions per thread per clock cycle. Instructions complete in order, but can execute out of order. 
Execution results are available to subsequent instructions in the same thread through the rename buffers, 
but those results are recorded into architected registers in program order, maintaining a precise exception 
model. 

The processor core integrates the following execution units: 

• Four simple instruction units (SFX0 and SFX1 per thread) 

• One multiple-cycle instruction unit (MU) 

• Two branch units (BU, one per thread)

• One floating-point unit (FPU) 

• One AltiVec unit (VSFX, VCFX, VFPU, VPERM)

• Two load/store units (LSUs, one per thread).

— The LSUs support 64-bit integer and floating-point operands and 128-bit vector operands for 
AltiVec operations.
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The ability to execute 12 instructions in parallel and the use of simple instructions with short execution 
times yield high efficiency and throughput. Most integer instructions execute in one clock cycle. 

The e6500 core includes hardware managed, first-level instruction and data memory management units 
(MMUs) and a software managed, on-chip, second-level unified MMU with hardware assisted tablewalk.

The first-level MMUs for both instruction and data translation are each composed of two subarrays: 

• An eight-entry fully associative array of translation look-aside buffer (TLB) entries for 
variable-sized pages; and 

• A 64-entry, four-way set-associative array of TLB entries for fixed-size pages that provide virtual 
to physical memory address translation for variable-sized pages and demand-paged fixed pages, 
respectively. 

NOTE
These TLB arrays are maintained entirely by the hardware with a true 
least-recently-used (LRU) algorithm and are a cache of the second-level 
MMU. If a second thread is active, the first-level instruction MMU is shared 
between threads, but each thread has a dedicated first-level data MMU.

The second-level MMU contains a 64-entry fully associative, unified (instruction and data) TLB that 
provides support for variable-sized pages. It also contains a 1024-entry, eight-way set-associative, unified 
TLB for 4 KB page size support. These second-level TLBs are maintained by both hardware and software. 
The software can enable a hardware tablewalk mechanism to automatically find a page table entry and load 
a 4 KB TLB entry into the TLB.

The e6500 core includes independent, 32 KB, eight-way set-associative, physically addressed L1 caches 
for instructions and data. It also includes a unified 2048 KB, 16-way set-associative, physically addressed 
backside L2 cache. The L1 caches are shared between active threads. The L2 cache is shared between cores 
in a cluster. Depending on the integrated device, the cluster may contain from one to four e6500 cores, all 
of which share the backside L2 cache and the interface to the rest of the memory subsystem.
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Figure 1-1. e6500 block diagram
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Cache lines in the e6500 core are 16 words (64 bytes) wide. The core allows cache-line-based user-mode 
locks on cache contents. This provides embedded applications with the capability for locking interrupt 
routines or other important (time-sensitive) instruction sequences into the instruction cache. It also allows 
data to be locked into the data cache, which supports deterministic execution time. 

The e6500 core is designed to be implemented in multicore integrated devices, and many of the features 
are defined to support multicore implementations. In particular, to partition the cores in such a way that 
multiple operating systems can be run with the integrated device, as shown in the following figure. 

Figure 1-2. Example partitioning scenario of a multicore integrated device 

The CoreNet interface provides the primary on-chip interface between the core cluster and the rest of the 
SoC. CoreNet is a tag-based interface fabric that provides interconnections among the cores, peripheral 
devices, and system memory in a multicore implementation. 

The architecture defines the resources required to allow orderly and secure interactions between thread 
processors, the cores, memory, peripheral devices, and virtual machines. These include hypervisor and 
guest supervisor privilege levels that determine whether certain activities, such as memory accesses and 
management, cache management, and interrupt handling, are to be carried on at a system-wide level 
(hypervisor level) or by the operating system within a partition (guest supervisor level). 

In particular, the e6500 core implements the following categories as defined in EREF:

• Base

• Embedded (E)

• Alternate Time Base (ATB)
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• Decorated Storage (DS)

• Embedded.Enhanced Debug (E.ED)

• Embedded.External PID (E.PID)

• Embedded.Hypervisor (E.HV)

• Embedded.Hypervisor.LRAT (E.HV.LRAT)

• Embedded.Page Table (E.PT)

• Embedded.Little-Endian (E.LE)

• Embedded.Multi-Threading (E.EM)

• Embedded.Performance Monitor (E.PM)

• Embedded.Processor Control (E.PC)

• Embedded.Cache Locking (E.CL)

• External Proxy (EXP)

• Floating Point and Floating Point.Record (FP, FP.R)

• Vector (V)

• Wait (WT)

• 64-Bit (64)

• Data Cache Extended Operations (DEO)

• Enhanced Reservations (ER)

• Cache Stashing (CS)

The above categories define instructions, registers, and processor behavior associated with a given 
category. For a more complete and canonical definition of the e6500 core register and instruction set, see 
Chapter 2, “Register Model” and Chapter 3, “Instruction Model,” respectively.

Some categories defined by Power ISA are included as a part of EREF and are not specified by categories 
in EREF. Such categories include: Cache Specification, Store Conditional Page Mobility, and Memory 
Coherence. In addition, EREF or the e6500 core may implement a subset of a category or provide extra 
implementation-dependent capabilities. Such distinctions are described in this manual.

1.2 Feature summary 
Key features of the e6500 core are summarized as follows: 

• 64-bit architecture implementation with 40-bit physical addressing

• Thirty two 64-bit General Purpose Registers (GPR) per thread

• Thirty two 64-bit Floating-Point Registers (FPR) per thread

• FPR-based floating-point binary compatible with e300, e600, e500mc, and e5500 cores

• Thirty two 128-bit Vector Registers (VR) per thread

• Enhanced branch prediction

— 128 sets of four-way associative branch target and local history buffers per thread

— Global history indexed 2048 entry pattern history table per thread

— Eight-entry link stack per thread with stack underflow reversion to the BTB provided target

• Multicore architecture support 
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— Hardware support for the hypervisor programming model to provide partitioning and 
virtualization

– Many resources are hypervisor privileged, allowing the hypervisor to completely partition 
the system. Performance-sensitive resources used by the guest supervisor are manipulated 
directly by hardware while less performance-sensitive resources require hypervisor software 
to intervene to provide partitioning and isolation.

— A set of topology-independent interprocessor doorbell interrupts implemented through the 
Message Send and Message Clear instructions 

— Shared L2 cache and interface to the CoreNet interconnect fabric

– Cores are provided in clusters that share an L2 cache and CoreNet interface. These clusters 
reduce the amount of coherency traffic on the CoreNet interface and provide faster coherent 
transactions among cores in a cluster.

• CoreNet interface fabric

— Provides interconnections among the cores, peripheral devices, and system memory in a 
multicore implementation.

• Decorated Storage

— When used with specifically enabled SoC devices, it allows high performance atomic “fire and 
forget” operations on memory locations performed directly by the targeted device.

• L1 cache features 

— Separate 32 KB, eight-way set-associative level 1 (L1) instruction and data caches

— 64 eight-way sets of 16 words (See Section 5.4, “L1 cache structure”)

— Enhanced error detection and correction

– Parity checking on L1 tags and data 

– One-bit-per-word instruction parity checking

– One-bit-per-byte data parity checking

– Full recoverability from single bit errors in data or tags because modified data is written 
through to the inclusive L2 cache

— Two-cycle L1 cache array access and three-cycle load-to-use latency

— FIFO replacement algorithm

— Cache coherency 

– Supports valid and invalid states per active thread. Stores are written through to the shared 
L2 cache, which implements a full MESI protocol.

– Provides snooping for invalidations coming from the shared L2 cache.

– Accepts cache stashes, which allow devices in the integrated device to push to the cache 
information that may be requested in the future by the core, significantly reducing latency.

— 64-byte (16-word) cache line, coherency granule size

— Persistent cache line locking

– Allows instructions and data to be locked into their respective caches on a cache block basis.
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– Locking is performed by a set of touch and lock set instructions. Locking is persistent in that 
locks are not cleared until software explicitly unlocks them. Cache locking functionality can 
be separately enabled for user mode or supervisor mode.

• L2 cache features

— Shared inline L2 cache

— Four independent banks

— Address-mapped accesses to banks

— 2048 KB capacity 

— 16-way set-associative 

— Four cores per cluster sharing the same cache banks 

— Way-partitionable based on cores in cluster

— Inclusive for data stored in cluster cores’ L1 caches

— Streaming Pseudo-LRU (SPLRU) replacement algorithm

— Enhanced error detection and correction

– ECC single-bit correction and double-bit detection on data, tags, and status

— Cache coherency

– Shared, modified, and exclusive data intervention so cache contents can be shared without 
requiring a memory update

– Accepts cache stashes, which allow devices in the integrated device to push information to 
the cache that may be requested in the future by a core in the cluster, significantly reducing 
latency.

– Snoop filtering for cores in the cluster

— 64-byte (16-word) cache line, coherency-granule size

— Persistent cache line locking

– Allows instructions and data to be locked into the cache on a cache block basis.

– Locking is performed by a set of touch and lock set instructions. Locking is persistent in that 
locks are not cleared until software explicitly unlocks them. Cache locking functionality can 
be separately enabled for user mode or supervisor mode.

• Interrupt model 

— Supports base, critical, debug, and machine-check interrupt levels with separate interrupt 
resources (save/restore registers and interrupt return instructions).

— Interrupts have an implicit priority by how their enable bits are masked when an interrupt is 
taken. Unless software enables or disables the appropriate interrupt enables while in the 
interrupt handler, the priority (from highest to lowest) is:

– Machine check

– Debug

– Critical

– Base class

— Standard embedded category interrupts
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– Interrupt vectors formed by concatenation of interrupt vector prefix register (IVPR) and 
interrupt vector offset register (IVORn) 

– Exception syndrome register (ESR)

— Extended multicore interrupt model to support hypervisor and guest supervisor privilege levels

– System call instruction generates a system call or a hypervisor-level system call (hypercall) 
interrupt. Executing sc or sc 0 generates a system call, and sc 1 generates a hypercall 
interrupt. 

– Doorbell interrupts allow one processor to signal an interrupt to another core (doorbell, 
doorbell critical, guest doorbell, guest doorbell critical, or guest doorbell machine check).

– Certain interrupts, including external interrupts, MMU interrupts, and performance monitor 
interrupts, can be configured to be delivered directly to the guest-supervisor state or to the 
hypervisor state (default).

– Embedded hypervisor privilege interrupt captures guest supervisor attempts to access 
hypervisor resources.

– TLBs can be programmed to always force a DSI to generate a virtualization fault to the 
hypervisor state.

— External interrupt proxy 

– Provides automatic hardware acknowledgement of external interrupts signaled by the 
programmable interrupt controller (PIC) on the integrated device, which increases 
responsiveness to external interrupts from peripheral devices and reduces interrupt latency. 
See Section 4.9.6.1, “External proxy.”

– The automatic hardware acknowledgement replaces the “read IACK” step.

— Non-maskable interrupt for soft-reset type capability

— One set of interrupt signal pins from the integrated device interrupt controller for each thread

• Memory management unit (MMU)

— 64-bit effective address to 40-bit physical address translation

— Virtual address fields in TLB entries

– GS field indicates whether the access is hypervisor or guest address space (also indicates 
hypervisor or guest privilege).

– AS field indicates one of two address spaces (from IS or DS in the machine state register).

– LPID field identifies the logical partition with which the memory access is associated.

– PID field identifies the process ID with which the memory access is associated.

— External PID translation mechanism 

– Provides an alternative set of load, store, and cache operations for efficiently transferring 
large blocks of memory or performing cache operations across disjunct address spaces, such 
as an operating system copying a buffer into a non-privileged area.

— TLB entries for variable-sized (4 KB to 1 TB) and fixed-size (4 KB) pages

— Data L1 MMU, per thread

– Eight-entry, fully-associative TLB array for variable-sized pages

– 64-entry, four-way set-associative TLB for 4 KB pages
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— Instruction L1 MMU, shared between threads

– Eight-entry, fully-associative TLB array for variable-sized pages

– 64-entry, four-way set-associative TLB for 4 KB pages

— Unified L2 MMU, shared between threads

– 64-entry, fully-associative TLB array (TLB1) for variable-sized pages

– 1024-entry, eight-way set-associative, unified (for instruction and data accesses) TLB array 
(TLB0) that supports only 4 KB pages with single-bit error detection and auto correction 
through hardware invalidation

— Logical to real address translation (LRAT) structure to allow guest supervisor to securely write 
TLB entries without hypervisor intervention

– Eight-entry, fully associative 

– Supports power-of-two variable page sizes 

— Hardware assisted reload for TLB0 from a page table in memory

— 14-bit process ID (PID) supporting 16 K simultaneous contexts without TLB flushing

— Real memory support for as much as 1 TB (240) 

— Support for big-endian and true little-endian memory on a per-page basis

• Performance monitor

— Provides the ability to monitor and count dozens of predefined events, such as processor clocks, 
misses in the instruction cache or data caches, decoded instruction types, or mispredicted 
branches. 

— Can be configured to trigger either a performance monitor interrupt or an event to the Nexus 
facility when configured conditions are met. 

— Performance Monitor Registers (PMRs) are used to configure and track performance monitor 
operations. These registers are accessed with the Move To PMR and Move From PMR 
instructions (mtpmr and mfpmr). 

— Six performance monitor counters can be programmed from any defined event.

• Power management

— Low-power design

— Multiple power-saving modes

– Static power reduction when core is not busy with fast return to normal operation

– Hardware and software controlled entry and exit for low power states

– Ability to wait in low power states until an interrupt or a store to a specified address occurs

— Dynamic power management 

— Capability to power off AltiVec unit when not in use, further reducing static power

• Testability 

— MUXD scan design

— Debug Notify Interrupt (dni) instruction provides a debug breakpoint interrupt when executed 
and the debugging is enabled, otherwise produces a no-op.
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1.3 Instruction flow
The e6500 core is a pipelined, multi-threaded, superscalar processor with parallel execution units that 
allow instructions to execute out of order but record their results in order. 

As a multi-threaded processor, the e6500 core appears as two processors to user and guest operating 
system software. The two processor threads share some resources, such as execution units and caches, but 
not others, such as the architected user-level state. As with pipelining, the execution of two software 
threads on one processor increases the overall system throughput.

As a superscalar processor, the e6500 core issues multiple independent instructions into separate execution 
units in a single cycle, allowing parallel execution. The e6500 core has ten execution unit types: 

• Branch (BU)

• Load/store (LSU)

• Floating-point (FPU)

• Vector (VSFX, VCFX, VFPU, VPERM)

• Complex integer (CFX)

• Simple arithmetic (SFX0 and SFX1). 

Each thread has dedicated branch, load/store, and simple arithmetic execution units, but all threads share 
the floating-point, vector, and complex integer execution units.

The parallel execution units allow multiple instructions to execute in parallel and out of order. For example, 
a low-latency addition instruction that is issued to an SFX after an integer divide is issued to the CFX may 
finish executing before the higher latency divide instruction. Most instructions immediately make results 
available to subsequent instructions, but cannot update the architected GPR specified as its target operand 
out of program order.

Pipelining breaks instruction processing into discrete stages, so multiple instructions in an instruction 
sequence can occupy successive stages: as an instruction completes one stage, it passes to the next, leaving 
the previous stage available to a subsequent instruction. Although it may take multiple cycles for an 
instruction to pass through all of the pipeline stages, once a pipeline is full, instruction throughput is 
increased. 

The common pipeline stages are as follows:

• Instruction fetch stage—includes the clock cycles necessary for an active thread to request an 
instruction and the time the memory system takes to respond to the request. Instructions retrieved are 
latched into the thread’s instruction queue (IQ) for subsequent consideration by the dispatcher. 

Instruction fetch timing depends on many variables, such as whether an instruction is in the 
instruction cache or the L2 cache. Those factors increase when it is necessary to fetch instructions 
from system memory and include the processor-to-bus clock ratio, the amount of bus traffic, and 
whether any cache coherency operations are required. 

Because there are so many variables, unless otherwise specified, the instruction timing examples 
in this chapter assume optimal performance and show the portion of the fetch stage in which the 
instruction is in the instruction queue. The fetch1 and fetch2 stages are primarily involved in 
retrieving instructions. 
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• Decode/dispatch stage—fully decodes each instruction. Most instructions are dispatched to the 
issue queues; however, isync, rfi, rfgi, rfci, rfdi, rfmci, sc, ehpriv, nop, and some other 
instructions do not go to issue queues. 

• The issue queues, BIQ, GIQ, VIQ, LSIQ, and FIQ can accept one (BIQ) or two instructions (all 
other issue queues) in a cycle. The following simplification covers most cases: 

— Instructions dispatch only from the two lowest IQ entries—IQ0 and IQ1. 

— A total of two instructions can be dispatched to the issue queues per clock cycle.

Dispatch is treated as an event at the end of the decode stage. 

— Space must be available in the completion queue (CQ) for an instruction to decode and dispatch. 
This includes instructions that are assigned a space in the CQ but not in an issue queue.

• Issue stage—reads source operands from rename registers and register files and determines when 
instructions are latched into the execution unit reservation stations. Note that each thread processor 
in the e6500 has 16 rename registers, one for each completion queue entry, so instructions cannot 
stall because of a shortage of rename registers.

The behavior of the issue queues follows from how dispatch places instructions on the issue 
queues. For example, the GIQ operates as follows: 

— The GIQ accepts as many as two instructions from the dispatch unit per cycle. Instructions to 
be executed in SFX0, SFX1, and CFX are dispatched to the GIQ, shown in Figure 1-3. 

Figure 1-3. GPR Issue Queue (GIQ)

— Instructions can be issued out of order from the bottom two GIQ entries (GIQ1–GIQ0) to either 
SFX or CFX.

NOTE
SFX1 executes a subset of the instructions that can be executed in SFX0. 
The ability to identify and dispatch instructions to SFX1 increases the 
availability of SFX0 to execute more computational-intensive instructions.

— An instruction in GIQ1 destined for an SFX need not wait for a CFX instruction in GIQ0 that 
is stalled behind a long-latency divide.

Each thread has its own set of issue queues. Issue queues other than GIQ operate in a similar 
manner, each servicing specific execution units:

— LSIQ services the load/store unit (LSU), one LSIQ and one LSU per thread

— FIQ services the floating-point unit (FPU), one FIQ per thread and one shared FPU

— BIQ services the branch unit (BU), one BIQ and one BU per thread

— VIQ services the AltiVec execution units (VSFX, VCFX, VFPU, VPERM), one VIQ per thread 
and one set of shared execution units VSFX, VCFX, VFPU, VPERM

GIQ1

GIQ3

GIQ0

GIQ2

To either SFX or CFX

From IQ0/IQ1 

To either SFX or CFX
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• Execution stage—accepts instructions from its issue queue when the appropriate reservation 
stations are not busy. In this stage, the operands assigned from the issue stage are latched.

The execution units execute the instructions (perhaps over multiple cycles), write results on their 
result buses, and notify the CQ when the instructions finish. The execution units report any 
exceptions to the completion stage. Instruction-generated exceptions are not taken until the 
excepting instruction is next to retire.

— The branch unit (BU) executes (resolves) all branch and CR logical instructions in the 
execution stage. If a branch is mispredicted, it takes at least five cycles for the next instruction 
to reach the execution stage.

— The simple units (SFX0 and SFX1) handle add, subtract, shift, rotate, and logical operations. 
The complex integer unit (CFX) executes multiplication and divide instructions.

Most integer instructions have a one-cycle latency, so results of these instructions are available 
one clock cycle after an instruction enters the execution unit. 

Integer multiply and divide instructions have longer latency, and the multiply and divide can 
overlap execution in most cases. Multiply operations are also pipelined.

— The load/store unit (LSU), shown in the following figure, has these features:

– Three-cycle load latency for most instructions except for AltiVec and floating-point load 
instructions, which take four cycles

– Fully pipelined

– Load-miss queue

– Service for load hits when the load-miss queue is full

– Up to eight load misses that can be pipelined in parallel while L1 cache hits continue to be 
serviced

Figure 1-4. Three-stage load/store unit

• Complete and write-back stages—maintain the correct architectural machine state and commit 
results to the architecture-defined registers in order. If completion logic detects a mispredicted 
branch or an instruction containing an exception status, subsequent instructions in a thread are 

Reservation Station

Load/Store Unit
 Three-Stage Pipeline

LoadL1 Store

To L2 cache interface

To data cache

To GPR/FPR/VR operand buses

To completion queue

To GPR/FPR/VRs

Queues and Buffers
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cancelled, their execution results in rename registers are discarded, and the correct instruction 
stream is fetched.

The complete stage ends when the instruction is retired. Two instructions per thread can be retired 
per clock cycle. If no dependencies exist, as many as two instructions are retired in program order. 
Section 10.3.3, “Dispatch, issue, and completion considerations,” describes completion 
dependencies.

The write-back stage occurs in the clock cycle after the instruction is retired.

1.4 Programming model overview
In general, the e6500 core implements the registers and instructions as defined by the architecture (Power 
ISA and Freescale implementation standards) and are fully described in EREF. The following sections 
provide a high-level description and listing of the resources that are implemented on the e6500 core. 

1.4.1 Register model overview

In general, registers on the e6500 core are implemented as defined by the architecture. Any e6500-specific 
differences from or extensions to the architecture are described in Chapter 2, “Register Model,” of this 
manual. 

The e6500 core implements the following types of registers:

• Registers that contain values specified by using operands that are part of the instruction syntax 
defined by EREF:

— Thirty-two 64-bit general purpose registers (GPRs) per thread

– rD indicates a GPR that is used as the destination or target of an integer computational, 
logical, or load instruction. 

– rS indicates a GPR that is used as the source of an integer computational, logical, or store 
instruction. 

– rA, rB, and rC indicate GPRs that are used to hold values that are operated upon for 
computational or logical instructions, or that are used for an effective address (EA) or a 
decoration. 

— Thirty-two 64-bit floating-point registers (FPRs) per thread

– frD indicates an FPR that is used as the destination or target of a floating-point 
computational or load instruction. 

– frS indicates an FPR that is used as the source of a floating-point computational or store 
instruction. 

– frA, frB, and frC indicate FPRs that are used to hold values that are operated upon for 
floating-point computational instructions. 

— Thirty-two 128-bit vector registers (VRs) per thread

– vD indicates a VR that is used as the destination or target of a vector computational, logical, 
permute, or load instruction. 

– vS indicates a VR that is used as the source of a vector computational, logical, permute, or 
store instruction. 



e6500 Overview

e6500 Core Reference Manual, Rev 0

1-14 Freescale Semiconductor
 

– vA, vB, and vC indicate VRs that are used to hold values that are operated upon for vector 
computational, permute, or logical instructions. 

• Registers that are updated automatically to record a condition that occurs as a by-product of a 
computation:

— Condition (CR) register

– Consists of eight 4-bit fields that record the results of certain operations that are typically 
used for testing and branching. 

– Can be accessed with special Move To and Move From instructions. See ***[ADD XREF 
HERE!]***

— Integer Exception (XER) register

– Records conditions, such as carries and overflows. 

– The XER is an SPR and can be accessed with Move To and Move From SPR instructions 
(mtspr and mfspr).

— Floating-Point Status and Control (FPSCR) register

– Records and controls exception conditions, such as overflows, controls the rounding mode.

– Indicates the type of result for certain floating-point operations. 

— Vector Status and Control (VSCR) register

– Records saturation exceptions. 

– Controls which mode vector floating-point operations are performed.

— Machine State (MSR) register

– MSR is a supervisor-level register; however, some fields can be written only by 
hypervisor-level software. 

– MSR is used to configure operational behavior, such as setting the privilege level and 
enabling asynchronous interrupts. When an interrupt is taken, certain MSR bits are stored 
into the appropriate save and restore register 1 (xSRR1) as determined by the interrupt type. 
The values in the xSRR1 are restored in the MSR when the appropriate return from interrupt 
is executed. The MSR, which is not an SPR, is accessed by the Move To and Move From 
MSR instructions (mtmsr and mfmsr). The external interrupt enable bit can be written 
separately with a Write MSR External Enable instruction (wrtee and wrteei).

• Most registers are defined as special-purpose registers (SPRs). 

— All SPRs can be accessed by mtspr and mfspr instructions and executed by software running 
at the appropriate privilege level, as indicated by the SPR summary in Table 2-2. 

— Note that some SPRs are also updated by other mechanisms, such as the save and restore 
registers, which record the machine state when an exception is taken, and configuration and 
status registers, which are affected by internal signals. SPRs are listed in Section 2.2.2, 
“Special-purpose registers (SPRs).” 

• Performance monitor registers (PMRs)

— Configure and program the core-specific performance monitor. 

— PMRs are similar to SPRs in that they are accessed by Move To and Move From PMR 
instructions (mtpmr and mfpmr).
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1.4.2 Instruction model overview

In general, instructions on the e6500 core are implemented as defined by the architecture. Any 
e6500-specific differences from or extensions to the architecture are described in Chapter 3, “Instruction 
Model,” of this manual. 

Table 3-75 lists the instructions implemented in the e6500 core.

1.5 Summary of differences between previous e500 family cores
The following sections describe the changes between previous cores in the e500 family. These are 
high-level descriptions that are intended to explain the programming model changes.

1.5.1 Changes from e500v2 to e500mc

The e500mc core contains several differences from the e500v2 core. Significant programming model 
changes occur from:

• The removal of SPE (and the embedded floating-point functionality)

• The addition of FPR-based floating-point

• The addition of hypervisor partitioning support

User-mode software can be recompiled if the software does not use explicit SPE or embedded 
floating-point intrinsics. User-level software that uses any floating-point software must also be re-linked 
because the manner in which floating-point arguments are passed to functions is different. The 
floating-point model of the e500mc is compatible with the e300 and e600 cores and should provide a 
seamless transition when moving software from the e300 or the e600 to the e500mc.

A summary of the changes to the core is show in the following table. This table is intended to be a general 
summary and not an explicit list of differences. Users should use this list to understand what major areas 
may require changes to their software when porting from the e500v2 to the e500mc.

Table 1-1. Summary of e500v2 and e500mc differences

Feature e500v2 e500mc Notes

Backside L2 cache Not present Present An integrated backside L2 cache is present in 
e500mc. 

SPE and embedded 
floating-point

Present Not present SPE and embedded floating-point (floating-point 
done in the GPRs) is not present in e500mc. This 
makes the GPRs 32 bits in size, rather than 64 bits.

FPR-based 
floating-point

Not present Present FPR-based floating-point (category Floating-Point) 
is present in e500mc. The floating point is binary 
compatible with e300 and e600. See 
Section 3.4.4.1, “Floating-point instructions.”

Embedded hypervisor Not present Present A new privilege level and associated instructions 
and registers are provided in e500mc to support 
partitioning and virtualization. 
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Power management Uses MSR[WE] 
and 

HID0[DOZE,NAP,
SLEEP] to enter 

power 
management 

states

Uses SoC programming 
model to control power 

management and 
removes MSR[WE], 

HID0[DOZE,NAP,SLEEP]. 
Also adds the wait 

instruction.

SoC registers now almost completely control how 
power management functions are invoked. See 
Chapter 8, “Power Management.”

External proxy Not present Present External proxy is a mechanism that allows the core 
to acknowledge an external input interrupt from the 
PIC when the interrupt is taken and provide the 
interrupt vector in a core register. See 
Section 4.9.6.1, “External proxy.”

Additional interrupt level 
for Debug interrupts

Not present Present A separate interrupt level for Debug interrupts and 
the associated save/restore registers 
(DSRR0/DSRR1) are provided. See 
Section 4.9.16, “Debug interrupt—IVOR15.”

Processor signaling Not present Present The msgsnd and msgclr instructions are provided 
to perform topology independent core-to-core 
doorbell interrupts. See Section 3.4.12.5, 
“Message Clear and Message Send instructions.”

External PID load/store Not present Present Instructions are provided for supervisor- and 
hypervisor-level software to perform load and store 
operations using a different address space context. 
See Section 3.4.12.3, “External PID load and store 
instructions.”

Decorated storage Not present Present Instructions are provided for performing load and 
store operations to devices that include metadata 
that is interpreted by the target address. Devices in 
some SoCs utilize this facility for performing atomic 
memory updates, such increments and 
decrements. See Section 3.4.3.2.10, “Decorated 
load and store instructions.” 

Lightweight 
synchronization

Not present Adds the lwsync 
instruction.

The lwsync instruction is provided for a faster form 
of memory barrier for load/store ordering to 
memory that is cached and coherent. See 
Section 3.4.11.1, “User-level cache instructions,” 
and Section 5.5.5, “Load/store operation ordering.”

CoreNet Uses CCB as an 
interconnect

Uses CoreNet as an 
interconnect

CoreNet is a scalable, non-retry based fabric used 
as an interconnect between cores and other 
devices in the SoC.

Cache stashing Not present Present The capability to have certain SoC devices “stash” 
or pre-load data into a designated core L1 or L2 
data cache is provided. The core is a passive 
recipient of such requests. See Section 5.2.2, 
“Cache stashing.”

Table 1-1. Summary of e500v2 and e500mc differences (continued)

Feature e500v2 e500mc Notes
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1.5.2 Changes from e500mc to e5500

The e5500 core contains several differences from the e500mc core. The programming model of the e5500 
is compatible with the e500mc in the user, guest supervisor, and hypervisor modes with the exception that 
a few hypervisor-level resources that could be read in the e500mc core can no longer be read in the e5500 
core (in particular, some registers that are architecturally write-only). All software written for the e500mc 
core should run unmodified on the e5500 core. 

The e5500 core is a 64-bit implementation and adds the 64-bit mode, as well as several 64-bit instructions. 
It also supports 32-bit mode or running 32-bit software on a supervisor or hypervisor that is 64 bits.

A summary of the changes to the core is show in the following table. This table is intended to be a general 
summary and not an explicit list of differences.

Machine check Provides machine 
check interrupt and 

HID0[RFXE] to 
control how the 

core treats 
machine check 

interrupts

Provides error report, 
asynchronous machine 

check, and NMI interrupts. 
HID0[RFXE] is removed.

Machine check interrupts are divided into 
synchronous error reports, asynchronous machine 
checks, and NMI interrupts. The ways that errors 
are reported are more conducive in a multi-core 
environment. See Section 4.9.3, “Machine check 
interrupt—IVOR1.”

Write shadow Not present Present The capability to have all data written to the L1 data 
cache be “written through” to the L2 cache (or to 
memory) is provided. This provides a method of 
ensuring that any L1 cache error can be recovered 
from without loss of data. See Section 5.4.2, 
“Write-through cache.”

Cache block size 32 bytes 64 bytes The e500mc core contains a larger cache 
block/line/coherency granule size.

Number of variable size 
TLB entries

16 64 The e500mc contains a larger number of 
variable-size TLB entries and a larger number of 
available page sizes. See Section 6.3.2, “L2 TLB 
arrays.”

Table 1-2. Summary of e500mc and e5500 differences

Feature e500mc e5500 Notes

64-bit execution Not present 
(32-bit only)

Both 32-bit and 64-bit 
modes

The e5500 core provides 64-bit mode and 
several 64-bit instructions. Information about 
64-bit features is discussed throughout this 
document.

L2 cache size 128 KB 512 KB The e5500 core includes a larger L2 cache.

L2 cache latency (from L1 
miss)

9 11 The e5500 core has two more cycles of 
latency.

Table 1-1. Summary of e500v2 and e500mc differences (continued)

Feature e500v2 e500mc Notes
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1.5.3 Changes from e5500 to e6500

The programming model of the e6500 core is compatible with the e500mc and e5500 cores in the user, 
guest supervisor, and hypervisor modes. The only exceptions are:

• The addition of the AltiVec vector and thread management facilities

• The addition of some cache control

• The addition of cache locking operations

All software, with the exceptions of imprecise debug events and any cache control or cache locking 
software written for the e500mc and e5500 cores, should run unmodified on a e6500 processor.

A summary of the changes to the core is show in the following table. This table is intended to be a general 
summary and not an explicit list of differences.

Floating-point performance Floating-point is 
not fully pipelined

Floating-point is fully 
pipelined

The e5500 core uses the same programming 
model for floating-point as the e500mc core, 
but provides a higher performance FPU that is 
fully pipelined. See Section 10.5, “Instruction 
latency summary.”

mtspr/mfspr instruction 
execution unit

Executed in SFX0 Executed in CFX mtspr/mfspr, as well as some other 
instructions that modify the architected state 
of registers, are executed in the CFX unit 
instead of the SFX0 unit. 

Branch prediction Uses BTB Uses BTB, link stack, and 
STIC/STAC

The e5500 core improves branch prediction 
for function call and return. See 
Section 10.4.1.2, “Branch prediction and 
resolution.”

Table 1-3. Summary of e5500 and e6500 differences

Feature e5500 e6500 Notes

AltiVec vector registers and 
instructions

Not present Present The e6500 core adds AltiVec vector facility for 
improved performance using SIMD. The 
AltiVec facility is fully described in EIS: Altivec 
Technology Implementation Standards for 
Power ISA Processors.

Multi-threading Not present Present The e6500 core adds multi-threaded 
execution capability for improved throughput.

Table 1-2. Summary of e500mc and e5500 differences

Feature e500mc e5500 Notes
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L2 cache Private to core Shared among cores in a 
core cluster

The e6500 core provides a shared backside 
L2 cache. This changes the L2 cache 
configuration on control methods. L2 cache 
and configuration is provided through memory 
mapped registers. The shared backside L2 is 
inline and provides snoop filtering for the 
cores in the complex. The L1 data cache now 
writes through to the L2 cache. Some MCSR 
bits for the integrated backside L2 cache are 
removed.

L2 cache size 512 KB 2048 KB The e6500 core includes a larger L2 cache.

Branch prediction Uses BTB, link 
stack, and 
STIC/STAC

Uses BTB, link stack, 
STIC/STAC, link stack 

underflow, global history, 
and pattern history

The e6500 core improves branch prediction, 
including function call and return prediction.

mfocrf optimization Executes as mfcr 
and is serialized

Executes without 
serialization

Improves mfocrf instruction latency and 
repeat rate from five cycles to one.

LR and CTR optimization Some LR/CTR 
accesses and 
updates are 

serialized and can 
stall

LR and CTR are fully 
renamed, and associated 
branches and mtspr and 

mfspr instructions execute 
without serialization

Improves performance of some subroutine 
linkage.

Byte and halfword load and 
reserve and store 
conditional instructions

Not present Present The lbarx, lharx, stbcx., and sthcx. 
instructions are provided for doing byte and 
halfword load and reserve and store 
conditional operations.

Cache locking query Cache locking 
operations use 

L1CSRx[CUL] to 
post a status 

about whether 
cache locking 
attempt was 
successful

Cache locks can be queried 
by using new lock query 
instructions, dcblq. and 

icblq.

Cache lock query allows software to enquire 
about locks and is more consistent with the 
way locks are established.

wait instruction wait instruction 
only waits for an 
asynchronous 

interrupt

wait instruction can wait for 
interrupt or reservation to 

clear. Additional hint 
provided to enter lower 

power mode immediately.

The wait instruction can now wait for a store 
from another processor, and a programmer 
can specify whether to wait in a lower power 
mode.

miso instruction Not present Present The miso instruction allows software to hint 
that all previous stores should be propagated 
to the coherency point to improve 
performance.

Table 1-3. Summary of e5500 and e6500 differences

Feature e5500 e6500 Notes
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Elemental memory barriers Not present, 
lightest weight 

memory barrier is 
sync 1 (lwsync)

Present sync L,E provides more explicit memory 
barriers for improved performance using an 
additional operand to sync. Software can be 
coded using the new barriers such that 
e500mc and e5500 cores will execute using a 
correct memory barrier. Barriers provided are 
load with load, load with store, store with load, 
and store with store for cacheable non-write 
through required memory.

Real address size 36 bits 40 bits Allows for larger physical address space.

Logical to real address 
translation (LRAT)

Required to be 
performed by 

hypervisor 
software

LRAT hardware provides the 
translation

On guest supervisor writes to the TLB, the 
LRAT structure provides the logical to real 
address translation, which reduces hypervisor 
overhead. The hypervisor maintains the LRAT 
table. A guest OS can now execute tlbwe 
without causing a hypervisor privilege 
interrupt.

TLB0 size and associativity 512 entries, 
four-way 

associative

1024 entries, eight-way 
associative

More TLB entries with greater associativity 
reduces conflict and capacity TLB misses.

TLB1 entry page sizes 4 KB to 4 GB
(in powers of 4)

4 KB to 1 TB
(in powers of 2)

Single page can map all of physical address 
space. More page sizes available with 
power-of-2 page sizes.

Hardware page table 
loading of TLB0 (4 KB 
pages)

Not present Present Hardware can resolve certain TLB misses by 
performing a hardware tablewalk and load 
TLB entries from a page table in memory.

Number of supported bits in 
PID register

8 14 Supports up to 16 K simultaneous PID values 
in use.

TLB0 parity Not present Present Parity detection provided. Hardware flushes 
the TLB when an error is detected.

CCSRBAR setting 
available in SPR

Not present Present New SPR SCCSRBAR is added for software 
to read the current CCSRBAR setting. See 
Section 2.7.11, “Shifted CCSRBAR 
(SCCSRBAR) register”.

Guest performance monitor 
interrupt

Not present Present Performance monitor interrupt can be taken 
directly in the guest OS.

Completion buffer and 
rename register entries

14 16 More completion and rename entries 
increases performance.

Performance monitor 
counters

4 6 More performance monitor counters allows for 
greater flexibility when analyzing performance 
issues. See Section 2.16, “Performance 
monitor registers (PMRs).”

Debug features: Imprecise 
debug events

Present Not present Imprecise debug events that occur when 
MSR[DE] = 0 are no longer supported.

Table 1-3. Summary of e5500 and e6500 differences

Feature e5500 e6500 Notes
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Debug feature: Instruction 
address compare (IAC) 
events

4 8 More IAC compares.

Debug feature: Assignment 
of debug events between 
internal and external 
debugger

All debug events 
are assigned to 
either internal or 

external 
debugger

Individual assignment of 
events to internal or external 

debugger

Individual events can be assigned between 
internal and external debuggers allowing both 
to operate simultaneously.

Debug feature: Watchdog 
timer

Runs when halted 
in external debug 

mode

Is suppressed from causing 
timeouts when halted in 

external debug mode

Makes it easier to prevent watchdog timeouts 
when the external debugger halts the 
processor.

Debug feature: dni 
instruction

Not present Present The dni instruction can be used as a 
breakpoint instruction and can trigger external 
events.

Debug feature: Nexus trace Less trace 
bandwidth

Improved trace bandwidth 
plus additional Nexus 

features

Only transmits indirect branch history 
messages for blr-type instructions when link 
register has changed.

Provides performance profiler counter 
message in trace stream, adds timestamp 
correlation message, captures PC snapshot 
in trace for events such as profile counter 
overflow, adds indication of clock frequency 
changes to Nexus trace stream, and extends 
watchpoint message event field to handle 
additional events.

Power management: Wake 
up on message acceptance

Not present Present Processor can wake up from power 
management state when a message (from 
msgsnd) is received and accepted.

Power management: Power 
management control 
register

Not present Present New power management control register 
(PWRMGTCR0) for controlling low power 
modes. See Section 2.7.7, “Power 
Management Control 0 (PWRMGTCR0) 
register.”

Power management: Static 
power reduction

Not present Present New power management states that reduce 
static power consumption while retaining their 
state.

Power management: Turn 
off AltiVec unit or reduce 
AltiVec static power when 
not in use

Not present Present See Section 2.7.7, “Power Management 
Control 0 (PWRMGTCR0) register.”

MCARUA as an alias for the 
upper 32-bits of MCAR

Not present Present Both MCARU and MCARUA provide the same 
alias. The MCARU alias may be phased out in 
future versions of the architecture. See 
Section 2.9.9, “Machine-check address 
registers (MCAR/MCARU/MCARUA).”

Table 1-3. Summary of e5500 and e6500 differences

Feature e5500 e6500 Notes
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Chapter 2  
Register Model
This chapter describes implementation-specific details of the register model as it is implemented on the 
e6500 core processors. It identifies all registers that are implemented on the e6500 core, but, with a few 
exceptions, does not include full descriptions of those registers and register fields that are implemented 
exactly as they are defined by the architecture (the Power ISA and the Freescale implementation 
standards). EREF and AltiVec Technology Programming Environments Manual for Power ISA Processors 
describe these registers.

It is important to note that a device that integrates the e6500 core may not implement all of the fields and 
registers that are defined here and may interpret some fields more specifically than can be defined here. 
For specific details, see the e6500 core integration chapter in the reference manual for the device that 
incorporates the e6500 core. The register summary chapter in the device reference manual fully describes 
all registers and register fields as they are implemented on the device. 

Only registers associated with the programming model of the core are described in this chapter. 

The e6500 core is a dual-threaded machine and, as such, has some architected states that are duplicated 
and private to each thread and other architected states that are shared by the threads. Unless otherwise 
noted in this document, architected states are private to each thread, and each thread has its own 
independent copy of said state. In general, this document does not explicitly label states as private, but 
instead labels states that are shared. Note that writing to shared states may require special synchronization 
procedures that may involve disabling and enabling a thread.

2.1 Overview
Although this chapter organizes registers according to their functionality, they can be differentiated 
according to how they are accessed, as follows: 

• General-purpose registers (GPRs)—used as source and destination operands for integer 
computation operations and for specifying the effective address. See Section 2.3.1, 
“General-purpose registers (GPRs).” 

• Floating-point registers (FPRs)—used as source and destination operands for floating-point 
computation operations. See Section 2.4.1, “Floating-point registers (FPRs).” 

• Vector registers (VRs)—used as source and destination operands for vector computation 
operations. See Section 2.5.1, “Vector registers (VRs).” 

• Special-purpose registers (SPRs)—accessed with the Move To Special-Purpose Register (mtspr) 
and Move From Special-Purpose Register (mfspr) instructions. Section 2.2.2, “Special-purpose 
registers (SPRs),” lists SPRs. 

• System-level registers that are not SPRs. These are as follows:
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— Machine State (MSR) register—accessed with the Move To Machine State Register (mtmsr) 
and Move From Machine State Register (mfmsr) instructions. See Section 2.7.1, “Machine 
State (MSR) register.”

— Condition (CR) register—bits are grouped into eight 4-bit fields, CR0-CR7, which are set as 
follows:

– Specified CR fields are set by a Move To CR From GPR (mtcrf) instruction.

– A specified CR field is set by a Move To CR from another CR field (mcrf) or from XER 
(mcrxr) instruction.

– CR0 is set as the implicit result of an integer instruction.

– CR1 is set as the implicit result of a floating-point instruction.

– CR6 is set as the implicit result of an AltiVec compare instruction.

– A specified CR field is set as the result of an integer or floating-point compare instruction.

See Section 2.6.1, “Condition (CR) register.”

• Memory-mapped registers (MMRs)—accessed through load and store instructions. See 
Section 2.2.3, “Memory-mapped registers (MMRs).”

• Thread management registers (TMRs)—accessed by using dedicated move to and move from 
instructions (mttmr and mftmr). See Section 2.15, “Multi-threaded operation management 
registers.”

• Performance monitor registers (PMRs)—accessed by using dedicated move to and move from 
instructions (mtpmr and mfpmr). See Section 2.16, “Performance monitor registers (PMRs).”

2.2 e6500 register model
The following sections describe the e6500 core register model as defined by the architecture and the 
additional implementation-specific registers unique to the e6500 core. 

Freescale processors implement the following types of software-accessible registers:

• Registers used for integer operations, such as the general-purpose registers (GPRs) and the Integer 
Exception (XER) register. These registers are described in Section 2.3, “Registers for integer 
operations.”

• Registers used for floating-point operations, such as the floating-point registers (FPRs) and the 
Floating-Point Status and Control (FPSCR) register. These registers are described in Section 2.4, 
“Registers for floating-point operations.”

• Registers used for AltiVec operations, such as the vector registers (VRs) and the Vector Status and 
Control (VSCR) register. These registers are described in Section 2.5, “Registers for vector 
operations.”

• Condition (CR) register—used to record conditions such as overflows and carries that occur as a 
result of executing arithmetic instructions. CR is described in Section 2.6, “Registers for branch 
operations.”

• Machine State (MSR) register—used by the operating system to configure parameters such as 
user/supervisor mode, address space, and enabling of asynchronous interrupts. MSR is described 
in Section 2.7.1, “Machine State (MSR) register.” 
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• Special-purpose registers (SPRs)—accessed explicitly using mtspr and mfspr instructions. SPRs 
are listed in Table 2-2 in Section 2.2.2, “Special-purpose registers (SPRs).”

• Thread management registers (TMRs)—accessed explicitly using mttmr and mftmr instructions. 
TMRs are listed in Table 2-6 in Section 2.15, “Multi-threaded operation management registers.”

• Performance monitor registers (PMRs) — accessed with move to and move from PMR instructions 
(mtpmr and mfpmr).

• Memory-mapped registers (MMRs)—accessed through load and store instructions. Addresses for 
memory-mapped registers are translated through the MMU like normal loads and stores and are 
subject to further translation as defined by the SoC. MMRs associated with the processor are shared 
L2 control and status registers. See Section 2.2.3, “Memory-mapped registers (MMRs)” and 
Section 2.12, “L2 cache registers”.

SPRs, PMRs, and TMRs are grouped by function, as follows:

• Section 2.6, “Registers for branch operations.” 

• Section 2.7, “Processor control registers”

• Section 2.8, “Timer registers”

• Section 2.9, “Interrupt registers”

• Section 2.10, “Software-use SPRs (SPRGs, GSPRGs, and USPRG0)”

• Section 2.7.4, “Branch Unit Control and Status (BUCSR) register”

• Section 2.7.5, “Hardware Implementation-Dependent 0 (HID0) register” 

• Section 2.11, “L1 cache registers” 

• Section 2.13, “MMU registers”

• Section 2.14, “Internal debug registers”

• Section 2.15, “Multi-threaded operation management registers”

• Section 2.16, “Performance monitor registers (PMRs)”

2.2.1 64-bit registers

The e6500 core is a 64-bit implementation of Power ISA. Some registers are defined by the architecture to 
be 64 bits. On 32-bit implementations, processors normally implement only the lower 32 bits of these 
registers. There are some exceptions, such as Time Base; however, those exceptions allow 32-bit access to 
the upper 32 bits of the register through a different register port.

To facilitate porting software from 32-bit mode to 64-bit mode, this table lists the registers that are 64-bit 
registers on the e6500 core.
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Table 2-1. 64-bit registers 

Register
Abbreviation

Name Notes

GPR General-purpose registers (r0 - r31) —

FPR Floating-point registers (fr0 - fr31) FPRs are always 64 bits, even in 32-bit 
implementations.

ATBL Alternate Time Base Lower Access to ATBL in 64-bit mode returns the entire 
64-bit counter.

CSRR0 Critical Save/Restore 0 —

CTR Count —

DAC1 Data Address Compare 1 —

DAC2 Data Address Compare 2 —

DEAR Data Exception Address —

DSRR0 Debug Save/Restore 0 —

GDEAR Guest Data Exception Address —

GIVPR Guest Interrupt Vector Prefix —

GSPRG0 Guest SPR General 0 —

GSPRG1 Guest SPR General 1 —

GSPRG2 Guest SPR General 2 —

GSPRG3 Guest SPR General 3 —

GSRR0 Guest Save/Restore 0 —

IAC1 Instruction Address Compare 1 —

IAC2 Instruction Address Compare 2 —

IAC3 Instruction Address Compare 3 —

IAC4 Instruction Address Compare 4 —

IAC5 Instruction Address Compare 5 —

IAC6 Instruction Address Compare 6 —

IAC7 Instruction Address Compare 7 —

IAC8 Instruction Address Compare 8 —

IVPR Interrupt Vector Prefix —

LPER Logical Page Exception —

LR Link —

MAS0_MAS1 MMU Assist 0 and MMU Assist 1 —

MAS2 MMU Assist 2 —

MAS5_MAS6 MMU Assist 5 and MMU Assist 61 —

MAS7_MAS3 MMU Assist 7 and MMU Assist 3 —

MAS8_MAS1 MMU Assist 8 and MMU Assist 1 —
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2.2.2 Special-purpose registers (SPRs)

SPRs are on-chip registers that control the use of the debug facilities, timers, interrupts, memory 
management unit, and other architected processor resources. SPRs are accessed with the mtspr and mfspr 
instructions. 

Access is given by the lowest level of privilege required to access the SPR. The access methods listed in 
Table 2-2 are defined as follows:

• User—denotes access is available for both mtspr and mfspr, regardless of privilege level.

• User RO—denotes access is available for only mfspr, regardless of privilege level.

• Guest supervisor—denotes access is available for both mtspr and mfspr when operating in 
supervisor mode (MSR[PR] = 0), regardless of the state of MSR[GS]. That is, it is available in 
hypervisor state, as well.

• Guest supervisor RO—denotes access is available for only mfspr when operating in supervisor 
mode (MSR[PR] = 0), regardless of the state of MSR[GS]. That is, it is available in hypervisor 
state, as well.

• Hypervisor—denotes access is available for both mtspr and mfspr when operating in hypervisor 
mode (MSR[GS,PR] = 00).

MCAR Machine-Check Address —

MCSRR0 Machine-Check Save/Restore 0 —

SPRG0 SPR General 0 —

SPRG1 SPR General 1 —

SPRG2 SPR General 2 —

SPRG3 SPR General 3 —

SPRG4 SPR General 4 —

SPRG5 SPR General 5 —

SPRG6 SPR General 6 —

SPRG7 SPR General 7 —

SPRG8 SPR General 8 —

SPRG9 SPR General 9 —

SRR0 Save/Restore 0 —

TBL(R) Time Base Lower Read access to TBL in 64-bit mode returns the 
entire 64-bit counter

XER Integer Exception Architecturally, the XER is a 64-bit register; 
however, the upper 32 bits of XER are reserved 
and always read as 0.

Table 2-1. 64-bit registers  (continued)

Register
Abbreviation

Name Notes
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• Hypervisor RO—denotes access is available for only mfspr when operating in hypervisor mode 
(MSR[GS,PR] = 00).

• Hypervisor WO—denotes access is available for only mtspr when operating in hypervisor mode 
(MSR[GS,PR] = 00).

• Hypervisor R/Clear—denotes access is available for both mtspr and mfspr when operating in 
hypervisor mode (MSR[GS,PR] = 00); however, an mtspr only clears bit positions in the SPR that 
correspond to the bits set in the source GPR.

• Shared—denotes an SPR that is shared by all threads.

An mtspr or mfspr instruction that specifies an unsupported SPR number is considered an invalid 
instruction. The e6500 takes an illegal-operation program exception on all accesses to undefined SPRs (or 
read accesses to SPRs that are write-only and write accesses to SPRs that are read-only), regardless of 
MSR[GS,PR] and SPRN[5] values. For supported SPR numbers that are privileged, a mtspr or mfspr 
instruction while in user mode (MSR[PR] = 1) causes a privilege operation program exception.

Note that the behavior of the e6500 core in user mode when attempting to access an unsupported, 
privileged SPR number causes an illegal-operation program exception, not a privilege operation program 
exception as specified by the architecture.

Attempting to access a supported SPR that is hypervisor-privileged while in the guest-supervisor state 
causes an embedded hypervisor privilege exception. For example, attempting to read an SPR that has 
“Hypervisor RO” privilege while in the guest-supervisor state causes an embedded hypervisor privilege 
exception and subsequent interrupt. See Section 4.9.21, “Hypervisor privilege interrupt—IVOR41” for a 
complete list of actions that cause embedded hypervisor privilege exceptions.

The table summarizes SPR access methods.

Table 2-2. Special-purpose registers (by SPR abbreviation)

SPR
Abbreviation

Name
Defined 

SPR 
Number

Access Shared Section/Page

ATBL Alternate Time Base Lower 526 User RO Yes 2.8.6/2-28

ATBU Alternate Time Base Upper 527 User RO Yes 2.8.6/2-28

BUCSR Branch Unit Control and Status1 1013 Hypervisor — 2.7.4/2-21

CDCSR0 Core Device Control and Status 696 Hypervisor Yes 2.7.6/2-23

CIR Chip Identification (alias to SVR) 283 Guest supervisor RO Yes 2.7.10/2-25

CSRR0 Critical Save/Restore 0 58 Hypervisor — 2.9.1/2-29

CSRR1 Critical Save/Restore 1 59 Hypervisor — 2.9.1/2-29

CTR Count 9 User — 2.6.3/2-18

DAC1 Data Address Compare 11 316 Hypervisor — 2.14.11/2-100

DAC2 Data Address Compare 21 317 Hypervisor — 2.14.11/2-100

DBCR0 Debug Control 0 1 308 Hypervisor — 2.14.4/2-85

DBCR1 Debug Control 11 309 Hypervisor — 2.14.5/2-88

DBCR2 Debug Control 21 310 Hypervisor — 2.14.6/2-91
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DBCR4 Debug Control 41 563 Hypervisor — 2.14.7/2-93

DBCR5 Debug Control 51 564 Hypervisor — 2.14.8/2-94

DBRR0 Debug Resource Request 01 700 Hypervisor — 2.14.2/2-82

DBSR Debug Status 1 304 Hypervisor R/Clear — 2.14.9/2-96

DBSRWR Debug Status Write1 306 Hypervisor — 2.14.9/2-96

DDAM Debug Data Acquisition Message 576 User — 2.14.14/2-102

DEAR Data Exception Address 61 Guest supervisor2 — 2.8.5/2-28

DEC Decrementer 22 Hypervisor — 2.8.4/2-28

DECAR Decrementer Auto-Reload 54 Hypervisor WO — 2.8.4/2-28

DEVENT Debug Event 975 User — 2.14.13/2-101

DSRR0 Debug Save/Restore 0 574 Hypervisor — 2.9.1/2-29

DSRR1 Debug Save/Restore 1 575 Hypervisor — 2.9.1/2-29

EDBRAC0 External Debug Resource Allocation Control 01 638 Hypervisor RO — 2.14.3/2-83

EPCR Embedded Processor Control 307 Hypervisor — 2.7.3/2-21

EPTCFG Embedded Page Table Configuration 350 Hypervisor RO Yes 2.13.7/2-66

EPLC External PID Load Context1 947 Guest supervisor3 — 2.13.11.1/2-79

EPR External Proxy 702 Guest supervisor RO2 — 2.9.6/2-32

EPSC External PID Store Context1 948 Guest supervisor3 — 2.13.11.2/2-80

ESR Exception Syndrome 62 Guest supervisor2 — 2.9.7/2-33

GDEAR Guest Data Exception Address 381 Guest supervisor — 2.8.5/2-28

GEPR Guest External Proxy 380 Guest supervisor — 2.9.6/2-32

GESR Guest Exception Syndrome 383 Guest supervisor — 2.9.7/2-33

GIVOR13 Guest Data TLB Error Interrupt Offset 444 Hypervisor4 — 2.9.4/2-31

GIVOR14 Guest Instruction TLB Error Interrupt Offset 445 Hypervisor4 — 2.9.4/2-31

GIVOR2 Guest Data Storage Interrupt Offset 440 Hypervisor4 — 2.9.4/2-31

GIVOR3 Guest Instruction Storage Interrupt Offset 441 Hypervisor4 — 2.9.4/2-31

GIVOR35 Guest Performance Monitor Interrupt Offset 464 Hypervisor4 — 2.9.4/2-31

GIVOR4 Guest External Input Interrupt Offset 442 Hypervisor4 — 2.9.4/2-31

GIVOR8 Guest System Call Interrupt Offset 443 Hypervisor4 — 2.9.4/2-31

GIVPR Guest Interrupt Vector Prefix 447 Hypervisor4 — 2.9.4/2-31

GPIR Guest Processor ID 382 Guest supervisor4 — 2.9.8/2-35

GSPRG0 Guest SPR General 0 368 Guest supervisor — 2.10/2-39

GSPRG1 Guest SPR General 1 369 Guest supervisor — 2.10/2-39

Table 2-2. Special-purpose registers (by SPR abbreviation) (continued)

SPR
Abbreviation

Name
Defined 

SPR 
Number

Access Shared Section/Page
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GSPRG2 Guest SPR General 2 370 Guest supervisor — 2.10/2-39

GSPRG3 Guest SPR General 3 371 Guest supervisor — 2.10/2-39

GSRR0 Guest Save/Restore 0 378 Guest supervisor — 2.9.1/2-29

GSRR1 Guest Save/Restore 1 379 Guest supervisor — 2.9.1/2-29

HID0 Hardware Implementation Dependent 01 1008 Hypervisor Yes 2.7.5/2-22

IAC1 Instruction Address Compare 11 312 Hypervisor — 2.14.10/2-99

IAC2 Instruction Address Compare 21 313 Hypervisor — 2.14.10/2-99

IAC3 Instruction Address Compare 31 314 Hypervisor — 2.14.10/2-99

IAC4 Instruction Address Compare 41 315 Hypervisor — 2.14.10/2-99

IAC5 Instruction Address Compare 51 565 Hypervisor — 2.14.10/2-99

IAC6 Instruction Address Compare 61 566 Hypervisor — 2.14.10/2-99

IAC7 Instruction Address Compare 71 567 Hypervisor — 2.14.10/2-99

IAC8 Instruction Address Compare 81 568 Hypervisor — 2.14.10/2-99

IVOR0 Critical Input Interrupt Offset 400 Hypervisor Yes 2.9.5/2-31

IVOR1 Machine Check Interrupt Offset 401 Hypervisor Yes 2.9.5/2-31

IVOR10 Decrementer Interrupt Offset 410 Hypervisor Yes 2.9.5/2-31

IVOR11 Fixed-Interval Timer Interrupt Offset 411 Hypervisor Yes 2.9.5/2-31

IVOR12 Watchdog Timer Interrupt Offset 412 Hypervisor Yes 2.9.5/2-31

IVOR13 Data TLB Error Interrupt Offset 413 Hypervisor Yes 2.9.5/2-31

IVOR14 Instruction TLB Error Interrupt Offset 414 Hypervisor Yes 2.9.5/2-31

IVOR15 Debug Interrupt Offset 415 Hypervisor Yes 2.9.5/2-31

IVOR2 Data Storage Interrupt Offset 402 Hypervisor Yes 2.9.5/2-31

IVOR3 Instruction Storage Interrupt Offset 403 Hypervisor Yes 2.9.5/2-31

IVOR32 AltiVec Unavailable Interrupt Offset 528 Hypervisor Yes 2.9.5/2-31

IVOR33 AltiVec Assist Interrupt Offset 529 Hypervisor Yes 2.9.5/2-31

IVOR35 Performance Monitor Interrupt Offset 531 Hypervisor Yes 2.9.5/2-31

IVOR36 Processor Doorbell Interrupt Offset 532 Hypervisor Yes 2.9.5/2-31

IVOR37 Processor Doorbell Critical Interrupt Offset 533 Hypervisor Yes 2.9.4/2-31

IVOR38 Guest Processor Doorbell Interrupt Offset 432 Hypervisor Yes 2.9.5/2-31

IVOR39 Guest Processor Doorbell Critical and Machine- 
Check Interrupt Offset

433 Hypervisor Yes 2.9.5/2-31

IVOR4 External Input Interrupt Offset 404 Hypervisor Yes 2.9.5/2-31

IVOR40 Hypervisor System Call Interrupt Offset 434 Hypervisor Yes 2.9.5/2-31

IVOR41 Hypervisor Privilege Interrupt Offset 435 Hypervisor Yes 2.9.5/2-31

Table 2-2. Special-purpose registers (by SPR abbreviation) (continued)

SPR
Abbreviation
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IVOR42 LRAT Error Interrupt Offset 436 Hypervisor Yes 2.9.5/2-31

IVOR5 Alignment Interrupt Offset 405 Hypervisor Yes 2.11.5/2-42

IVOR6 Program Interrupt Offset 406 Hypervisor Yes 2.9.5/2-31

IVOR7 Floating-Point Unavailable Interrupt Offset 407 Hypervisor Yes 2.9.5/2-31

IVOR8 System Call Interrupt Offset 408 Hypervisor Yes 2.9.5/2-31

IVOR9 APU Unavailable Interrupt Offset 409 Hypervisor Yes 2.9.5/2-31

IVPR Interrupt Vector Prefix 63 Hypervisor Yes 2.9.4/2-31

L1CFG0 L1 Cache Configuration 0 515 User RO Yes 2.11.4/2-41

L1CFG1 L1 Cache Configuration 1 516 User RO Yes 2.11.5/2-42

L1CSR0 L1 Cache Control and Status 01 1010 Hypervisor Yes 2.11.1/2-40

L1CSR1 L1 Cache Control and Status 11 1011 Hypervisor Yes 2.11.2/2-40

L1CSR2 L1 Cache Control and Status 21 606 Hypervisor Yes 2.11.2/2-40

LPIDR Logical PID1 338 Hypervisor — 2.13.1/2-62

LR Link 8 User — 2.6.2/2-18

LRATCFG Logical to Real Address Translation Configuration 342 Hypervisor RO Yes 2.13.8/2-67

LRATPS Logical to Real Address Translation Page Size 343 Hypervisor RO Yes 2.13.9/2-69

LPER Logical Page Exception 56 Hypervisor — 2.9.3/2-30

LPERU Logical Page Exception Upper 57 Hypervisor — 2.9.3/2-30

MAS0 MMU Assist 01 624 Guest supervisor — 2.13.10.1/2-70

MAS0_MAS1 MMU Assist 0 and MMU Assist 11 373 Guest supervisor — 2.13.10.10/2-7
9

MAS1 MMU Assist 11 625 Guest supervisor — 2.13.10.2/2-71

MAS2 MMU Assist 21 626 Guest supervisor — 2.13.10.3/2-72

MAS3 MMU Assist 31 627 Guest supervisor — 2.13.10.4/2-73

MAS4 MMU Assist 41 628 Guest supervisor — 2.13.10.5/2-75

MAS5 MMU Assist 51 339 Hypervisor — 2.13.10.6/2-76

MAS5_MAS6 MMU Assist 5 and MMU Assist 61 348 Hypervisor — 2.13.10.10/2-7
9

MAS6 MMU Assist 61 630 Guest supervisor — 2.13.10.7/2-76

MAS7 MMU Assist 71 944 Guest supervisor — 2.13.10.8/2-77

MAS7_MAS3 MMU Assist 7 and MMU Assist 31 372 Guest supervisor — 2.13.10.10/2-7
9

MAS8 MMU Assist 81 341 Hypervisor — 2.13.10.9/2-78

MAS8_MAS1 MMU Assist 8 and MMU Assist 11 349 Hypervisor — 2.13.10.10/2-7
9

Table 2-2. Special-purpose registers (by SPR abbreviation) (continued)
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MCAR Machine-Check Address 573 Hypervisor RO — 2.9.9/2-35

MCARU Machine-Check Address Upper 569 Hypervisor RO — 2.9.9/2-35

MCARUA Machine-Check Address Upper Alias 637 Hypervisor RO — 2.9.9/2-35

MCSR Machine-Check Syndrome 572 Hypervisor — 2.9.10/2-36

MCSRR0 Machine-Check Save/Restore 0 570 Hypervisor — 2.9.1/2-29

MCSRR1 Machine-Check Save/Restore 1 571 Hypervisor — 2.9.1/2-29

MMUCFG MMU Configuration 1015 Hypervisor RO Yes 2.13.4/2-63

MMUCSR0 MMU Control and Status 01 1012 Hypervisor Yes 2.13.3/2-62

MSRP MSR Protect1 311 Hypervisor — 2.7.2/2-20

NIA Next Instruction Address 559 External debugger — 9.2.5.2/99-5

NPIDR5 Nexus Processor ID 517 User — 2.14.15/2-102

NSPC Nexus SPR Access Configuration 984 Hypervisor — 2.14.12/2-100

NSPD Nexus SPR Access Data 983 Hypervisor — 2.14.12/2-100

PID Process ID1 48 Guest supervisor — 2.13.2/2-62

PIR Processor ID 286 Guest supervisor2 — 2.9.8/2-35

PPR32 Processor Priority 898 User — 2.15.1.6/2-107

PVR Processor Version 287 Guest supervisor RO Yes 2.7.8/2-24

PWRMGTCR0 Power Management Control 0 1019 Hypervisor Yes 2.7.7/2-24

SCCSRBAR Shifted CCSRBAR from SoC 1022 Hypervisor RO Yes 2.7.11/2-25

SPRG0 SPR General 0 272 Guest supervisor2 — 2.10/2-39

SPRG1 SPR General 1 273 Guest supervisor2 — 2.10/2-39

SPRG2 SPR General 2 274 Guest supervisor2 — 2.10/2-39

SPRG3 SPR General 3 259 User RO2 — 2.10/2-39

SPRG3 SPR General 3 275 Guest supervisor2 — 2.10/2-39

SPRG4 SPR General 4 260 User RO — 2.10/2-39

SPRG4 SPR General 4 276 Guest supervisor — 2.10/2-39

SPRG5 SPR General 5 261 User RO — 2.10/2-39

SPRG5 SPR General 5 277 Guest supervisor — 2.10/2-39

SPRG6 SPR General 6 262 User RO — 2.10/2-39

SPRG6 SPR General 6 278 Guest supervisor — 2.10/2-39

SPRG7 SPR General 7 263 User RO — 2.10/2-39

SPRG7 SPR General 7 279 Guest supervisor — 2.10/2-39

SPRG8 SPR General 8 604 Hypervisor — 2.10/2-39

Table 2-2. Special-purpose registers (by SPR abbreviation) (continued)
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2.2.2.1 Register mapping in the guest–supervisor state

To improve emulation efficiency while providing a common programming model for operating systems 
that may want to run either under control of a hypervisor or directly on the hardware without a hypervisor, 
accesses to certain hypervisor-state registers are automatically redirected to the appropriate guest-state 
registers when in the guest–supervisor state. This removes the requirement for the hypervisor-state 
software to handle hypervisor privilege interrupts for these registers and to make the required emulated 
changes to the guest state for these high-use registers.

SPRG9 SPR General 9 605 Guest supervisor — 2.10/2-39

SRR0 Save/Restore 0 26 Guest supervisor2 — 2.9.1/2-29

SRR1 Save/Restore 1 27 Guest supervisor2 — 2.9.1/2-29

SVR System Version 1023 Guest supervisor RO Yes 2.7.9/2-25

TBL(R) Time Base Lower (Read) 268 User RO Yes 2.8.3/2-27

TBL(W) Time Base Lower (Write) 284 Hypervisor WO Yes 2.8.3/2-27

TBU(R) Time Base Upper (Read) 269 User RO Yes 2.8.3/2-27

TBU(W) Time Base Upper (Write) 285 Hypervisor WO Yes 2.8.3/2-27

TCR Timer Control 340 Hypervisor — 2.8.1/2-27

TENC Thread Enable Clear 439 Hypervisor Yes 2.15.1/2-103

TENS Thread Enable Set 438 Hypervisor Yes 2.15.1/2-103

TENSR Thread Enable Status 437 Hypervisor RO Yes 2.15.1/2-103

TIR Thread Identification 446 Hypervisor RO — 2.15.1/2-103

TLB0CFG TLB 0 Configuration 688 Hypervisor RO Yes 2.13.5/2-64

TLB0PS TLB 0 Page Size 344 Hypervisor RO Yes 2.13.6/2-66

TLB1CFG TLB 1 Configuration 689 Hypervisor RO Yes 2.13.5/2-64

TLB1PS TLB 1 Page Size 345 Hypervisor RO Yes 2.13.6/2-66

TSR Timer Status 336 Hypervisor R/Clear — 2.8.2/2-27

USPRG0
(VRSAVE)

User SPR General 06 256 User — 2.10/2-39

XER Integer Exception 1 User — 2.3.2/2-16

1 Writing to these registers requires synchronization, as described in Section 3.3.3, “Synchronization requirements.”
2 When these registers are accessed in the guest-supervisor state, the accesses are mapped to their analogous guest SPRs 

(for example, DEAR is mapped to GDEAR). See Section 2.2.2.1, “Register mapping in the guest–supervisor state.”
3 Certain fields in this register are only writeable when in the hypervisor state.
4 This register is only writeable in the hypervisor state, but can be read in the guest-supervisor state.
5 NPIDR contents are transferred to the Nexus port whenever it is written.
6 USPRG0 is a separate physical register from SPRG0.

Table 2-2. Special-purpose registers (by SPR abbreviation) (continued)
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Accesses to the registers listed in Table 2-3 are changed by the processor to the registers given in the table 
when MSR[PR] = 0 and MSR[GS] = 1. Accesses to these registers are not mapped when in the hypervisor 
state (MSR[PR] = 0 and MSR[GS] = 0) or when operating unprivileged (MSR[PR] = 1). The exception is 
that an unprivileged access to SPRG3 (SPR 259) is also mapped to GSPRG3.

Note that in the guest-supervisor state, execution of rfi is mapped to rfgi, and indirect accesses to SRR0 
and SRR1 through execution of the rfgi instruction are handled through instruction mapping.

This table provides register mapping in the guest-supervisor state.

2.2.3 Memory-mapped registers (MMRs)

MMRs are on-chip registers implemented on the processor core or within a cluster of processor cores. 
They are used to control and configure devices within the integrated device. MMRs are defined for the 
shared backside L2 cache.

This section describes the MMR address assignments that are supported by the e6500 core complex. The 
definitions of each MMR are found later in this chapter and are organized by function.

MMRs are accessed by performing loads and stores to the assigned address of the MMR. The MMR 
address is specified as an offset from a base address. The base address is a block of addresses defined by 
the SoC architecture and can be determined by consulting the integrated device reference manual as part 
of the CCSR Address Map. For MMRs defined in this document, both the name of the block of addresses 
and the offset within that block are used to identify the address.

MMRs do not have privilege associated with them and are accessible if mapped by a valid TLB entry. 
Therefore, system software should take care when mapping MMRs to address spaces.

MMRs located at address A, which are defined as 64 bits, are accessed with load or store doubleword 
instructions to address A. The two 32-bit portions may be accessed by two load or store word instructions 

Table 2-3. Register mapping in the guest–supervisor state

Register Accessed Register Mapped to Notes

SRR0 GSRR0 Access is mapped during mtspr and mfspr.

SRR1 GSRR1 Access is mapped during mtspr and mfspr.

EPR GEPR Access is mapped during mfspr.

ESR GESR Access is mapped during mtspr and mfspr.

DEAR GDEAR Access is mapped during mtspr and mfspr.

PIR GPIR Access is mapped during mfspr.

SPRG0 GSPRG0 Access is mapped during mtspr and mfspr.

SPRG1 GSPRG1 Access is mapped during mtspr and mfspr.

SPRG2 GSPRG2 Access is mapped during mtspr and mfspr.

SPRG3 GSPRG3 Access is mapped during mtspr and mfspr.

SPRG3 (259) GSPRG3 Access is mapped during mfspr.
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that address the upper 32 bits at address A and the lower 32 bits at address A+4. MMRs that are defined as 
32 bits are accessed with load or store word instructions at address A.

The following table summarizes the MMR blocks and each block’s offset from CCSRBAR. The starting 
real address of the block is determined by reading the SCCSRBAR, shifting the contents left by 24 bits, 
and adding the block offset.

The following table summarizes MMRs for the shared L2, which is Shared L2 cluster x, where x identifies 
the shared L2 cluster from 1 to the number of clusters in the integrated device.

Table 2-4.  Memory-mapped register blocks (by offset)

Block Offset from 
CCSRBAR

MMR Block Name

0xC2_0000 Shared L2 cluster 1

0xC6_0000 Shared L2 cluster 2

0xCA_0000 Shared L2 cluster 3

0xCE_0000 Shared L2 cluster 4

0xD2_0000 Shared L2 cluster 5

0xD6_0000 Shared L2 cluster 6

0xDA_0000 Shared L2 cluster 7

0xDE_0000 Shared L2 cluster 8

0xE2_0000 Shared L2 cluster 9

0xE6_0000 Shared L2 cluster 10

0xEA_0000 Shared L2 cluster 11

0xEE_0000 Shared L2 cluster 12

0xF2_0000 Shared L2 cluster 13

0xF6_0000 Shared L2 cluster 14

0xFA_0000 Shared L2 cluster 15

0xFE_0000 Shared L2 cluster 16

Table 2-5.  Memory-mapped registers for block ‘shared L2 cluster x’ (by offset)

MMR
Abbreviation

Defined 
MMR 

offset in 
block

Name
Length 
(in bits)

Section/ Page

L2CSR0 0x000 L2 Cache Control and Status 0 32 2.12.2/2-44

L2CSR1 0x004 L2 Cache Control and Status 1 32 2.12.3/2-47

L2CFG0 0x008 L2 Cache Configuration 0 32 2.12.1/2-43

L2PIR0 0x200 L2 Cache Partitioning ID 0 32 2.12.4.1/2-50
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L2PAR0 0x208 L2 Cache Partitioning Allocation 0 32 2.12.4.2/2-51

L2PWR0 0x20c L2 Cache Partitioning Way 0 32 2.12.4.3/2-53

L2PIR1 0x210 L2 Cache Partitioning ID 1 32 2.12.4.1/2-50

L2PAR1 0x218 L2 Cache Partitioning Allocation 1 32 2.12.4.2/2-51

L2PWR1 0x21c L2 Cache Partitioning Way 1 32 2.12.4.3/2-53

L2PIR2 0x220 L2 Cache Partitioning ID 2 32 2.12.4.1/2-50

L2PAR2 0x228 L2 Cache Partitioning Allocation 2 32 2.12.4.2/2-51

L2PWR2 0x22c L2 Cache Partitioning Way 2 32 2.12.4.3/2-53

L2PIR3 0x230 L2 Cache Partitioning ID 3 32 2.12.4.1/2-50

L2PAR3 0x238 L2 Cache Partitioning Allocation 3 32 2.12.4.2/2-51

L2PWR3 0x23c L2 Cache Partitioning Way 3 32 2.12.4.3/2-53

L2PIR4 0x240 L2 Cache Partitioning ID 4 32 2.12.4.1/2-50

L2PAR4 0x248 L2 Cache Partitioning Allocation 4 32 2.12.4.2/2-51

L2PWR4 0x24c L2 Cache Partitioning Way 4 32 2.12.4.3/2-53

L2PIR5 0x250 L2 Cache Partitioning ID 5 32 2.12.4.1/2-50

L2PAR5 0x258 L2 Cache Partitioning Allocation 5 32 2.12.4.2/2-51

L2PWR5 0x25c L2 Cache Partitioning Way 5 32 2.12.4.3/2-53

L2PIR6 0x260 L2 Cache Partitioning ID 6 32 2.12.4.1/2-50

L2PAR6 0x268 L2 Cache Partitioning Allocation 6 32 2.12.4.2/2-51

L2PWR6 0x26c L2 Cache Partitioning Way 6 32 2.12.4.3/2-53

L2PIR7 0x270 L2 Cache Partitioning ID 7 32 2.12.4.1/2-50

L2PAR7 0x278 L2 Cache Partitioning Allocation 7 32 2.12.4.2/2-51

L2PWR7 0x27c L2 Cache Partitioning Way 7 32 2.12.4.3/2-53

L2ERRINJHI 0xe00 L2 Cache Error Injection Mask High 32 2.12.5.10/2-61

L2ERRINJLO 0xe04 L2 Cache Error Injection Mask Low 32 2.12.5.10/2-61

L2ERRINJCTL 0xe08 L2 Cache Error Injection Control 32 2.12.5.9/2-60

L2CAPTDATAHI 0xe20 L2 Cache Error Capture Data High 32 2.12.5.6/2-59

L2CAPTDATALO 0xe24 L2 Cache Error Capture Data Low 32 2.12.5.6/2-59

L2CAPTECC 0xe28 L2 Cache Error Capture ECC Syndrome 32 2.12.5.7/2-59

L2ERRDET 0xe40 L2 Cache Error Detect 32 2.12.5.2/2-55

L2ERRDIS 0xe44 L2 Cache Error Disable 32 2.12.5.1/2-54

L2ERRINTEN 0xe48 L2 Cache Error Interrupt Enable 32 2.12.5.3/2-57

L2ERRATTR 0xe4c L2 Cache Error Attribute 32 2.12.5.8/2-59

Table 2-5.  Memory-mapped registers for block ‘shared L2 cluster x’ (by offset) (continued)
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2.2.3.1 Synchronization requirements for memory-mapped registers

MMRs associated with the e6500 core complex require synchronization to ensure that operations are 
performed when an MMR is written with a store instruction. The general synchronization requirement is 
to follow a store to an MMR with a load to the same MMR and verify that the operation is complete. Other 
synchronizations or actions that may be required are specific to each MMR and are documented in EREF 
and in the specific register descriptions in Chapter 2, “Register Model.”

2.2.4 Thread management registers (TMRs)

TMRs are on-chip registers implemented in the processor core that are used to control the use of threads 
in the e6500 core and other architected processor resources related to threads.

This section describes the TMRs that are implemented in the e6500. The definition of each individual 
TMR is contained in Section 2.15.2, “Thread management registers (TMRs)” organized by function. Note 
that the e6500 implementation of a TMR may be a subset of the architectural definition.

TMRs are accessed with the mttmr and mftmr instructions. Access is given by the lowest level of 
privilege required to access the TMR. Unlike SPRs, TMRs do not use bit 5 to denote privilege. The access 
methods listed in Table 2-6 are defined as follows:

• Hypervisor—denotes access is available for both mttmr and mftmr when operating in hypervisor 
mode (MSR[GS,PR] = 00).

• Hypervisor RO—denotes access is available for only mftmr when operating in hypervisor mode 
(MSR[GS,PR] = 00).

• Hypervisor WO—denotes access is available for only mttmr when operating in hypervisor mode 
(MSR[GS,PR] = 00).

• Hypervisor R/Clear—denotes access is available for both mttmr and mftmr when operating in 
hypervisor mode (MSR[GS,PR] = 00); however, an mttmr only clears bit positions in the SPR that 
correspond to the bits set in the source GPR.

• Shared—denotes the register is shared among all the threads of a multi-threaded processor; 
otherwise, each thread has a private copy of the register.

An mttmr or mftmr instruction that specifies an unsupported TMR number is considered an invalid 
instruction. In user mode, the processor takes an illegal operation program exception on all accesses to 

L2ERREADDR 0xe50 L2 Cache Error Extended Address 32 2.12.5.5/2-59

L2ERRADDR 0xe54 L2 Cache Error Address 32 2.12.5.5/2-59

L2ERRCTL 0xe58 L2 Cache Error Control 32 2.12.5.4/2-58

Table 2-5.  Memory-mapped registers for block ‘shared L2 cluster x’ (by offset) (continued)
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unsupported, unprivileged TMRs (or read accesses to TMRs that are write-only and write accesses to 
TMRs that are read-only). In supervisor or hypervisor mode, such accesses are boundedly undefined.

2.3 Registers for integer operations
The following sections describe registers defined for integer computational instructions. 

2.3.1 General-purpose registers (GPRs)

GPR0–GPR31 provide operand space for support integer operations. The instruction formats provide 5-bit 
fields for specifying GPRs to be used in the execution of the instruction. Each GPR is a 64-bit register and 
can be used to contain effective address and integer data.

GPRs are implemented as defined by Power ISA and as described in EREF.

The e6500 core has two independent sets of GPRs, one set for each thread.

2.3.2 Integer Exception (XER) register

XER bits are set based on the operation of an instruction considered as a whole, not based on intermediate 
results. For example, the Subtract from Carrying (subfc) instruction specifies the result as the sum of three 
values. This final sum is actually accomplished with an intermediate sum of two values, which is then 
added to the third to produce the final sum. The bits in XER are only set based on the entire instruction 
operation, not the intermediate value produced during the operation.

Note that XER is an SPR.

The e6500 core implements XER as defined in EREF.

The e6500 core has two independent XERs, one for each thread.

2.4 Registers for floating-point operations 
The following sections describe registers defined for floating-point computational instructions.

Table 2-6.  Thread management registers (by TMR number)

Defined 
TMR 

Number

TMR
Abbreviation

Name
Length 
(in bits)

Access
(shared)

Shared Section/ Page

16 TMCFG0 Thread Management Configuration 0 32 Hypervisor RO Yes 2.15.2.1/2-108

192 TPRI0 Thread 0 Priority 32 Hypervisor Yes 2.15.2.4/2-110

193 TPRI1 Thread 1 Priority 32 Hypervisor Yes 2.15.2.4/2-110

288 IMSR0 Thread 0 Machine State 32 Hypervisor WO Yes 2.15.2.2/2-109

289 IMSR1 Thread 1 Machine State 32 Hypervisor WO Yes 2.15.2.2/2-109

320 INIA0 Thread 0 Next Instruction Address 64 Hypervisor WO Yes 2.15.2.2/2-109

321 INIA1 Thread 1 Next Instruction Address 64 Hypervisor WO Yes 2.15.2.2/2-109
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2.4.1 Floating-point registers (FPRs)

FPR0–FPR31 provide operand space for supporting floating-point operations. The instruction formats 
provide 5-bit fields for specifying FPRs to be used in the execution of the instruction. Each FPR is a 64-bit 
register and can be used to contain single-precision or double-precision floating-point data.

The e6500 core implements FPRs as defined by Power ISA and as described in EREF. 

The e6500 core has two independent sets of FPRs, one set for each thread.

2.4.2 Floating-Point Status and Control (FPSCR) register

FPSCR contains all floating-point exception signal bits, exception summary bits, exception enable bits, 
and rounding control bits needed for compliance with the IEEE 754 standard. 

If FPSCR[NI] is set for a specific thread in the e6500 core, denormalized values are treated as 
appropriately signed 0 values. That is, if a denormalized number is an input to a floating point operation, 
that denormalized number is treated as 0 with the same sign as the denormalized number. If the result of a 
floating point operation produces a denormalized number, the result produced and written to the 
destination register is an appropriately signed 0.

The e6500 core implements FPSCR as defined by Power ISA and described in EREF. 

The e6500 core has two independent FPSCRs, one for each thread.

2.5 Registers for vector operations
The following sections describe registers defined for vector computational instructions.

2.5.1 Vector registers (VRs)

VR0–VR31 provide operand space for supporting vector (AltiVec) operations. The instruction formats 
provide 5-bit fields for specifying the VRs to be used in the execution of the instruction. Each VR is a 
128-bit register and can be used to contain a vector of integer or single-precision floating-point data.

The e6500 core implements VRs as defined by Power ISA and as described in EREF.

The e6500 has two independent sets of VRs, one set for each thread.

2.5.2 Vector Status and Control (VSCR) register

VSCR is a 32-bit register that is read and written in a manner similar to the FPSCR.

VSCR has two defined bits:

• AltiVec non-Java mode bit—VSCR[111]

• AltiVec saturation bit—VSCR[127]

The remaining bits are reserved.
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Special Move To Vector Status and Control Register (mfvscr) and Move From Vector Status and Control 
Register (mtvscr) instructions are provided to move the contents of VSCR to and from a vector register. 
When moved to or from a vector register, the 32-bit VSCR is right-justified in the 128-bit vector register. 
When moved to a vector register, the upper 96 bits VRn [0–95] of the vector register are cleared.

VSCR is more completely defined in the AltiVec Technology Programming Environments Manual for 
Power ISA Processors.

The e6500 core has two independent VSCRs, one for each thread.

2.6 Registers for branch operations
This section describes registers used by branch and condition register operations.

2.6.1 Condition (CR) register

The e6500 core implements CR as defined in EREF for integer instructions.

The e6500 core has two independent CRs, one for each thread.

2.6.2 Link (LR) register

LR can be used to provide the branch target address for a Branch Conditional to LR instruction. It also 
holds the return address after branch and link instructions.

Note that LR is an SPR.

The e6500 core implements LR as defined in EREF. 

The e6500 core has two independent LRs, one for each thread.

2.6.3 Count (CTR) register

CTR can be used to hold a loop count that can be decremented and tested during execution of branch 
instructions that contain an appropriately encoded BO field. If the count register value is 0 before being 
decremented, it is –1 afterward. The count register can be used to hold the branch target address for a 
Branch Conditional to CTR (bcctrx) instruction.

Note that the count register is an SPR.

The e6500 core implements CTR as defined in EREF. 

The e6500 core has two independent CTRs, one for each thread.

2.7 Processor control registers
This section describes registers associated with identifying and controlling thread and core features. In 
particular, it describes the following registers:

• Machine State (MSR)

• Machine State Register Protect (MSRP)
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• Embedded Processor Control (EPRC)

• Branch Unit Control (BUCSR)

• Hardware Implementation-Dependent 0 (HID0)

• Core Device Control and Status (CDCSR0)

• Power Management Control 0 (PWRMGTCR0)

• Processor Version (PVR)

• System Version (SVR)

• Chip Identification (CIR)

• Shifted CCSRBAR (SCCSRBAR)

2.7.1 Machine State (MSR) register 

MSR, shown in Figure 2-1, is used to define the processor state, which includes:

• Enabling and disabling of interrupts and debugging exceptions 

• Address translation for instruction and data memory accesses 

• Enabling and disabling some functionality 

• Controlling whether the processor is in 32-bit or 64-bit mode

• Specifying whether the processor is in supervisor or user mode

• Specifying whether the processor is in hypervisor or guest state

The e6500 core has two independent MSRs, one for each thread. The MSR for each thread controls the 
machine state for that thread.

When a thread runs in the guest–supervisor state (MSR[GS] = 1, MSR[PR] = 0), some MSR bits are not 
writable. If MSR is written in the guest–supervisor state in any manner, including using mtmsr, rfgi, or 
rfi, or as the result of taking an interrupt serviced in guest state, MSR[GS] is not changed.

Certain MSR bits for a thread may be changed in the guest–supervisor state if permission to do so is 
enabled by the hypervisor program. MSR[UCLE,DE,PMM] are writable if the corresponding 
MSRP-defined bits are cleared. See Section 2.7.2, “Machine State Register Protect (MSRP) register.” 
MSRP is writable only in the hypervisor state. When MSR is written in the guest state, bits protected by 
set MSRP bits are not written and remain unmodified. All other MSR bits are written with the updated 
values. An attempt to write the MSRP in the guest–supervisor state results in a hypervisor privilege 
exception.

Changing CM, PR, GS, IS, or DS using the mtmsr instruction requires a context-synchronizing operation 
before the effects of the change are guaranteed to be visible. Prior to the context synchronization, these bits 
can change at any time and with any combination. Changes in CM, GS, or IS can cause an implicit branch 
because these bits are used to compute the virtual address for instruction translation. Instructions may be 
fetched and executed from any context and from any permutation of these bits. Software should guarantee 
that a translation exists for each of the permutations of these address space bits and that translation has the 
same characteristics, including permissions and Real Page Number (RPN) fields. For this reason, it is 
unwise to use mtmsr to change these bits. Such changes should only be done using 
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return-from-interrupt-type instructions, which provide the context synchronization atomically with 
instruction execution.

When an interrupt occurs, MSR contents of the interrupted process are automatically saved to the 
Save/Restore 1 (xSRR1) register appropriate to the interrupt, and the MSR is altered to predetermined 
values for the interrupt taken. At the end of the interrupt handler, the appropriate return-from-interrupt 
instruction restores the values in xSRR1 to the thread’s MSR. 

MSR contents are read into a GPR using mfmsr. The contents of a GPR can be written to MSR using 
mtmsr. The write MSR external enable instructions (wrtee and wrteei) can be used to set or clear 
MSR[EE] without affecting other MSR bits.

MSR[CM] controls whether a thread is in 32-bit mode or 64-bit mode. Power ISA defines two methods of 
a 64-bit implementation providing 32-bit mode. EREF provides 32-bit mode in a manner compatible with 
Power Architecture® processors that implement the server category. EREF calls this “hybrid 32-bit mode.” 
In both 32-bit and 64-bit modes, instructions that set a 64-bit register affect all 64 bits. The computational 
mode controls:

• How the effective address is interpreted

• How CR bits and XER bits are set 

• How LR is set by branch instructions in which LK = 1

• How CTR is tested by branch conditional instructions 

In both modes, effective address computations use all 64 bits of the relevant registers and produce a 64-bit 
result. However, in 32-bit mode, the high-order 32 bits of the computed effective address are ignored for 
the purpose of addressing storage.

When executing in 32-bit mode, the upper 32 bits of the fetch address, effective addresses, DACx, IACx, 
IVPR, and GIVPR are ignored. When transitioning from 64-bit to 32-bit mode, the upper 32 bits of the 
fetch address are set to 0, regardless of whether the transition is the result of a return from interrupt 
instruction or a mtmsr instruction.

The e6500 core does not implement the WE bit found in some previous e500 cores. Power management 
operations on SoCs using the e6500 are handled through the PWRMGTCR0 register and an SoC 
programming model. See the reference manual for the integrated device for additional details.

2.7.2 Machine State Register Protect (MSRP) register

MSRP provides the ability to write MSR[UCLE,DE,PMM] when the machine is in the guest–supervisor 
state (MSR[PR] = 0 and MSR[GS] = 1) by any operation that modifies MSR (mtmsr, rfi, rfgi, and MSR 
change on an interrupt directed to the guest state). An attempt to read or write MSRP when not in the 

Guest supervisor

32 33 34 35 36 37 38 39 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

R
CM GS — UCLE SPV — CE — EE PR FP ME FE0 — DE FE1 — IS DS — PMM RI —

W

Reset All zeros

Figure 2-1. Machine State (MSR) register
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hypervisor state results in a hypervisor privilege exception when MSR[PR] = 0 and a privilege exception 
when MSR[PR] = 1.

MSRP settings also affect the execution of cache locking instructions and mtpmr/mfpmr instructions.

A change to MSRP requires a context synchronizing operation to be performed before the effects of the 
change are guaranteed to be visible in the current context.

The e6500 core implements the MSRP as defined in EREF.

The e6500 core has two independent MSRPs, one for each thread.

2.7.3 Embedded Processor Control (EPCR) register

EPCR controls whether certain interrupts are directed to the hypervisor state or to the guest–supervisor 
state and whether the processor executes in 32-bit or 64-bit mode when an interrupt occurs. It also 
suppresses debug events when in the hypervisor state.

The e6500 core implements EPCR as defined in EREF.

The e6500 core has two independent EPCRs, one for each thread.

2.7.4 Branch Unit Control and Status (BUCSR) register

BUCSR, shown in Figure 2-2, is an e6500-specific register used for general control and status of the 
branch prediction mechanisms, which include the branch target buffer (BTB), the segment target index 
cache (STIC), and the segment target address cache (STAC). Writing to BUCSR requires synchronization, 
as described in Section 3.3.3, “Synchronization requirements.”

The e6500 core has two independent BUCSRs, one for each thread. 

NOTE
EREF allows implementations to choose whether BUCSR is shared among 
threads or private to each thread. Software should take this into account 
when devising strategies for updating BUCSR.

SPR 1013 Hypervisor

32 38 39 40 41 42 53 54 55 62 63

R
— STAC_EN — LS_EN BBFI — BPEN

W

Reset All zeros

Figure 2-2. Branch Unit Control and Status (BUCSR) register
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This table describes the BUCSR fields.
 

2.7.5 Hardware Implementation-Dependent 0 (HID0) register

This section describes HID0, shown in Figure 2-3, as it is implemented on the e6500 core. 

HID0 is used for configuration and control and is shared by both threads. Writing to HID0 requires 
synchronization, as described in Section 3.3.3, “Synchronization requirements.”

This table describes the HID0 fields.

Table 2-7. BUCSR field descriptions

Bits Name Description

32–38 — Reserved

39 STAC_EN Segment Target Address Cache Enable. When enabled, the segment target address cache predicts the 
upper 32 bits of branches (that is, a segment is an aligned 4-GB section of effective address space). If 
disabled, prediction does not occur and branches that occur outside the current 4-GB effective address 
segment incur a performance penalty. Note that both the STAC and STIC are enabled and disabled by this 
bit. This bit has no effect if BPEN is not 1.
0 Segment target address cache is disabled.
1 Segment target address cache is enabled.

40 — Reserved

41 LS_EN Link Stack Enable. When enabled, the link stack is used to predict function call and return branch target 
addresses. If disabled, prediction does not occur and function call and return branches are predicted by the 
BTB. This bit has no effect if BPEN is not 1.
0 Function call and return branch prediction using the link stack is disabled.
1 Function call and return branch prediction using the link stack is enabled.

42–53 — Reserved

54 BBFI Branch Buffer Flash Invalidate. Setting BBFI flash clears the valid bit of all entries in the branch prediction 
mechanisms; clearing occurs independently from the value of the enable bit (BPEN). BBFI is cleared by 
hardware and always reads as 0.

55–62 — Reserved

63 BPEN Branch Prediction Enable
0 Branch prediction is disabled.
1 Branch prediction is enabled (enables BTB to predict branches).

SPR 1008  Hypervisor

32 33 34 58 59 60 62 63

R
EMCP EN_L2MMU _MHD — CIGLSO — NOPTI

W

Reset All zeros

Figure 2-3. Hardware Implementation-Dependent 0 (HID0) register
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2.7.6 Core Device Control and Status (CDCSR0) register

CDCSR0, shown in Figure 2-4, is implemented as described in EREF and is shared by both threads. The 
e6500 core is aware of the following device programming models:

• Floating-point device—the device is aware, present and ready.

• AltiVec device—the device is aware and present. The device can be transitioned from the following 
states: Ready or Standby. For more information, see Section 8.6, “AltiVec power down and power 
up.”

For the e6500 core, writes to CDCSR0 device fields other than the AltiVec device are ignored. 

Table 2-8. HID0 field descriptions

Bits Name Description

32 EMCP Enable Machine Check Signal. Used to mask out further machine check exceptions caused by 
asserting the internal machine check signal from the integrated device. 
0 Machine check signalling is disabled.
1 Machine check signalling is enabled. If HID0[EMCP] = 1, asserting the machine check signal 

from the integrated device causes MCSR[MCP] to be set to 1. If MSR[ME] = 1 or MSR[GS] = 1, 
a machine check exception and subsequent interrupt occurs.

33 EN_L2MMU_MHD Enable L2MMU Multiple-Hit Detection. An L2MMU multiple hit occurs when more than one entry 
in the L2 MMU or the LRAT matches a given translation. This most likely occurs when software 
mistakenly loads the TLB with more than one entry that matches the same translation, but can also 
occur if a soft error occurs in a TLB entry.
0 Machine check signalling is disabled. 
1 A multiple L2 MMU or LRAT hit writes 1 to MCSR[L2MMU_MHIT]. If MSR[ME] = 1 or 

MSR[GS] = 1, a machine check exception and subsequent interrupt occurs.

34–58 — Reserved

59 CIGLSO Cache-Inhibited Guarded Load/Store Ordering
0 Loads and stores to storage that are marked as cache inhibited and guarded have no ordering 

implied except what is defined in the rest of the architecture.
1 Loads and stores to storage that are marked as cache inhibited and guarded are ordered.

60–62 — Reserved

63 NOPTI No-Op the Data and Instruction Cache Touch Instructions. Note that “cache and lock set” and 
“cache and lock clear” instructions are not affected by the setting of this bit.
0 dcbt, dcbtst, and icbt are enabled, and operate as defined by the architecture and the rest of 

this document. 
1 dcbt, dcbtep, dcbtst, dcbtstep, and icbt are treated as no-ops.
When touch instructions are treated as no-ops because HID0[NOPTI] is set, they do not cause 
DAC debug events. That is, if a DAC comparison would have caused a debug event, the debug 
event is also no-oped and does not occur.

Note that data stream touch and data stream stop (dss*/dst*) instructions are always no-oped.

 SPR 696 Hypervisor

32 39 40 47 48 55 56 63

R
Floating Point Device AltiVec Device — SPE Device

W

Reset 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2-4. Core Device Control and Status 0 (CDCSR0) register
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2.7.7 Power Management Control 0 (PWRMGTCR0) register

PWRMGTCR0, shown in Figure 2-5, is shared by both threads and provides fields for software control of 
specific power management features associated with core power management states. The fields in 
PWRMGTCR0 associated with AltiVec core device power management (AV_IDLE_PD_EN, 
AV_IDLE_CNT_P) and the fields associated with the PW20 core activity state control 
(PW20_INV_ICACHE, PW20_WAIT, PW20_ENT_P) are implemented as described in EREF. 

The fields associated with floating-point and SPE core device power management are not implemented.

2.7.8 Processor Version (PVR) register

The PVR, shown in Figure 2-6, is shared by both threads (processors), and is implemented as defined by 
the architecture. The read-only value identifies the version of the core and revision level of the processor, 
distinguishing between processors with different attributes that may affect software. 

This table describes the PVR fields.

SPR 1019 Hypervisor

32 40 41 42 47 48 49 50 55 56 63
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A
C

H
E

P
W
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_W

A
IT

PW20_ENT_P —

W

Reset All zeros

Figure 2-5. Power Management Control 0 (PWRMGTCR0) register

 SPR 287 Guest supervisor RO

32 47 48 63

R Version Revision

W

Reset 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 x x x x x x x x x x x x x x x x1

1 xxxx may represent different revisions or manufacturing information for the core. Normally software will use the upper 16 bits 
of PVR to identify the core.

Figure 2-6. Processor Version (PVR) register

Table 2-9. PVR field descriptions

Bits Name Description

32–47 Version A 16-bit number that identifies the version of the processor. Different version numbers indicate major 
differences between processors, such as which optional facilities and instructions are supported.

48–63 Revision A 16-bit number that distinguishes between implementations of the version. Different revision numbers 
indicate minor differences between processors having the same version number, such as clock rate and 
engineering change level. 
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2.7.9 System Version (SVR) register

SVR, shown in Figure 2-7, is shared by both threads and contains a read-only SoC-dependent value. For 
additional details, see the supporting documentation for the integrated device.

SVR is an alias to the Chip Identification (CIR) register.

2.7.10 Chip Identification (CIR) register

CIR, shown in Figure 2-8, is shared by both threads and contains a read-only SoC-dependent value. For 
additional details, see the supported documentation for the integrated device.

CIR is an alias to SVR.

2.7.11 Shifted CCSRBAR (SCCSRBAR) register

SCCSRBAR, shown in Figure 2-9, is shared by both threads and contains a read-only SoC-dependent 
value that represents the CCSRBAR value currently in use by the SoC.

The e6500 core implements SCCSRBAR as defined in EREF. 

This SPR register, when concatenated with 24 bits of 0, represents the value of the CCSRBAR SoC 
register. 

For a description of how SCCSRBAR is interpetted, see the supporting documentation for the integrated 
device. 

 SPR 1023 Guest supervisor read only

32 63

R System version

W

Reset SoC-dependent value 

Figure 2-7. System Version (SVR) register

 SPR 283 Guest supervisor read only

32 63

R System version

W

Reset SoC-dependent value 

Figure 2-8. Chip Identification Register (CIR)

 SPR 1022 Hypervisor RO

32 47 48 63

R — CCSRBAR upper 16 of 40 bits

W

Reset SoC-dependent value 

Figure 2-9. Shifted CCSRBAR (SCCSRBAR) register
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2.8 Timer registers
The time base (TB), decrementer (DEC), fixed-interval timer (FIT), and watchdog timer provide timing 
functions for the system. The e6500 core provides the ability to select any of the TB bits to trigger 
watchdog and fixed-interval timer events, as shown in Figure 2-10.

The e6500 core has two independent sets of decrementer, fixed-interval timer, and watchdog timer, one set 
for each thread. However, the time base itself is shared by both threads.

Figure 2-10. Relationship of timer facilities to the time base

Note the following characteristics of the e6500 time base implementation:

• The e6500 time base is clocked only by the SoC (TBCLK).

• The only enable/disable control over the time base is the TBEN core signal and when the time base 
is frozen due to a debug event (see Section 2.14.4, “Debug Control 0 (DBCR0) register”). The time 
base is controlled by the SoC through a memory-mapped register, allowing control of stopping and 
starting the time base on any core. See the reference manual for the integrated device, for additional 
details.

• The mftb instruction works as it did in the original PowerPC architecture.

The e6500 registers involved in timing are described as follows:

• The TB is a long-period counter shared by both threads, driven at an implementation-dependent 
frequency.

• A private DEC for each thread provides a way to signal an exception after a specified period of time 
base tics.

• Software can select from one of 64 TB bits to signal a fixed-interval interrupt whenever the bit 
transitions from 0 to 1. It is typically used to trigger periodic system maintenance functions. 

• A private watchdog timer per thread and a selected TB bit provide a way to signal a critical 
exception when the selected bit transitions from 0 to 1. It is typically used for system error recovery. 
If software does not respond in time to the initial interrupt by clearing the associated status bits in 

Timer clock

Time base (incrementer)

Decrementer event = 0/1 detect
63

DECAR
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Auto-reload
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Watchdog timer events based on one of the TB bits 
selected by concatenating TCR[WPEXT] with TCR[WP] 
(WPEXT || WP).

Fixed-interval timer events based on one of the TB bits 
selected by concatenating TCR[FPEXT] with TCR[FP] 
(FPEXT || FP).
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(Time base clock)
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the TSR before the next expiration of the watchdog timer interval, a watchdog timer-generated 
processor reset may result, if so enabled. 

All timer facilities must be initialized during start-up.

2.8.1 Timer Control (TCR) register

The e6500 core implements TCR as defined in EREF. The implementation of the integrated device 
determines the behavior of TCR[WRC]. For additional details, see the register summary chapter in the core 
section of the integrated device’s reference manual. 

The e6500 has two independent TCRs, one for each thread. 

2.8.2 Timer Status (TSR) register

The e6500 core implements the TSR as defined in EREF. This 32-bit register contains the status of timer 
events and the most recent watchdog timer-initiated processor reset. All TSR bits function as 
write-1-to-clear.

The e6500 has two independent TSRs, one for each thread. 

2.8.2.1 Watchdog Timer Reset Status (WRS) field

On the e6500 core, TSR[WRS] is nonwriteable (nonclearable) by software. As a write-1-to-clear register, 
TSR can be changed only by software by writing a mask of 1 bits indicating which bit positions are to be 
cleared. When TSR is written by an mtspr instruction, WRS bits are not cleared, regardless of the mask 
bits supplied with GPR used for writing. Logically, the instruction mtspr TSR,rA becomes the following: 

mask = RA & 0xcfffffff; 

TSR = TSR & ~mask; 

This change prevents software from clearing a watchdog time-out that should result in the action defined 
in TCR[WRC] in which these bits are reflected into TSR[WRS] when the watchdog times out. Without 
this change, it is theoretically possible that these bits could be cleared prior to the SoC seeing the bits 
change, causing the watchdog action to fail. 

2.8.2.2 Watchdog Interrupt Status (WIS) and Enable Next Watchdog (ENW) 
fields

On the e6500 core, when the core is in debug halt mode, the watchdog timer continues to run. However, 
the watchdog interrupt and watchdog reset are blocked from occurring by holding the TSR[WIS] and 
TSR[ENW] bits in reset (TSR state 00) while the core is in debug halt mode. When the core exits debug 
halt mode (to continue software execution), those bits are no longer held in reset, allowing subsequent 
time-outs to transition the state machine as normal.

2.8.3 Time base registers (TBU and TBL)

The e6500 core implements the time base registers as defined in EREF. The time base (TB) is a 64-bit 
register, but the architecture provides SPRs to access the upper 32 bits and lower 32-bits. Reading the lower 
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32 bits of the time base (TBL, SPR 268) places the entire 64 bits of the time base into the destination GPR. 
Reading the upper 32 bits of the time base (TBU, SPR 269) places the upper 32 bits of the time base into 
the lower 32 bits of the destination GPR, setting the upper 32 bits of the destination GPR to 0. Writing the 
time base is done only through writing the upper 32 bits (SPR 285) and lower 32 bits (SPR 284) using two 
separate mtspr instructions. The time base register provides timing functions for the system. 

The time base register is a volatile resource and must be initialized during start-up. The time base will 
continue incrementing, if enabled, when the processor is in any core activity state during power 
management. The time base does not increment when clocks are stopped in the cluster.

The e6500 has one set of time base registers shared among both threads. 

2.8.4 Decrementer (DEC) register

The e6500 core implements DEC per thread as defined in EREF. DEC is a 32-bit decrementing counter 
that decrements at the same rate that the time base increments. It provides a way to signal a decrementer 
interrupt after a specified number of time base tics have occurred. It can be configured to signal an interrupt 
when DEC decrements from 1 to 0. TCR can configure DEC to perform the following actions when it 
decrements from 1 to 0:

• Stop decrementing

• Auto-reload from DECAR (see Section 2.8.5, “Decrementer Auto-Reload (DECAR) register.”)

• Signal a decrementer exception and take an asynchronous interrupt when External Interrupts are 
enabled or when the processor is in guest state (MSR[GS]=1).

DEC is typically used as a general-purpose software timer. Note that writing DEC with zeros by using an 
mtspr DEC,rA does not automatically generate a decrementer exception.

The e6500 core has two independent DECs, one for each thread. 

2.8.5 Decrementer Auto-Reload (DECAR) register

The e6500 core implements DECAR as defined in EREF. If the auto-reload function is enabled 
(TCR[ARE] = 1), the auto-reload value in DECAR is written to DEC when it decrements from 1 to 0.

The e6500 core has two independent DECARs, one for each thread. 

2.8.6 Alternate time base registers (ATBL and ATBU) 

The e6500 core implements the Alternate Time Base (ATB) counter register as defined in EREF. ATB is 
a 64-bit counter that increments at an implementation-dependent frequency. ATB is a 64-bit register, but 
the architecture provides SPRs to access the upper 32 bits and lower 32 bits. Reading the lower 32 bits of 
the Alternate Time Base Lower (ATBL) register places the entire 64 bits of the time base into the 
destination GPR. Reading the upper 32 bits of the Alternate Time Base Upper (ATBU) register places the 
upper 32 bits of the time base into the lower 32 bits of the destination GPR, writing 0 to the upper 32 bits 
of the destination GPR.
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On the e6500 core, the frequency of ATB increment equals the core frequency. ATB is read-only accessible 
in user and supervisor mode. When the core is in power management states PW20, PH20, or PH30, ATB 
does not increment. In PH30, the value of ATB will reset to 0 when the core is reset to exit PH30.

The e6500 core has one set of alternate time base counter registers shared among both threads. 

2.9 Interrupt registers
This section describes the following register bits and their fields:

2.9.1 Save/restore registers (xSRR0/xSRR1)

Each thread in the e6500 core implements the following sets of save/ restore registers, which support the 
different types of interrupts implemented on the e6500 core:

• Standard save/restore registers (SRR0 and SRR1)

• Critical save/restore registers (CSRR0 and CSRR1)

• Debug save/restore registers (DSRR0 and DSRR1)

• Machine-check save/restore registers (MCSRR0 and MCSRR1)

• Guest save/restore registers (GSRR0 and GSRR1). Note that when executing in guest state 
(MSR[GS] = 1), accesses to SRR0/SRR1 are mapped to GSRR0/GSRR1 when any mfspr or 
mtspr instruction is executed. See Section 2.2.2.1, “Register mapping in the guest–supervisor 
state.” 

These registers are implemented as defined by the architecture and described in EREF. 

On an interrupt, xSRR0 holds the address of the instruction where the interrupted process should resume, 
typically either the current or subsequent instruction. The instruction is interrupt-specific; however, for 
instruction-caused exceptions, it is typically the address of the instruction that causes the interrupt. When 
the appropriate Return from Interrupt instruction (rfi, rfci, rfdi, rfmci, or rfgi) executes, instruction 
execution continues at the address in xSRR0. 

On the e6500 core, xSRR0 registers are 64-bit registers.

The e6500 core has two independent sets of save/restore registers (xSRR0/xSRR1), one for each thread. 

When rfi is executed from the guest-supervisor state, the instruction is mapped to rfgi and uses GSRR0 
and GSRR1.

xSRR1 is provided to save the machine state when an interrupt is taken and to restore it when control is 
passed back, typically to the interrupted process. When an interrupt is taken, certain MSR settings specific 
to the interrupt are placed in xSRR1. When the appropriate Return from Interrupt instruction executes, 
xSRR1 contents are placed into MSR. xSRR1 bits that correspond to reserved MSR bits are also reserved.

Note that a pair of save/restore registers is affected only by the corresponding interrupt or an mtspr 
instruction that explicitly targets one of the registers. Reserved MSR bits may be altered by Return from 
Interrupt instructions if set in the xSRR1 register.

For specific information about how the save/restore registers are set, see the individual interrupt 
descriptions in Chapter 4, “Interrupts and Exceptions.”
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2.9.2 (Guest) Data Exception Address (DEAR/GDEAR) registers

Each thread of the e6500 core implements DEAR/GDEAR as defined in EREF. DEAR is loaded with the 
effective address (EA) of a data access (caused by a load, store, or cache management instruction) that 
results in an alignment, data TLB miss, or DSI exception. 

GDEAR is the same as the DEAR. When a DSI or a data TLB error interrupt is taken in the guest state, 
GDEAR is set to the EA of the data access causing the exception instead of to DEAR. 

GDEAR is supervisor privileged (MSR[PR] = 0) and is read/write. Accesses to DEAR in guest–supervisor 
state (MSR[GS,PR] = 10) are mapped to GDEAR for mtspr and mfspr instructions in the same manner 
as other guest registers. 

Note that even when DSI interrupts are directed to the guest state by means of EPCR[DSIGS], the DSI 
may be directed to the hypervisor if a virtualization fault is set on the TLB entry that caused the DSI. 
Therefore, DEAR should be set instead of GDEAR.

On the e6500 core, DEAR/GDEAR are 64-bit registers.

The e6500 core has two independent sets of DEAR/GDEARs, one for each thread. 

2.9.3 Logical Page Exception (LPER/LPERU) register

LPER, shown in Figure 2-11, gives information from the page table entry (PTE) that was used to translate 
a virtual address during a page table translation, which subsequently results in an LRAT error interrupt. 
The information in LPER is used by software to determine why the LRAT translation failed and to 
determine how page table management (or LRAT replacement) should proceed.

LPER is a 64-bit, hypervisor-privileged register. LPERU is an alias for the upper 32 bits of LPER.

The e6500 core only implements the low-order 28 bits of the architected 40-bit ALPN field.

The e6500 core has two independent LPERs/LPERUs, one for each thread. 

This table describes the LPER fields.
 

SPR 56 (LPER); 57 (LPERU) Hypervisor

0 23 24 51 52 56 57 59 60 63

— ALPN WIMGE — LPS
W

Reset All zeros

Figure 2-11. Logical Page Exception (LPER) register

Table 2-10. LPER Field Descriptions

Bits Name Description

0–23 — Reserved

24–51 ALPN Abbreviated Logical Page Number. The abbreviated real page number field from the PTE (PTE[ARPN]) that 
caused the LRAT error interrupt.
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2.9.4 (Guest) Interrupt Vector Prefix (IVPR/GIVPR) registers

The e6500 core implements IVPR and guest IVPR (GIVPR) as defined in EREF. These registers are used 
with Interrupt Vector Offset (IVORs/GIVORs) registers, respectively, to determine the vector address. 
(G)IVPR[0:47] provides the high-order 48 bits of the address of the exception processing routines. The 
16-bit vector offsets (IVORs) are concatenated to the right of IVPR/GIVPR to form the address of the 
exception processing routine. 

When an interrupt is directed to the hypervisor state, IVPR and IVORn are used to form the address of the 
exception processing routine. When an interrupt is directed to the guest–supervisor state, GIVPR and 
GIVORn are used to form the address of the exception processing routine.

IVPR and GIVPR are 64 bit registers on the e6500 core.

The e6500 core has two independent GIVPRs, one for each thread. The IVPR is shared by both threads. 

2.9.5 (Guest) Interrupt Vector Offset (IVORs/GIVORs) registers

The e6500 core implements the IVORs and guest IVORs (GIVORs) as defined in EREF. IVORs/GIVORs 
use only (G)IVORn[48–59], as shown in Figure 2-12, to hold the quad-word index from the base address 
provided by the IVPR for each interrupt type. 

The e6500 core has two independent sets of GIVORs, one for each thread. The IVORs are shared by both 
threads. 

This table lists the (G)IVORs implemented on the e6500 core. 

52–56 WIMGE WIMGE bits. The WIMGE field from the PTE (PTE[WIMGE]) that caused the LRAT error interrupt.

57–59 — Reserved

60–63 LPS Logical Page Size. The logical page size from the PTE (PTE[PS]) that caused the LRAT error interrupt. To 
convert LPS to a full page size, 0b0 is prepended to LPS to form the page size. 

SPR (See Table 2-11.) Hypervisor

32 47 48 59 60 63

R
— Interrupt vector offset —

W

Reset All zeros

Figure 2-12. (Guest) Interrupt Vector Offset (IVORs/GIVORs) registers

Table 2-11. IVOR assignments

IVOR Number Interrupt Type

IVOR0 Critical input

IVOR1 Machine check

Table 2-10. LPER Field Descriptions (continued)

Bits Name Description
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2.9.6 (Guest) External Proxy (EPR/GEPR) registers

EPR and GEPR are implemented as defined in EREF. These registers are used to convey the 
peripheral-specific interrupt vector associated with the external input interrupt triggered by the 

IVOR2 Data storage

IVOR3 Instruction storage

IVOR4 External input

IVOR5 Alignment

IVOR6 Program

IVOR7 Floating-point unavailable

IVOR8 System call

IVOR9 APU unavailable

IVOR10 Decrementer

IVOR11 Fixed-interval timer interrupt

IVOR12 Watchdog timer interrupt

IVOR13 Data TLB error

IVOR14 Instruction TLB error

IVOR15 Debug

IVOR32 AltiVec unavailable

IVOR33 AltiVec assist

IVOR35 Performance monitor

IVOR36 Processor doorbell interrupt

IVOR37 Processor doorbell critical interrupt

IVOR38 Guest processor doorbell 

IVOR39 Guest processor doorbell critical and machine check 

IVOR40 Hypervisor system call 

IVOR41 Hypervisor privilege 

IVOR42 LRAT error

Guest-Type IVORs

GIVOR2 Guest data storage interrupt

GIVOR3 Guest instruction storage interrupt

GIVOR4 Guest external input

GIVOR8 Guest system call

GIVOR13 Guest data TLB error

GIVOR14 Guest instruction TLB error

GIVOR35 Guest performance monitor

Table 2-11. IVOR assignments (continued)

IVOR Number Interrupt Type
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programmable interrupt controller (PIC) in the integrated device. The external proxy facility is described 
in Section 4.9.6.1, “External proxy.”

When executing in the guest-supervisor state, any read accesses to the EPR are mapped to GEPR upon 
executing mfspr. See Section 2.2.2.1, “Register mapping in the guest–supervisor state,” for more details.

EPR is not writable; however, GEPR is writable. 

The e6500 core has two independent sets of EPR/GEPRs, one for each thread.

2.9.7 (Guest) Exception Syndrome (ESR/GESR) registers

ESR and GESR are implemented as defined by the architecture and described in EREF, with the following 
exception:

• The e6500 core does not implement AP, PUO, VLEMI, MIF, TLBI, or XTE.

Figure 2-13 shows ESR and GESR as they are implemented on the e6500 core. GESR is used to post 
exception syndrome status when an interrupt is taken that is directed to the guest state. ESR is used to post 
exception syndrome status when an interrupt is taken that is directed to the hypervisor state. GESR fields 
are identical to those in ESR.

When executing in the guest-supervisor state, any accesses to ESR are mapped to GESR upon executing 
mtspr or mfspr. See Section 2.2.2.1, “Register mapping in the guest–supervisor state,” for more details.

ESR and GESR provide a way to differentiate among exceptions that can generate an interrupt type. When 
an interrupt is generated, bits corresponding to the specific exception that generated the interrupt are set 
and all other ESR/GESR bits are cleared. Other interrupt types do not affect ESR/GESR contents. The 
(G)ESR does not need to be cleared by software. Table 2-12 shows ESR/GESR bit definitions. For 
machine-check exceptions, the e6500 core uses MCSR, described in Section 2.9.10, “Machine Check 
Syndrome (MCSR) register.” 

The e6500 core has two independent sets of ESR/GESRs, one for each thread.

SPR 62 (ESR); 383 (GESR)  Guest supervisor

32 35 36 37 38 39 40 41 42 43 44 45 46 47 48 52 53 54 55 56 57 58 63

R
— P

IL

P
P

R

P
T

R

F
P

S
T —

D
LK IL
K — B
O — —

D
AT

A

— P
T

S
P

V

E
P

ID —
W

Reset All zeros

Figure 2-13. (Guest) Exception Syndrome (ESR/GESR) registers
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This table describes ESR/GESR fields and associated interrupts. 

NOTE
ESR/GESR information is incomplete, so system software may need to 
identify the type of instruction that causes an interrupt, examine the TLB 
entry, and examine ESR/GESR to identify the exception or exceptions fully. 
For example, a data storage interrupt may be caused both by a protection 
violation exception and by a byte-ordering exception. System software 
would have to look beyond (G)ESR[BO], such as the state of MSR[PR] in 
SRR1/ GSRR1 and the TLB entry page protection bits, to determine 
whether a protection violation also occurred.

Table 2-12. ESR/GESR field descriptions

Bits Name Syndrome Interrupt Types

32–35 — Reserved —

36 PIL Illegal instruction exception Program

37 PPR Privileged instruction exception Program

38 PTR Trap exception Program

39 FP  Floating-point operations Alignment, data 
storage, data TLB, 
program

40 ST Store operation Alignment, DSI, 
DTLB error

41 — Reserved —

42 DLK Data cache locking (DLK0). Set when a DSI occurs because dcbtls, dcbtstls, or dcblc is 
executed in user mode while MSR[UCLE] = 0. 

DSI

43 ILK Instruction cache locking (DLK1). Set when a DSI occurs because icbtls or icblc is 
executed in user mode while MSR[UCLE] = 0.

DSI

44 — Not supported on the e6500 core. Defined by the architecture as auxiliary processor 
operation (AP). 

—

45 — Not supported on the e6500 core. Unimplemented operation exception. On the e6500 
core, unimplemented instructions are handled as illegal instructions. 

Program

46 BO Byte-ordering exception DSI, ISI

47 — Not supported on the e6500 core. Imprecise exception. On the e6500 core, imprecise 
exceptions are never reported, even when a delayed floating-point-enabled exception 
occurs. 

Program

48–52 — Reserved —

53 DATA Data access. Indicates on an LRAT error exception from a page table translation that the 
access was a data access and not an instruction fetch.

LRAT error

54 — Reserved —

55 PT Page table translation. Indicates that the exception occurred during a page table 
translation and no TLB entry was created from the page table translation.

Data storage, 
Instruction storage, 
LRAT error
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2.9.8 (Guest) Processor ID (PIR/GPIR) registers

The e6500 core implements PIR/GPIR as defined in EREF. The processor sets the initial value of PIR at 
reset driven from signal pins from the SoC, after which it is writable by hypervisor software. The initial 
value of the PIR is a processor-unique value within the coherence domain and is described in EREF. The 
initial value of GPIR at reset is 0. Hypervisor software is expected to initialize GPIR to a reasonable value 
when a partition is initialized.

When executing in the guest-supervisor state, any mfspr accesses to the PIR are mapped to GPIR. mtspr 
accesses are not mapped, and guest supervisor attempts to change PIR or GPIR cause an embedded 
hypervisor privilege interrupt. See Section 2.2.2.1, “Register mapping in the guest–supervisor state,” for 
more details.

The e6500 has two independent sets of PIR/GPIRs, one for each thread.

2.9.9 Machine-check address registers (MCAR/MCARU/MCARUA)

When a thread takes a machine-check interrupt, MCAR may indicate the address of the data associated 
with the machine check exception. MCAR is a 64-bit address and may contain a logical address, real 
(physical) address, or an effective address. MCARUA and MCARU are 32-bit aliases to the upper 32 bits 
of MCAR. 32-bit software should use MCARUA to address the upper 32 bits. MCARU is provided for 
compatibility with older processors. Not all machine check (or error report) interrupts that occur have 
addresses associated with them. Errors that cause MCAR contents to be updated are 
implementation-dependent.

MCAR is implemented as defined in the architecture, except as follows: 

• For a certain subset of asynchronous machine check exception causes, MCAR indicates the address 
of the data or instruction access associated with the machine check. 

• The MCSR[MAV] and MCSR[MEA] status bits indicate whether hardware has updated the 
MCAR and whether the MCAR contains an effective address or a real address. 

• MCAR is not modified if a machine check occurs and at the time of the interrupt, MCSR[MAV] is 
already set.

The e6500 core has two independent sets of MCAR/MCARU/MCARUAs, one for each thread.

56 SPV AltiVec Instruction. Indicates that the exception was caused by an AltiVec instruction. Data storage, Data 
TLB, AltiVec 
unavailable, 
AltiVec assist

57 EPID External PID instructions. Indicates whether translation was performed using context from 
EPLC or EPSC. Set when a DSI, DTLB, or Alignment error occurs during execution of an 
external PID instruction. 

Data storage,
Data TLB, or 
Alignment error

58–63 — Reserved —

Table 2-12. ESR/GESR field descriptions (continued)

Bits Name Syndrome Interrupt Types
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This table shows the MCAR address and MCSR[MAV,MEA] at error time.

2.9.10 Machine Check Syndrome (MCSR) register

In addition to the MCSR fields defined in EREF, the e6500 core implements a number of other 
implementation-specific fields, as shown in Table 2-14. When a thread in the core takes a machine-check 
interrupt, it updates its MCSR to differentiate between machine check conditions. MCSR indicates the 
type of error detected. Software can use this information to determine whether the error is recoverable and 
what steps may be necessary to correct the error. 

The e6500 has two independent MCSRs, one for each thread.

MCSR is shown in the following figure.

This table describes the MCSR fields.

Table 2-13. MCAR address and MCSR[MAV,MEA] at error time

MCSR[MAV] State
MCSR[MEA]:

Next State 
MCAR/MCARU Comment

Current Next

1 x x Unaltered MCAR is unmodified if currently valid (hold value if already valid).

0 1 0 MCAR[24–63] Updated with a logical (in the case of a LRAT multi-way hit) or real 
(physical) address.

0 1 1 MCAR[0–63] Updated with the EA associated with the error. If the detected error is a 
multi-way hit in the L2MMU (MCSR[L2MMU_MHIT]), the lower 12 bits of 
the EA are cleared, providing an EPN for the translation.

SPR 572 Hypervisor, Write 1 to Clear

 32 33 34 35 36 37

R MCP ICPERR DCPERR TLBPERR L2MMU_MHIT
—

W w1c w1c w1c w1c w1c

Reset All zeros

 40 42 43 44 45 46 47

R
—

NMI MAV MEA
—

IF

W w1c w1c w1c w1c

Reset All zeros

48 49 50 51 55

R LD ST LDG
—

W w1c w1c w1c

Reset All zeros

56 59 60 61 63

R
—

LRAT_MHIT
—

W w1c

Reset All zeros

Figure 2-14. Machine Check Syndrome (MCSR) register
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Table 2-14. MCSR field descriptions

Bit Name Description
Exception

Type1
Additional Gating

Condition2

32 MCP Machine check input signal asserted. Set immediately on 
recognition of assertion of the MCP input. This input comes 
from the SoC and is a level-sensitive signal. This usually 
occurs as the result of an error detected by the SoC. 

Async HID0[EMCP]

33 ICPERR Instruction cache tag or data array parity error Async L1CSR1[ICECE] and
L1CSR1[ICE]

34 DCPERR Data cache data or tag parity error due to a load Async L1CSR0[CECE] and 
L1CSR0[DCE]

35 TLBPERR TLB0 array parity error Async —

36 L2MMU_MHIT L2 MMU simultaneous hit.
Multi-way hits in the LRAT are also reported using this bit.

Async HID0[EN_L2MMU_MHD]

37–42 — Reserved — —

43 NMI Nonmaskable interrupt NMI None

44 MAV MCAR address valid. The address contained in the MCAR is 
updated by the processor and corresponds to the first 
detected error condition that contains an associated address. 
Subsequent machine check errors that have associated 
addresses are not placed in MCAR unless MAV is 0 at the time 
the error is logged.
0 The address contained in MCAR is not valid.
1 The address contained in MCAR is valid.
Note: Software should first read MCAR before clearing MAV. 

MAV should be cleared before writing 1 to MSR[ME].

Status —

45 MEA MCAR effective address. Meaningful only if MAV=1. 
0 The MCAR contains a logical or physical (real) address.
1 The MCAR contains an EA. 

Status —

46 — Reserved — —

47 IF Instruction fetch error report. An error occurred during the 
attempt to fetch the instruction corresponding to the address 
in MCSRR0 or during an attempted fetch of a younger 
instruction than that pointed by MCSRR0.

Error 
report

None

48 LD Load instruction error report. An error occurred during the 
attempt to execute the load instruction at the address 
contained in MCSRR0.

Error 
report

None

49 ST Store instruction error report. An error occurred during an 
attempt to translate the address of the store type instruction 
(or instruction that is processed by the store queue) located at 
the address in MCSRR0.

Error 
report

None

50 LDG Guarded load instruction error report. Set along with LD if the 
load encountering the error was a guarded load (WIMGE = 
xxx1x) and that guarded load did not encounter one of the 
data cache errors. Set only if the error encountered by the load 
was an L2 or CoreNet error.

Error 
report

None
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The settings of MCSR[LD] and MCSR[ST] that identify the type of instruction are implementation 
dependent. For the e6500 core, LD is set by instructions that load data into a register and complete when 
the load data is committed to the architected register. ST is set by instructions that perform store operations 
and instructions that are processed through the store queue in the LSU. The treatment of an instruction as 
a load or store for the purposes of permission checking and debug events may differ depending on whether 
LD or ST is set for an error report.

The following instructions set MCSR[LD] if an error report occurs:

dcbt, dcbtst, icbt, lbz, lbzu, lbzx, lbzux, ld, ldarx, ldbrx, lddx, ldepx, ldu, ldux, ldx, lha, lhau, 
lhax, lhaux, lhz, lhzu, lhzx, lhzux, lhbrx, lmw, lwa, lwarx, lwaux, lwax, lwz, lwzu, lwzx, lwzux, 
lwbrx, lbepx, lhepx, lwepx, dcbtep, dcbtstep, lbdx, lhdx, lwdx, lfddx, lfd, lfdu, lfdux, lfdx, 
lfdepx, lfs, lfsu, lfsux, lfsx, lvebx, lvehx, lvepx, lvepxl, lvewx, lvexbx, lvexhx, lvexwx, lvtlx, 
lvtlxl, lvtrx, lvtrxl, lvswx, lvswxl, lvx, lvxl

The following instructions set MCSR[ST] if an error report occurs:

dcba, dcbal, dcbf, dcbi, dcblc, dcbst, dcbtls, dcbtstls, dcbz, dcbzl, dsn, icbi, icblc, icbtls, stb, 
stbu, stbx, stbux, std, stdbrx, stdcx., stddx, stdepx, stdu, stdux, stdx, sth, sthu, sthx, sthux, 
sthbrx, stmw, stw, stwu, stwx, stwux, stwbrx, stwcx., stbepx, sthepx, stwepx, dcbfep, dcbstep, 
icbiep, dcbzep, dcbzlep, stbdx, sthdx, stwdx, stfddx, stfd, stfdu, stfdux, stfdx, stfdepx, stfiwx, 
stfs, stfsu, stfsux, stfs, stvebx, stvehx, stvepx, stvepxl, stvewx, stvexbx, stvexhx, stvexwx, 
stvflx, stvflxl, stvfrx, stvfrxl, stvswx, stswxl, stvx, stvxl

51–59 — Reserved — —

60 LRAT_MHIT LRAT translation during a tlbwe instruction hit in more than 
one entry

Async HID0[EN_L2MMU_MHD]

61–63 — Reserved — —

1 “Exception Type” indicates which of the following exception types causes the update of a given MCSR bit:

— Error report—indicates that this bit is set only for error report exceptions that cause machine check interrupts. These bits are 
only updated when the machine check interrupt is taken. Error report exceptions are not gated by MSR[ME]. These are 
synchronous exceptions.

— NMI—indicates that this bit is only set for the nonmaskable interrupt type exceptions which cause machine check interrupts. 
This bit is only updated when the machine check interrupt is taken. NMI exceptions are not gated by MSR[ME]. This is an 
asynchronous exception.

— Async—indicates that this bit is set for an asynchronous machine check exception. These bits are set immediately upon 
detection of the error in the MCSR. Once bit is set in the MCSR, a machine check interrupt occurs if MSR[ME]=1. If 
MSR[ME]=0, the MCSR bits remain set unless cleared by software, and a machine check occurs when MSR[ME] is set.

— Status—indicates that this bit provides additional status about the logging of an asynchronous machine check exception.
2 “Additional Gating Condition” indicates any other state that, if not enabled, inhibits the recognition of this particular error 

condition.

Table 2-14. MCSR field descriptions (continued)

Bit Name Description
Exception

Type1
Additional Gating

Condition2
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2.10 Software-use SPRs (SPRGs, GSPRGs, and USPRG0)
The e6500 core implements the software-use SPRs (SPRG0–SPRG7, SPRG8, SPRG9, 
GSPRG0-GSPRG3, USPRG0) as defined in EREF. 

The e6500 core has two independent sets of software-use SPRs, one for each thread.

Their functionality is defined by the user and they are accessed as shown in the following table. 

Operating system software should always use SPRG0, SPRG1, SPRG2, SPRG3 when accessing GSPRG0, 
GSPRG1, GSPRG2, and GSPRG3 because, in the guest–supervisor state, these accesses are mapped to 
their equivalent guest registers. This allows the programming model for the operating system software to 
be the same regardless of whether the operating system is operating in guest state under a hypervisor or is 
executing directly on the bare metal.

Table 2-15. SPRGs, GSPRGs, and USPRG0

Abbreviation Name SPR Number Access

GSPRG0 Guest SPR General 0 368 Guest supervisor

GSPRG1 Guest SPR General 1 369 Guest supervisor

GSPRG2 Guest SPR General 2 370 Guest supervisor

GSPRG3 Guest SPR General 3 371 Guest supervisor

SPRG0 SPR General 0 272 Guest supervisor1

1 When these registers are accessed in the guest-supervisor state, the accesses are mapped to their analogous guest SPRs 
(for example, SPRG0 is mapped to GSPRG0). See Section 2.2.2.1, “Register mapping in the guest–supervisor state.”

SPRG1 SPR General 1 273 Guest supervisor

SPRG2 SPR General 2 274 Guest supervisor

SPRG3 SPR General 3 259 User RO1

SPRG3 SPR General 3 275 Guest supervisor

SPRG4 SPR General 4 260 User RO

SPRG4 SPR General 4 276 Guest supervisor

SPRG5 SPR General 5 261 User RO

SPRG5 SPR General 5 277 Guest supervisor

SPRG6 SPR General 6 262 User RO

SPRG6 SPR General 6 278 Guest supervisor

SPRG7 SPR General 7 263 User RO

SPRG7 SPR General 7 279 Guest supervisor

SPRG8 SPR General 8 604 Hypervisor

SPRG9 SPR General 9 605 Guest supervisor

USPRG0
(VRSAVE)

User SPR General 02

2 USPRG0 is a separate physical register from SPRG0.

256 User
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SPRGs and GSPRGs are 32 bits for 32-bit implementations and 64 bits for 64-bit implementations. For 
the e6500 core, these registers are 64 bits. USPRG0 (VRSAVE) is a 32-bit register regardless of whether 
the processor is a 32-bit or 64-bit implementation.

2.11 L1 cache registers
The L1 cache registers provide control, configuration, and status information for the L1 cache 
implementation. These registers are shared by the e6500 core threads.

2.11.1 L1 Cache Control and Status 0 (L1CSR0) register

L1CSR0 is used for general control and status of the L1 data cache. The e6500 core implements L1CSR0 
fields as defined in EREF, except for the following:

• Cache way partitioning bits—L1CSR0[32–42]

• Data cache lock overflow allocate (CLOA) bit—L1CSR0[56]

• Cache snoop lock clear (CSLC) bit—L1CSR0[52]. Cache locking is persistent.

• Cache unable to lock (CUL) bit—L1CSR0[53]. Cache lock status can be queried with the dcblq. 
instruction.

• Cache operation aborted (CABT) bit—L1CSR0[61]. Cache operations are never aborted on e6500.

For L1CSR0[CEA], the e6500 core only supports the value 0b00 and always invalidates the entire contents 
(tags and data arrays) and generates a machine check or error report on the occurrence of a parity error 
when L1CSR0[CECE] = 1. Any other value written to this field is ignored.

The e6500 core only supports L1CSR0[CEDT] = 0b00 for parity detection on data arrays and tags and 
supports L1CSR0[CEIT] = 0b00 for setting the cache error injection type to inject single bit data error. 
Any other values written to CEDT and CEIT are ignored.

Note that on the e6500 core, when writing 1 to L1CSR0[CEI], it is required that L1CSR0[CECE] also be 
set with the same mtspr instruction. If L1CSR0[CECE] is not set, the processor will clear L1CSR0[CEI].

After the L1 data cache has been enabled, if L1CSR0[CE] = 0 (that is, the L1 data cache is disabled), any 
stashing to the L1 data cache must first be disabled by writing 0 to L1CSR2[DCSTASHID] and performing 
the appropriate synchronization.

Writing to L1CSR0 requires isolated shared synchronization, as described in Section 3.3.3, 
“Synchronization requirements.” 

2.11.2 L1 Cache Control and Status 1 (L1CSR1) register

L1CSR1 is used for general control and status of the L1 instruction cache. The e6500 core implements the 
L1CSR1 fields as they are defined in EREF, except for the following:

• Instruction cache lock overflow allocate (ICLOA) bit—L1CSR1[56]

• Instruction cache unable to lock (ICUL) bit—L1CSR1[53]. Cache lock status can be queried with 
the icblq. instruction.

• Instruction cache snoop lock clear bit, ICSLC, (L1CSR1[52]). Cache locking is persistent.
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• Cache operation aborted (ICABT) bit—L1CSR1[61]. Cache operations are never aborted on 
e6500.

For L1CSR1[ICEA], the e6500 core only supports the value 0b00 and always invalidates the entire 
contents (tags and data arrays) and generates a machine check or error report on the occurrence of a parity 
error when L1CSR1[ICECE] = 1. Any other value written to this field is ignored.

Only implementation-specific error detection type (ICEDT = 0b00), parity detection on data and tags, is 
supported for the e6500 core. Only single-bit error injection type (ICEIT = 0b00) is supported on the e6500 
core. Any other values written to ICEDT and ICEIT are ignored.

Note that on the e6500 core, when writing 1 to L1CSR1[ICEI], it is required that L1CSR0[ICECE] also 
be set with the same mtspr instruction. If L1CSR1[ICECE] is not set, the processor will clear 
L1CSR1[ICEI].

The e6500 core has one L1CSR1 shared by both threads.

Writing to L1CSR1 requires isolated shared synchronization, as described in Section 3.3.3, 
“Synchronization requirements.”

2.11.3 L1 Cache Control and Status 2 (L1CSR2) register

L1CSR2 provides additional control and status for the primary L1 data cache of the processor. The e6500 
core implements L1CSR2 as defined in EREF, with the following exceptions:

• Data cache write shadow, DCWS, (L1CSR2[33]) is not implemented. Writing to the L1 data cache 
is always written through to the shared backside L2 cache.

• Although the architecture defines DCSTASHID as L1CSR2[54–63], the e6500 core implements 
only 8 bits (L1CSR2[56–63]) and supports only stash ID values of 8 to 255. 

The e6500 has one L1CSR2 shared by both threads.

Writing to L1CSR2 requires synchronization, as described in Section 3.3.3, “Synchronization 
requirements.”

2.11.4 L1 Cache Configuration 0 (L1CFG0) register

L1CFG0, shown in the following figure, provides configuration information for the L1 data cache. 

EREF describes the L1GCFG0 fields as they are defined in the architecture. The following table describes 
how they are implemented on the e6500 core.

SPR 515 User RO

32 33 34 35 36 37 38 39 40 41 42 43 44 45 52 53 63

R CARCH CWPA CFAHA CFISWA
—

CBSIZE CREPL CLA CPA CNWAY CSIZE

W

Reset 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0

Figure 2-15. L1 Cache Configuration 0 (L1CFG0) register fields implemented on the e6500
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The e6500 core has one L1CFG0 shared by both threads.

2.11.5 L1 Cache Configuration 1 (L1CFG1) register

L1CFG1, shown in Figure 2-16, provides configuration information for the L1 instruction cache. 

This table describes the L1CFG1 fields.
 

Table 2-16. L1CFG0 field descriptions

Bits Name Description

32–33 CARCH Cache architecture. 0 indicates Harvard (split instruction and data).

34 CWPA Cache way partitioning available. 0 indicates unavailable.

35 CFAHA Cache flush all by hardware available. 0 indicates unavailable.

36 CFISWA Direct cache flush available. 0 indicates unavailable.

37–38 — Reserved

39–40 CBSIZE Cache block size. 1 indicates 64 bytes.

41–42 CREPL Cache replacement policy. 3 indicates FIFO policy.

43 CLA Cache locking available. 1 indicates available.

44 CPA Cache parity available. 1 indicates available.

45–52 CNWAY Cache number of ways. 7 indicates eight ways.

53–63 CSIZE Cache size. 32 indicates 32 KB.

SPR 516 User RO

32 35 36 37 38 39 40 41 42 43 44 45 52 53 63

R
—

ICFISWA
—

ICBSIZE ICREPL ICLA ICPA ICNWAY ICSIZE

W

Reset 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0

Figure 2-16. L1 Cache Configuration 1 (L1CFG1) register

Table 2-17. L1CFG1 field descriptions

Bits Name Description

32–35 — Reserved

36 ICFISWA Direct cache flush available. 0 indicates unavailable.

37–38 — Reserved

39–40 ICBSIZE Instruction cache block size. 1 indicates 64 bytes.

41–42 ICREPL Instruction cache replacement policy. 1 indicates pseudo-LRU policy.

43 ICLA Instruction cache locking available. 1 indicates available.

44 ICPA Instruction cache parity available. 1 indicates available.
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The e6500 core has one L1CFG1 shared by both threads.

2.12 L2 cache registers
L2 cache status, control, and error handling is accomplished through MMRs. Shared L2 configuration and 
control uses the same general formats as the integrated backside L2 cache provided in previous Freescale 
cores, although those controls were performed through SPRs.

2.12.1 L2 Configuration 0 (L2CFG0) register

L2CFG0 is provided for software to determine the organization and capabilities of the secondary cache. 
The e6500 core implements L2CFG0 as defined by the architecture and described in EREF.

L2CFG0, shown in Figure 2-17, provides configuration information for the L2 cache. 

This table provides the L2CFG0 field descriptions.

45–52 ICNWAY Instruction cache number of ways. 7 indicates eight ways.

53–63 ICSIZE Instruction cache size. 32 indicates 32 KB.

MMR block offset 0x008

32 33 34 35 36 37 38 40 41 42 43 44 45 49 50 63

R
—

L2CTEHA L2CDEHA L2CIDPA L2CBSIZE L2CREPL L2CLA
—

L2CNWAY L2CSIZE

W

Reset 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Figure 2-17. L2 Cache Configuration 0 (L2CFG0) register

Table 2-18. L2CFG0 field descriptions

Bits Name Description

32 — Reserved

33–34 L2CTEHA L2 cache tags error handling available. 0b10 indicates single-bit ECC correction, double-bit ECC 
detection is available. 

35–36 L2CDEHA L2 cache data error handling available. 0b10 indicates single-bit ECC correction, double-bit ECC 
detection is available.

37 L2CIDPA Cache instruction and data partitioning available. 0 indicates not available.

38–40 L2CBSIZE Cache line size. 1 indicates 64 bytes.

41–42 L2CREPL Cache default replacement policy. This is the default line replacement policy at power-on-reset. If an 
implementation allows software to change the replacement policy, it is not reflected here. 0 indicates 
streaming pseudo-LRU.

43 L2CLA Cache line locking available. 1 indicates available.

44 — Reserved

Table 2-17. L1CFG1 field descriptions (continued)

Bits Name Description
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2.12.2 L2 Cache Control and Status 0 (L2CSR0) register

L2CSR0, shown in Figure 2-18, provides general control and status for the L2 cache of the processor. The 
e6500 core implements L2CSR0 as defined by the architecture and described in EREF, with the following 
exceptions:

• It does not implement the following fields: L2WP, L2CM, L2IO, L2DO, L2FCID. Note that these 
fields are notated in parentheses in Table 2-19.

 

45–49 L2CNWAY Number of cache ways minus one. 15 indicates 16 ways.

50–63 L2CSIZE Cache size as a multiple of 64 KB. 32 indicates 2048 KB cache.

MMR block offset 0x000

32 33 34 35 37 38 41 42 43 44 46 47

R
L2E L2PE --- — L2FI —

W

Reset All zeros

48 49 50 51 52 53 54 55 56 57 58 59 63

R
— L2REP L2FL L2LFC — L2LOA — L2LO —

W

Reset All zeros

Figure 2-18. L2 Cache Control and Status 0 (L2CSR0) register

Table 2-18. L2CFG0 field descriptions (continued)

Bits Name Description
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This table describes the L2CSR0 fields. 

Table 2-19. L2CSR0 field descriptions

Bits Name Description

32 L2E L2 cache enable. Implemented as defined in EREF. The e6500 core requires software to continue to read 
this bit after setting it to ensure the desired value has been set before continuing.
Note: L2E should not be set when the L2 cache is disabled until after the L2 cache has been properly 

initialized by flash invalidating the cache and locks. This applies both to the first time the L2 cache is 
enabled as well as sequences that want to re-enable the cache after software has disabled it.

33 L2PE L2 cache parity/ECC error checking enable. Implemented as defined in EREF.
Note: L2PE should not bet set until after the L2 cache has been properly initialized out of reset by flash 

invalidation. Doing so can cause erroneous detection of errors because the state of the error 
detection bits are random out of reset. See Section 11.7, “L2 cache state,” for more details on L2 
cache initialization.

Note: When error injection is being performed, the value of L2PE and individual error disables are ignored 
and errors are always detected. Software should ensure that L2PE is set when performing error 
injection.

Note: The value of L2PE must not be changed while the L2 cache is enabled.

34 — Reserved

35–37 (L2WP) L2 instruction/data way partitioning. This field is not implemented in the e6500 core and always reads as 0.

38–39 (L2CM) L2 cache coherency mode. This field is not implemented in the e6500 core and always reads as 0.

40–41 — Reserved

42 L2FI L2 cache flash invalidate. Implemented as defined in EREF. Note that Lock bits are not cleared by a L2 
cache flash invalidate. Lock bits should be cleared by software at boot time to ensure that random states of 
the lock bits for each line do not limit allocation of those lines. See L2CSR0[L2LFC].
Note: Writing a 1 during any sequential operation causes undefined results. Writing a 0 during an 

invalidation operation is ignored.

Note: If L2FI and L2LFC are set with the same register write operation, then the flash invalidate and the 
lock flash clear functions are performed simultaneously.

43 (L2IO) L2 cache instruction only. This field is not implemented in the e6500 core and always reads as 0. Similar 
functionality can be accomplished using L2 cache partitioning, which is described in Section 2.12.4, “L2 
cache partitioning registers.”

44–46 — Reserved

47 (L2DO) L2 cache data only. This field is not implemented in the e6500 core and always reads as 0. Similar 
functionality can be accomplished using L2 cache partitioning, which is described in Section 2.12.4, “L2 
cache partitioning registers.”

48–49 — Reserved
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50-51 L2REP L2 line replacement algorithm.
00 Streaming Pseudo Least Recently Used (SPLRU) with Aging. With this algorithm, the pseudo LRU state 

for a given index is updated to mark a given way most recently used on each L2 cache hit. On L2 cache 
allocations, the pseudo LRU state is updated to an intermediate state between least recently used and 
most recently used on most L2 cache allocations and to the most recently used state on the remainder 
of L2 cache allocations. 

01 First-in-first-out (FIFO).
10 Streaming Pseudo Least Recently Used (SPLRU). With this algorithm, the pseudo LRU state for a given 

index is updated to mark a given way most recently used on each L2 cache hit. On L2 cache allocations, 
the pseudo LRU state is updated to an intermediate state between least recently used and most recently 
used on all L2 cache allocations. 

11 Pseudo Least Recently Used (PLRU). With this algorithm, the pseudo LRU state for a given index is 
updated to mark a given way most recently used on each L2 cache hit and all L2 cache allocations.

Locks for cache lines locked with cache locking instructions are never selected for line replacement unless 
they are explicitly unlocked, regardless of the replacement algorithm.

52 L2FL L2 cache flush. Implemented as defined in EREF. On the e6500 core, L2FL should not be set when the L2 
cache is not currently enabled (L2E should already be 1). If L2FL is set and the L2 cache is not enabled, 
the flush does not occur and the L2FL bit remains set.

Note: To flush the L2 cache and ensure that no valid entries exist after the flush, the following sequence 
should be used:
Clear all the bits of L2PAR0 - L2PAR3 to prevent further allocations.
Read L2PAR0 - L2PAR3 to ensure that the changes are in effect.
Write 1 to L2CSR0[L2FL].
Continue to read L2CSR0[L2FL] until it reads 0.

53 L2LFC L2 cache lock flash clear. On boot, the processor should set this bit to clear any lock state bits that may be 
randomly set out of reset, prior to enabling the L2 cache. 

54–55 (L2FCID) Not implemented on the e6500 core. L2LFC lock clearing always behaves as if L2FCID = 0b11 and all locks 
are cleared.

56 L2LOA L2 cache lock overflow allocate. Implemented as defined in EREF. Note that cache line locking in the e6500 
L2 is persistent.

57 — Reserved

58 L2LO L2 cache lock overflow. Implemented as defined in EREF.

59–63 — Reserved

Table 2-19. L2CSR0 field descriptions (continued)

Bits Name Description
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2.12.3 L2 Cache Control and Status 1 (L2CSR1) register

L2CSR1, shown in Figure 2-19, provides general control and status for the L2 cache of the processor. The 
e6500 core implements L2CSR1 as defined by the architecture and described in EREF, with the following 
exceptions:

• It implements only the 8 least significant bits of the L2STASHID (L2CSR1[L2STASHID]).

• It does not support stash ID values less than eight.

In addition, it implements the implementation-specific fields DYNAMICHARVARD, L2BHM, and 
L2STASHRSRV.

This table describes the L2CSR1 fields. 
 

MMR block offset: 0x004

32 33 34 35 36 37 47

R DYNAMIC
HARVARD

L2BHM — L2STASHRSRV —
W

Reset All zeros

 48 55 56 63

R
— L2STASHID

W

Reset All zeros

Figure 2-19. L2 Cache Control and Status 1 (L2CSR1) register

Table 2-20. L2CSR1 e6500-specific field descriptions

Bits Name Description

32 DYNAMICHARVARD Dynamic Harvard Mode
0 Enabled. Cacheable instruction fetches requested by the processor that miss are 

requested from CoreNet as non coherent (Memory coherence required = 0). When the line 
is allocated it is marked to allow a hit from instruction fetches but not data accesses.

1 Disabled. Cacheable instruction fetches requested by the processor that miss are 
requested from CoreNet as coherent (Memory coherence required = 1). When the line is 
allocated it is marked to allow a hit from instruction fetches and data accesses.

33 L2BHM Bank Hash Mode
0 Use decode hash (bits 56:57 of real address).
1 Use XOR hash (bits 42:57 of real address).

34 — Reserved

35–36 L2STASHRSRV L2 Stashing Reserved Resources. The number of resources per bank in which to allocate 
only stashes.
00 Allocate opportunistically with general resources (default)
01 One resource
10 Two resources
11 Three resources
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2.12.4 L2 cache partitioning registers

L2PIRn, L2PARn, and L2PWRn are sets of registers that are used to define how individual transactions 
performed by the L2 cache are allocated. The number of registers n may vary between implementations, 
but for any given value n supported by an implementation, the same number of registers exist for L2PIR, 
L2PAR, and L2PWR. The number of registers n implemented represents the number of different allocation 
policies that can be applied at any given time.

Each transaction sent to the L2 cache by a processor is tagged with an identifier. The identifier is used to 
distinguish which allocation policies should be used when the L2 cache processes transactions. On the 
e6500 core, the identifier is set to the value of the Processor ID register PIR[59:63] at reset. The identifiers 
for L2 cache partitioning do not change if software changes the value in PIR. This allows for a unique 
identifier for each core and thread in the cluster. Software can change the identifier by changing the PIR 
register.

Let ID be the identifier for a transaction presented to the L2 cache and n be the number of different 
allocation policies implemented (that is, the number n of registers implemented). id + 32 corresponds to a 
column of bits in the L2PIRn registers and is used to determine which allocation policies are to be applied 
as follows:

bit_num ← ID + 32
ways ← 0

for reg_num = 0 to n - 1
if L2PIR[reg_num]bit_num = 1 | stash then

policy ← L2PAR[reg_num]
if instruction fetch & policyIRDALLOC then

ways ← ways | L2PWR[reg_num]
else if data read & policyDRDALLOC then

ways ← ways | L2PWR[reg_num]
else if data store & policyDSTALLOC then

ways ← ways | L2PWR[reg_num]
else if stash & policySTALLOC then

ways ← ways | L2PWR[reg_num]
endfor
if ways ≠ 0 then

allocate line in ways
else

line is not allocated

L2PIRn maps a possible set of 32 identifiers to specific allocation policies. L2PARn and L2PWRn are used 
to process the allocation. L2PARn determines what allocation policy is used. L2PWRn determines in 
which ways the allocation may occur.

37–55 — Reserved

56–63 L2STASHID L2 Cache Stash ID. Contains the cache target identifier to be used for external stash 
operations directed to this processor’s L2 cache. A value of 0 for L2STASHID prevents the L2 
cache from accepting external stash operations. Note that the e6500 supports only stash ID 
values of 8 and larger (that is values between 8 and 255); values from 1 to 7 are illegal.

Table 2-20. L2CSR1 e6500-specific field descriptions (continued)

Bits Name Description
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L2PIRn, L2PARn, and L2PWRn are initialized by hardware at reset to allow all types of accesses from any 
identifier to allocate in any way (that is, any request that could perform an allocation does allocate and can 
be allocated in any way).

Note that stash transactions that are targeted to the L2 or any of the processor L1 caches in the cluster do 
not provide identifiers for the purpose of determining allocation policy and way selection. Instead, stashes 
behave as if the identifier for the transaction has bits set in all of L2PIRn. Stashes that are targeted to the 
L1 cache of a processor, but that cannot allocate in the L2 cache because of the setting of 
L2PARn[STALLOC] (or other reasons), are invalidated in the processor’s L1 cache.

L2 cache partitioning only affects when a line in the cache may be allocated or not and in which ways it 
may be allocated. Transactions to the L2 cache that do not require allocation (for example, a load operation 
to an address that is present in the L2 cache) are unaffected by the settings of L2PIRn, L2PARn, and 
L2PWRn.

For the e6500 core, the ID for partitioning transactions to the L2 cache is dependent on the integrated 
device; however, if the integrated device initializes PIR as defined by EREF (for each L2 cache), then the 
ID for partitioning in a four core cluster is as listed in the following table.

Integrated devices with less than four cores per L2 cache cluster do not use the IDs for cores that are not 
present on the cluster. In all cases, the core number is encoded in the first 2 bits and the thread number in 
the core is encoded in the lower 3 bits.

Partitioning the L2 cache can prevent one processor from victimizing lines established by other processors. 
This may be important to protect lines established by a processor that may be running a real-time 
application that needs a more predictable performance characteristic and can be programmed to limit how 
many lines can be allocated by other processors by choosing the ways in the cache that each processor can 
allocate into. To accomplish this, each processor can be assigned the L2 cache ways in which it will 
allocate.

To partition the L2 cache ways, first decide which L2 cache ways and what types of accesses are desired 
to allocate in those L2 cache ways. Each distinct set of these should be considered a partitioning policy. 
Each of these distinct policies should be encoded into a set of L2PARx and L2PWRx registers. The 

Table 2-21. L2 cache partitioning identifiers

ID Core Thread

0b00000 0 0

0b00001 0 1

0b01000 1 0

0b01001 1 1

0b10000 2 0

0b10001 2 1

0b11000 3 0

0b11001 3 1
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L2PARx register contains the types of accesses that are allowed to allocate for this policy, and the L2PWRx 
register contains the list of L2 cache ways to which these accesses can allocate. For example, a policy that 
only allows allocation to L2 cache ways 0 and 1 for loads and stores is encoded as:

L2PARx = 0x00000440
L2PWRx = 0xC0000000

The bits set in the L2PARx register reflect the types of access. To change this policy to also have instruction 
fetches and stashes use this policy, L2PARx changes to 0x000004C1.

Once policies are established, the designation of which processor uses those policies should be encoded in 
L2PIRx registers, where the ID of the processor is used to index a bit in the L2PIRx register. Using the 
previous example, to have core 0, thread 1 and core 1, thread 0 use the policy to only allow allocation to 
L2 cache ways 0 and 1 for loads and stores the L2PIRx, L2PARx, L2PWRx register triple should be set to:

L2PIRx = 0x40800000
L2PARx = 0x00000440
L2PWRx = 0xC0000000

The bit indexing using the ID is done directly on the 32 bits of the register (when all bits in the register are 
numbered from 0 to 31). Because all registers are documented using 64-bit notation, the 64-bit index is 
ID+32.

Note that each distinct policy uses a set of L2PIRx, L2PARx, L2PWRx registers. L2PIR0, L2PAR0, and 
L2PWR0 define a policy and which processors use that policy. Similarly, there are 7 more policies that can 
be defined using the other L2PIRx, L2PARx, L2PWRx registers.

Note also that a policy does not explicitly deny allocation into L2 cache ways, but allows allocation into 
L2 cache ways. The full allocation policy for a given transaction from a given processor is the logical OR 
of all the policies that have the appropriate processor ID bit set in the L2PIRx for the policy. Care should 
be taken to ensure that all processor IDs have at least one policy that allows them to allocate into L2 cache 
ways unless it is desired that those processors should not allocate any lines in the L2 cache.

2.12.4.1 L2 cache partitioning identification registers (L2PIRn)

L2PIRn, shown in Figure 2-20, provides controls for partitioning the L2 cache based on identifiers 
attached to the L2 cache transactions from processors. L2PIRn is a set of registers, each containing a bit 
vector of 32 bits. The identifier sent with each transaction to the L2 cache is used to select the same relative 
bit (id + 32) in each of the L2PIRn registers. If a bit is set in a L2PIRn register, then that register number 
is used to index among the allocation policies represented by L2PARn and L2PWRn.

If more than one bit for each identifier is set among the group of L2PIRn registers, the allocation policy 
used is the logical OR of the corresponding L2PARn registers, and the ways available for allocation is the 
logical OR of the L2PWRn registers for which the corresponding L2PARn registers allow allocation. For 
example, if L2PIR0[35] = 1 and L2PIR1[35] = 1, then the allocation policy is L2PAR0 | L2PAR1 and the 
ways available for allocation are defined by the OR of the L2PWR registers that correspond to the L2PAR 
register that allows the allocation.

The e6500 implements L2PIR0—L2PIR7 as defined by the architecture and described in EREF.
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Writing to these registers requires synchronization.

2.12.4.2 L2 cache partitioning allocation registers (L2PARn) 

L2PARn, shown in Figure 2-21, provides controls for partitioning the L2 cache based on which allocation 
policy is determined from the L2PIRn registers. If the bit associated with an id of a transaction sent to the 
L2 cache is set in one of the L2PIRn registers, then that register number (0 - n) is used to index among the 
allocation policies represented by L2PARn and L2PWRn.

L2PARn controls whether a line should be allocated based on the type of transaction to be performed by 
the L2 cache. The types of distinguished transactions are:

• Store type operations (store, store conditional, or dcbz[l][ep]) 

• Load type operations (load, touch, and lock set) 

• Instruction fetch

• Stash operations targeted to the L2 cache

The e6500 core implements L2PAR0—L2PAR7 as defined by the architecture and described in EREF.

Writing to these registers requires synchronization.

MMR block offset: 0x200 (L2PIR0)
block offset: 0x210 (L2PIR1)
block offset: 0x220 (L2PIR2)
block offset: 0x230 (L2PIR3)
block offset: 0x240 (L2PIR4)
block offset: 0x250 (L2PIR5)
block offset: 0x260 (L2PIR6)
block offset: 0x270 (L2PIR7)

32 63

R
bits indexed by id + 32

W

Reset All set for L2PIR0, All zeros for other L2PIRn

Figure 2-20. L2 cache partitioning identification registers (L2PIRn) 
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This table describes the L2PARn fields. 
 

MMR block offset: 0x208 (L2PAR0)
block offset: 0x218 (L2PAR1)
block offset: 0x228 (L2PAR2)
block offset: 0x238 (L2PAR3)
block offset: 0x248 (L2PAR4)
block offset: 0x258 (L2PAR5)
block offset: 0x268 (L2PAR6)
block offset: 0x278 (L2PAR7)

32 47

R
—

W

Reset All zeros

 48 52 53 54 55 56 57 5 8 62 63

R

—

D
S

TA
LL

O
C

—

IR
D

A
LL

O
C

D
R

D
A

LL
O

C

—

S
TA

LL
O

C

W

Reset All zeros 1 All zeros 1 1 All zeros 1

Figure 2-21. L2 cache partitioning allocation registers (L2PARn) 

Table 2-22. L2PARn field descriptions

Bits Name Description

32–52 — Reserved, should be 0

53 DSTALLOC Data store allocation control
0 Cacheable store and store conditional instructions that miss in the L2 do not allocate unless 

enabled by another L2PARn[DSTALLOC].
1 Cacheable store and store conditional instructions that miss in the L2 attempt to allocate in one of 

the ways defined by L2PWRn[WAY].

54–55 — Reserved, should be 0

56 IRDALLOC Instruction read (fetch) allocation control
0 Cacheable instruction fetches that miss in the L2 do not allocate unless enabled by another 

L2PARn[IRDALLOC].
1 Cacheable instruction fetches that miss in the L2 attempt to allocate in one of the ways defined by 

L2PWRn[WAY].

57 DRDALLOC Data read allocation control
0 Cacheable load and touch instructions that miss in the L2 do not allocate unless enabled by another 

L2PARn[DRDALLOC]. 
1 Cacheable load and touch instructions that miss in the L2 attempt to allocate in one of the ways 

defined by L2PWRn[WAY].

Note: Any cache locking operation with CT = 2 that has DRDALLOC = 0 will not have the line locked 
because the L2 does not attempt to allocate the line. 
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2.12.4.3 L2 cache partitioning way registers (L2PWRn)

L2PWRn, shown in Figure 2-22, provides controls for partitioning of the L2 cache based on which 
allocation policy is determined from the L2PIRn registers. If the bit associated with an id of a transaction 
sent to the L2 cache is set in one of the L2PIRn registers, then that register number (0 - n) is used to index 
among the allocation policies represented by L2PARn and L2PWRn.

L2PWRn controls which ways are available for a line to allocate into should allocation for the transaction 
be allowed by L2PARn. The ways are represented as a bit vector where way x is represented by bit x + 32. 
Only bits 32:32+(w-1) are implemented in each L2PWRn register, where w represents the number of ways 
in the L2 cache that are implemented.

The e6500 core implements L2PWR0—L2PWR7 as defined by the architecture and described in EREF, 
except only 16 bits of the WAY field are implemented in each register.

Writing to these registers requires synchronization.

This table describes the L2PWRn fields. 

58–62 — Reserved, should be 0

63 STALLOC Stashing allocation control
0 Stash requests that miss in the L2 do not allocate unless enabled by another L2PARn[STALLOC].
1 Stash requests that miss in the L2 attempt to allocate in one of the ways defined by L2PWRn[WAY].

Note: Stash requests do not supply id values that index into L2PIRn registers, but instead examine all 
L2PARn registers to determine the allocation policy.

MMR block offset: 0x20C (L2PWR0)
block offset: 0x21C (L2PWR1)
block offset: 0x22C (L2PWR2)
block offset: 0x23C (L2PWR3)
block offset: 0x24C (L2PWR4)
block offset: 0x25C (L2PWR5)
block offset: 0x26C (L2PWR6)
block offset: 0x27C (L2PWR7)

32 47 48 63

R
WAY —

W

Reset All set for L2PWR0, all zeros for other L2PWRn All zeros

Figure 2-22. L2 cache partitioning way registers (L2PWRn) 

Table 2-22. L2PARn field descriptions (continued)

Bits Name Description
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2.12.5 L2 error registers

L2 cache error detection, reporting, and injection allow flexible handling of ECC and parity errors in the 
L2 data and tag arrays. The e6500 core implements the L2 error detection registers as they are defined by 
the architecture and described in EREF. Deviations from the architecture are described in this section. 

2.12.5.1 L2 Cache Error Disable (L2ERRDIS) register

L2ERRDIS, shown in Figure 2-23, provides general control for disabling error detection in the L2 cache 
of the processor. The e6500 implements L2ERRDIS as defined by the architecture and described in EREF, 
with the following exceptions:

• It does not implement the TPARDIS and PARDIS fields.

• It implements the implementation-specific field TMHITDIS.

This table describes the L2ERRDIS field descriptions. 

Table 2-23. L2PWRn field descriptions

Bits Name Description

32–47 WAY Each bit that is set represents a way number into which the transaction can allocate. Multiple bits can 
be set, representing multiple ways that are available for allocation using this allocation policy.
0 The ways corresponding to bits set to 0 are not available for allocation.
1 The ways corresponding to bits set to 1 are available for allocation. 

48–63 — Reserved, should be cleared.

MMR block offset: 0xe44

32 55 56 57 58 59 60 61 62 63

R
— TMHITDIS TMBECCDIS TSBECCDIS — MBECCDIS SBECCDIS — L2CFGDIS

W

Reset All Zeros

Figure 2-23. L2 Cache Error Disable (L2ERRDIS) register

Table 2-24. L2ERRDIS field descriptions

Bits Name Description

32–56 — Reserved

56 TMHITDIS Tag/status multi-way hit error disable
0 Tag multi-way hit detection is enabled.
1 Tag multi-way hit error detection is disabled.
Note: This field is not part of EREF.

Note: While error injection is performed, the values of TMHITDIS and L2CSR0[L2PE] are ignored 
and errors are always detected. Software should ensure that L2PE is set and TMHITDIS is 
clear when performing error injection to the tags.
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2.12.5.2 L2 Cache Error Detect (L2ERRDET) register

L2ERRDET, shown in Figure 2-24, provides general status and information for errors detected in the L2 
cache of the processor. The e6500 core implements L2ERRDET as defined by the architecture and 
described in EREF, with the following exceptions:

• It does not implement the TPARERR and PARERR fields. 

• It implements the implementation-specific fields MULL2ERR and TMHITERR.

57 TMBECCDIS Tag multiple-bit ECC error disable
0 Tag Multiple-bit ECC error detection is enabled.
1 Tag Multiple-bit ECC error detection is disabled.
Note: While error injection is performed, TMBECCDIS = 0 and L2CSR0[L2PE] = 1 should always 

be configured to ensure that errors are always detected. If they are not set when error 
injection is performed, the result is undefined.

58 TSBECCDIS Tag ECC error disable 
0 Tag Single-bit ECC error detection is enabled.
1 Tag Single-bit ECC error detection is disabled.
Note: While error injection is performed, TSBECCDIS = 0 and L2CSR0[L2PE] = 1 should always 

be configured to ensure that errors are always detected. If they are not set when error 
injection is performed, the result is undefined.

59 (TPARDIS) Tag parity error disable. This field is not implemented in the e6500 core and always reads as 0.

60 MBECCDIS Data multiple-bit ECC error disable 
0 Data Multiple-bit ECC error detection is enabled.
1 Data Multiple-bit ECC error detection is disabled.
Note: While error injection is performed, the values of MBECCDIS and L2CSR0[L2PE] are ignored 

and errors are always detected. Software should ensure that L2PE is set and MBECCDIS is 
clear when performing error injection to the data.

61 SBECCDIS Data single-bit ECC error disable
0 Data Single-bit ECC error detection is enabled.
1 Data Single-bit ECC error detection is disabled.
Note: While error injection is performed, the values of SBECCDIS and L2CSR0[L2PE] are ignored 

and errors are always detected. Software should ensure that L2PE is set and SBECCDIS is 
clear when performing error injection to the data.

62 (PARDIS) Data parity error disable.This field is not implemented in the e6500 core and always reads as 0.

63 L2CFGDIS L2 configuration error disable
0 L2 configuration error detection is enabled.
1 L2 configuration error detection is disabled.

Table 2-24. L2ERRDIS field descriptions (continued)

Bits Name Description
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This table describes the L2ERRDET fields.

MMR block offset: 0xe40
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Figure 2-24. L2 Cache Error Detect (L2ERRDET) register

Table 2-25. L2ERRDET field descriptions

Bits Name Description

32 MULL2ERR Multiple L2 errors. Writing a 1 to this bit location resets the bit. 
0 Multiple L2 errors of the same type are not detected.
1 Multiple L2 errors of the same type are detected.
Note: This field is not part of EREF.

33–55 — Reserved

56 TMHITERR Tag multi-way hit error detected. Writing a 1 to this bit location resets the bit. 
0 Tag multi-way hit is not detected.
1 Tag multi-way hit is detected.
Note: This field is not part of EREF.

57 TMBECCERR Tag multiple-bit ECC error detected. Writing a 1 to this bit location resets the bit.
0 Tag Multiple-bit ECC error is not detected.
1 Tag Multiple-bit ECC error is detected.

58 TSBECCERR Tag single-bit ECC error detected. Writing a 1 to this bit location resets the bit. 
0 Tag Single-bit ECC is not detected.
1 Tag Single-bit ECC error is detected.

59 (TPARERR) Tag parity error detected. This field is not implemented in the e6500 core and always reads as 0.

60 MBECCERR Data multiple-bit ECC error detected. Writing a 1 to this bit location resets the bit. 
0 Tag Multiple-bit ECC error is not detected.
1 Tag Multiple-bit ECC error is detected.

61 SBECCERR Data single-bit ECC error detected. Writing a 1 to this bit location resets the bit. 
0 Tag Single-bit ECC error is not detected.
1 Tag Single-bit ECC error is detected.

62 (PARERR) Data parity error detected. This field is not implemented in the e6500 core and always reads as 0.

63 L2CFGERR L2 configuration error detected. Writing a 1 to this bit location resets the bit.
0 L2 configuration error not detected.
1 L2 configuration error detected.
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2.12.5.3 L2 Cache Error Interrupt Enable (L2ERRINTEN) register

L2ERRINTEN, shown in Figure 2-25, provides general status and information for errors detected in the 
L2 cache of the processor. The e6500 core implements L2ERRINTEN as defined by the architecture and 
described in EREF, with the following exceptions:

• It does not implement the TPARINTEN and PARINTEN fields.

• It does implement the implementation-specific field TMHITINTEN.

This table describes the L2ERRINTEN fields.
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Figure 2-25. L2 Cache Error Interrupt Enable (L2ERRINTEN) register

Table 2-26. L2ERRINTEN field descriptions

Bits Name Description

32–55 — Reserved

56 TMHITINTEN Tag multi-way hit interrupt reporting enable
0 Tag multi-way hit interrupt reporting is disabled.
1 Tag multi-way hit interrupt reporting is enabled.
Note: this field is not part of EREF.

57 TMBECCINTEN Tag multiple-bit ECC error interrupt reporting enable 
0 Tag multiple-bit ECC error interrupt reporting is disabled.
1 Tag multiple-bit ECC error interrupt reporting is enabled.

58 TSBECCINTEN Tag ECC interrupt reporting enable 
0 Tag single-bit ECC error interrupt reporting is disabled.
1 Tag single-bit ECC error interrupt reporting is enabled.

59 (TPARINTEN) Tag parity error interrupt reporting enable. This field is not implemented in the e6500 core and 
always reads as 0.

60 MBECCINTEN Data multiple-bit ECC error interrupt reporting enable. Valid only if L2CFG0[L2CDEHA] = 0b10.
0 Data Multiple-bit ECC error interrupt reporting is disabled.
1 Data Multiple-bit ECC error interrupt reporting is enabled.

61 SBECCINTEN Data ECC error interrupt reporting enable. Valid only if L2CFG0[L2CDEHA] = 0b10.
0 Data Single-bit ECC error interrupt reporting is disabled.
1 Data Single-bit ECC error interrupt reporting is enabled.
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2.12.5.4 L2 Cache Error Control (L2ERRCTL) register

L2ERRCTL, shown in Figure 2-26, provides thresholds and counts for errors detected in the L2 cache of 
the processor. The e6500 core implements L2ERRCTL as defined by the architecture and described in 
EREF.

This table describes the L2ERRCTL fields.

62 (PARINTEN) Data parity error interrupt reporting enable. This field is not implemented in the e6500 core and 
always reads as 0.

63 L2CFGINTEN L2 configuration error interrupt reporting enable
0 L2 configuration interrupt reporting is disabled.
1 L2 configuration error interrupt reporting is enabled.

MMR block offset: 0xe58

32 39 40 47 48 55 56 63

R
— L2CTHRESH L2TCCOUNT T2CCOUNT

W

Reset All Zeros

Figure 2-26. L2 Cache Error Control (L2ERRCTL) register

Table 2-27. L2ERRCTL Field Descriptions

Bits Name Description

32–39 — Reserved

40–47 L2CTHRESH L2 cache threshold. Threshold value for the number of ECC single-bit errors that are detected 
before reporting an error condition. L2CTHRESH is compared to L2TCCOUNT and L2CCOUNT 
each time a single-bit ECC error is detected. A value of 0 in this field causes the reporting of a 
single-bit ECC error upon the first occurrence of such an error.

48–55 L2TCCOUNT L2 tag ECC single-bit error count. L2TCCOUNT counts the number of single-bit errors in the L2 tags 
which are detected. If L2TCCOUNT equals the ECC single-bit error trigger threshold 
(L2CTHRESH), an error is reported if single-bit error reporting for tags is enabled. Software should 
clear this value when such an error is reported to reset the count. e6500 always increments this 
count when a single-bit ECC error is detected in the tags, regardless of whether single-bit error 
reporting for tags is enabled.

56–63 L2CCOUNT L2 data ECC single-bit error count. L2CCOUNT counts the number of single-bit errors in the L2 data 
which are detected. If L2CCOUNT equals the ECC single-bit error trigger threshold (L2CTHRESH), 
an error is reported if single-bit error reporting for data is enabled. Software should clear this value 
when such an error is reported to reset the count. e6500 always increments this count when a 
single-bit ECC error is detected in the data, regardless of whether single-bit error reporting for data 
is enabled.

Table 2-26. L2ERRINTEN field descriptions (continued)

Bits Name Description
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2.12.5.5 L2 cache error capture address registers (L2ERRADDR and 
L2ERREADDR)

L2ERRADDR and L2ERREADDR provide the real address of a captured error detected in the L2 cache 
of the processor. The e6500 core implements these registers as defined by the architecture and described 
in EREF. The real address is 40 bits.

2.12.5.6 L2 cache error capture data registers (L2CAPTDATALO
and L2CAPTDATAHI)

L2CAPTDATALO and L2CAPTDATAHI provide the array data of a captured error detected in the L2 
cache of the processor. L2CAPTDATALO captures the lower 32 bits of the doubleword, and 
L2CAPTDATAHI captures the upper 32 bits of the doubleword. The e6500 core implements these registers 
as defined by the architecture and described in EREF.

If the captured error is a data ECC error, then these registers contain the data associated with the error. If 
the captured error is a tag/status ECC error, then L2CAPTDATALO contains the following:

L2CAPTDATALO = low-order 19 bits of the tag || 0b00000 || status[0:7]

L2CAPTDATAHI = 0x000000 || high-order 8 bits of the tag

2.12.5.7 L2 Cache Capture ECC Syndrome (L2CAPTECC) register

L2CAPTECC provides both the calculated and stored ECC syndrome of a captured error detected in the 
L2 cache of the processor. The e6500 core implements this register as defined by the architecture and 
described in EREF. Tag and status ECC syndromes are left-padded with the appropriate number of zeros.

2.12.5.8 L2 Cache Error Attribute (L2ERRATTR) register

L2ERRATTR, shown in Figure 2-27, provides extended information for errors detected in the L2 cache of 
the processor. The e6500 implements L2ERRATTR as defined by the architecture and described in EREF. 
It also implements the implementation-specific fields DWNUM, TRANSSRC, TRANSTYPE, and CORE.

This table describes the L2ERRATTR fields.

MMR block offset: 0xe4c

32 35 36 42 43 47 48 49 50 51 52 59 60 62 63

R
DWNUM — TRANSSRC — TRANSTYPE — CORE VALINFO

W

Reset All Zeros

Figure 2-27. L2 Cache Error Attribute (L2ERRATTR) register
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2.12.5.9 L2 Cache Error Injection Control (L2ERRINJCTL) register

L2ERRINJCTL, shown in Figure 2-28, provides control for injecting errors into both the tags and data 
array for the L2 cache of the processor. The contents of L2ERRINJCTL as defined by the architecture and 
described in EREF are implementation dependent, and all fields of this register are e6500 implementation 
specific.

NOTE
While error injection is performed, the values of specific error disables in 
L2ERRDIS and L2CSR0[L2PE] are ignored and errors are always detected. 
Software must ensure that L2PE is set and individual disables in L2ERRDIS 
are clear when performing error injection to the data or tags.

Table 2-28. L2ERRATTR field descriptions

Bits Name Description

32-35 DWNUM For data ECC errors, contains the doubleword number of the detected error. For tag/status ECC errors, 
contains which way of the tag/status encountered the error.
Note: This field is not part of EREF.

36–42 — Reserved

43-47 TRANSSRC Transaction source for detected error
00000 External (snoop)
10000 Internal (instruction)
10001 Internal (data)
00001–01111 Not Implemented
10010–11111 Not Implemented
Note: This field is not part of EREF.

48–49 — Reserved

50-51 TRANSTYPE Transaction type for detected error
00 Snoop
01 Write
10 Read
11 Not Implemented
Note: This field is not part of EREF.

52–59 — Reserved

60–62 CORE Core ID that issued TRANSTYPE. If the transaction was from a snoop, this field is undefined.
Note: This field is not part of EREF.

63 VALINFO L2 capture registers valid
0 L2 capture registers contain no valid information or no enabled errors are detected.
1 L2 capture registers contain information of the first detected error that has reporting enabled. 

Software must clear this bit to unfreeze error capture so error detection hardware can overwrite the 
capture address/data/attributes for a newly detected error.
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This table describes the L2ERRINJCTL fields.

2.12.5.10 L2 cache error injection mask registers (L2ERRINJLO and L2ERRINJHI)

L2ERRINJLO and L2ERRINJHI provide the injection mask describing how errors are to be injected into 
the data path doubleword in the L2 cache of the processor. L2ERRINJLO provides the mask for the lower 
32 bits of the doubleword, and L2ERRINJHI provides the mask for the upper 32 bits of the doubleword. 
A set bit in the injection mask causes the corresponding data path bit to be inverted on data array writes 
when L2ERRINJCTL[DERRIEN] = 1 or tag array writes when L2ERRINJCTL[TERRIEN] = 1. 

The contents of L2ERRINJLO and L2ERRINJHI as defined by the architecture and described in EREF 
are implementation dependent, and all fields of these registers are e6500 implementation specific.

MMR block offset: 0xe08

32 46 47 48 54 55 56 63

R
— TERRIEN — DERRIEN ECCERRIM

W

Reset All Zeros

Figure 2-28. L2 Cache Error Injection Control (L2ERRINJCTL) register

Table 2-29. L2ERRINJCTL field descriptions

Bits Name Description

32–46 — Reserved, should be 0

47 TERRIEN L2 tag error injection
0 No tag errors are injected.
1 All subsequent entries written to the L2 tag array have the tag ECC bits inverted as specified in the 

ECC error injection masks.

Tag error injection is determined by L2ERRINJHI[59:63] and L2ERRINJLO[32:63].
Note: This field is not part of EREF.

48–54 — Reserved, should be 0

55 DERRIEN L2 data error injection
0 No data errors are injected.
1 Subsequent entries written to the L2 data array have data or data ECC bits inverted as specified in 

the data and ECC error injection masks.

Data error injection is determined by L2ERRINJHI[32:63] and L2ERRINJLO[32:63].
Note: This field is not part of EREF.

56-63 ECCERRIM Error injection mask for the ECC syndrome bits. When DERRIEN = 1, the eight ECCERRIM bits map 
to the eight data ECC bits for each 64 bits of data. When TERRIEN = 1, the low-order seven ECCERIM 
bits map to the seven tag ECC bits.
Note: This field is not part of EREF.
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2.13 MMU registers
This section describes the following MMU registers and their fields:

• Logical Partition ID (LPIDR) register

• Process ID (PID) register

• MMU Control and Status 0 (MMUCSR0) register

• MMU Configuration (MMUCFG) register

• TLB configuration registers (TLBnCFG)

• TLB page size registers (TLBnPS)

• Embedded Page Table Configuration (EPTCFG) register

• MMU assist registers (MAS0–MAS8)

• LRAT Configuration (LRATCFG0) register

• LRAT Page Size (LRATPS) register

• Logical Page Exception (LPER) register

Note that the e6500 core supports MMU architecture version 2 and some fields within registers are 
different from MMU architecture version 1 and previous cores.

2.13.1 Logical Partition ID (LPIDR) register

LPIDR is implemented for each thread as described in EREF.

LPIDR contains the logical partition ID in use for the processor. LPIDR is part of the virtual address and 
is used during address translation comparing LPID to the TLPID field in the TLB entry to determine a 
matching TLB entry. 

Only the low-order 6 bits of LPIDR are implemented on the e6500 core.

When LPIDR is written, the results of the change to LPIDR are not guaranteed to be seen until a context 
synchronizing event occurs.

2.13.2 Process ID (PID) register

PID is implemented for each thread as described in EREF.

The architecture specifies that the value of PID be associated with each effective address (instruction or 
data) generated by the processor. PID values, defined by the PID register, are used to construct virtual 
addresses for accessing memory. 

The e6500 core implements all 14 bits for PID values. Writing to PID requires synchronization, as 
described in Section 3.3.3, “Synchronization requirements.”

2.13.3 MMU Control and Status 0 (MMUCSR0) register

MMUCSR0, shown in Figure 2-29, is used to control the L2 MMUs. The e6500 core implements the 
L2TLB0_FI, L2TLB1_FI TLB flash invalidate bits, and TLB_EI as defined in EREF.
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The e6500 core has one MMUCSR0 shared among both threads.

MMUCSR0 synchronization is described in Section 3.3.3, “Synchronization requirements.”

This table describes the MMUCSR0 fields.
 

2.13.4 MMU Configuration (MMUCFG) register

MMUCFG, shown in Figure 2-30, provides configuration information about the e6500 MMU and is 
implemented as defined in EREF.

The e6500 core has one MMUCFG shared among both threads.

This table describes MMUCFG fields.

SPR 1012 Hypervisor
(shared)

32 60 61 62 63

R
— L2TLB0_FI L2TLB1_FI TLB_EI

W

Reset All zeros

Figure 2-29. MMU Control and Status 0 (MMUCSR0) register

Table 2-30. MMUCSR0 field descriptions

Bits Name Description

32–60 — Reserved

61 L2TLB0_FI TLB0 flash invalidate (write 1 to invalidate)
0 No flash invalidate. Writing a 0 to this bit during an invalidation operation is ignored. 
1 TLB0 invalidation operation. Hardware initiates a TLB0 invalidation operation. When this operation is 
complete, this bit is cleared. Writing a 1 during an invalidation operation causes an undefined operation. 
This invalidation typically takes one cycle.

62 L2TLB1_FI TLB1 flash invalidate (write 1 to invalidate)
0 No flash invalidate. Writing a 0 to this bit during an invalidation operation is ignored. 
1 TLB1 invalidation operation. Hardware initiates a TLB1 invalidation operation. When this operation is 

complete, this bit is cleared. Writing a 1 during an invalidation operation causes an undefined operation. 
This invalidation typically takes 1 cycle.

63 TLB_EI TLB error injection enable. If set, any writes that occur to TLB entries in TLB0 will inject errors.
0 TLB0 error injection is disabled (normal operation)
1 TLB0 error injection is enabled. Any writes to TLB0 have errors injected.

SPR 1015 Hypervisor RO
(shared)

32 35 36 39 40 46 47 48 49 52 53 57 58 59 60 61 62 63
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Reset 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1

Figure 2-30. MMU Configuration (MMUCFG) register
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2.13.5 TLB configuration registers (TLBnCFG)

TLBnCFG, shown in Figure 2-31, are shared by threads and implemented as defined in EREF. TLBnCFG 
registers provide configuration information for TLB0 and TLB1 of the L2 MMU.

The e6500 core has one set of TLBnCFG registers shared among both threads.

Table 2-31. MMUCFG field descriptions

Bits Name Description

32–35 — Reserved

36–39 LPIDSIZE LPID size. The number of LPID bits implemented. The processor implements only the least significant 
LPIDR bits. (0b0110 indicates LPIDR is 6 bits, LPIDR[58–63].)

40–46 RASIZE Real address size supported by the implementation. (0b0101000 indicates 40 physical address bits.)

47 LRAT LRAT present. (0b1 indicates that LRAT translation is supported for guest supervisor writes to the TLB0 
array.)

48 TWC TLB write conditional. Indicates whether the TLB write conditional and tlbsrx. instruction are supported.
0 TLB write conditional and tlbsrx. instruction are not supported.
1 TLB write conditional and tlbsrx. instruction are supported.

49–52 NPIDS Number of PID registers. Indicates the number of PID registers provided by the processor. (0b0001 
indicates one PID register implemented.)

53–57 PIDSIZE PID register size. PIDSIZE is one less than the number of bits in each of the PID registers implemented by 
the processor. The processor implements only the least significant PIDSIZE+1 bits in the PID. (0b01101 
indicates PID is 14 bits, PID[50–63].)

58–59 — Reserved

60–61 NTLBS Number of TLBs. The value of NTLBS is one less than the number of software-accessible TLB structures 
that are implemented by the processor. NTLBS is set to one less than the number of TLB structures so that 
its value matches the maximum value of MAS0[TLBSEL]. (0b01 indicates two TLBs.)

62–63 MAVN MMU architecture version number. Indicates the version number of the architecture of the MMU 
implemented by the processor. (0b01 indicates Version 2.0.)

SPR 688 (TLB0CFG); 689 (TLB1CFG) Hypervisor RO
(shared)
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Reset: TLB0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

TLB1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Figure 2-31. TLB configuration registers (TLB0CFG, TLB1CFG)
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This table describes the TLBnCFG fields and shows the values for the e6500 core. 
 

Table 2-32. TLBnCFG field descriptions

Bits Name Description

32–39 ASSOC Associativity of TLBn
TLB0: 0x08Indicates associativity is 8-way set associative.
TLB1: 0x40 Indicates TLB1 is fully associative (because ASSOC = NENTRY).

40–44 — Reserved

45 PT Page table. Indicates that the TLB array can be loaded as a result of a hardware tablewalk.
0 The TLB array can not be loaded from a hardware page tablewalk.
1 The TLB array can be loaded from a hardware page tablewalk.

TLB0: 1 Indicates TLB0 can be loaded from a hardware page tablewalk.
TLB1: 0 Indicates TLB1 can not be loaded from a hardware page tablewalk.

46 IND Indirect. Indicates that the TLB array can be loaded with an indirect TLB entry and that there is
a corresponding EPTCFG register that defines the page size and subpage size. 
0 The TLB array can not be loaded with an indirect TLB entry.
1 The TLB array can be loaded with an indirect TLB entry.

TLB0: 0 Indicates TLB0 can not be loaded with an indirect TLB entry.
TLB1: 1 Indicates TLB1 can be loaded with an indirect TLB entry.

47 GTWE Guest TLB write entry supported. Indicates that the TLB array can be written (with LRAT translation) by 
a guest-supervisor tlbwe instruction. 
0 The TLB array can not be written by a guest-supervisor tlbwe instruction.
1 The TLB array can be written by a guest-supervisor tlbwe instruction.

TLB0: 1 Indicates TLB0 can be written using a guest-supervisor tlbwe instruction. 
TLB1: 0 Indicates TLB1 can not be written using a guest-supervisor tlbwe instruction.

A tlbwe instruction causes a hypervisor privilege exception if it targets an array that does not support 
GTWE or if EPCR[DGTMI] = 1.

48 IPROT Invalidate protect capability of TLBn
0 The TLB array does not support invalidate protection capability.
1 The TLB array supports invalidate protection capability.

TLB0: 0 Indicates that TLB0 does not support invalidate protection capability.
TLB1: 1 Indicates that TLB1 supports invalidate protection capability.

49 — Reserved

50 HES Hardware entry select. Indicates that the TLB array supports MAS0[HES] where hardware determines 
which TLB entry is written based on MAS2[EPN].
0 The TLB array does not support hardware entry select.
1 The TLB array supports hardware entry select.

TLB0: 1 Indicates that TLB0 supports hardware entry select.
TLB1: 0 Indicates that TLB1 does not supports hardware entry select.

51 — Reserved

52–63 NENTRY Number of entries in TLBn
TLB0: 0x400 TLB0 contains 1024 entries.
TLB1: 0x040 TLB1 contains 64 entries.
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2.13.6 TLB page size registers (TLBnPS) 

TLBnPS, shown in Figure 2-32, gives configuration information about which page sizes are supported in 
each TLB array. TLBnPS consists of 32 bits, each of which represents whether a page size is supported. If 
bit k is set, then page size 263-k KB is supported. Page sizes of 4 KB to 1 TB are supported (in power of 2 
increments). 

This register is hypervisor privileged.

The e6500 core has one set of TLBnPS registers shared among both threads.

Note that the method of how page size information is encoded is the same as LRATPS.

This table describes the TLBnPS fields.
 

2.13.7 Embedded Page Table Configuration (EPTCFG) register

EPTCFG, shown in Figure 2-33, gives configuration information about the hardware tablewalk 
implementation. Each pair of PSn and SPSn fields describes a page size and sub-page size pair for which 
the implementation supports. Any SPSn field that contains 0 denotes that the pair (and the associated PSn) 
has no information supplied by the pair. A PSn value that contains 0 and is paired with a non-zero SPSn 
value denotes that any valid page size supported by the TLB array is allowed for that sub-page size.

PSn describes the page size of the indirect TLB entry and the resulting virtual address space that the 
indirect entry covers. SPSn describes the page size of a TLB entry that is written as a result of a successful 

SPR 344 (TLB0PS); 345 (TLB1PS) Hypervisor RO
(shared)

32 33 61 62 63

— TLBn page size supported bits —

W

TLB0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

TLB1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

Figure 2-32. TLB page size registers (TLBnPS)

Table 2-33. TLBnPS field descriptions

Bits Name Description

32 — Reserved, should be 0.

33–61 TLB page 
size 

supported 
bits

Page size supported bits for TLB array n. When bit k of TLBnPS is set, page size 263-k KB is supported by 
TLB array n. For any bit k in the register:
0 Page size 263-k KB is not supported for TLB array n.
1 Page size 263-k KB is supported for TLB array n.

TLB0: 0x00000004 indicates only 4 KB pages are supported.
TLB1: 0x7FFFFFFC indicates 4 KB to 1 TB pages are supported.

62–63 — Reserved, should be 0.
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page table translation. The e6500 core only supports 4 KB sub-page sizes (that is, each PTE doubleword 
in a page table always describes a 4 KB page.)

This register is hypervisor privileged.

The e6500 core has one EPTCFG shared among both threads.

Note that the notion that a PSn can be 0 and be paired with a non-zero SPSn is not part of Power ISA 2.06 
and takes advantage of the fact that indirect TLB entries are written to a TLB array that supports variable 
sizes.

This table describes the EPTCFG fields.
 

2.13.8 Logical to Real Address Translation Configuration (LRATCFG) 
register

LRATCFG, shown in Figure 2-34, gives configuration information about the implementation’s LRAT and 
is implemented as defined in EREF.

This register is hypervisor privileged and shared by the threads.

SPR 350 Hypervisor RO
(shared)

32 33 34 38 39 43 44 48 49 53 54 58 59 63

— PS2 SPS2 PS1 SPS1 PS0 SPS0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 2-33. Embedded Page Table Configuration (EPTCFG) register

Table 2-34. EPTCFG field descriptions

Bits Name Description

32–33 — Reserved

34–38
44–48
54–58

PS2
PS1
PS0

Page size supported for an indirect TLB entry when paired with the corresponding sub-page size (SPSn). If 
both PSn and SPSn are zero, the pairing conveys no information. If PSn is 0 and SPSn is non-zero, then all 
page sizes supported by the TLB array are supported for indirect TLB entries for that array with the 
corresponding sub-page size.

39–43
49–53
59–63

SPS2
SPS1
SPS0

Sub-page size supported for an indirect TLB entry when paired with the corresponding page size (PSn). If 
both PSn and SPSn are zero, the pairing conveys no information. If PSn is 0 and SPSn is non-zero, then all 
page sizes supported by the TLB array are supported for indirect TLB entries for that array with the 
corresponding sub-page size.
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This table describes the LRATCFG fields.
 

SPR 342 Hypervisor RO
(shared)

32 39 40 46 47 49 50 51 52 63

ASSOC LASIZE —

LP
ID — NENTRY

W

Reset 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

Figure 2-34. Logical to Real Address Translation Configuration (LRATCFG) register

Table 2-35. LRATCFG field descriptions

Bits Name Description

32–39 ASSOC LRAT associativity. Number of ways of associativity of the LRAT array. 0b00001000 indicates fully associative 
(as it equals NENTRY).

40–46 LASIZE Logical address size. Number of bits in a logical address supported by the implementation. 0b0101000 
indicates 40 bits of logical address.

47–49 — Reserved, should be 0.

50 LPID LPID supported. Indicates whether the LPID field in the LRAT is supported. 0b1 indicates that the LPID field 
in the LRAT is supported.

51 — Reserved, should be 0.

52–63 NENTRY Number of entries. Number of entries in the LRAT array. 0b000000001000 indicates 8 entries.
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2.13.9 Logical to Real Address Translation Page Size (LRATPS) register

LRATPS, shown in Figure 2-35, gives configuration information about which page sizes an 
implementation’s LRAT supports and is implemented as defined in EREF. LRATPS consists of 32 bits, 
each of which represents whether a page size is supported. If bit k is set, then page size 263-k KB is 
supported. Page sizes of 4 KB to 1 TB are supported (in power of 2 increments). 

This register is hypervisor privileged and is shared by the threads.

This table describes the LRATPS fields.
 

2.13.10 MMU assist registers (MAS0–MAS8)

MASn registers are used to manage TLBs and the LRAT.

Each thread has a private set of MASn registers.

MAS register contents are written to the TLBs when MAS0[ATSEL] = 0 and a TLB Write Entry (tlbwe) 
instruction executes and are read from the TLBs when MAS0[ATSEL] = 0 and a TLB Read Entry (tlbre) 
instruction or a TLB Search (tlbsx) instruction executes. MAS register contents are written to the LRAT 
when MAS0[ATSEL] = 1 and a TLB Write Entry (tlbwe) instruction executes and are read from the LRAT 
when MAS0[ATSEL] = 1 and a TLB Read Entry (tlbre) instruction.

Writing to any MAS register requires synchronization prior to executing a TLB manipulation instruction 
(tlbwe, tlbre, tlbilx) that uses values in the MAS register to perform TLB operations. However, multiple 
MAS register updates can be performed and a single context synchronization instruction prior to the 
execution of the TLB manipulation instruction is sufficient to synchronize all the MAS register changes. 
Synchronization is described in Section 3.3.3, “Synchronization requirements”.

SPR 343 Hypervisor RO

32 33 61 62 63

— LRAT page size supported bits —

W

Reset 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

Figure 2-35. Logical to Real Address Translation Page Size (LRATPS) register

Table 2-36. LRATPS field descriptions

Bits Name Description

32 — Reserved, should be 0.

33–61 LRAT 
page size 
supported 

bits

Page size supported bits for the LRAT. For any bit k in the register:
0 Page size 263-k KB is not supported by the LRAT.
1 Page size 263-k KB is supported by the LRAT.
0x7FFFFFFC indicates 4 KB to 1 TB pages are supported.

62–63 — Reserved, should be 0.
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TLB read (tlbre) and TLB write (tlbwe) instructions use MAS0[TLBSEL], MAS0[ESEL], and 
MAS2[EPN] to select which TLB entry to read from or write to. On the e6500 core, these fields are used 
as described in the following table:

TLB read (tlbre) and TLB write (tlbwe) instructions use MAS0[ESEL] and MAS2[EPN] to select which 
LRAT entry to read from or write to. On the e6500 core, these fields are used as described in the following 
table:

2.13.10.1 MMU Assist 0 (MAS0) register

MAS0, shown in Figure 2-36, is implemented as defined by the architecture. Only the low-order bit of 
TLBSEL, the low-order 6 bits of ESEL, and the low-order 3 bits of NV are implemented. The WQ field is 
not implemented.

Writing to MAS0 requires synchronization, as described in Section 3.3.3, “Synchronization 
requirements.”

This table describes the MAS0 fields. 

Table 2-37. TLB selection fields

TLB Write
MAS0[ATSEL]

TLB Array
MAS0[TLBSEL]

MAS0[ESEL] MAS2[EPN] MAS0[NV]

0 0 MAS0[45:47] selects way
(low-order 3 bits of ESEL).
If MAS0[HES] = 1, these 
bits are ignored and 
hardware selects the way.

MAS2[45:51] selects set
(low-order 7 bits of EPN).

MAS0[61:63] indicates Next 
Victim (NV) value for ESEL
(low order 3 bits of NV).
If MAS0[HES] = 1, these bits are 
ignored and hardware selects the 
NV value.

0 1 MAS0[42:47] selects entry
(low-order 6 bits of ESEL).

Not used because TLB1 is 
fully associative

NV field not defined for this TLB 
array.

Table 2-38. LRAT selection fields

TLB Write
MAS0[ATSEL]

TLB Array
MAS0[TLBSEL]

MAS0[ESEL] MAS2[EPN] MAS0[NV]

1 Not used for 
LRAT

MAS0[45:47] selects entry
(low-order 3 bits of ESEL).

Not used because LRAT is 
fully associative.

Not used for LRAT.

SPR 624 Guest supervisor

32 33 34 35 36 41 42 47 48 49 50 51 52 60 61 63

R

AT
S

E
L

— TLBSEL — ESEL —

H
E

S

— — NV
W

Reset All zeros

Figure 2-36. MMU Assist 0 (MAS0) register
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2.13.10.2 MMU Assist 1 (MAS1) register

MAS1, shown in Figure 2-37, is implemented as defined in EREF. Only 4 KB through 1 TB page sizes are 
supported for TSIZE (when using TLB1). Only LRAT 4 KB through 1 TB page sizes are supported for 
TSIZE.

Table 2-39. MAS0 field descriptions — MMU read/write and replacement control

Bit Name Description

32 ATSEL Array type select. Selects LRAT or TLB for access by tlbwe or tlbre instructions. This field is always treated as 
0 in guest state (MSR[GS] = 1).
0 TLB. tlbwe and tlbre write and read entries out of the TLB arrays.
1 LRAT. tlbwe and tlbre write and read entries out of the LRAT array.

33–34 — Reserved

35 TLBSEL Selects TLB for access.
0 TLB0
1 TLB1

36–41 — Reserved 

42–47 ESEL Entry select. Number of the entry in the selected array to be used for tlbwe. Updated on TLB error exceptions 
(misses) and tlbsx hit and miss cases. Only certain bits are valid, depending on the array selected in TLBSEL. 
Other bits should be 0. Entry selection selects one of the entries defined by the set selected by TLBSEL and 
MAS2[EPN].

ESEL is ignored if TLBnCFG[HES] = 1 and MAS0[HES] = 1 and entry selection within the set defined by 
TLBSEL and MAS2[EPN] is performed by hardware. (
Note: The n of TLBnCFG is defined by TLBSEL.

48 — Reserved

49 HES Hardware entry select. Valid only for tlbwe whenTLBnCFG[HES] = 1 and ATSEL = 0. 
Note: The n of TLBnCFG is defined by TLBSEL. Hardware selects which entry in the TLB to write from the set 
selected by TLBSEL and MAS2[EPN]. 
0 Entry selection within the set selected by TLBSEL and MAS2[EPN] is determined by ESEL.
1 Entry selection within the set selected by TLBSEL and MAS2[EPN] is determined by hardware and ESEL is 

ignored.

Note: hardware entry select occurs only when:
 • A TLB write occurs due to a successful hardware page tablewalk, or
 • n = TLBSEL, a tlbwe occurs, and TLBnCFG[HES] = 1, HES = 1 and ATSEL = 0.

50–60 — Reserved

61–63 NV Next victim. Can be used to identify the next victim to be targeted for a TLB miss replacement operation for 
those TLBs that support the NV field.
For the e6500 core, NV is the next victim value to be written to TLB0[NV] on execution of tlbwe. This field is 
also updated on TLB error exceptions (misses), tlbsx hit and miss cases, and on execution of tlbre.
This field is updated based on the calculated next victim value for TLB0 (based on the round-robin replacement 
algorithm, described in Section 6.3.2.2, “Replacement algorithms for L2 MMU entries”). 
Note: This field is not defined for operations that specify TLB1 (when TLBSEL = 1).
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Writing to MAS1 requires synchronization, as described in Section 3.3.3, “Synchronization 
requirements.”

This table describes the MAS1 fields.

2.13.10.3 MMU Assist 2 (MAS2) register

MAS2, shown in Figure 2-38, is implemented as defined in EREF. MAS2 is a 64-bit register. The ACM 
and VLE fields are not implemented.

Writing to MAS2 requires synchronization, as described in Section 3.3.3, “Synchronization 
requirements.”

SPR 625 Guest supervisor

32 33 34 47 48 49 50 51 52 56 57 63

R
V IPROT TID —

IN
D TS TSIZE —

W

Reset All zeros

Figure 2-37. MMU Assist 1 (MAS1) register

Table 2-40. MAS1 field descriptions — Descriptor context and configuration control

Bits Name Descriptions

32 V TLB valid bit 
0 This TLB entry is invalid.
1 This TLB entry is valid.

33 IPROT Invalidate protect. Set to protect this TLB entry from invalidate operations from tlbivax, tlbilx, or MMUCSR0 TLB 
flash invalidates. Note that not all TLB arrays are necessarily protected from invalidation with IPROT. Arrays that 
support invalidate protection are denoted as such in the TLB configuration registers.
0 Entry is not protected from invalidation.
1 Entry is protected from invalidation. 

34–47 TID Translation identity. Defines the process ID for this TLB entry. TID is compared to the process ID in the PID 
register during translation. A TID value of 0 defines an entry as global and matches with all process IDs.

48–49 — Reserved

50 IND Indirect. Defines this TLB entry as an indirect entry that is used to find a page table when a hardware page 
tablewalk is performed. IND is ignored and assumed to be 0 if TLBnCFG[IND] = 0. 
0 This TLB entry is not an indirect entry and is used for normal translation.
1 This TLB entry is an indirect entry and is used for page table translation.

Note: The n of TLBnCFG is defined by TLBSEL.

51 TS Translation space. Compared with MSR[IS] (instruction fetch) or MSR[DS] (memory reference) to determine if 
this TLB entry may be used for translation.

52–56 TSIZE Translation size. Defines the page size of the TLB entry and defines the page size of the LRAT entry. For TLB 
arrays with fixed-size TLB entries, TSIZE is ignored. For variable-size arrays, the page size is 2TSIZE KB. The 
e6500 core supports TLB page sizes from 4 KB to 1 TB (0b00010 to 0b11110). For LRAT entries, the page size 
is 2TSIZE KB. The e6500 core supports LRAT page sizes defined by EREF from 4 KB to 1 TB (0b00010 to 
0b11110).

57–63 — Reserved
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This table describes the MAS2 fields.

2.13.10.4 MMU Assist 3 (MAS3) register

MAS3, shown in Figure 2-39, is implemented as defined in EREF.

SPR 626 Guest supervisor

0 51 52 56 57 58 59 60 61 62 63

R
EPN — X0 X1 W I M G E

W

Reset All zeros

Figure 2-38. MMU Assist 2 (MAS2) register

Table 2-41. MAS2 field descriptions — EPN and page attributes

Bits Name Description

0–51 EPN Effective page number. Depending on page size, only the bits associated with a page boundary are valid. Bits that 
represent offsets within a page are ignored and should be zero. 

52–56 — Reserved

57 X0 Implementation-dependent page attribute. Implemented as storage.

58 X1 Implementation-dependent page attribute. Implemented as storage.

59 W Write-through
0 This page is considered write-back with respect to the caches in the system.
1 All stores performed to this page are written through the caches to main memory.

60 I Caching-inhibited
0 Accesses to this page are considered cacheable.
1 The page is considered caching-inhibited. All loads and stores to the page bypass the caches and are 

performed directly to main memory. A read or write to a caching-inhibited page affects only the memory 
element specified by the operation.

Note: Cache-inhibited loads may hit in the L1 cache, but the transaction is always performed over CoreNet, 
ignoring the hit (although the hit may have other unarchitected side effects). 

Note: Cache-inhibited (non-decorated, and non-guarded) loads execute speculatively on the e6500 core.

61 M Memory coherency required
0 Memory coherency is not required.
1 Memory coherency is required. This allows loads and stores to this page to be coherent with loads and stores 

from other processors (and devices) in the system, assuming all such devices are participating in the 
coherency protocol.

62 G Guarded
0 Accesses to this page are not guarded and can be performed before it is known if they are required by the 

sequential execution model.
1 All loads and stores to this page are performed without speculation (that is, they are known to be required).
Guarded loads (that are not cache inhibited) execute speculatively out of the core caches but will execute 
non-speculatively if required to go off core to execute.

63 E Endianness. Determines endianness for the corresponding page. Little-endian operation is true little-endian, 
which differs from the modified little-endian byte ordering model available in the original PowerPC architecture. 
0 The page is accessed in big-endian byte order.
1 The page is accessed in true little-endian byte order. 



Register Model

e6500 Core Reference Manual, Rev 0

2-74 Freescale Semiconductor
 

NOTE
When an operating system executing as a guest on a hypervisor uses the 
RPN fields of MAS3 and MAS7, the RPN should be interpreted by the 
hypervisor as a logical address or a guest physical address. The hypervisor 
or the LRAT will write a logical to real translated RPN field with a real 
physical address obtained from translating the logical address to a real 
physical address when emulating tlbwe instructions.

Writing to MAS3 requires synchronization, as described in Section 3.3.3, “Synchronization 
requirements.”

There are two definitions for MAS3 depending on whether an indirect entry is being read or written 
(MAS1[IND] = 1). If the entry is not an indirect entry (MAS1[IND] = 0), then bits 58–63 are defined as 
permission bits. Otherwise, bits 58–62 are defined as the SPSIZE field and bit 63 is undefined.

This table describes the MAS3 fields.

SPR 627 Guest supervisor

32 51 52 53 54 57 58 59 60 61 62 63

R
RPN — U0–U3 UX SX UW SW UR SR

W

Reset All zeros

When MAS1[IND] = 1 and TLBnCFG[IND] = 1, where n = MAS0[TLBSEL] Guest supervisor

32 51 52 53 54 57 58 62 63

R
RPN — U0–U3 SPSIZE

U
N

D

W

Reset All zeros

Figure 2-39. MMU Assist 3 (MAS3) register

Table 2-42. MAS3 field descriptions — RPN and access control

Bits Name Description

32–51 RPN Real page number. Depending on page size, only the bits associated with a page boundary are valid. Bits that 
represent offsets within a page are ignored and should be zero. MAS3[RPN] contains only the low-order bits 
of the real page number. The high-order bits of the real page number are located in MAS7. See 
Section 2.13.10.8, “MAS Register 7 (MAS7),” for more information.

For indirect entries, the valid RPN bits are a function of the page size of the indirect entry. The page size as it 
applies to the RPN in this case is the page size of the indirect entry - 9 (TSIZE - 9).

52–53 — Reserved
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2.13.10.5 MMU Assist 4 (MAS4) register

MAS4, shown in Figure 2-40, is implemented as defined in EREF. Only the low-order bit of TLBSELD 
is implemented and only 4 KB through 1 TB page sizes are supported for TSIZED (when using TLB1). 
The ACMD and VLED fields are not implemented

Writing to MAS4 requires synchronization, as described in Section 3.3.3, “Synchronization 
requirements.” 

This table describes the MAS4 fields.

54–57 U0–U3 User attribute bits. These bits are associated with a TLB entry and can be used by system software. For 
example, these bits may be used to hold information useful to a page scanning algorithm or be used to mark 
more abstract page attributes.

58–63 UX,SX
UW,SW,
UR,SR

Permission bits. User and supervisor read, write, and execute permission bits. See EREF for more information 
on the page permission bits as they are defined by the architecture. 

58–62 SPSIZE Sub-page size. The sub-page size, if the entry is an indirect entry. The entry is only an indirect entry if 
MAS1[IND] = 1 and TLBnCFG[IND] = 1, where n = MAS0[TLBSEL]. The e6500 core only supports sub-page 
sizes of 4 KB. An attempt to write an indirect entry with a value other than 0b00010 for SPSIZE causes the 
entry to be created with a SPSIZE of 0b00010. A read of an indirect entry always returns 0b00010 in SPSIZE. 

63 UND Contains an undefined value when the entry is an indirect entry. 

SPR 628 Guest supervisor

32 34 35 36 47 48 49 51 52 56 57 58 59 60 61 62 63

R
— TLBSELD —

IN
D

D

— TSIZED X0D X1D WD ID MD GD ED
W

Reset All zeros

Figure 2-40. MMU Assist 4 (MAS4) register

Table 2-43. MAS4 field descriptions — Hardware replacement assist configuration

Bits Name Description

32–34 — Reserved

35 TLBSELD TLBSEL default value. Specifies the default value to be loaded in MAS0[TLBSEL] on a TLB miss exception. 

36–47 — Reserved

48 INDD IND default value. Specifies the default value to be loaded in MAS1[IND] and MAS6[IND] on a TLB miss 
exception. 

49–51 — Reserved

52–56 TSIZED Default TSIZE value. Specifies the default value to be loaded into MAS1[TSIZE] on a TLB miss exception.

57 X0D Default X0 value. Specifies the default value to be loaded into MAS2[X0] on a TLB miss exception.

58 X1D Default X1 value. Specifies the default value to be loaded into MAS2[X1] on a TLB miss exception.

59 WD Default W value. Specifies the default value to be loaded into MAS2[W] on a TLB miss exception.

60 ID Default I value. Specifies the default value to be loaded into MAS2[I] on a TLB miss exception.

Table 2-42. MAS3 field descriptions — RPN and access control (continued)

Bits Name Description
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2.13.10.6 MMU Assist 5 (MAS5) register

MAS5, shown in Figure 2-41, is implemented as defined in EREF. MAS5 contains hypervisor fields for 
specifying LPID and GS values to be used to search TLB entries with a tlbsx instruction and for specifying 
LPID values to invalidate TLB entries with a tlbilx instruction. Only the low-order 6 bits of SLPID are 
implemented.

Writing to MAS5 requires synchronization, as described in Section 3.3.3, “Synchronization 
requirements.”

This table describes the MAS5 fields.

2.13.10.7 MMU Assist 6 (MAS6) register

MAS6, shown in Figure 2-42, is implemented as defined in EREF. 

Note that the SPID field was previously named SPID0. Both names refer to the same field.

Writing to MAS6 requires synchronization, as described in Section 3.3.3, “Synchronization 
requirements.”

61 MD Default M value. Specifies the default value to be loaded into MAS2[M] on a TLB miss exception.

62 GD Default G value. Specifies the default value to be loaded into MAS2[G] on a TLB miss exception.

63 ED Default E value. Specifies the default value to be loaded into MAS2[E] on a TLB miss exception.

SPR 339 Hypervisor

 32 33 57 58 63

R
SGS — SLPID

W

Reset All zeros

Figure 2-41. MMU Assist 5 (MAS5) register

Table 2-44. MAS5 field descriptions

Bits Name Description

32 SGS Search GS. Specifies the GS value used when searching the TLB during execution of tlbsx. The SGS field is 
compared with the TGS field of each TLB entry to find a matching entry.

33–55 — Reserved

56–63 SLPID Search LPID. Specifies the LPID value used when searching the TLB during execution of tlbsx. The SLPID 
field is compared with the TLPID field of each TLB entry to find a matching entry.

Table 2-43. MAS4 field descriptions — Hardware replacement assist configuration (continued)

Bits Name Description
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This table describes the MAS6 fields.

2.13.10.8 MAS Register 7 (MAS7)

MAS7, shown in Figure 2-43, is implemented as defined by the EREF. MAS7 contains the high-order 
32-bits of the real (physical) page number. Since e6500 supports 40 bits of physical address, only the 
low-order 8 bits of the high-order 32-bits of the real address (RPN) are implemented.

NOTE
When an operating system executing as a guest on a hypervisor uses the 
RPN fields of MAS3 and MAS7, the RPN should be interpreted by the 
hypervisor as a logical address or a guest physical address. The hypervisor 
or the LRAT will write a logical to real translated RPN field with a real 
physical address obtained from translating the logical address to a real 
physical address when emulating tlbwe instructions.

Writing to MAS7 requires synchronization, as described in Section 3.3.3, “Synchronization 
requirements.”

SPR 630 Guest supervisor

32 33 34 47 48 51 52 56 57 61 62 63

R
— SPID — ISIZE —

S
IN

D

S
A

S

Reset All zeros

Figure 2-42. MMU Assist 6 (MAS6) register

Table 2-45. MAS6 field descriptions

Bits Name Description

32–33 — Reserved

34–47 SPID Search PID. Specifies the value of PID used when searching the TLB during execution of tlbsx. 

48–51 — Reserved 

52–56 ISIZE Invalidation size. Specifies the page size when a tlbilx T = 3 or tlbivax is executed. The e6500 core does not 
require ISIZE to be set and ignores it when performing invalidations. Software should set ISIZE to maintain 
portability with other implementations.

57–61 — Reserved 

62 SIND Indirect (IND) value for searches and invalidates. Specifies the value of IND used when searching the TLB during 
execution of tlbsx or performing invalidations during execution of tlbilx T=3 or tlbivax.

63 SAS Address space (AS) value for searches. Specifies the value of AS used when searching the TLB during 
execution of tlbsx. 
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This table describes the MAS7 fields.

2.13.10.9 MMU Assist 8 (MAS8) register

MAS8, shown in Figure 2-44, is implemented as defined in EREF. MAS8 contains hypervisor-state fields 
used for selecting a TLB entry during translation. Only the low-order 6 bits of TLPID are implemented.

Writing to MAS8 requires synchronization, as described in Section 3.3.3, “Synchronization 
requirements.”

This table describes the MAS8 fields.

SPR 944 Guest supervisor

32 55 56 63

R
— RPN

W

Reset All zeros

Figure 2-43. MMU Assist 7 (MAS7) register

Table 2-46. MAS7 field descriptions — High-order RPN

Bits Name Description

32–55 — Reserved 

56–63 RPN Real page number, 8 high-order bits. MAS3 holds the remainder of the RPN. The byte offset within the page is 
provided by the EA and is not present in MAS3 or MAS7.

SPR 341 Hypervisor

 32 33 34 57 58 63

R
TGS VF — TLPID

W

Reset All zeros

Figure 2-44. MMU Assist 8 (MAS8) register

Table 2-47. MAS8 field descriptions

Bits Name Description

32 TGS Translation guest space. During translation, TGS is compared with MSR[GS] to select a TLB entry.

33 VF Virtualization fault. If set, data accesses that translate through this TLB entry cause a virtualization fault and 
subsequent DSI, which is directed to the hypervisor, regardless of the permission bit settings. Instruction 
accesses that translate through this TLB entry are not affected by this bit. If set in an indirect TLB entry that 
performs a page table translation, a virtualization fault occurs if the translation is for a data access, and an 
instruction virtualization fault occurs if the translation is for an instruction fetch access. 
0 Accesses translated by this TLB entry occur normally.
1 Accesses translated by this TLB entry always cause a virtualization fault or an instruction virtualization fault 

(for indirect TLB entry only) and subsequent data or instruction storage interrupt.

34–57 — Reserved

58–63 TLPID Translation logical partition ID. During translation, TLPID is compared with the LPIDR to select a TLB entry. A 
TLPID value of 0 defines an entry as global and matches all values of LPIDR.
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2.13.10.10 64-bit access to MAS register pairs

Certain MAS registers can be accessed in pairs with single mfspr or mtspr instruction. The register pairs 
are listed in Table 2-48. Software should take special consideration when using MAS register pairs because 
the programming model is only available on 64-bit implementations. For mtspr, all 64 bits are written 
from the source GPR to the MAS pair. For mfspr, all 64 bits are read from the MAS pair and are written 
to the GPR, regardless of computation mode. If compatibility with 32-bit implementations is desired, MAS 
register pairs should not be used, and the MAS registers should be addressed individually.

2.13.11 External PID registers

Each e6500 thread implements private, external PID load and store context registers (EPLC and EPSC) as 
defined in EREF.

2.13.11.1 External PID Load Context (EPLC) register

EPLC, shown in Figure 2-45, contains fields to provide the context for external PID load instructions. Only 
the low-order 6 bits of the ELPID field are implemented.

Writing to EPLC requires synchronization, as described in Section 3.3.3, “Synchronization requirements.”

Table 2-48. MAS register pairs

Name SPR Number Privilege Bits 0–31 Bits 32–63

MAS0_MAS1 373 Guest supervisor MAS0 MAS1

MAS5_MAS6 348 Hypervisor MAS5 MAS6

MAS7_MAS3 372 Guest supervisor MAS7 MAS3

MAS8_MAS1 349 Hypervisor MAS8 MAS1

SPR 947 Guest supervisor

 32 33 34 35 41 42 47 48 49 50 63

R
EPR EAS EGS — ELPID — EPID

W

Reset All zeros

Figure 2-45. External PID Load Context (EPLC) register
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This table describes the EPLC fields.

2.13.11.2 External PID Store Context (EPSC) register

EPSC, shown in Figure 2-46, contains fields to provide the context for external PID store instructions. The 
field encoding is the same as EPLC. Only the low-order 6 bits of the ELPID field are implemented.

Writing to EPSC requires synchronization, as described in Section 3.3.3, “Synchronization requirements.”

Table 2-49. EPLC field descriptions — External PID load context

Bits Name Descriptions

32 EPR External load context PR bit. Used in place of MSR[PR] for load permission checking when an external PID 
load instruction is executed.
0 Supervisor mode
1 User mode

33 EAS External load context AS bit. Used in place of MSR[DS] for load translation when an external PID load 
instruction is executed. Compared with TLB[TS] during translation.
0 Address space 0
1 Address space 1

34 EGS External load context GS bit. Used in place of MSR[GS] for load translation when an external PID load 
instruction is executed. Compared with TLB[TGS] during translation.This field is only writable in the hypervisor 
state (MSR[PR] = 0 and MSR[GS] = 0)
0 Hypervisor address space
1 Guest address space

35–41 — Reserved

42–47 ELPID External load context LPID value. Used in place of LPIDR value for load translation when an external PID load 
instruction is executed. Compared with TLB[TLPID] during translation. This field is only writable in the 
hypervisor state (MSR[PR] = 0 and MSR[GS] = 0).

48–49 — Reserved

50–63 EPID External load context PID value. Used in place of all PID register values for load translation when an external 
PID load instruction is executed. Compared with TLB[TID] during translation.

SPR 948 Guest supervisor

 32 33 34 35 41 42 47 48 49 50 63

R
EPR EAS EGS — ELPID — EPID

W

Reset All zeros

Figure 2-46. External PID Store Context (EPSC) register
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This table describes the EPSC fields.

2.14 Internal debug registers
This section describes debug-related registers that are accessible to software running on the processor via 
the SPR interface. These registers are intended for use by special debug tools and debug software and not 
by general application or operating system code.

The register descriptions listed in this section show the register organization, addressing information, and 
offer a small amount of detail for the bits implemented. For a more comprehensive description of the debug 
facilities, including how these registers interact with other debug registers and components, see Chapter 9, 
“Debug and Performance Monitor Facilities.”

Each thread in the e6500 core has a private set of debug registers, including nexus related and instruction 
and data address compare registers.

The e6500 core implements the category Embedded Enhanced Debug from EREF, which provides a 
separate set of save/restore registers for debug interrupts (DSRR0/DSRR1, see Section 2.9.1, 
“Save/restore registers (xSRR0/xSRR1)”), an rfdi instruction to return from debug interrupts, and 
additional debug events for Critical Interrupt Taken and Critical Interrupt Return.

Table 2-50. EPSC field descriptions — External PID store context

Bits Name Descriptions

32 EPR External store context PR bit. Used in place of MSR[PR] for store permission checking when an external PID 
store instruction is executed.
0 Supervisor mode
1 User mode

33 EAS External store context AS bit. Used in place of MSR[DS] for store translation when an external PID store 
instruction is executed. Compared with TLB[TS] during translation.
0 Address space 0
1 Address space 1

34 EGS External store context GS bit. Used in place of MSR[GS] for load translation when an external PID store 
instruction is executed. Compared with TLB[TGS] during translation.This field is only writable in the hypervisor 
state (MSR[PR] = 0 and MSR[GS] = 0).
0 Hypervisor address space
1 Guest address space

35–41 — Reserved

42–47 ELPID External store context LPID value. Used in place of LPIDR value for load translation when an external PID store 
instruction is executed. Compared with TLB[TLPID] during translation. This field is only writable in the 
hypervisor state (MSR[PR] = 0 and MSR[GS] = 0).

48–49 — Reserved

50–63 EPID External store context PID value. Used in place of all PID register values for store translation when an external 
PID store instruction is executed. Compared with TLB[TID] during translation.
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2.14.1 Unimplemented internal debug registers

The e6500 core does not implement the following internal debug registers defined in EREF:

• DBCR3

• DVC1, DVC2

2.14.2 Debug Resource Request 0 (DBRR0) register

DBRR0, shown in Figure 2-47, allows an internal software debug agent to request debug resources. After 
writing this register to request debug resources, reading this register back indicates which ones were 
granted. This register does not affect the actual allocation of debug resources. Allocation is handled by the 
EDBRAC0 register. 

This table describes the DBRR0 fields.

SPR 700 Hypervisor
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2 Write 0 for resources not being requested or to release previously owned resources. Write 1 to request a resource be granted 
to the software debug agent.

Reset All zeros

Figure 2-47. Debug Resource Request 0 (DBRR0) register

Table 2-51. DBRR0 field descriptions

Bits Name Description

32–33 — Reserved 

34 RST Reset Field Control (DBCR0[RST])

35 UDE Unconditional Debug Event

36 ICMP Instruction Complete Debug Event (DBCR0[ICMP])

37 BRT Branch Taken Debug Event (DBCR0[BRT])

38 IRPT Interrupt Taken Debug Condition Enable (DBCR0[IRPT])

39 TRAP Trap Debug Event (DBCR0[TRAP])

40 IAC1/2 Instruction Address Compare 1 and 2

41 — Reserved

42 IAC3/4 Instruction Address Compare 3 and 4

43 — Reserved

44 DAC1/2 Data Address Compare 1 and 2

45–47 — Reserved
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2.14.3 External Debug Resource Allocation Control 0 (EDBRAC0) register

EDBRAC0, shown in Figure 2-48, allows an external host debugger to allocate debug resources for its 
usage.

When EDM mode is not enabled (EDBCR0[EDM] = 0), this register is ignored and an internal software 
debug agent can use any debug resources.

When EDM mode is enabled (EDBCR0[EDM]=1), debug resources that are allocated to the internal 
software debug agent (that is, the corresponding bit in this register is set) are usable by software only and 
are not accessible by the external host debugger. Similarly, debug resources that are allocated to the 
external host debugger (that is, the corresponding bit in this register is clear) are usable by the external host 
debugger only and are not accessible by an internal software debug agent.

Only the external host debugger can write to this register. However, this register is readable by the software 
via the SPR interface. 

48 RET Return Debug Event (DBCR0[RET])

49 IAC5/6 Instruction Address Compare 5 and 6

50 — Reserved

51 IAC7/8 Instruction Address Compare 7 and 8

52–53 — Reserved

54 TRACE e6500 Nexus Trace

55 PM Performance Monitor

56 EVTO01 Event Output 0

57 CIRPT Critical Interrupt Taken Debug Event (DBCR0[CIRPT])

58 CRET Return From Critical Interrupt Debug Event (DBCR0[CRET])

59 DNI Debug Notify Interrupt (dni) instruction

60 EVTO12 Event Output 1

61 EVTO22 Event Output 2

62 EVTO32 Event Output 3

63 EVTO42 Event Output 4

1 Does not have a corresponding bit in the External Debug Resource Allocation Control (EDBRAC0) register and, thus, is only 
provided to identify if the resource is currently in use. Allocation of this resource is not possible and, thus, internal and external 
debuggers should make every effort to not overwrite the configuration once the resource has been granted.

2 Does not have a corresponding bit in the External Debug Resource Allocation Control (EDBRAC0) register and, thus, is only 
provided to identify if the resource is currently being used. Allocation of this resource is not possible and, thus, internal and 
external debuggers should make every effort to not overwrite the configuration once the resource has been granted. The 
configuration of multiple event output bits is located in one register (DC3). If these events are shared, it is recommended that 
the external debugger configure these resources only when the core is halted. Otherwise, read-modify-write problems arise 
when both the internal and external debugger write to this register, and the results are unpredictable.

Table 2-51. DBRR0 field descriptions (continued)

Bits Name Description
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This table describes the EDBRAC0 fields.

SPR 638 Hypervisor RO
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Figure 2-48. External Debug Resource Allocation Control 0 (EDBRAC0) register

Table 2-52. EDBRAC0 field descriptions

Bits Name Description

32 — Reserved 

33 IDM
Internal Debug Mode Control (DBCR0[IDM])
0 Internal Debug Mode enable/disable is owned exclusively by an external debug host.
1  Internal Debug Mode enable/disable is owned exclusively by an internal debug agent.

34 RST
Reset Field Control (DBCR0[RST])
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

35 UDE
Unconditional Debug Event (DBCR0[UDE])
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

36 ICMP
Instruction Complete Debug Event (DBCR0[ICMP])
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

37 BRT
Branch Taken Debug Event (DBCR0[BRT])
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

38 IRPT
Interrupt Taken Debug Condition Enable (DBCR0[IRPT])
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

39 TRAP
Trap Debug Event (DBCR0[TRAP])
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

40 IAC1/2
Instruction Address Compare 1 and 2
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

41 — Reserved

42 IAC3/4
Instruction Address Compare 3 and 4
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

43 — Reserved

44 DAC1/2
Data Address Compare 1 and 2
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.



Register Model

e6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-85
 

2.14.4 Debug Control 0 (DBCR0) register

DBCR0, shown in Figure 2-49, is used to enable debug modes and control which debug events are allowed 
to set DBSR or EDBSR0 flags, reset the thread, and control timer operation during debug events. 

All bits in this register (except EDM and FT) are writable only by the owner (as defined in the EDBRAC0 
register when EDM is enabled). When EDM is disabled, the internal software debug agent has access to 
all resources, but should make sure to request the resources it is using via the DBRR0 register prior to 
configuring them.

45–47 — Reserved

48 RET
Return Debug Event (DBCR0[RET])
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

49 IAC5/6
Instruction Address Compare 5 and 6
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

50 — Reserved

51 IAC7/8
Instruction Address Compare 7 and 8
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

52–53 — Reserved

54 TRACE1
e6500 Processor Nexus Trace 
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

55 PM
Performance Monitor
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

56 — Reserved

57 CIRPT
Critical Interrupt Taken Debug Event (DBCR0[CIRPT])
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

58 CRET
Return From Critical Interrupt Debug Event (DBCR0[CRET])
0 Debug resource is owned exclusively by an external debug host.
1  Debug resource is allocatable/usable by an internal debug agent.

59 DNI

Debug Notify Interrupt (dni) instruction
0 Debug resource is owned exclusively by an external debug host. Execution of the dni instruction results 

in entry into debug halt mode (if EDBSRMSK0[DNIM] = 0).
1 Debug resource is allocatable/usable by an internal debug agent. Execution of the dni instruction results 

in either a debug interrupt (DBCR0[IDM] = 1 and MSR[DE] = 1) or a nop (DBCR0[IDM] = 0 or MSR[DE] 
= 0).

60–63 — Reserved

1 Does not include ownership of the DC2 and DC3 registers (for EVTO0-4 configuration). Those two registers are unprotected.

Table 2-52. EDBRAC0 field descriptions (continued)

Bits Name Description
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EDM is read only in this register and FT is writable via an SPR access only. The external debugger must 
halt the core and access FT via SPR.

When DBCR0[EDM] or DBCR0[IDM] are enabled, the debug resources in this register that are not 
enabled (excluding RST and FT) generate a watchpoint when the debug event occurs. Debug resources that 
are enabled (excluding RST and FT) cause the appropriate status register bit to be set (DBSR for debug 
events allocated to IDM, and EDBSR0 for debug events allocated to EDM) and will cause exception 
processing to begin (for debug events allocated to IDM) or the core to halt (for debug events allocated to 
EDM).

This table describes the DBCR0 fields.

SPR 308 Hypervisor
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Figure 2-49. Debug Control 0 (DBCR0) register

Table 2-53. DBCR0 field descriptions

Bits Name Description

32 EDM

External Debug Mode. This bit is read only by software. It reflects the status of EDBCR0[EDM].
0 External debug mode is disabled. Internal debug events are not mapped into external debug events.
1 External debug mode is enabled. Hardware-owned debug events do not cause the CPU to vector to 

interrupt code. Software is not permitted to write to debug registers {DBCR0-5, IAC1-8, DAC1-2} unless 
permitted by settings in DBRR0. Hardware-owned events set status bits in EDBSR0.

33 IDM

Internal Debug Mode
0 Debug exceptions are disabled. Debug events do not affect DBSR.
1 Debug exceptions are enabled. Enabled debug events owned by software update the corresponding bit 

in the DBSR. If MSR[DE] = 1, the occurrence of a debug event, or the recording of an earlier UDE debug 
event in the DBSR when MSR[DE] was cleared, causes a debug interrupt.

34–35 RST

Reset. 
The e6500 core implements these bits as follows:
0x Default (no action)
1x Core reset. Requests a core hard reset.

When owned by an internal software debug agent (EDBRAC0[RST] = 1), a write of DBCR0[RST] = 1x 
requests a core hard reset if MSR[DE] and DBCR0[IDM] are set. 
Always cleared on subsequent cycle. 

36 ICMP
Instruction Complete Debug Condition Enable
0 ICMP debug conditions are disabled.
1 ICMP debug conditions are enabled.
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37 BRT
Branch Taken Debug Condition Enable
0 BRT debug conditions are disabled.
1 BRT debug conditions are enabled.

38 IRPT

Interrupt Taken Debug Condition Enable. This bit affects only non-critical, non-debug, and non-machine 
check interrupts.
0 IRPT debug conditions are disabled.
1 IRPT debug conditions are enabled.

39 TRAP
Trap Debug Condition Enable
0 TRAP debug conditions are disabled.
1 TRAP debug conditions are enabled.

40 IAC1
Instruction Address Compare 1 Debug Condition Enable
0 IAC1 debug conditions are disabled.
1 IAC1 debug conditions are enabled.

41 IAC2
Instruction Address Compare 2 Debug Condition Enable
0 IAC2 debug conditions are disabled.
1 IAC2 debug conditions are enabled.

42 IAC3
Instruction Address Compare 3 Debug Condition Enable
0 IAC3 debug conditions are disabled.
1 IAC3 debug conditions are enabled.

43 IAC4
Instruction Address Compare 4 Debug Condition Enable
0 IAC4 debug conditions are disabled.
1 IAC4 debug conditions are enabled.

44–45 DAC1

Data Address Compare 1 Debug Condition Enable
00 DAC1 debug conditions are disabled.
01 DAC1 debug conditions are enabled only for store-type data storage accesses.
10 DAC1 debug conditions are enabled only for load-type data storage accesses.
11 DAC1 debug conditions are enabled for load-type or store-type data storage accesses.

46–47 DAC2

Data Address Compare 2 Debug Condition Enable
00 DAC2 debug conditions are disabled.
01 DAC2 debug conditions are enabled only for store-type data storage accesses.
10 DAC2 debug conditions are enabled only for load-type data storage accesses.
11 DAC2 debug conditions are enabled for load-type or store-type data storage accesses.

48 RET

Return Debug Condition Enable
This bit affects only non-critical, non-debug, and non-machine check interrupts.
0 RET debug conditions are disabled.
1 RET debug conditions are enabled.

49 IAC5
Instruction Address Compare 5 Debug Condition Enable
0 IAC5 debug conditions are disabled.
1 IAC5 debug conditions are enabled.

50 IAC6
Instruction Address Compare 6 Debug Condition Enable
0 IAC6 debug conditions are disabled.
1 IAC6 debug conditions are enabled.

51 IAC7
Instruction Address Compare 7 Debug Condition Enable
0 IAC7 debug conditions are disabled.
1 IAC7 debug conditions are enabled.

Table 2-53. DBCR0 field descriptions (continued)

Bits Name Description

W
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2.14.5 Debug Control 1 (DBCR1) register

DBCR1, shown in Figure 2-50, is implemented as defined by the architecture and described in EREF, with 
the following exceptions:

• IAC1- IAC4 comparisons must be based on effective addresses. Comparisons based on real 
addresses are not supported

• When IAC12M != 00, IAC2US and IAC2ER settings are ignored and IAC1US and IAC1ER values 
are used.

• When IAC34M != 00, IAC4US and IAC4ER settings are ignored and IAC3US and IAC3ER values 
are used.

52 IAC8
Instruction Address Compare 8 Debug Condition Enable
0 IAC8 debug conditions are disabled.
1 IAC8 debug conditions are enabled.

53–56 — Reserved

57 CIRPT
Critical Interrupt Taken Debug Condition Enable
0 CIRPT debug conditions are disabled.
1 CIRPT debug conditions are enabled.

58 CRET
Return From Critical Interrupt Debug Condition Enable
0 CRET debug conditions are disabled.
1 CRET debug conditions are enabled.

59–62 — Reserved

63 FT

Freeze Timers on Debug Event
0 Timebase counters are unaffected by DBSR bits.
1 Disable clocking of TimeBase counters whenever a DBSR bit is set (excluding DBSR[MRR]).

Note: The FT bit applies to all timers, including the shared TB and ATB, and each thread’s DEC, FIT, and 
watchdog timers.

SPR 309 Hypervisor

32 33 34 35 36 37 38 39 40 41 42 47 48 49 50 51 52 53 54 55 56 57 58 63

R

IA
C

1U
S

IA
C

1E
R

IA
C

2U
S

IA
C

2E
R

IA
C

12
M

—

IA
C

3U
S

IA
C

3E
R

IA
C

4U
S

IA
C

4E
R

IA
C

34
M

—W1

1 Software writes are not allowed to EDM-owned resources (as configured in the EDBRAC0 register) and are ignored. 

Reset All zeros

Figure 2-50. Debug Control 1 (DBCR1) register

Table 2-53. DBCR0 field descriptions (continued)

Bits Name Description
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This table describes the DBCR1 fields.

Table 2-54. DBCR1 field descriptions

Bits Name Description

32–33 IAC1US Instruction Address Compare 1 User/Supervisor Mode
00 IAC1 debug conditions are unaffected by MSR[PR], MSR[GS].
01 Reserved on e6500
10 IAC1 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).
11 IAC1 debug conditions can occur only if MSR[PR] = 1 (user mode).

34–35 IAC1ER Instruction Address Compare 1 Effective/Real Mode
00 IAC1 debug conditions are based on effective addresses.
01 Reserved on e6500
10 IAC1 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0.
11 IAC1 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1.

36–37 IAC2US Instruction Address Compare 2 User/Supervisor Mode
00 IAC2 debug conditions are unaffected by MSR[PR], MSR[GS].
01 Reserved on e6500
10 IAC2 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).
11 IAC2 debug conditions can occur only if MSR[PR] = 1 (user mode).

38–39 IAC2ER Instruction Address Compare 2 Effective/Real Mode
00 IAC2 debug conditions are based on effective addresses.
01 Reserved on e6500
10 IAC2 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0.
11 IAC2 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1.

40–41 IAC12M Instruction Address Compare 1/2 Mode1

00 Exact address compare. IAC1 debug conditions can occur only if the address of the instruction fetch is 
equal to the value specified in IAC1. IAC2 debug conditions can occur only if the address of the 
instruction fetch is equal to the value specified in IAC2. IAC1US, IAC1ER, and DBCR0[IAC1] are used 
for IAC1 conditions. IAC2US, IAC2ER, and DBCR0[IAC2] are used for IAC2 conditions. 

01 Address bit match. IAC1 debug conditions can occur only if the address of the instruction fetch ANDed 
with the contents of IAC2 is equal to the contents of IAC1, also ANDed with the contents of IAC2. IAC2 
debug conditions do not occur. The DBCR0[IAC1] setting is used. The value of DBCR0[IAC2] is ignored. 
IAC1US and IAC1ER are used to define the comparison, and IAC2US and IAC2ER are ignored.

10 Inclusive address range compare. IAC1 debug conditions can occur only if the address of the instruction 
fetch is greater than or equal to the value specified in IAC1 and less than the value specified in IAC22. 
IAC2 debug conditions do not occur. The DBCR0[IAC1] setting is used. The value of DBCR0[IAC2] is 
ignored. IAC1US and IAC1ER are used to define the comparison, and IAC2US and IAC2ER are 
ignored.

11 Exclusive address range compare. IAC1 debug conditions can occur only if the address of the 
instruction fetch is less than the value specified in IAC1 or is greater than or equal to the value specified 
in IAC23. IAC2 debug conditions do not occur. The DBCR0[IAC1] setting is used. The value of 
DBCR0[IAC2] is ignored. IAC1US and IAC1ER are used to define the comparison, and IAC2US and 
IAC2ER are ignored.

The e6500 core sets both DBSR[IAC1] and DBSR[IAC2] if IAC12M is set to anything other than 0b00 and 
an instruction address compare 1 or 2 event occurs.

42–47 — Reserved

48–49 IAC3US Instruction Address Compare 3 User/Supervisor Mode
00 IAC3 debug conditions unaffected by MSR[PR], MSR[GS].
01 Reserved on e6500
10 IAC3 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).
11 IAC3 debug conditions can occur only if MSR[PR] = 1 (user mode).
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50–51 IAC3ER Instruction Address Compare 3 Effective/Real Mode
00 IAC3 debug conditions are based on effective addresses
01 Reserved on e6500
10 IAC3 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0
11 IAC3 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1

52–53 IAC4US Instruction Address Compare 4 User/Supervisor Mode
00 IAC4 debug conditions unaffected by MSR[PR], MSR[GS].
01 Reserved on e6500
10 IAC4 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).
11 IAC4 debug conditions can occur only if MSR[PR] = 1 (user mode).

54–55 IAC4ER Instruction Address Compare 4 Effective/Real Mode
00 IAC4 debug conditions are based on effective addresses.
01 Reserved on e6500
10 IAC4 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0.
11 IAC4 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1.

56–57 IAC34M Instruction Address Compare 3/4 Mode4

00 Exact address compare. IAC3 debug conditions can occur only if the address of the instruction fetch is 
equal to the value specified in IAC3. IAC4 debug conditions can occur only if the address of the 
instruction fetch is equal to the value specified in IAC4. IAC3US, IAC3ER, and DBCR0[IAC3] are used 
for IAC3 conditions. IAC4US, IAC4ER, and DBCR0[IAC4] are used for IAC4 conditions. 

01 Address bit match. IAC3 debug conditions can occur only if the address of the instruction fetch ANDed 
with the contents of IAC4 is equal to the contents of IAC3, also ANDed with the contents of IAC4. IAC4 
debug conditions do not occur. The DBCR0[IAC3] setting is used. The value of DBCR0[IAC4] is ignored. 
IAC3US and IAC3ER are used to define the comparison, and IAC4US and IAC4ER are ignored.

10 Inclusive address range compare. IAC3 debug conditions can occur only if the address of the instruction 
fetch is greater than or equal to the value specified in IAC3 and less than the value specified in IAC45. 
IAC4 debug conditions do not occur. The DBCR0[IAC3] setting is used. The value of DBCR0[IAC4] is 
ignored. IAC3US and IAC3ER are used to define the comparison, and IAC4US and IAC4ER are 
ignored.

11 Exclusive address range compare. IAC3 debug conditions can occur only if the address of the 
instruction fetch is less than the value specified in IAC3 or is greater than or equal to the value specified 
in IAC46. IAC4 debug conditions do not occur. The DBCR0[IAC3] setting is used. The value of 
DBCR0[IAC4] is ignored. IAC3US and IAC3ER are used to define the comparison, and IAC4US and 
IAC4ER are ignored.

The e6500 core sets both DBSR[IAC3] and DBSR[IAC4] if IAC34M is set to anything other than 0b00 and 
an instruction address compare 3 or 4 event occurs.

58–63 — Reserved

1 When MSR[CM] = 0, IACn[0:31] are treated as zero for the purpose of comparison with the fetch effective address. When 
MSR[CM] = 1, bits 0-61 of the fetch effective address are compared to IACn[0:61].

2 If IAC1 > IAC2 or IAC1 = IAC2, a valid condition never occurs.
3 If IAC1 > IAC2 or IAC1 = IAC2, a valid condition may occur on every instruction fetch.
4 When MSR[CM] = 0, IACn[0:31] are treated as zero for the purpose of comparison with the fetch effective address. When 

MSR[CM] = 1, bits 0-61 of the fetch effective address are compared to IACn[0:61].
5 If IAC3 > IAC4 or IAC3 = IAC4, a valid condition never occurs.
6 If IAC3 > IAC4 or IAC3 = IAC4, a valid condition may occur on every instruction fetch.

Table 2-54. DBCR1 field descriptions (continued)

Bits Name Description
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2.14.6 Debug Control 2 (DBCR2) register

DBCR2, shown in Figure 2-51, is implemented as defined by the architecture and described in EREF, with 
the following exceptions:

• DAC comparisons are based on effective addresses only.

• Data Value Compare is not implemented.

• DACLINK1 and DACLINK2 are implemented.

This table describes the DBCR2 fields.
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1 When EDM is enabled (DBCR0[EDM] = 1), software writes are not allowed to EDM-owned resources (as configured in the 
EDBRAC0 register) and are ignored. 

Reset All zeros

Figure 2-51. Debug Control 2 (DBCR2) register

Table 2-55. DBCR2 field descriptions

Bits Name Description

32–33 DAC1US

Data Address Compare 1 User/Supervisor Mode
00 DAC1 debug conditions are unaffected by MSR[PR].
01 Reserved on e6500
10 DAC1 debug conditions can occur only if MSR[PR] = 0 supervisor mode).
11 DAC1 debug conditions can occur only if MSR[PR] = 1 (user mode).

34–35 DAC1ER

Data Address Compare 1 Effective/Real mode
00 DAC1 debug conditions are based on effective addresses.
01 Reserved on e6500
10 DAC1 debug conditions are based on effective addresses and can occur only if MSR[DS] = 0.
11 DAC1 debug conditions are based on effective addresses and can occur only if MSR[DS] = 1.

36–37 DAC2US

Data Address Compare 2 User/Supervisor Mode
00 DAC2 debug conditions are unaffected by MSR[PR], MSR[GS].
01 Reserved on e6500
10 DAC2 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).
11 DAC2 debug conditions can occur only if MSR[PR] = 1 (user mode).

38–39 DAC2ER

Data Address Compare 2 Effective/Real mode
00 DAC2 debug conditions are based on effective addresses.
01 Reserved on e6500
10 DAC2 debug conditions are based on effective addresses and can occur only if MSR[DS] = 0.
11 DAC2 debug conditions are based on effective addresses and can occur only if MSR[DS] = 1.
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40–41 DAC12M Data Address Compare 1/2 Mode
00 Exact address compare. DAC1 debug conditions can occur only if the data storage address is equal 

to the value specified in DAC1. DAC2 debug conditions can occur only if the data storage address is 
equal to the value specified in DAC2. DAC1US, DAC1ER, and DBCR0[DAC1] are used for DAC1 
conditions. DAC2US, DAC2ER, and DBCR0[DAC2] are used for DAC2 conditions. 1

01 Address bit match. DAC1 debug conditions can occur only if the data storage address ANDed with 
the contents of DAC2 is equal to the contents of DAC1, also ANDed with the contents of DAC2. DAC2 
debug conditions do not occur. The DBCR0[DAC1] setting is used. The value of DBCR0[DAC2] is 
ignored. DAC1US and DAC1ER values are used, and DAC2US and DAC2ER values are ignored.

10 Inclusive address range compare. DAC1 debug conditions can occur only if the data storage address 
is greater than or equal to the value specified in DAC1 and less than the value specified in DAC2.2 
DAC2 debug conditions do not occur. The DBCR0[DAC1] setting is used. The value of DBCR0[DAC2] 
is ignored. DAC1US and DAC1ER values are used, and DAC2US and DAC2ER values are ignored.

11 Exclusive address range compare. DAC1 debug conditions can occur only if the data storage 
address is less than the value specified in DAC1 or is greater than or equal to the value specified in 
DAC2.3 DAC2 debug conditions do not occur. The DBCR0[DAC1] setting is used. The value of 
DBCR0[DAC2] is ignored. DAC1US and DAC1ER values are used, and DAC2US and DAC2ER 
values are ignored.

The e6500 core sets both DBSR[DAC1] and DBSR[DAC2] if DAC12M is set to anything other than 0b00 
and a data address compare 1 or 2 event occurs.

DBCR2[DACLINK2] is ignored when DBCR2[DAC12M] is anything other than 0b00.

42 DACLINK1 Data Address Compare 1 Link to Instruction Address Compare 1
0 No effect
1 DAC1 debug events are linked to IAC1 debug conditions. IAC1 and IAC2 debug events are not 

generated when DACLINK1 is set irrespective of the DBCR1[IAC12M] setting. When linked to IAC1, 
the DAC1 debug event is qualified based on whether the instruction also generated an IAC1 debug 
condition.

43 DACLINK2 Data Address Compare 2 Link to Instruction Address Compare 3
0 No effect
1 DAC2 debug events are linked to IAC3 debug conditions. IAC3 and IAC4 debug events are not 

generated when DACLINK2 is set irrespective of the DBCR1[IAC34M] setting. When linked to IAC3, 
the DAC2 debug event is qualified based on whether the instruction also generated an IAC3 debug 
condition.

DBCR2[DACLINK2] is ignored when DBCR2[DAC12M] is anything other than 0b00.

44–63 — Reserved

1 See Section 2.14.7, “Debug Control 4 (DBCR4) register,” for extensions to the exact address match (range defined).
2 If DAC1 > DAC2 or DAC1 = DAC2, a valid condition never occurs.
3 If DAC1 > DAC2 or DAC1 = DAC2, a valid condition may occur on every data storage address.

Table 2-55. DBCR2 field descriptions (continued)

Bits Name Description
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2.14.7 Debug Control 4 (DBCR4) register

DBCR4 is used to extend the data address matching functionality, as described in the following figure. 

This table describes the DBCR4 fields.

Table 2-56. DBCR4 field descriptions
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1 When EDM is enabled (DBCR0[EDM] = 1), software writes are not allowed to EDM-owned resources (as configured in the 
EDBRAC0 register) and are ignored. 

Reset All zeros

Figure 2-52. Debug Control 4 (DBCR4) register

Bits Name Description

32–47 — Reserved

48-51 DAC1XM

Data Address Compare 1—Extended Mask Control
0000 No additional masking when DBCR2[DAC12M] = 00.
0001–1100

Exact Match Bit Mask. Number of low-order bits masked in DAC1 when comparing the storage 
address with the value in DAC1 for exact address compare (DBRCR2[DAC12M] = 00). The e6500 
core supports ranges up to 4 KB.

1101–1111
Reserved

52-55 DAC2XM

Data Address Compare 2—Extended Mask Control
0000 No additional masking when DBCR2[DAC12M] = 00.
0001–1100

Exact Match Bit Mask. Number of low order bits masked in DAC2 when comparing the storage 
address with the value in DAC2 for exact address compare (DBRCR2[DAC12M] = 00). The e6500 
core supports ranges up to 4 KB.

1101–1111
Reserved

56–57 — Reserved

58–59 DAC1CFG

Data Address Compare 1 Configuration
00 DAC1 debug watchpoints (when DBCR0[DAC1] = 00) are enabled for load-type or store-type 

storage accesses.
01 DAC1 debug watchpoints (when DBCR0[DAC1RD] = 00) are disabled for load-type storage 

accesses.
10 DAC1 debug watchpoints (when DBCR0[DAC1WR] = 00) are disabled for store-type storage 

accesses.
11 DAC1 debug watchpoints (when DBCR0[DAC1] = 00) are disabled.
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2.14.8 Debug Control 5 (DBCR5) register

DBCR5, shown in Figure 2-53, is used to configure instruction address compare operation for IAC5-8. 
This register is implemented as defined by the architecture and described in EREF, with the following 
exceptions:

• IAC5- IAC8 comparisons must be based on effective addresses. Comparisons based on real 
addresses are not supported.

• When IAC56M != 00, IAC6US and IAC6ER settings are ignored and IAC5US and IAC5ER values 
are used.

• When IAC78M != 00, IAC8US and IAC8ER settings are ignored and IAC7US and IAC7ER values 
are used.

This table describes the DBCR5 fields.

60–61 — Reserved

62–63 DAC2CFG

Data Address Compare 2 Configuration
00 DAC2 debug watchpoints (when DBCR0[DAC2] = 00) are enabled for load-type or store-type 

storage accesses.
01 DAC2 debug watchpoints (when DBCR0[DAC2RD] = 00) are disabled for load-type storage 

accesses.
10 DAC2 debug watchpoints (when DBCR0[DAC2WR] = 00) are disabled for store-type storage 

accesses.
11 DAC2 debug watchpoints (when DBCR0[DAC2] = 00) are disabled.
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1 When EDM is enabled (DBCR0[EDM] = 1), software writes are not allowed to EDM-owned resources (as 
configured in the EDBRAC0 register) and are ignored. 
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Figure 2-53. Debug Control 5 (DBCR5) register

Table 2-57. DBCR5 field descriptions

Bits Name Description

32–33 IAC5US Instruction Address Compare 5 User/Supervisor Mode
00 IAC5 debug conditions are unaffected by MSR[PR], MSR[GS].
01 Reserved on e6500
10 IAC5 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).
11 IAC5 debug conditions can occur only if MSR[PR] = 1 (user mode).

Bits Name Description
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34–35 IAC5ER Instruction Address Compare 5 Effective/Real Mode
00 IAC5 debug conditions are based on effective addresses.
01 Reserved on e6500
10 IAC5 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0.
11 IAC5 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1.

36–37 IAC6US Instruction Address Compare 6 User/Supervisor Mode
00 IAC6 debug conditions are unaffected by MSR[PR], MSR[GS].
01 Reserved on e6500
10 IAC6 debug conditions can occur only if MSR[PR]=0 (supervisor mode).
11 IAC6 debug conditions can occur only if MSR[PR]=1 (user mode).

38–39 IAC6ER Instruction Address Compare 6 Effective/Real Mode
00 IAC6 debug conditions are based on effective addresses.
01 Reserved on e6500
10 IAC6 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0.
11 IAC6 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1.

40–41 IAC56M Instruction Address Compare 5/6 Mode1

00 Exact address compare. IAC5 debug conditions can occur only if the address of the instruction fetch is 
equal to the value specified in IAC5. IAC6 debug conditions can occur only if the address of the 
instruction fetch is equal to the value specified in IAC6. IAC5US, IAC5ER, and DBCR0[IAC5] are used 
for IAC5 conditions. IAC6US, IAC6ER, and DBCR0[IAC6] are used for IAC6 conditions. 

01 Address bit match. IAC5 debug conditions can occur only if the address of the instruction fetch ANDed 
with the contents of IAC6 is equal to the contents of IAC5, also ANDed with the contents of IAC6. IAC6 
debug conditions do not occur. The DBCR0[IAC5] setting is used. The value of DBCR0[IAC6] is ignored. 
IAC6US and IAC6ER settings are ignored, and IAC5US and IAC5ER values are used.

10 Inclusive address range compare. IAC5 debug conditions can occur only if the address of the instruction 
fetch is greater than or equal to the value specified in IAC5 and less than the value specified in IAC6.2 
IAC6 debug conditions do not occur. The DBCR0[IAC5] setting is used. The value of DBCR0[IAC6] is 
ignored. IAC6US and IAC6ER settings are ignored, and IAC5US and IAC5ER values are used.

11 Exclusive address range compare. IAC5 debug conditions can occur only if the address of the 
instruction fetch is less than the value specified in IAC5 or is greater than or equal to the value specified 
in IAC63. IAC6 debug conditions do not occur. The DBCR0[IAC5] setting is used. The value of 
DBCR0[IAC6] is ignored. IAC6US and IAC6ER settings are ignored, and IAC5US and IAC5ER values 
are used.

The e6500 core sets both DBSR[IAC5] and DBSR[IAC6] bits if IAC56M is set to anything other than 0b00 
and an instruction address compare 5 or 6 event occurs.

42–47 — Reserved

48–49 IAC7US Instruction Address Compare 7 User/Supervisor Mode
00 IAC7 debug conditions are unaffected by MSR[PR], MSR[GS].
01 Reserved on e6500
10 IAC7 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).
11 IAC7 debug conditions can occur only if MSR[PR] = 1 (user mode).

50–51 IAC7ER Instruction Address Compare 7 Effective/Real Mode
00 IAC7 debug conditions are based on effective addresses.
01 Reserved on e6500
10 IAC7 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0.
11 IAC7 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1.

Table 2-57. DBCR5 field descriptions (continued)

Bits Name Description
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2.14.9 Debug Status (DBSR/DBSRWR) register

DBSR provides status information for debug events when DBCR0[IDM] = 1 and the corresponding 
DBCR0 bit is set, and for the most recent processor reset. 

DBSR is implemented as defined by the architecture and described in EREF, with the following exception:

• Two additional debug events are possible: CIRPT and CRET

52–53 IAC8US Instruction Address Compare 8 User/Supervisor Mode
00 IAC8 debug conditions unaffected by MSR[PR], MSR[GS].
01 Reserved on e6500
10 IAC8 debug conditions can occur only if MSR[PR] = 0 (supervisor mode).
11 IAC8 debug conditions can occur only if MSR[PR] = 1 (user mode.)

54–55 IAC8ER Instruction Address Compare 8 Effective/Real Mode
00 IAC8 debug conditions are based on effective addresses.
01 Reserved on e6500
10 IAC8 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0.
11 IAC8 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1.

56–57 IAC78M Instruction Address Compare 7/8 Mode4

00 Exact address compare. IAC7 debug conditions can occur only if the address of the instruction fetch is 
equal to the value specified in IAC7. IAC8 debug conditions can occur only if the address of the 
instruction fetch is equal to the value specified in IAC8. IAC7US, IAC7ER, and DBCR0[IAC7] are used 
for IAC7 conditions. IAC8US, IAC8ER, and DBCR0[IAC8] are used for IAC8 conditions. 

01 Address bit match. IAC7 debug conditions can occur only if the address of the instruction fetch ANDed 
with the contents of IAC8 is equal to the contents of IAC7, also ANDed with the contents of IAC8. IAC8 
debug conditions do not occur. The DBCR0[IAC7] setting is used. The value of DBCR0[IAC8] is ignored. 
IAC8US and IAC8ER settings are ignored, and IAC7US and IAC7ER values are used.

10 Inclusive address range compare. IAC7 debug conditions can occur only if the address of the instruction 
fetch is greater than or equal to the value specified in IAC7 and less than the value specified in IAC8.5 
IAC8 debug conditions do not occur. The DBCR0[IAC7] setting is used. The value of DBCR0[IAC8] is 
ignored. IAC8US and IAC8ER settings are ignored, and IAC7US and IAC7ER values are used

11 Exclusive address range compare. IAC7 debug conditions can occur only if the address of the 
instruction fetch is less than the value specified in IAC7 or is greater than or equal to the value specified 
in IAC8.6 IAC8 debug conditions do not occur. The DBCR0[IAC7] setting is used. The value of 
DBCR0[IAC8] is ignored. IAC8US and IAC8ER settings are ignored, and IAC7US and IAC7ER values 
are used.

The e6500 core sets both DBSR[IAC7] and DBSR[IAC8] bits if IAC78M is set to anything other than 0b00 
and an instruction address compare 7 or 8 event occurs.

58–63 — Reserved

1 When MSR[CM] = 0, IACn[0:31] are treated as zero for the purpose of comparison with the fetch effective address. When 
MSR[CM] = 1, bits 0-61 of the fetch effective address are compared to IACn[0:61].

2 If IAC5 > IAC6 or IAC5 = IAC6, a valid condition never occurs.
3 If IAC5 > IAC6 or IAC5 = IAC6, a valid condition may occur on every instruction fetch.
4 When MSR[CM] = 0, IACn[0:31] are treated as zero for the purpose of comparison with the fetch effective address. When 

MSR[CM] = 1, bits 0-61 of the fetch effective address are compared to IACn[0:61].
5 If IAC7 > IAC8 or IAC7 = IAC8, a valid condition never occurs.
6 If IAC7 > IAC8 or IAC7 = IAC8, a valid condition may occur on every instruction fetch.

Table 2-57. DBCR5 field descriptions (continued)

Bits Name Description
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DBSRWR is a write-only register that generally is a write port into DBSR used by the hypervisor to restore 
delayed debug interrupt state during partition switch. However, the e6500 core does not support delayed 
debug interrupts, so write capability is not needed. Writes to DBSRWR on the e6500 core are silently 
dropped and do not affect the value of DBSR.

DBSR is a write-one-to-clear register. Software should normally write DBSR with a mask specifying 
which bits of DBSR to clear. 

This figure shows the Debug Status Register Write (DBSRWR) register.

This figure shows the Debug Status (DBSR) register.

This table describes the DBSR fields.

SPR 306 (DBSRWR) Hypervisor WO
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Figure 2-54. Debug Status Register Write (DBSRWR) register
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Figure 2-55. Debug Status (DBSR) register

Table 2-58. DBSR field descriptions

Bits Name Description

32 — Reserved

33 UDE

Unconditional Debug Event
Set when an unconditional debug event has occurred while:
 • DBCR0[IDM] = 1, and
 • EDBCR0[EDM] = 0 or EDBRAC0[ICMP] = 1
An unconditional debug event can occur when the UDE signal (level sensitive, active low) is asserted to 
the core.

Note: Unconditional debug events are not affected by EPCR[DUVD] on the e6500 core.

34–35 MRR

Most Recent Reset. The e6500 implements MRR as follows:
00 No hard reset occurred because this bit was last cleared by software.
01 Reserved
10 The previous reset was a hard reset (default value on power-up).
11 Reserved
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36 ICMP
Instruction Complete Debug Event
Set if an instruction complete debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or 
EDBRAC0[ICMP] = 1, and DBCR0[ICMP] = 1.

37 BRT
Branch Taken Debug Event
Set if a branch taken debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or 
EDBRAC0[BRT] = 1, and DBCR0[BRT] = 1.

38 IRPT
Interrupt Taken Debug Event
Set if an interrupt taken debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or 
EDBRAC0[IRPT] = 1, and DBCR0[IRPT] = 1.

39 TRAP
Trap Instruction Debug Event
Set if a trap instruction debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or 
EDBRAC0[TRAP] = 1, and DBCR0[TRAP] = 1.

40 IAC1
Instruction Address Compare 1 Debug Event
Set if an IAC1 debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or EDBRAC0[IAC1] = 
1, and DBCR0[IAC1] = 1.

41 IAC2
Instruction Address Compare 2 Debug Event
Set if an IAC2 debug condition occurs while DBCR0[IDM] = 1, EDBRAC0[IAC2] = 1, and DBCR0[IAC2] = 1.

42 IAC3
Instruction Address Compare 3 Debug Event
Set if an IAC3 debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or EDBRAC0[IAC3] = 
1, and DBCR0[IAC3] = 1.

43 IAC4
Instruction Address Compare 4 Debug Event
Set if an IAC4 debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or EDBRAC0[IAC4] = 
1, and DBCR0[IAC4] = 1.

44 DAC1R
Data Address Compare 1 Read Debug Event
Set if a read-type DAC1 debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or 
EDBRAC0[DAC1] = 1, and DBCR0[DAC1] = 0b10 or 0b11.

45 DAC1W
Data Address Compare 1 Write Debug Event
Set if a write-type DAC1 debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or 
EDBRAC0[DAC1] = 1, and DBCR0[DAC1] = 0b01 or 0b11.

46 DAC2R
Data Address Compare 2 Read Debug Event
Set if a read-type DAC2 debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0, or 
EDBRAC0[DAC2] = 1, and DBCR0[DAC2] = 0b10 or 0b11.

47 DAC2W
Data Address Compare 2 Write Debug Event
Set if a write-type DAC2 debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0, or 
EDBRAC0[DAC2] = 1, and DBCR0[DAC2] = 0b01 or 0b11.

48 RET
Return Debug Event
Set if a return debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or EDBRAC0[RET] = 1, 
and DBCR0[RET] = 1.

49 IAC5
Instruction Address Compare 5 Debug Event
Set if an IAC5 debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or EDBRAC0[IAC5] = 
1, and DBCR0[IAC5] = 1.

50 IAC6
Instruction Address Compare 6 Debug Event
Set if an IAC6 debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or EDBRAC0[IAC6] = 
1, and DBCR0[IAC6] = 1.

Table 2-58. DBSR field descriptions (continued)

Bits Name Description



Register Model

e6500 Core Reference Manual, Rev 0

Freescale Semiconductor 2-99
 

2.14.10 Instruction address compare registers (IAC1–IAC8)

IAC1–IAC8, shown in Figure 2-56, are implemented as defined by the architecture and described in EREF, 
with one exception: software writes to an IACn register that is owned by an external debugger are ignored 
while the e6500 core is not halted.

IAC1–IAC8 are 64-bit registers on the e6500 core.

51 IAC7
Instruction Address Compare 7 Debug Event
Set if an IAC7 debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or EDBRAC0[IAC7] = 
1, and DBCR0[IAC7] = 1.

52 IAC8
Instruction Address Compare 8 Debug Event
Set if an IAC8 debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or EDBRAC0[IAC8] = 
1, and DBCR0[IAC8] = 1.

53–56 — Reserved 

57 CIRPT
Critical Interrupt Taken Debug Event
Set if a critical interrupt debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or 
EDBRAC0[CIRPT] = 1, and DBCR0[CIRPT] = 1.

58 CRET
Critical Return Debug Event
Set if a critical return debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or 
EDBRAC0[CRET] = 1, and DBCR0[CRET] = 1.

59 DNI
Debug Notify Interrupt (dni) instruction
Set if a dni instruction debug condition occurs while DBCR0[IDM] = 1, EDBCR0[EDM] = 0 or 
EDBRAC0[DNI] = 1, and MSR[DE] = 1.

60–63 — Reserved 

SPR 312 (IAC1) 
SPR 313 (IAC2) 
SPR 314 (IAC3) ,
SPR 315 (IAC4)
SPR 565 (IAC5)
SPR 566 (IAC6) ,
SPR 567 (IAC7) 
SPR 568 (IAC8) 

Hypervisor

0 61 62 63

R
Instruction Address —

W

Reset All zeros

Figure 2-56. Instruction address compare registers (IAC1-IAC8)

Table 2-58. DBSR field descriptions (continued)

Bits Name Description
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2.14.11 Data address compare registers (DAC1–DAC2)

DAC1–DAC2, shown in Figure 2-57, are implemented as defined by the architecture and described in 
EREF, with one exception: software writes to a DACn register that is owned by an external debugger are 
ignored while the e6500 core is not halted.

DAC1 and DAC2 are 64-bit registers on the e6500 core.

2.14.12 Nexus SPR access registers

The architecture defines the Nexus SPR access registers to provide access to the memory-mapped registers 
implemented as part of the core and described in Section 9.5, “Nexus registers.” The index offset for these 
registers can be specified in the Nexus SPR Configuration (NSPC) register, after which, access to these 
registers can be made by using mtspr and mfspr instructions to read and write the Nexus SPR Data 
(NSPD) register.

2.14.12.1 Nexus SPR Configuration (NSPC) register

NSPC, shown in Figure 2-58, provides a mechanism for software to access Nexus debug resources through 
SPR instructions. See Section 9.10.3.2, “Special-purpose register access (Nexus only),” for details on 
accessing Nexus resources through NSPC.

This table describes the NSPC fields. See Table 9-31 for the list of Nexus registers that can be accessed.

SPR 316 (DAC1)
SPR 317 (DAC2) / 

Hypervisor

0 63

R
Data Address

W

Reset All zeros

Figure 2-57. Data address compare registers (DAC1–DAC2)

SPR 984 Hypervisor

32 51 52 63

R
— INDX

W

Reset All zeros

Figure 2-58. Nexus SPR Configuration (NSPC) register

Table 2-59. NSPC field descriptions

Bits Name Description

32–51 — Reserved

52–63 INDX Register index1

1 See to Table 9-31 for appropriate index values for accessing Nexus registers.
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2.14.12.2 Nexus SPR Data (NSPD) register

NSPD, shown in Figure 2-59, provides a mechanism to transfer data to and from SPR resources. The 
Nexus resource to be accessed is determined by the programming of NSPC. For write operations, the write 
data should be loaded into the NSPD. For read operations, the read data may be acquired from the NSPD.

Writing to NSPD requires an isync instruction immediately following the mtspr instruction to NSPD to 
ensure that the write is completed.

2.14.13  Debug Event Select (DEVENT) register

DEVENT, shown in Figure 2-60, allows instrumented software to internally generate signals when an 
mtspr instruction is executed and this register is accessed. The value written to this register determines 
which processor output signals fire upon access. These signals are used for internal core debug resources, 
such as the performance monitor, as well as for SoC-level cross-triggering. See the SoC reference manual 
for more information on use cases.

The upper 8 DEVENT bits also provide the IDTAG used to identify channels within Data Acquisition 
Messages. See Section 9.11.17, “Data Acquisition Trace,” for more details on the IDTAG.

This table describes the DEVENT fields.

SPR 983 Hypervisor

32 63

R
Nexus SPR Read/Write Data

W

Reset All zeros

Figure 2-59. Nexus SPR Data (NSPD) register

SPR 975 User

32 39 40 55 56 63

R
DQTAG — DEVNT

W

Reset All zeros

Figure 2-60. Debug Event (DEVENT) register

Table 2-60. DEVENT field descriptions

Bits Name Description

32–39 DQTAG IDTAG channel identifier used in Data Acquisition Messages

40–55 — Reserved
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2.14.14 Debug Data Acquisition Message (DDAM) register

DDAM, shown in Figure 2-61, allows instrumented software to generate real-time data acquisition 
messages (as defined by Nexus) when an mtspr instruction is executed and this register is written. See 
Section 9.11.17, “Data Acquisition Trace,” for details.

This table describes the DDAM fields.

2.14.15 Nexus Process ID (NPIDR) register

NPIDR, shown in Figure 2-62, allows the full process ID utilized by the OS to be transmitted within Nexus 
Ownership Trace Messages.

56–63 DEVNT

Debug Event Signals
00000000 = No signal is asserted
xxxxxxx1 = DVT0 is asserted
xxxxxx1x = DVT1 is asserted
xxxxx1xx = DVT2 is asserted
xxxx1xxx = DVT3 is asserted
xxx1xxxx = DVT4 is asserted
xx1xxxxx = DVT5 is asserted
x1xxxxxx = DVT6 is asserted
1xxxxxxx = DVT7 is asserted

SPR 576 User WO

32 63

R

W DDAM

Reset All zeros

Figure 2-61. Debug Data Acquisition Message (DDAM) register

Table 2-61. DDAM field descriptions

Bits Name Description

32–63 DDAM Data value to be transmitted in a Data Acquisition Message (DQM)

Table 2-60. DEVENT field descriptions (continued)

Bits Name Description
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NOTE
OS accesses to NPIDR must be performed in addition to writes to the PID 
register used to create translated addresses in the MMU for Nexus 
messaging.

2.15 Multi-threaded operation management registers
A combination of SPRs and TMRs manages threads and thread execution on the e6500 core.

2.15.1 Thread (processor) management SPRs

The TENSR, TENS, and TENC SPRs provide thread control within the multi-threaded e6500. The TIR 
SPR register gives a unique thread identifier within a multi-threaded processor. The PPR32 register allows 
software to assign priorities to the current thread in execution.

2.15.1.1 Thread Identification (TIR) register

TIR, shown in Figure 2-63, contains a read-only, thread-dependent value, with valid values of 0 and 1, that 
represents a unique thread number within the multi-threaded e6500 core. A thread for which TIR = n is 
referred to as “thread n.”

Each thread has a private TIR. 

Software Note
The value of TIR is the same as the initial value of PIR[THREAD_ID].

SPR 517 User

32 63

R
Full OS Process ID 

W

Reset All zeros

Figure 2-62. Nexus Process ID (NPIDR) register

 SPR 446 Hypervisor RO

32 63

R Thread number

W

Reset Thread-specific enumerated value

Figure 2-63. Thread Identification (TIR) register
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2.15.1.2 Thread Enable (TEN) register

TEN is a 64-bit register, shown in Figure 2-64, that represents which threads are enabled in a 
multi-threaded processor. For t < 2 (e6500 implements two threads), bit 63-t of TEN corresponds to thread 
t.

The e6500 has a single TEN that is shared by the threads.

TEN is not directly accessible. TEN is written by writing to TENS or the TENC registers, which set or 
clear bits in TEN, respectively. TEN is read by reading either TENS or TENC. Reading TEN (through 
TENS or TENC) represents the current set of values from the last writes to TENS and TENC. Reading 
TEN through the TENSR register represents the current state of the threads. (That is, when a thread is 
disabled by writing TENC, software can determine when a thread has been disabled by polling TENSR.) 
Bits representing threads that are not implemented are ignored and always return 0 when read through 
TENS, TENC, or TENSR.

Software Note
To enable a thread, software sets its associated bit in TENS. More than one 
thread may be enabled with a single write to TENS if multiple bits are set. 
To disable a thread, software sets its associated bit in TENC. More than one 
thread may be disabled with a single write to TENC if multiple bits are set. 

This table describes the TEN fields.
 

2.15.1.3 Thread Enable Set (TENS) register

TENS is a 64-bit register, shown in Figure 2-65, that allows software to enable threads in the dual-threaded 
e6500 processor. For t < 2 (e6500 implements two threads), bit 63-t corresponds to thread t. When TENS 
is written, threads for which the corresponding bits in TENS are 1 are enabled; threads for which the 
corresponding bits in TENS are 0 are unaffected. Reading TEN (through TENS) represents the current set 

 SPR none, accessed through TENS, TENC Hypervisor
(shared)

0 61 62 63

R
—

T
E

N
1

T
E

N
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 2-64. Thread Enable (TEN) register

Table 2-62. TEN field descriptions

Bits Name Description

0–61 — Reserved, should be 0.

62 TEN1 Thread 1 is enabled.

63 TEN0 Thread 0 is enabled.
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of values from the last writes to TENS and TENC. Bits representing threads that are not implemented are 
ignored and always return 0 when read through TENS.

The e6500 core has a single TENS that is shared by both threads.

For the e6500 core, software should not attempt to enable a thread that it previously disabled unless the 
TENSR value of that thread shows that it is completely disabled. A write of 1 to bit x of TENS is ignored 
unless bit x of TENSR is 0. 

Software Note
To enable a thread, software sets its associated bit in TENS. More than one 
thread may be enabled with a single write to TENS if multiple bits are set. 

This table describes the writable TENS fields. See Table 2-66 for descriptions of the TENS read fields.
 

2.15.1.4 Thread Enable Clear (TENC) register

TENC is a 64-bit register, shown in Figure 2-66, that allows software to disable threads in the 
dual-threaded e6500 processor. For t < 2 (e6500 implements two threads), bit 63-t corresponds to thread t. 
When TENC is written, threads for which the corresponding bits in TENC are 1 are disabled; threads for 
which the corresponding bits in TENC are 0 are unaffected. Reading TEN (through TENC) represents the 
current set of values from the last writes to TENS and TENC. Bits representing threads that are not 
implemented are ignored and always return 0 when read through TENS.

The e6500 core has a single TENC that is shared by both threads.

Software Note
To disable a thread, software sets its associated bit in TENC. More than one 
thread may be disabled with a single write to TENC if multiple bits are set.

 SPR 438 Hypervisor
(shared)

0 61 62 63

R —

T
E

N
1

T
E

N
0

W —

T
E

1

T
E

0

Reset All zeros 0 1

Figure 2-65. Thread Enable Set (TENS) register

Table 2-63. TENS writable field descriptions

Bits Name Description

0–61 — Reserved, should be 0.

62 TE1 Enable (set) thread 1.

63 TE0 Enable (set) thread 0.
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This table describes the writable TENC fields. See Table 2-66 for descriptions of the writable TENC fields.
 

2.15.1.5 Thread Enable Status (TENSR) register

TENSR is a 64-bit register, shown in Figure 2-67, that allows software to determine which threads in a 
multi-threaded processor are enabled or disabled. For t < 2 (e6500 implements 2 threads), bit 63-t 
corresponds to thread t. When TENSR is read, threads for which the corresponding bits in TENS are 1 are 
enabled; threads for which the corresponding bits in TENSR are 0 are disabled or unimplemented. When 
a thread is disabled by writing to TENC, software can determine when the thread actually is disabled by 
polling the appropriate bit in TENSR.

The e6500 core has a single TENSR that is shared by both threads.

Software Note
When a thread Tx disables other threads, Tz, it writes 1 to the TENC bits 
corresponding to Tz. In order to ensure that all updates to the shared state 
among threads in a processor core (SPRs and other state such as caches and 
TLBs) caused by instructions being performed by threads Tz have been 
performed with respect to all threads on a processor core, thread Tx reads 
the TENSR until all the bits corresponding to the disabled threads, Tz are 0s.

 SPR 439 Hypervisor
(shared)

0 61 62 63

R —

T
E

N
1

T
E

N
0

W —

T
D

1

T
D

0

Reset All zeros 0 1

Figure 2-66. Thread Enable Clear (TENC) register

Table 2-64. TENC writable field descriptions

Bits Name Description

0–61 — Reserved, should be 0.

62 TD1 Disable (clear) thread 1.

63 TD0 Disable (clear) thread 0.
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This table describes the TENSR fields.
 

2.15.1.6 Processor Priority (PPR32) register

PPR32, shown in Figure 2-68, specifies what priority a thread has in relation to other threads in a 
multi-threaded processor. For priority, lower numeric values denote lower priority and higher numeric 
values denote higher priority. Thread priority may be used to determine which threads have priority when 
arbitrating for shared resources in a multi-threaded processor. The number of bits implemented in the PRI 
field is three. The number of bits implemented is defined by TMCFG0[NPRIBITS].

Each of the threads in the e6500 core has a private PPR32.

The PRI field may be set by executing mtspr or by executing special forms of the or instruction (or 
rx,rx,rx). In user mode, only values two through four may be set. In the guest-supervisor state, only values 
one through six can be set. If software attempts to set a value that is not allowed, the PRI field remains 
unchanged.

The priority of another thread can be changed by writing the TPRIn associated with the thread.

The PRI field is an alias for the TMR TPRIn register associated with the executing thread.

Note: Thread priorities are not used by the e6500 core multi-threaded processor.

 SPR 437 Hypervisor RO
(shared)

0 61 62 63

R —

T
S

1

T
S

0

W

Reset All zeros 0 1

Figure 2-67. Thread Enable Status (TENSR) register

Table 2-65. TENSR field descriptions

Bits Name Description

0–61 — Reserved, should be 0.

62 TS1 Thread 1 is enabled. A value of 1(0) means that thread 1 is enabled (disabled).

63 TS0 Thread 0 is enabled. A value of 1(0) means that thread 0 is enabled (disabled).

 SPR 898 User

32 45 46 63

R
— PRI —

W

Reset All zeros

Figure 2-68. Processor Priority (PPR32) register
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This table describes the PPR32 fields.
 

2.15.2 Thread management registers (TMRs)

TMRs are on-chip registers accessed with the mttmr and mftmr instructions and are used to control the 
use of threads in the e6500 multi-threaded processor and other architected processor resources related to 
threads.

The e6500 core has a single set of TMRs, all of which are shared by both threads.

2.15.2.1 Thread Management Configuration 0 (TMCFG0) register

TMCFG0, shown in Figure 2-69, contains read-only configuration information about the multi-threading 
implementation.

This table describes TMCFG0 fields.

Table 2-66. PPR32 field descriptions

Bits Name Description

32–42 — Reserved, should be 0.

43–45 PRI Thread priority. The following values are defined:
000 Default (hypervisor only). This value should only be used out of reset.
001 Very low (supervisor or hypervisor only)
010 Low
011 Medium-low
100 Medium
101 Medium-high (supervisor or hypervisor only)
110 High (supervisor or hypervisor only)
111 Very high (hypervisor only)

46–63 — Reserved, should be 0.

 TMR 16 Hypervisor RO
(shared)

32 41 42 47 48 49 50 55 56 57 58 61 62 63

R — NPRIBITS — NATHRD — NTHRD

W

Reset All zeros 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

Figure 2-69. Thread Management Configuration 0 (TMCFG0) register

Table 2-67. TMCFG0 field descriptions

Bits Name Description

32–41 — Reserved, should be 0.

42–47 NPRIBITS Number of bits of thread priority implemented. These are the number of least significant bits of each TPRIn 
register. The e6500 core implements three thread priority bits.

48–49 — Reserved, should be 0.
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2.15.2.2 Thread Initial Next Instruction Address n (INIAn) registers 

INIAn registers, shown in Figure 2-70, are 64-bit registers that contain the current fetch address of a 
thread, where INIAn corresponds to thread n. INIAn registers specify what address should be used to fetch 
instructions for each thread. An INIAn register may only be written when the associated thread is disabled. 
Thus, a thread cannot write its own NIA, and writing to the INIAn register of any thread n that is enabled 
is ignored on the e6500 core. The facility is expected to be used only in initialization to position threads 
prior to first execution. Writing to an INIAn register in 32-bit mode causes the upper 32 bits in the 
destination register to be set to 0. Bits 62 and 63 of the INIAn registers are not writable and always 
maintain a value of 0. INIAn is an alias for the SPR NIA, which is private to thread n.

2.15.2.3 Thread Initial Machine State Register n (IMSRn) registers

IMSRn registers, shown in Figure 2-71, contain the current machine state register of a thread, where 
IMSRn corresponds to thread n. IMSRn registers specify the MSR for each thread. An IMSRn register may 
only be written when the associated thread is disabled. Thus, a thread cannot write its own MSR, and 
writing to the IMSRn register of any thread n that is enabled is ignored on the e6500 core. The facility is 
expected to be used only in initialization to set the initial machine state of threads prior to first execution. 
IMSRn is an alias for the MSR, which is private to thread n.

50–55 NATHRD Number of active threads implemented. The e6500 core implements two simultaneously active threads.

56–57 — Reserved, should be 0.

58–63 NTHRD Number of threads implemented. The e6500 core implements two threads.

 TMR 320 (INIA0)
...
321 (INIA1)

Hypervisor WO
(shared)

0 61 62 63

R

W Instruction address 0 0

Reset 0x0000_0000_ffff_fffc (address to start execution out of reset)

Figure 2-70. Thread Initial Next Instruction Address n (INIAn) registers

 TMR 288 (IMSR0)
...
289 (IMSR1)

Hypervisor WO
(shared)

32 63

R

W For bit definition see Section 2.7.1, “Machine State (MSR) register”

Reset all zeros

Figure 2-71. Thread Initial Machine State n (IMSRn) registers

Table 2-67. TMCFG0 field descriptions

Bits Name Description
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2.15.2.4 Thread Priority n (TPRIn) registers

TPRIn registers, shown in Figure 2-72, allow threads to change the priority of any thread, where TPRIn 
corresponds to thread n. TPRIn registers specify what priority a thread has in relation to other threads in a 
multi-threaded processor. For priority, lower numeric values denote lower priority and higher numeric 
values denote higher priority. Thread priority may be used to determine which threads have priority when 
arbitrating for shared resources in a multi-threaded processor. Three bits are implemented in the TPRIn 
registers of the e6500 core. The number of bits implemented is defined by TMCFG0[NPRIBITS].

TPRIn is an alias for the SPR PPR32[PRI] field, which is private to thread n.

Note: Thread priorities are not used by the e6500 multi-threaded processor.

2.16 Performance monitor registers (PMRs)
The performance monitor provides a set of performance monitor registers (PMRs) per thread for defining, 
enabling, and counting conditions that trigger the performance monitor interrupt. PMRs are defined in 
EREF.

The performance monitor also defines (G)IVOR35 (see Section 2.9.5, “(Guest) Interrupt Vector Offset 
(IVORs/GIVORs) registers”) for providing the address of the performance monitor interrupt vector. 
(G)IVOR35 is described in the interrupt model chapter of EREF. The e6500 core implements a single 
IVOR35 that is shared by both threads and a private GIVOR35 per thread.

 TMR 192 (TPRI0)
...
193 (TPRI1)

Hypervisor
(shared)

32 60 61 63

R
—

Thread 
priorityW

Reset All zeros

Figure 2-72. Thread Priority n (TPRIn) registers
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PMRs are similar to SPRs and are accessed using mtpmr and mfpmr instructions. As shown in the 
following table, the contents of the PMRs are reflected to a read-only user-level equivalent.

Each thread in the e6500 core has a private set of PMRs.

Attempting to access a supervisor PMR from user mode (MSR[PR] = 1) results in a privileged instruction 
exception. Attempting to access a non-existent PMR in any privilege mode results in an illegal instruction 
exception.

If MSRP[PMMP] = 1, access to PMRs can cause embedded hypervisor privilege exceptions or return a 
value of 0 in the target register. This behavior is described in EREF.

Table 2-68. Performance monitor registers (PMRs)

Name
Supervisor User

Section/Page
Abbreviation PMRn Abbreviation PMRn

Performance monitor counter 0 PMC0 16 UPMC0 0 2.16.4/2-118

Performance monitor counter 1 PMC1 17 UPMC1 1

Performance monitor counter 2 PMC2 18 UPMC2 2

Performance monitor counter 3 PMC3 19 UPMC3 3

Performance monitor counter 4 PMC4 20 UPMC4 4

Performance monitor counter 5 PMC5 21 UPMC5 5

Performance monitor local control a0 PMLCa0 144 UPMLCa0 128 2.16.2/2-112

Performance monitor local control a1 PMLCa1 145 UPMLCa1 129

Performance monitor local control a2 PMLCa2 146 UPMLCa2 130

Performance monitor local control a3 PMLCa3 147 UPMLCa3 131

Performance monitor local control a4 PMLCa4 148 UPMLCa4 132

Performance monitor local control a5 PMLCa5 149 UPMLCa5 133

Performance monitor local control b0 PMLCb0 272 UPMLCb0 256 2.16.3/2-114

Performance monitor local control b1 PMLCb1 273 UPMLCb1 257

Performance monitor local control b2 PMLCb2 274 UPMLCb2 258

Performance monitor local control b3 PMLCb3 275 UPMLCb3 259

Performance monitor local control b4 PMLCb4 276 UPMLCb4 260

Performance monitor local control b5 PMLCb5 277 UPMLCb5 261

Performance monitor global control 0 PMGC0 400 UPMGC0 384 2.16.1/2-112
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2.16.1 Performance Monitor Global Control 0 (PMGC0) and User
Performance Monitor Global Control 0 (UPMGC0) registers

PMGC0, shown in Figure 2-73, controls all performance monitor counters. PMGC0 contents are reflected 
to UPMGC0, which is readable by user-level software. The e6500 core implements these registers as 
defined in EREF, with the exception of the following implementation-specific fields: 

• Time base selector (TBSEL), bits 51–52, selects the time base bit that can cause a time base 
transition event (the event occurs when the selected bit changes from 0 to 1). 

• Time base transition event exception enable (TBEE), bit 55. 

PMGC0 is cleared by a hard reset. Reading this register does not change its contents. This table describes 
the e6500-specific PMGC0 and UPMGC0 fields.

2.16.2 Local control A registers (PMLCa0–PMLCa5/UPMLCa0–UPMLCa5) 

PMLCa0–PMLCa5 function as event selectors and give local control for the corresponding performance 
monitor counters. PMLCan works with the corresponding PMLCbn. PMLCan contents are reflected to 

PMR PMGC0 (PMR400)UPMGC0 (PMR384) PMGC0: Guest supervisor
UPMGC0: User RO

32 33 34 35 50 51 52 53 54 55 56 63

R
FAC PMIE FCECE — TBSEL — TBEE —

W

Reset All zeros

Figure 2-73. Performance Monitor Global Control 0 (PMGC0) and 
User Performance Monitor Global Control 0 (UPMGC0) registers

Table 2-69. PMGC0/UPMGC0 implementation-specific field descriptions

Bits Name Description

51–52 TBSEL Time base selector. Selects the time base bit that can cause a time base transition event (the event occurs when 
the selected bit changes from 0 to 1). 
00 TB[63] (TBL[31])
01 TB[55] (TBL[23])
10 TB[51] (TBL[19])
11 TB[47] (TBL[15])
Time base transition events can be used to periodically collect information about processor activity. In 
multi-processor systems in which TB registers are synchronized among processors, time base transition events 
can be used to correlate the performance monitor data obtained by several processors. For this use, software 
must specify the same TBSEL value for all processors in the system. Because the time-base frequency is 
implementation-dependent, software should invoke a system service program to obtain the frequency before 
choosing a value for TBSEL. 

55 TBEE Time base transition event exception enable 
0 Exceptions from time base transition events are disabled.
1 Exceptions from time base transition events are enabled. A time base transition is signaled to the performance 

monitor if the TB bit specified in PMGC0[TBSEL] changes from 0 to 1. Time base transition events can be 
used to freeze the counters (PMGC0[FCECE]) or signal an exception (PMGC0[PMIE]).
Changing PMGC0[TBSEL] while PMGC0[TBEE] is enabled may cause a false 0-to-1 transition that signals 
the specified action (freeze, exception) to occur immediately. Although the interrupt signal condition may occur 
with MSR[EE] = 0, the interrupt cannot be taken until MSR[EE] = 1 or MSR[GS] = 1.
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UPMLCan. The e6500 core implements these registers as they are defined by the architecture and 
described in EREF, with the following exception:

• The EVENT field only implements the low-order 9 bits of the EREF-defined field.

This table describes the PMLCa fields.

PPMLCa0 (PMR144) / UPMLCa0 (PMR128)
PMLCa1 (PMR145) / UPMLCa1 (PMR129) ,
PMLCa2 (PMR146) / UPMLCa2 (PMR130) 
PMLCa3 (PMR147) / UPMLCa3 (PMR131) 
PMLCa4 (PMR148) / UPMLCa4 (PMR132) 
PMLCa5 (PMR149) / UPMLCa5 (PMR133)

 PMLCa0–PMLCa5: Guest supervisor
UPMLCa0–UPMLCa5: User RO

32 33 34 35 36 37 38 39 47 48 61 62 63

R
FC FCS FCU FCM1 FCM0 CE — EVENT — FCGS1 FCGS0

W

Reset All zeros

Figure 2-74. Local control A (PMLCa0–PMLCa5/UPMLCa0–UPMLCa5) registers

Table 2-70. PMLCa0–PMLCa5/UPMLCa0–UPMLCa5 field descriptions

Bits Name Description

32 FC Freeze counter
0 PMC is incremented (if permitted by other PM control bits).
1 PMC is not incremented.

33 FCS Freeze counter in supervisor state
0 PMC is incremented (if permitted by other PM control bits).
1 PMC is not incremented if MSR[PR] = 0.

34 FCU Freeze counter in user state 
0 PMC is incremented (if permitted by other PM control bits).
1 PMC is not incremented if MSR[PR] = 1.

35 FCM1 Freeze counter while mark = 1
0 PMC is incremented (if permitted by other PM control bits).
1 PMC is not incremented if MSR[PMM] = 1.

36 FCM0 Freeze counter while mark = 0
0 PMC is incremented (if permitted by other PM control bits).
1 PMC is not incremented if MSR[PMM] = 0.

37 CE Condition enable
0 PMCx overflow conditions cannot occur. (PMCx cannot cause interrupts or freeze counters.)
1 Overflow conditions occur when the most significant bit of PMCx is equal to one.
It is recommended that CE be cleared when counter PMCx is selected for chaining.

38 — Reserved

39–47 EVENT Event selector. Up to 511 events are selectable. When this field is 0, the PMC is not incremented.

48–61 — Reserved
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2.16.3 Local control b registers (PMLCb0–PMLCb5/UPMLCb0–UPMLCb5)

PMLCb0–PMLCb5, shown in Figure 2-75, specify a threshold value and a multiple to apply to a threshold 
event selected for the corresponding performance monitor counter. For the e6500 core, thresholding is 
supported only for PMC0 and PMC1. PMLCbn works with the corresponding PMLCan. PMLCbn 
contents are reflected to UPMLCan. The e6500 core implements these registers as they are defined in 
EREF, except for the following e6500-specific fields:

• TRIGONCTL and TRIGOFFCTL is available for triggering control.

• PMCC and PMP are available for triggering status.

Table 2-71 describes the PMLCb fields.

The implementation-specific fields TRIGONCTL and TRIGOFFCTL provide a method for certain 
conditions in the processor from the debug facility or the performance monitor facility to start and stop 
performance monitor counting when a certain programmed condition occurs and the counter is not frozen.

NOTE
For the purposes of this section, “frozen” means the counter is frozen by 
means of either PMLCax[FC] or PMGC0[FAC]. 

The trigger state is either set to ON or OFF depending on how the controls are programmed and when the 
programmed conditions occur in the processor. When the trigger state is ON, events are enabled for 
counting in PMCx if counting is enabled by all other performance monitor controls. If the trigger state is 
OFF, counting is disabled for PMCx. For both controls, the following applies to how the trigger state is 
determined:

62 FCGS1 Freeze counters in guest state
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[GS] = 1.

63 FCGS0 Freeze counters in hypervisor state
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[GS] = 0.

PMLCb0 (PMR272) / UPMLCb0 (PMR256) 
PMLCb1 (PMR273) / UPMLCb1 (PMR257) 
PMLCb2 (PMR274) / UPMLCb2 (PMR258) 
PMLCb3 (PMR275) / UPMLCb3 (PMR259) 
PMLCb4 (PMR276) / UPMLCb4 (PMR260) 
PMLCb5 (PMR277) / UPMLCb5 (PMR261) 

PMLCb0–PMLCb5: Guest supervisor
UPMLCb0–UPMLCb5: User RO

32 35 36 39 40 41 47 48 50 51 52 53 55 56 57 58 63

R
TRIGONCTL TRIGOFFCTL

PMCC
— PMP — THRESHMUL — THRESHOLD

W

Reset All zeros

Figure 2-75. Local control b registers (PMLCb0–PMLCb5/UPMLCb0–UPMLCb5) 

Table 2-70. PMLCa0–PMLCa5/UPMLCa0–UPMLCa5 field descriptions (continued)

Bits Name Description
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• When the counter is frozen by means of either PMLCax[FC] = 1 or PMGC0[FAC] = 1, the trigger 
state is set to OFF. The trigger state remains off until the counter is unfrozen and a subsequent 
condition sets the trigger state to ON.

• If TRIGONCTL = 0b0000, the trigger state is always set to ON when the counter is not frozen. 
This setting is used to make triggers inactive and all other performance monitor controls determine 
whether events are counted. Note that if PMLCax[EVENT] = 0, the counter is considered frozen.

• If a condition occurs that is programmed via TRIGONCTL and the counter is not frozen, the trigger 
state is set to ON.

• If a condition occurs that is programmed via TRIGOFFCTL and the counter is not frozen, the 
trigger state is set to OFF.

• Other methods of freezing PMCx from a counter other than PMLCax[FC] or PMGC0[FAC] have 
no effect on the trigger state. However, such methods can prevent the counter from counting. That 
is, the trigger state may be ON, but PMCx is not counting events because it is frozen from some 
other method.
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Table 2-71. PMLCb0–PMLCb5/UPMLCb0–UPMLCb5 field descriptions

Bits Name Description

32–35 TRIGONCTL

Counter Trigger ON control
0000 No ON triggering active. This means that the counter is always considered to be triggered ON 

when it is not frozen.
0001 Trigger ON when rise of PMCn Qual Pin is detected .
0010 Trigger ON when previous Performance Monitor Counter overflow condition (bit 32 only)
0011 Trigger ON when IAC1 match (only requires the debug condition, not the event)
0100 Trigger ON when IAC2 match (only requires the debug condition, not the event)
0101 Trigger ON when DAC1 match (only requires the debug condition, not the event)
0110 Trigger ON when DAC2 match (only requires the debug condition, not the event)
0111–1110

Trigger ON when DVTn is asserted.
1111 Reserved
Note: DVTn (DVT0, DVT1, .. DVT7) are asserted by writing to the DEVENT register. See 

Section 2.14.13, “Debug Event Select (DEVENT) register.”

The counter trigger ON control uses certain conditions in the processor as signals to start counting 
when those conditions occur. Triggers associated with debug events require only the debug condition 
to be present and does not require that the debug event occurs. For example, an IAC1 match occurs, 
which does not result in a debug event because DBCR0[IDM] is not set, but still causes counting to 
begin if the appropriate trigger ON control is set. For a graphic representation of performance monitor 
counter controls, see Figure 9-34.

36–39 TRIGOFFCTL

Counter Trigger OFF control
0000 Never trigger OFF due to a condition.
0001 Trigger OFF when fall of PMCn Qual Pin 
0010 Trigger OFF when previous Performance Monitor Counter overflow condition (bit 32 only)
0011 Trigger OFF when IAC1 match (only requires the debug condition, not the event)
0100 Trigger OFF when IAC2 match (only requires the debug condition, not the event)
0101 Trigger OFF when DAC1 match (only requires the debug condition, not the event)
0110 Trigger OFF when DAC2 match (only requires the debug condition, not the event)
0111–1110

Trigger OFF when DVTn is asserted.
1111 Reserved
Note: DVTn (DVT0, DVT1, .. DVT7) are asserted by writing to the DEVENT register. See 

Section 2.14.13, “Debug Event Select (DEVENT) register.”

The counter trigger OFF control uses certain conditions in the processor as signals to stop counting 
when those conditions occur. Triggers associated with debug events require only the debug condition 
to be present and does not require that the debug event occurs. For example, an IAC1 match occurs, 
which does not result in a debug event because DBCR0[IDM] is not set, but still causes counting to stop 
if the appropriate trigger OFF control is set. For a graphic representation of performance monitor 
counter controls, see Figure 9-34.

40 PMCC

PMCx trigger state
0 PMCx trigger state is OFF.
1 PMCx trigger state is ON.
Note: This is a status bit that shows the trigger state controlled by TRIGONCTL and TRIGOFFCTL. 

When PMCC = 1, PMCx may still not be counting if it is frozen by other means such as 
PMLCax[FC] or PMGC0[FAC].

41–47 — Reserved
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48–50 PMP

Performance Monitor Overflow Periodicity Select 1

000 Performance Monitor Watchpoint (PMWx) triggers on any change to counter bit 32 (period = 231).
001 Performance Monitor Watchpoint (PMWx) triggers on any change to counter bit 43 (period = 220).
010 Performance Monitor Watchpoint (PMWx) triggers on any change to counter bit 49 (period = 214).
011 Performance Monitor Watchpoint (PMWx) triggers on any change to counter bit 55 (period = 28).
100 Performance Monitor Watchpoint (PMWx) triggers on any change to counter bit 59 (period = 24).
101 Performance Monitor Watchpoint (PMWx) triggers on any change to counter bit 61 (period = 22).
110 Performance Monitor Watchpoint (PMWx) triggers on any change to counter bit 62 (period = 21).
111 Performance Monitor Watchpoint (PMWx) triggers on any change to counter bit 63 (period = 20).

51–52 — Reserved

53–55 THRESHMUL Threshold multiple
000 Threshold field is multiplied by 1 (PMLCbx[THRESHOLD] × 1).
001 Threshold field is multiplied by 2 (PMLCbx[THRESHOLD] × 2).
010 Threshold field is multiplied by 4 (PMLCbx[THRESHOLD] × 4).
011 Threshold field is multiplied by 8 (PMLCbx[THRESHOLD] × 8).
100 Threshold field is multiplied by 16 (PMLCbx[THRESHOLD] × 16).
101 Threshold field is multiplied by 32 (PMLCbx[THRESHOLD] × 32).
110 Threshold field is multiplied by 64 (PMLCbx[THRESHOLD] × 64).
111 Threshold field is multiplied by 128 (PMLCbx[THRESHOLD] × 128).

56–57 — Reserved

58–63 THRESHOLD Threshold. Only events that exceed this value are counted. Events to which a threshold value applies 
are implementation-dependent as are the dimension (for example, duration in cycles) and the 
granularity with which the threshold value is interpreted. 
By varying the threshold value, software can profile event characteristics. For example, if PMC1 is 
configured to count cache misses that last longer than the threshold value, software can obtain the 
distribution of cache miss durations for a given program by monitoring the program repeatedly using a 
different threshold value each time. 

1 Performance Monitor Counter overflow generates a watchpoint (PMWx) that can be used for triggering or to generate 
Watchpoint Messages (if enabled).

Table 2-71. PMLCb0–PMLCb5/UPMLCb0–UPMLCb5 field descriptions (continued)

Bits Name Description
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2.16.4 Performance monitor counter registers 
(PMC0–PMC5/UPMC0–UPMC5)

PMCs and UPMCs, shown in Figure 2-76, are 32-bit counters that can be programmed to generate 
interrupt signals when they overflow. Each counter is enabled to count 255 events. The e6500 core 
implements these registers as defined in EREF. 

This table describes the PMC register fields.

The minimum counter value is 0x0000_0000; 4,294,967,295 (0xFFFF_FFFF) is the maximum. A counter 
can increment by 0, 1, 2, 3, or 4 up to the maximum value and then wrap to the minimum value. 

NOTE
The counters will stop counting (freeze) when the core enters debug halt 
mode, or when the core enters a low-power mode where the core clock is 
disabled. The counters will resume counting when debug halt mode is 
exited, or when the clocks are turned back on as the low power mode is 
exited.

A counter enters the overflow state when the high-order bit is set by entering the overflow state at the 
halfway point between the minimum and maximum values. A performance monitor interrupt handler can 
easily identify overflowed counters, even if the interrupt is masked for many cycles (during which the 
counters may continue incrementing). A high-order bit is set normally only when the counter increments 
from a value below 2,147,483,648 (0x8000_0000) to a value greater than or equal to 2,147,483,648 
(0x8000_0000). 

PMC0 (PMR16) / UPMC0 (PMR0) 
PMC1 (PMR17) / UPMC1 (PMR1) 
PMC2 (PMR18) / UPMC2 (PMR2) 
PMC3 (PMR19) / UPMC3 (PMR3) 
PMC4 (PMR20) / UPMC4 (PMR4) 
PMC5 (PMR21) / UPMC5 (PMR5) 

PMC0–PMC5: Guest supervisor
UPMC0–UPMC5: User RO

32 33 63

R
OV Counter value

W

Reset All zeros

Figure 2-76. Performance monitor counter (PMC0–PMC5/UPMC0–UPMC5) registers

Table 2-72. PMC0–PMC5/UPMC0–UPMC5 field descriptions

Bits Name Description

32 OV Overflow. When this bit is set, it indicates this counter reaches its maximum value.

33–63 Counter Value Indicates the number of occurrences of the specified event. 
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NOTE
Initializing PMCs to overflowed values is strongly discouraged. If an 
overflowed value is loaded into PMCn that held a non-overflowed value 
(and PMGC0[PMIE], PMLCan[CE], and (MSR[EE] or MSR[GS]) are set), 
an interrupt is generated before any events are counted.

The response to an overflow depends on the configuration, as follows:

• If PMLCan[CE] is clear, no special actions occur on overflow: the counter continues incrementing, 
and no exception is signaled.

• If PMLCan[CE] and PMGC0[FCECE] are set, all counters are frozen when PMCn overflows.

• If PMLCan[CE] and PMGC0[PMIE] are set, an exception is signaled when PMCn reaches 
overflow. If the performance monitor interrupt is directed to the guest state, interrupts are masked 
when MSR[EE] = 0 or MSR[GS] = 0. If the performance monitor interrupt is directed to the 
hypervisor, interrupts are masked when MSR[EE] = 0 and MSR[GS] = 0. An exception may be 
signaled while the interrupt is masked, but the interrupt is not taken until it is fully enabled and only 
if the overflow condition is still present and the configuration has not been changed in the 
meantime to disable the exception. 

However, if the interrupt masking condition remains until after the counter leaves the overflow state 
(msb becomes 0), or until after PMLCan[CE] or PMGC0[PMIE] are cleared, the exception is not 
signaled.

The following sequence is recommended for setting counter values and configurations:

1. Set PMGC0[FAC] to freeze the counters. 

2. Initialize counters and configure control registers using mtpmr instructions.

3. Release the counters by clearing PMGC0[FAC] with a final mtpmr instruction.

Software is expected to use mtpmr to explicitly set PMCs to non-overflowed values. Setting an 
overflowed value may cause an erroneous exception. For example, if both PMGC0[PMIE] and 
PMLCan[CE] are set and the mtpmr loads an overflowed value into PMCn, an interrupt may be generated 
without an event counting having taken place.
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Chapter 3  
Instruction Model
This chapter provides a listing and general description of instructions implemented on the e6500 processor 
core, grouping the instructions by general functionality. It provides the syntax and briefly describes the 
functionality as defined by the architecture. Full descriptions of these instructions are provided in EREF. 

3.1 Overview
This chapter provides information about the instruction set as implemented on the e6500 core, which is an 
implementation of the 64-bit Power ISA.The e6500 core implements extensions that define additional 
instructions, registers, and interrupts. The architecture defines several instructions in a general way, 
leaving some details of the execution up to the implementation. Those details are described in this chapter. 

3.1.1 Supported Power ISA categories and unsupported instructions

The e6500 core implements the following categories, as defined in EREF:

• Base

• Embedded

• Alternate Time Base

• Cache Specification

• Cache Stashing

• Data Cache Block Extended Operations

• Decorated Storage

• Embedded.Enhanced Debug

• Embedded.External PID

• Embedded.Hypervisor

• Embedded.Hypervisor.LRAT

• Embedded.Page Table

• Embedded.Little-Endian

• Embedded.Multi-Threading

• Embedded.Performance Monitor

• Embedded.Processor Control

• Embedded.Cache Locking

• Enhanced Reservations

• External Proxy
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• Floating Point and Floating Point.Record

• Vector

• Wait

• 64-Bit

The following table lists Power ISA 2.06 instructions defined in the previous Power ISA categories list that 
are not supported on the e6500 core. Attempting to execute unsupported instructions results in an illegal 
instruction exception-type program exception. 

Table 3-1. Unsupported Power ISA 2.06 instructions (by category)

Category Mnemonic Name Notes

64 divde[o][.] Divide Doubleword Extended —

64 divdeu[o][.] Divide Doubleword Extended Unsigned —

Base divwe[o][.] Divide Word Extended —

Base divweu[o][.] Divide Word Extended Unsigned —

Embedded.External PID evlddepx Vector Load Doubleword into Doubleword by 
External Process ID Indexed

Category SPE not 
supported

Embedded.External PID evstddepx Vector Store Doubleword into Doubleword by 
External Process ID Indexed

Category SPE not 
supported

Floating Point fcfids[.] Floating Convert from Integer Doubleword Single —

Floating Point fcfidu[.] Floating Convert from Integer Doubleword 
Unsigned

—

Floating Point fcfidus[.] Floating Convert from Integer Doubleword 
Unsigned Single

—

Floating Point fcpsgn[.] Floating Copy Sign —

Floating Point fctidu[.] Floating Convert to Integer Doubleword Unsigned —

Floating Point fctiduz[.] Floating Convert to Integer Doubleword Unsigned 
with Round Toward Zero

—

Floating Point fctiwu[.] Floating Convert to Integer Word Unsigned —

Floating Point fctiwuz[.] Floating Convert to Integer Word Unsigned with 
Round Toward Zero

—

Floating Point fre Floating Reciprocal Estimate —

Floating Point frim[.] Floating Round to Integer Minus —

Floating Point frin[.] Floating Round to Integer Nearest —

Floating Point frip[.] Floating Round to Integer Plus —

Floating Point friz[.] Floating Round to Integer Toward Zero —

Floating Point frsqrtes[.] Floating Reciprocal Square Root Estimate Single —

Floating Point fsqrt[s][.] Floating Square Root [Single] —

Floating Point ftdiv[.] Floating Test for Software Divide —

Floating Point ftsqrt[.] Floating Test for Software Square Root —

Floating Point lfiwax Load Floating-Point as Integer Word Algebraic 
Indexed

—

Floating Point lfiwzx Load Floating-Point as Integer Word and Zero 
Indexed

—
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3.2 Computation mode
EREF defines two major computation modes selectable through the state of the Computation Mode bit in 
the MSR (MSR[CM]). The e6500 core supports both 32-bit mode (MSR[CM] = 0) and 64-bit mode 
(MSR[CM] = 1). EREF defines two methods of a 64-bit implementation providing 32-bit mode. The e6500 
core provides 32-bit mode in a manner compatible with Power Architecture processors, which implement 
the Server category. EIS calls this “hybrid 32-bit mode”. In both 32-bit and 64-bit mode, instructions that 
set a 64-bit register affect all 64 bits. The computational mode controls how the effective address is 
interpreted, how condition register bits and XER bits are set, how the Link (LR) register is set by branch 
instructions in which LK = 1, and how the Count (CTR) register is tested by branch conditional 
instructions. In both modes, effective address computations use all 64 bits of the relevant registers and 
produce a 64-bit result. However, in 32-bit mode, the high-order 32 bits of the computed effective address 
are ignored for the purpose of addressing storage.

When executing in 32-bit mode, the upper 32 bits of the fetch address, effective addresses, DACx, IACx, 
IVPR, and GIVPR are ignored. Record forms of instructions (commonly called “dot” forms because they 
are specified with a “.” at the end of the mnemonic) produce different Condition (CR) register results for 
an instruction that sets a GPR based on whether the thread is in 32-bit mode or 64-bit mode. In 32-bit 
mode, the CR result is set based on the signed comparison of the low-order 32 bits of the result to 0. In 
64-bit mode, the CR result is set based on the signed comparison of all 64 bits of the result to 0.

3.3 Instruction set summary
The e6500 core instructions are presented in the following functional categories: 

• Integer instructions—These include arithmetic and logical instructions. For more information, see 
Section 3.4.3.1, “Integer instructions.”

• Floating-point instructions—These include floating-point arithmetic and logical instructions. See 
Section 3.4.4, “Floating-point execution model.”

• AltiVec instructions—These include vector integer, logical, and single-precision floating-point 
arithmetic instructions. See Section 3.4.5, “AltiVec instructions.”

• Load and store instructions—These include integer, floating-point, AltiVec, external PID, and 
decorated storage load and store instructions, along with memory synchronization instructions. See 
Section 3.4.3.2, “Load and store instructions.”

• Flow control instructions—These include branching instructions, CR logical instructions, trap 
instructions, and other instructions that affect the instruction flow. See Section 3.4.6, “Branch and 
flow control instructions.”

Floating Point mtfsfi[.]
(W field)

Move to FPSCR Immediate W field is not implemented. 
Always behaves as if W = 0.

Floating Point mtfsf[.]
(W and L fields)

Move to FPSCR W and L fields are not 
implemented. Always 
behaves as if W = L = 0.

Table 3-1. Unsupported Power ISA 2.06 instructions (by category) (continued)

Category Mnemonic Name Notes
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• Processor control instructions—These instructions are used for performing various tasks 
associated with moving data to and from special registers, system linkage instructions, and so on. 
See Section 3.4.7, “Processor control instructions.”

• Memory synchronization instructions—These instructions are used for memory synchronizing. 
See Section 3.4.9, “Memory synchronization instructions.” 

• Memory control instructions—These instructions provide control of caches and TLBs. See 
Section 3.4.11, “Memory control instructions,” and Section 3.4.12.4, “Supervisor-level memory 
control instructions.”

Note that instruction groupings used here do not indicate the execution unit that processes a particular 
instruction or group of instructions. This information, which is useful for scheduling instructions most 
effectively, is provided in Chapter 10, “Execution Timing.”

Instructions are 4 bytes long and are word-aligned. Byte, halfword, word, and doubleword loads and stores 
occur between memory and a set of thirty-two 64-bit general-purpose registers (GPRs).

Integer instructions operate on word operands that specify GPRs as source and destination registers. 
Floating-point instructions operate on doubleword operands, which may contain single- or 
double-precision values, and use thirty-two 64-bit floating-point registers (FPRs) as source and destination 
registers. AltiVec instructions operate on quad-word operands, which may contain integer byte, halfword, 
word, single-precision floating-point vector elements, and use thirty-two 128-bit vector registers (VRs) as 
source and destination registers.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory 
location in a computation and then modify the same or another location, the memory contents must be 
loaded into a register, modified, and then written to the target location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands. To simplify 
assembly language programming, a set of simplified mnemonics and symbols is provided for some of the 
frequently used instructions (see Appendix A, “Simplified Mnemonics,” for a complete list). Programs 
written to be portable across the various assemblers for the Power ISA should not assume the existence of 
mnemonics not described in that document.

3.3.1 Instruction decoding

Reserved fields in instructions are ignored by the e6500 core. If an instruction contains a defined field for 
which some values of that field are reserved, and that instruction is coded with those reserve values, that 
instruction form is considered an invalid form. Execution of an invalid form instruction is boundedly 
undefined.

3.3.2 Definition of boundedly undefined

When a boundedly undefined execution of an instruction takes place, the resulting undefined results are 
bounded in that a spurious change in privilege state is not allowed, and the level of privilege exercised by 
the program in relation to memory access and other system resources cannot be exceeded. Boundedly 
undefined results for a given instruction can vary between implementations and between execution 
attempts in the same implementation.
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3.3.3 Synchronization requirements

This section discusses synchronization requirements for special registers, certain instructions, and TLBs. 
The synchronization described in this section refers to the state of the thread that is performing the 
synchronization.

Changing a value in certain system registers and invalidating TLB entries can have the side effect of 
altering the context in which data addresses and instruction addresses are interpreted and in which 
instructions are executed. For example, changing MSR[IS] from 0 to 1 has the side effect of changing 
address space. These effects need not occur in program order (that is, the strict order in which they occur 
in the program) and may require explicit synchronization by software. When multiple changes are made 
that affect context to different values, even within the same register, those changes are not guaranteed to 
occur at the same time unless the instruction itself is context synchronizing. For example, changing both 
MSR[IS] and MSR[GS] with the same mtmsr instruction causes multiple changes to how fetched 
instructions are translated. The change to MSR[IS] may occur in a different cycle than MSR[GS], but both 
are guaranteed to be complete when a context synchronizing event occurs.

An instruction that alters the context in which data addresses or instruction addresses are interpreted, or in 
which instructions are executed, is called a context-altering instruction. This section covers all of the 
context-altering instructions. The software synchronization required for each is shown in Table 3-2 and 
Table 3-3. Instructions that are not listed do not require explicit synchronization.

The notation “CSI” in the tables means any context-synchronizing instruction (sc, isync, rfi, rfgi, rfci, 
rfdi, or rfmci). A context-synchronizing interrupt (that is, any interrupt) can be used instead of a 
context-synchronizing instruction, in which case references in this section to the synchronizing instruction 
should be interpreted as meaning the instruction at which the interrupt occurs. If no software 
synchronization is required either before or after a context-altering instruction, the phrase “the 
synchronizing instruction before (or after) the context-altering instruction” should be interpreted as 
meaning the context-altering instruction itself.

The synchronizing instruction before the context-altering instruction ensures that all instructions up to and 
including that synchronizing instruction are fetched and executed in the context that existed before the 
alteration. The synchronizing instruction after the context-altering instruction ensures that all instructions 
after that synchronizing instruction are fetched and executed in the context established by the alteration. 
Instructions after the first synchronizing instruction, up to and including the second synchronizing 
instruction, may be fetched or executed in either context.

When modifying registers shared between threads, shared resource synchronization may be required as 
described in Section 3.3.3.1, “Shared resource synchronization.” 

Care must be taken when altering context associated with instruction fetch and instruction address 
translation. Altering INIA, IMSR, MSR[IS], MSR[GS], MSR[CM], LPIDR, or PID can cause an implicit 
branch, where the change in translation or how instructions are fetched causes the thread to fetch 
instructions from a different real address than what would have resulted if the context was not changed. 
Implicit branches are not supported by the architecture. It is recommended that MSR[IS], MSR[GS], and 
MSR[CM] context changes be performed through a return from interrupt instruction (rfi, rfgi, rfci, rfdi, 
or rfmci), which changes all the MSR context atomically and is completely context synchronizing. 
Because the INIA and IMSR associated with a thread can only be written when that thread is disabled, it 
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is recommended that altering the context of that thread via its INIA or IMSR be performed only after that 
thread is known to be disabled by polling the appropriate TENSR bit.

If a sequence of instructions contains context-altering instructions and contains no instructions that are 
affected by any of the context alterations, no software synchronization is required within the sequence.

Sometimes advantage can be taken of the fact that certain instructions that occur naturally in the program, 
such as the rfi at the end of an interrupt handler, provide the required synchronization.

No software synchronization is required before altering MSR because mtmsr is execution synchronizing. 
No software synchronization is required before most other alterations shown in Table 3-2, because all 
instructions before the context-altering instruction are fetched and decoded before the context-altering 
instruction is executed. (The processor must determine whether any of the preceding instructions are 
context-synchronizing.)

This table identifies the software synchronization requirements for data access for context-altering 
instructions that require synchronization.

Table 3-2. Data access synchronization requirements

Context Altering Instruction or Event Required Before Required After Notes

mfspr (L1CSR0, L1CSR1) sync None 1

1 A sync prior to reading L1CSR0 or L1CSR1 is required to examine any cache locking status from prior cache locking 
operations. The sync ensures that any previous cache locking operations have completed prior to reading the status.

mtmsr (CM) None CSI —

mtmsr (DE) None CSI —

mtmsr (DS) None CSI —

mtmsr (GS) None CSI —

mtmsr (ME) None CSI 2

2 A context-synchronizing instruction is required after altering MSR[ME] to ensure that the alteration takes effect for subsequent 
machine check interrupts, which may not be recoverable and, therefore, may not be context synchronizing.

mtmsr (PR) None CSI —

mtpmr (all) None CSI —

mtspr (EPLC) None CSI —

mtspr (EPSC) None CSI —

mtspr (L1CSR0, L1CSR1) sync followed by isync isync 3

3 Isolated shared synchronization is required. See Section 3.3.3.1, “Shared resource synchronization.”

mtspr (L1CSR2) sync followed by isync isync followed by sync4

4 The additional sync following the isync after the mtspr is done is required if software is turning off stashing by writing 0 to 
the stash ID field of the register. The sync ensures that any pending stash operations have finished.

3

mtspr (LPIDR) CSI CSI —

mtspr (PID) CSI CSI —

tlbivax CSI sync followed by CSI 5,6,7

tlbilx CSI CSI 5,6

tlbwe CSI CSI 5,6
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This table identifies the software synchronization requirements for instruction fetch and/or execution for 
context-altering instructions that require synchronization.

5 For data accesses, the context-synchronizing instruction before tlbwe, tlbilx, or tlbivax ensures that all memory accesses 
due to preceding instructions have completed to a point at which they have reported all exceptions they cause.

6 The context-synchronizing instruction after tlbwe, tlbilx, or tlbivax ensures that subsequent accesses (data and instruction) 
use the updated value in any TLB entries affected. It does not ensure that all accesses previously translated by TLB entries 
being updated have completed with respect to memory; if these completions must be ensured, tlbwe, tlbilx, or tlbivax must 
be followed by a sync and by a context-synchronizing instruction. Note that such synchronization does not guarantee these 
completions for other threads in the processor core. If these completions must be ensured on other threads on the processor 
core, either tlbsync must be used for tlbivax invalidations or tlbilx; isync; sync must be executed on the other threads.

7 To ensure that all TLB invalidations are completed and seen in all processors in the coherence domain, the global invalidation 
requires that a tlbsync be executed after the tlbivax as follows: tlbivax; sync; tlbsync; sync; isync. For the e6500 core, this 
code should be protected by a mutual exclusion lock such that only one processor at a time is executing this sequence 
because multiple tlbsync operations on the CoreNet interface may cause the integrated device to hang.

Table 3-3. Instruction fetch and/or execution synchronization requirements

Context-Altering Instruction or Event Required Before Required After Notes

mtmsr (CM) None CSI —

mtmsr (DE) None CSI —

mtmsr (FE0) None CSI —

mtmsr (FE1) None CSI —

mtmsr (FP) None CSI —

mtmsr (IS) None CSI —

mtmsr (GS) None CSI —

mtmsr (PR) None CSI —

mtpmr (all) None CSI —

mtspr (CDCSR0) None CSI 1

1 Shared synchronization is required to synchronize the change in the other threads.

mtspr (IVORn) None CSI 1

mtspr (IVPRn) None CSI 1

mtspr (L1CSR0, L1CSR1, L1CSR2) sync followed by isync isync 2

2 Isolated shared synchronization is required. See Section 3.3.3.1, “Shared resource synchronization.”

mtspr (LPIDR) None CSI —

mtspr (MASn) None CSI 3

3 MAS register changes require a CSI before subsequent instructions that use those updated values, such as a tlbwe, tlbre, 
tlbilx, tlbsx, and tlbivax. Typically, software performs several MAS updates and then performs a single isync prior to executing 
the TLB management instruction.

mtspr (PID) None CSI —

mtspr (PWRMGTCR0) None CSI 1

mttmr (INIAn) mtspr TENC confirmed by 
mfspr TENSR

mtspr TENS confirmed by mfspr 
TENSR4

—

tlbivax None CSI 5,6

tlbilx None CSI 5

tlbwe None CSI 5
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This table identifies the software synchronization requirements for non-context-altering instructions that 
require synchronization.

Synchronization requirements for updating memory-mapped registers (MMRs) are described in 
Section 2.2.3.1, “Synchronization requirements for memory-mapped registers.”

3.3.3.1 Shared resource synchronization

When modifying SPRs or TMRs, which are shared between threads (shown as shared in Table 2-2), if the 
change in the register must be synchronized in other threads, shared resource synchronization must be 

4 This sequence is required to enable the thread once the new NIA has been written.
5 The context-synchronizing instruction after tlbwe, tlbilx, or tlbivax ensures that subsequent accesses (data and instruction) 

use the updated value in any TLB entries affected. It does not ensure that all accesses previously translated by TLB entries 
being updated have completed with respect to memory; if these completions must be ensured, tlbwe, tlbilx, or tlbivax must 
be followed by a sync and by a context-synchronizing instruction.

6 To ensure that all TLB invalidations are completed and seen in all processors in the coherence domain, the global invalidation 
requires that a tlbsync be executed after the tlbivax as follows: tlbivax; sync; tlbsync; sync; isync. For the e6500 core, this 
code should be protected by a mutual exclusion lock such that only one processor at a time is executing this sequence because 
multiple tlbsync operations on the CoreNet interface may cause the integrated device to hang.

Table 3-4. Special synchronization requirements

Non-Context-Altering Instruction or Event Required Before Required After Notes

mtspr (BUCSR) None isync —

mtspr (DACn) None CSI and changing MSR[DE] from 0 to 1 1

1 Synchronization requirements for changing any debug facility registers require that the changes be followed by a CSI and a 
transition of MSR[DE] from 0 to 1 before the results of the changes are guaranteed to be seen. Normally, changes to the debug 
registers occur in the debug interrupt routine when MSR[DE] = 0, and the subsequent return via rfdi from the debug routine is 
likely to write MSR[DE] back to 1, which accomplishes the required synchronization. Software should only make changes to 
the debug facility registers when MSR[DE] = 0. Note that results of changing debug registers may be seen at any time after the 
debug facility is changed, but are not guaranteed until the required synchronization is performed. This means that changing 
debug resources that cause debug events to trigger in the current instruction stream is an unreliable construct for software to 
use.

mtspr (DBCRn) None CSI and changing MSR[DE] from 0 to 1 1

mtspr (DBSR) None CSI and changing MSR[DE] from 0 to 1 1

mtspr (DBSRWR) None CSI and changing MSR[DE] from 0 to 1 1

mtspr (EPCR[DUVD]) None CSI and changing MSR[DE] from 0 to 1 1,2

2 Note that the special synchronization requirement applies only to changes to EPCR[DUVD]. If this bit is not changed, the 
synchronization requirements for EPCR is as described in the earlier data or instruction execution tables.

mtspr (HIDn) msync followed by isync isync 3

3 Shared synchronization is required to synchronize the change in the other threads.

mtspr (IACn) None CSI and changing MSR[DE] from 0 to 1 1

mtspr (MMUCSR0) None isync 3

mtspr (NSPD) None isync —

mtspr (PPR32) None CSI —

mttmr (TPRIn) None executing thread: isync; other thread: 
shared register synchronization

3
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performed after any required synchronization operations are performed in the executing thread. One thread 
can context-synchronize any other thread within in the e6500 core by first disabling and then re-enabling 
the other thread using the following process:

1. Write to the appropriate bit of the TENC SPR.

2. Poll the corresponding TENSR bit.

3. Write the TENS bit associated with the other thread.

Some registers require that the thread performing the mtspr must be the only enabled thread during 
instruction execution and synchronization. This is called “isolated shared synchronization.” To perform 
isolated shared synchronization, the thread first disables all other threads by writing the TENC register and 
polls the TENSR register to determine that all other threads are disabled. It then can perform the mtspr 
and appropriate synchronization before re-enabling the other threads by writing to the TENS register.

3.3.3.2 Synchronization with tlbwe, tlbivax, and tlbilx instructions 

The following sequence shows why, for data accesses, all memory accesses due to instructions before the 
tlbwe or tlbivax must complete to a point at which they have reported any exceptions. Assume valid TLB 
entries exist for the target memory location when the sequence starts. 

1. A program issues a load or store to a page. 

2. The same program executes a tlbwe, tlbilx, or tlbivax instruction, which invalidates the 
corresponding TLB entry. 

3. The load or store instruction finally executes and gets a TLB miss exception. 

The TLB miss exception is semantically incorrect. To prevent it, a context-synchronizing instruction must 
be executed between steps 1 and 2. 

The tlbilx instruction requires the same local-processor synchronization as tlbivax, but not the 
cross-processor synchronization (that is, it does not require a tlbsync). However to see that all the effects 
of a tlbilx are seen in other threads in the same processor, software should arrange to execute tlbilx in the 
other thread.

3.3.3.3 Context synchronization

Context-synchronizing operations include instructions isync, sc, rfi, rfci, rfmci, rfdi, rfgi, ehpriv, and 
most interrupts. An instruction or event is context synchronizing if it satisfies the following requirements:

1. The operation is not initiated or, in the case of isync, does not complete until all executing 
instructions complete to a point at which they have reported all exceptions they cause.

2. Instructions that precede the operation execute in the context (including such parameters as 
privilege level, address space, and memory protection) in which they were initiated.

3. If the operation directly causes an interrupt (for example, sc directly causes a system call interrupt) 
or is an interrupt, the operation is not initiated until no interrupt-causing exception exists having 
higher priority than the exception associated with the interrupt.See Section 4.12, “Exception 
priorities.”
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4. Instructions that follow the operation are fetched and executed in the context established by the 
operation as required by the sequential execution model. (This requirement dictates that any 
prefetched instructions be discarded and that any effects and side effects of executing them 
speculatively may also be discarded, except as described in EREF.)

As described in Section 3.3.3.4, “Execution synchronization,” a context-synchronizing operation is 
necessarily execution synchronizing. Unlike sync (msync) and mbar, such operations do not affect the 
order of memory accesses with respect to other mechanisms.

EREF describes context synchronization in detail.

3.3.3.4 Execution synchronization

An instruction is execution synchronizing if it satisfies items 1 and 2 in the context synchronization 
requirements list (see Section 3.3.3.3, “Context synchronization”). sync (msync) is treated like isync with 
respect to item 1 (that is, the conditions described in item 1 apply to completion of sync). Execution 
synchronizing instructions include sync, mtmsr, wrtee, and wrteei. All context-synchronizing 
instructions are execution synchronizing.

Unlike a context-synchronizing operation, an execution synchronizing instruction need not ensure that 
instructions following it execute in the context established by that execution synchronizing instruction. 
This new context becomes effective sometime after the execution synchronizing instruction completes and 
before or at a subsequent context-synchronizing operation.

3.3.3.5 Instruction-related interrupts

Interrupts are caused either directly by the execution of an instruction or by an asynchronous event. In 
either case, an exception may cause one of several types of interrupts to be invoked. For example, an 
attempt by an application program to execute a privileged instruction causes a privileged instruction 
exception-type program interrupt. Such exceptions and interrupts for the e6500 core instructions are 
described in Section 4.6, “Exceptions.” 

3.4 Instruction set overview
This section provides a overview of the instructions implemented in the e6500 core and highlights any 
special information with respect to how the e6500 core implements a particular instruction. 

3.4.1 Record and overflow forms

Some instructions have record and/or overflow forms that have the following features:

• CR update for integer instructions—The dot (.) suffix on the mnemonic for integer computation 
instructions enables the update of the CR0 field. CR0 is updated based on the signed comparison 
of the result to 0. In 32-bit mode, the results of the lower 32-bits of the result are compared to 0. In 
64-bit mode, the results of all 64-bits are compared to 0.

• Integer overflow option—The o suffix indicates that the overflow bit in the XER is enabled. In 
32-bit mode, overflow (XER[OV]) is set if the carryout of bit 32 is not equal to the carryout of bit 
33 in the final result of the operation. In 64-bit mode, overflow (XER[OV]) is set if the carryout of 
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bit 0 is not equal to the carryout of bit 1 in the final result of the operation. Summary overflow 
(XER[SOV]) is a sticky bit that is set when XER[OV] is set.

• CR update for floating-point instructions—The dot (.) suffix on the mnemonic for floating-point 
computation instructions enables the update of the CR1 field. CR1 is updated with the exception 
status copied from bits FPSCR[32:35].

• CR update for AltiVec instructions—The dot (.) suffix on the mnemonic for vector comparison 
instructions enables the update of the CR6 field. CR6 is updated with the result of the comparison 
operation whether the relation holds true or false for all elements or whether all the elements are 
within bounds (for vcmpbfp).

• CR update for store conditional instructions —Store conditional instructions always include the dot 
(.) suffix and update CR0 based on whether the store was performed.

3.4.2 Effective address computation

Load and store operations (as well as tlbivax, tlbilx, cache locking, and cache management instructions) 
generate effective addresses (EAs) used to determine the address where a storage operation is to be 
performed. There are several different forms of EA generation and some instructions, such as integer load 
and store instructions, provide all such forms. The EA calculation modes are as follows:

• Register indirect with immediate index addressing. The EA is generated by adding the 
sign-extended 16-bit immediate index (d operand) to the contents of the GPR specified by rA. If 
rA specifies r0, a value of zero is added to the index. Instruction descriptions show this option as 
(rA|0). 

• Register indirect with index addressing. The EA is formed by adding the contents of two GPRs 
specified as operands rA and rB. A zero in place if the rA operand causes a zero to be added to the 
contents of the GPR specified in operand rB.

• Register indirect addressing. The GPR specified by the rB operand contains the EA. 

If operating in 32-bit mode, the upper 32 bits of the EA are treated as 0. In 64-bit mode, all 64 bits of the 
EA are used.

See EREF for more information.

3.4.3 User-level instructions

This section discusses the user-level instructions.

3.4.3.1 Integer instructions

This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions

• Integer compare instructions

• Integer logical instructions

• Integer rotate and shift instructions
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Integer instructions use the content of the GPRs as source operands and place results into GPRs and XER 
and CR fields. 

3.4.3.1.1 Integer arithmetic instructions 

This table lists the integer arithmetic instructions implemented on the e6500 core.

Although there is no Subtract Immediate instruction, its effect is achieved by negating the immediate 
operand of an addi instruction. Simplified mnemonics include this negation. Subtract instructions subtract 
the second operand (rA) from the third (rB). Simplified mnemonics are provided in which the third is 
subtracted from the second. See Appendix A, “Simplified Mnemonics.” 

Table 3-5. Integer arithmetic instructions

Name Mnemonic Syntax 

Add add (add. addo addo.) rD,rA,rB

Add Carrying addc (addc. addco addco.) rD,rA,rB

Add Extended adde (adde. addeo addeo.) rD,rA,rB

Add Immediate addi rD,rA,SIMM

Add Immediate Carrying addic rD,rA,SIMM

Add Immediate Carrying and Record addic. rD,rA,SIMM

Add Immediate Shifted addis rD,rA,SIMM

Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA

Divide Doubleword divd (divd. divdo divdo.) rD,rA,rB

Divide Doubleword Unsigned divdu divdu. divduo divduo. rD,rA,rB

Divide Word divw (divw. divwo divwo.) rD,rA,rB

Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB

Multiply High Doubleword mulhd (mulhd.) rD,rA,rB

Multiply High Doubleword Unsigned mulhdu (mulhdu.) rD,rA,rB

Multiply High Word mulhw (mulhw.) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB

Multiply Low Immediate mulli rD,rA,SIMM

Multiply Low Doubleword mulld (mulld. mulldo mulldo.) rD,rA,rB

Multiply Low Word mullw (mullw. mullwo mullwo.) rD,rA,rB

Negate neg (neg. nego nego.) rD,rA

Subtract From subf (subf. subfo subfo.) rD,rA,rB

Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB

Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB

Subtract from Immediate Carrying subfic rD,rA,SIMM

Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA



Instruction Model

e6500 Core Reference Manual, Rev 0

Freescale Semiconductor 3-13
 

An implementation that executes instructions with the Overflow Exception Enable (OE) bit set or that sets 
the Carry (CA) bit can either execute these instructions slowly or prevent execution of the next instruction 
until the operation completes. Chapter 10, “Execution Timing,” describes how the e6500 core handles such 
CR dependencies. The summary overflow and overflow bits XER[SO,OV] are set to reflect an overflow 
condition of a 32-bit result or a 64-bit result based on computation mode, only if the instruction’s OE bit is 
set.

3.4.3.1.2 Integer compare instructions 

Integer compare instructions algebraically or logically compare the contents of rA with either the 
zero-extended value of the UIMM operand, the sign-extended value of the SIMM operand, or the contents 
of rB. The comparison is signed for cmpi and cmp and unsigned for cmpli and cmpl.

This table lists integer compare instructions. The L bit can be either 0 (for a 32-bit compare) or 1 (for a 
64-bit compare), regardless of the computation mode.

The crD operand can be omitted if the result of the comparison is to be placed in CR0. Otherwise, the target 
CR field must be specified in crD by using an explicit field number.

For information on simplified mnemonics, see Appendix A, “Simplified Mnemonics.”

3.4.3.1.3 Integer logical instructions 

The logical instructions, shown in the following table, perform bit-parallel operations. Logical instructions 
do not affect XER[SO,OV,CA]. See Appendix A, “Simplified Mnemonics,” for simplified mnemonic 
examples for integer logical operations.

Table 3-6. Integer compare instructions

Name Mnemonic Syntax

Compare cmp crD,L,rA,rB

Compare Immediate cmpi crD,L,rA,SIMM

Compare Logical cmpl crD,L,rA,rB

Compare Logical Immediate cmpli crD,L,rA,UIMM

Table 3-7. Integer logical instructions

Name Mnemonic Syntax Implementation Notes

AND and (and.) rA,rS,rB —

AND Immediate andi. rA,rS,UIMM —

AND Immediate Shifted andis. rA,rS,UIMM —

AND with Complement andc (andc.) rA,rS,rB —

Bit Permute Doubleword bpermd rA,rS,rB —

Compare Bytes cmpb rA,rS,rB —

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS —

Count Leading Zeros Doubleword cntlzd (cntlzd.) rA,rS —

Equivalent eqv (eqv.) rA,rS,rB —
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3.4.3.1.4 Integer rotate and shift instructions 

Rotation operations are performed on data from a GPR, and the result, or a portion of the result, is returned 
to a GPR. Integer rotate instructions, summarized in Table 3-8, rotate the contents of a register. The results 
are either:

• Inserted into the target register under control of a mask. If a mask bit is set, the associated bit of the 
rotated data is placed into the target register, and, if the mask bit is cleared, the associated bit in the 
target register is unchanged), or 

• ANDed with a mask before being placed into the target register.

Appendix A, “Simplified Mnemonics,” lists simplified mnemonics that allow simpler coding of frequently 
used functions, such as clearing the left- or right-most bits of a register, left or right justifying an arbitrary 
field, and simple rotates and shifts. 

Extend Sign Byte extsb (extsb.) rA,rS —

Extend Sign Half Word extsh (extsh.) rA,rS —

Extend Sign Word extsw (extsw.) rA,rS —

NAND nand (nand.) rA,rS,rB —

NOR nor (nor.) rA,rS,rB —

OR or (or.) rA,rS,rB —

OR Immediate ori rA,rS,UIMM ori r0,r0,0 is the preferred form for a no-op. At 
dispatch it may enter the completion queue but 
not to an execution unit.

OR Immediate Shifted oris rA,rS,UIMM —

OR with Complement orc (orc.) rA,rS,rB —

Parity Doubleword prtyd rA,rS —

Parity Word prtyw rA,rS —

Population Count Byte popcntb rA,rS —

Population Count Doubleword popcntd rA,rS —

Population Count Word popcntw rA,rS —

XOR xor (xor.) rA,rS,rB —

XOR Immediate xori rA,rS,UIMM —

XOR Immediate Shifted xoris rA,rS,UIMM —

Table 3-8. Integer rotate instructions

Name Mnemonic Syntax 

Rotate Left Doubleword then Clear Left rldcl (rldcl.) rA,rS,rB,MB

Rotate Left Doubleword then Clear Right rldcr (rldcr.) rA,rS,rB,ME

Rotate Left Doubleword Immediate then Clear rldic (rldic.) rA,rS,SH,MB

Rotate Left Doubleword Immediate then Clear Left rldicl (rldicl.) rA,rS,SH,MB

Table 3-7. Integer logical instructions (continued)

Name Mnemonic Syntax Implementation Notes
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Integer shift instructions, listed in Table 3-9, perform left and right shifts. Immediate-form logical 
(unsigned) shift operations are obtained by specifying masks and shift values for certain rotate instructions. 
Appendix A, “Simplified Mnemonics,” shows how to simplify coding of such shifts. Multiple-precision 
shifts can be programmed as described in EREF.

3.4.3.2 Load and store instructions

Although load and store instructions are issued and translated in program order, accesses can occur out of 
order. Memory synchronizing (barrier) instructions are provided to enforce strict ordering. The e6500 core 
load and store instructions are grouped as follows:

• Integer load instructions

• Integer store instructions

• Integer load and store with byte-reverse instructions

• Integer load and store multiple instructions

• Floating-point load instructions

• Floating-point store instructions

• AltiVec load instructions

• AltiVec store instructions

• Memory synchronization instructions

Rotate Left Doubleword Immediate then Clear Right rldicr (rldicr.) rA,rS,SH,ME

Rotate Left Doubleword Immediate then Mask Insert rldimi(rldimi.) rA,rS,SH,MB

Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME

Table 3-9. Integer shift instructions

Name Mnemonic Syntax 

Shift Left Doubleword sld (sld.) rA,rS,rB

Shift Left Word slw (slw.) rA,rS,rB

Shift Right Doubleword srd (srd.) rA,rS,rB

Shift Right Word srw (srw.) rA,rS,rB

Shift Right Algebraic Doubleword 
Immediate

sradi (sradi.) rA,rS,SH

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH

Shift Right Algebraic Doubleword srad(srad.) rA,rS,rB

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

Table 3-8. Integer rotate instructions (continued)

Name Mnemonic Syntax 
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• External PID load and store instructions, which are described in Section 3.4.12.3, “External PID 
load and store instructions”

• Decorated storage load and store instructions, which are described in Section 3.4.3.2.10, 
“Decorated load and store instructions

Implementation notes:

The following notes describe how the e6500 core handles misalignment: 

1. The e6500 core provides hardware support for misaligned memory accesses, but at the cost of 
performance degradation. For loads that hit in the cache, the LSU’s throughput degrades to one 
misaligned load every 3 cycles. Similarly, stores can be translated at a rate of one misaligned store 
every 3 cycles. Additionally, after translation, each misaligned store is treated as two distinct 
entries in the store queue, each requiring a cache access.

2. A word or halfword memory access requires multiple accesses if it crosses a doubleword boundary 
but not if it crosses a natural boundary. 

3. Frequent use of misaligned memory accesses can greatly degrade performance.

4. Any load doubleword, word, or load halfword that crosses a doubleword boundary is interruptible, 
and, therefore, can restart. If the first access is performed when the interrupt occurs, it is performed 
again when the instruction is restarted, even if it is to a page marked as guarded. Any load word or 
load halfword that crosses a translation boundary may take a translation exception on the second 
access. In this case, the first access may have already occurred.

5. Accesses that cross a translation boundary where the endianness differs cause a byte-ordering data 
storage interrupt.

3.4.3.2.1 Update forms of load and store instructions

Some integer load and store instructions, as well as floating-point load and store instructions, contain 
update forms that update rA with the calculated EA. These instructions are specified with a ‘u’ in the 
mnemonic.

Update forms where rA = 0 are considered invalid.

Update forms for loads when rA = rD are considered invalid. 

3.4.3.2.2 General integer load instructions

This table lists the integer load instructions.

Table 3-10. Integer load instructions

Name Mnemonic Syntax 

Load Byte and Zero lbz rD,d(rA)

Load Byte and Zero Indexed lbzx rD,rA,rB

Load Byte and Zero with Update lbzu rD,d(rA)

Load Byte and Zero with Update Indexed lbzux rD,rA,rB

Load Doubleword ld rD,d(rA)

Load Doubleword Indexed ldx rD,rA,rB
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Some implementations execute the load algebraic (lha, lhax, lhau, lhaux, lwa, lwax, lwaux) instructions 
with greater latency than other types of load instructions. The e6500 core executes these instructions with 
the same latency as other load instructions. 

The e6500 core also contains load and store instructions for atomic memory accesses. These are described 
in Section 3.4.9, “Memory synchronization instructions.”

3.4.3.2.3 Integer store instructions 

For integer store instructions, the rS contents are stored into the byte, halfword, word, or doubleword in 
memory addressed by the EA.

This table summarizes integer store instructions.

Load Doubleword with Update ldu rD,d(rA)

Load Doubleword with Update Indexed ldux rD,rA,rB

Load Half Word and Zero lhz rD,d(rA)

Load Half Word and Zero Indexed lhzx rD,rA,rB

Load Half Word and Zero with Update lhzu rD,d(rA)

Load Half Word and Zero with Update Indexed lhzux rD,rA,rB

Load Half Word Algebraic lha rD,d(rA)

Load Half Word Algebraic Indexed lhax rD,rA,rB

Load Half Word Algebraic with Update lhau rD,d(rA)

Load Half Word Algebraic with Update Indexed lhaux rD,rA,rB

Load Word and Zero lwz rD,d(rA)

Load Word and Zero Indexed lwzx rD,rA,rB

Load Word and Zero with Update lwzu rD,d(rA)

Load Word and Zero with Update Indexed lwzux rD,rA,rB

Load Word Algebraic lwa rD,d(rA)

Load Word Algebraic Indexed lwax rD,rA,rB

Load Word Algebraic with Update Indexed lwaux rD,rA,rB

Table 3-11. Integer store instructions

Name Mnemonic Syntax 

Store Byte stb rS,d(rA)

Store Byte Indexed stbx rS,rA,rB

Store Byte with Update stbu rS,d(rA)

Store Byte with Update Indexed stbux rS,rA,rB

Store Doubleword std rS,d(rA)

Store Doubleword Indexed stdx rS,rA,rB

Store Doubleword with Update stdu rS,d(rA)

Table 3-10. Integer load instructions (continued)

Name Mnemonic Syntax 
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3.4.3.2.4 Integer load and store with byte-reverse instructions 

The following table describes integer load and store with byte-reverse instructions. EREF supports true 
little-endian on a per-page basis. 

Some implementations run the load/store byte-reverse instructions with greater latency than other types of 
load/store instructions. The e6500 core executes these instructions with the same latency as other 
load/store instructions.

3.4.3.2.5 Integer load and store multiple instructions 

The load/store multiple instructions, listed in Table 3-13, move blocks of data to and from GPRs. If their 
operands require memory accesses crossing a page boundary, these instructions may require a data storage 
interrupt to translate the second page. Also, if one of these instructions is interrupted, it will be restarted, 
requiring multiple memory accesses. 

The architecture defines Load Multiple Word (lmw) with rA in the range of GPRs to be loaded as an 
invalid form. Load and store multiple accesses that are not word aligned cause an alignment exception.

If rA is in the range of registers to be loaded, what gets loaded into any register depends on whether an 
interrupt occurs (and at what point the interrupt occurs), requiring the instruction to be restarted. If rA is 
loaded with a new value from memory and an interrupt and subsequent return to re-execute the lmw 
instruction occurs, rA has a different value and forms a completely different EA, causing the registers to 
be reloaded from a storage location not intended by the program.

Store Doubleword with Update Indexed stdux rS,rA,rB

Store Half Word sth rS,d(rA)

Store Half Word Indexed sthx rS,rA,rB

Store Half Word with Update sthu rS,d(rA)

Store Half Word with Update Indexed sthux rS,rA,rB

Store Word stw rS,d(rA)

Store Word Indexed stwx rS,rA,rB

Store Word with Update stwu rS,d(rA)

Store Word with Update Indexed stwux rS,rA,rB

Table 3-12. Integer load and store with byte-reverse instructions

Name Mnemonic Syntax 

Load Doubleword Byte-Reverse Indexed ldbrx rD,rA,rB

Load Halfword Byte-Reverse Indexed lhbrx rD,rA,rB

Load Word Byte-Reverse Indexed lwbrx rD,rA,rB

Store Doubleword Byte-Reverse Indexed stdbrx rD,rA,rB

Store Halfword Byte-Reverse Indexed sthbrx rS,rA,rB

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

Table 3-11. Integer store instructions (continued)

Name Mnemonic Syntax 
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If an interrupt does not occur, the register to be loaded starting at rA + 1 (for example, if rA is r10, then 
r11 is rA + 1) is loaded from the new address calculated from the updated value of rA and the current 
running displacement.

3.4.3.2.6 Floating-point load instructions

Separate floating-point load instructions are used for single-precision and double-precision operands. 
Because FPRs support only double-precision format, the FPU converts single-precision data to 
double-precision format before loading the operands into the target FPR. This conversion is described fully 
in the “Floating-Point Models” appendix in EREF. 

This table provides a list of the floating-point load instructions.

3.4.3.2.7 Floating-point store instructions

There are three basic forms of the store instruction—single-precision, double-precision, and integer. The 
integer form is supported by the optional stfiwx instruction. Because FPRs support only double-precision 
format for floating-point data, the FPU converts double-precision data to single-precision format before 
storing the operands. The conversion steps are described in “Floating-Point Store Instructions” in 
Appendix D, “Floating-Point Models,” in EREF. 

This table lists the floating-point store instructions.

Table 3-13. Integer load and store multiple instructions

Name Mnemonic Syntax 

Load Multiple Word lmw rD,d(rA)

Store Multiple Word stmw rS,d(rA)

Table 3-14. Floating-point load instructions

Name Mnemonic Operand Syntax

Load Floating-Point Double lfd frD,d(rA)

Load Floating-Point Double Indexed lfdx frD,rA,rB

Load Floating-Point Double with Update lfdu frD,d(rA)

Load Floating-Point Double with Update Indexed lfdux frD,rA,rB

Load Floating-Point Single lfs frD,d(rA)

Load Floating-Point Single Indexed lfsx frD,rA,rB

Load Floating-Point Single with Update lfsu frD,d(rA)

Load Floating-Point Single with Update Indexed lfsux frD,rA,rB

Table 3-15. Floating-point store instructions

Name Mnemonic Operand Syntax

Store Floating-Point as Integer Word Indexed stfiwx frS,rA,rB

Store Floating-Point Double stfd frS,d(rA)

Store Floating-Point Double Indexed stfdx frS,rA,rB
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3.4.3.2.8 AltiVec load instructions

Separate AltiVec load instructions are used for vector operands. The load instructions load either a 
quad-word vector or an element of a vector. For load to left and load to right instructions, only a partial 
number of bytes in the quad-word vector are loaded and the remaining bytes in the VR are set to zero. 
These instructions are more fully defined in AltiVec Technology Programming Environments Manual for 
Power ISA Processors. 

This table provides a list of the AltiVec load instructions.

Store Floating-Point Double with Update stfdu frS,d(rA)

Store Floating-Point Double with Update Indexed stfdux frS,rA,rB

Store Floating-Point Single stfs frS,d(rA)

Store Floating-Point Single Indexed stfsx frS,rA,rB

Store Floating-Point Single with Update stfsu frS,d(rA)

Store Floating-Point Single with Update Indexed stfsux frS,rA,rB

Table 3-16. AltiVec load instructions

Name Mnemonic Operand Syntax

Load Vector Element Byte Indexed lvebx vD,rA,rB

Load Vector Element Halfword Indexed lvehx vD,rA,rB

Load Vector Element Word Indexed lvewx vD,rA,rB

Load Vector Element Indexed Byte Indexed lvexbx vD,rA,rB

Load Vector Element Indexed Halfword Indexed lvexhx vD,rA,rB

Load Vector Element Indexed Word Indexed lvexwx vD,rA,rB

Load Vector to Left Indexed lvtlx vD,rA,rB

Load Vector to Left Indexed LRU lvtlxl vD,rA,rB

Load Vector to Right Indexed lvtrx vD,rA,rB

Load Vector to Right Indexed LRU lvtrxl vD,rA,rB

Load Vector for Shift Left lvsl vD,rA,rB

Load Vector for Swap Merge lvsm vD,rA,rB

Load Vector for Shift Right lvsr vD,rA,rB

Load Vector with Left-Right Swap Indexed lvswx vD,rA,rB

Load Vector with Left-Right Swap Indexed LRU lvswxl vD,rA,rB

Load Vector Indexed lvx vD,rA,rB

Load Vector Indexed LRU lvxl vD,rA,rB

Table 3-15. Floating-point store instructions (continued)

Name Mnemonic Operand Syntax
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Implementation notes:

For lvtlx, lvtlxl, lvtrx, and lvtrxl, if the load is to caching-inhibited memory, all bytes in the referenced 
quad-word are accessed from memory, even if the number of bytes to be loaded is less than a quad-word.

3.4.3.2.9 AltiVec store instructions

Separate AltiVec store instructions are used for vector operands. The store instructions store either a 
quad-word vector or an element of a vector. For store to left and store from right instructions, only a partial 
number of bytes in the quad-word vector are stored. These instructions are more fully defined in the AltiVec 
Technology Programming Environments Manual for Power ISA Processors. 

This table lists the AltiVec store instructions.

Implementation notes:

For stvflx, stvflxl, stvfrx, and stvfrxl, if the store is to caching-inhibited or write-through-required 
memory and the number of bytes to be stored is greater than 8, an alignment interrupt is taken.

3.4.3.2.10 Decorated load and store instructions 

Decorated load and store instructions allow efficient, SoC-specific operations targeted by storage address, 
such as packet-counting statistics. The SoC defines specific semantics understood by a SoC-customized 
resource that requires them. To determine the full semantic of a decorated storage operation, see the 
reference manual for the integrated device.

The architecture defines the decorated instructions listed in the following table, which provide the EA in 
rB and the decoration in rA.

Table 3-17. AltiVec store instructions

Name Mnemonic Operand Syntax

Store Vector Element Byte Indexed stvebx vS,rA,rB

Store Vector Element Halfword Indexed stvehx vS,rA,rB

Store Vector Element Word Indexed stvewx vS,rA,rB

Store Vector Element Indexed Byte Indexed stvexbx vS,rA,rB

Store Vector Element Indexed Halfword Indexed stvexhx vS,rA,rB

Store Vector Element Indexed Word Indexed stvexwx vS,rA,rB

Store Vector from Left Indexed stvflx vS,rA,rB

Store Vector from Left Indexed LRU stvflxl vS,rA,rB

Store Vector from Right Indexed stvfrx vS,rA,rB

Store Vector from Right Indexed LRU stvfrxl vS,rA,rB

Store Vector with Left-Right Swap Indexed stvswx vS,rA,rB

Store Vector with Left-Right Swap Indexed LRU stvswxl vS,rA,rB

Store Vector Indexed stvx vS,rA,rB

Store Vector Indexed LRU stvxl vS,rA,rB
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Decorated load and store instructions are treated as normal, cacheable loads and stores when they are to 
addresses that are not caching inhibited. dsn is treated as a 0 byte store. Decorated load and store 
instructions to addresses that are caching inhibited are always treated as guarded, regardless of the setting 
of the G bit in the associated TLB entry. This prevents speculative decorated loads from executing, which 
potentially produces side effects other than the normal load semantics.

Implementation notes:

The e6500 core requires that decorated load instructions (lbdx, lhdx, lwdx, lddx, lfddx) have write 
permissions when the target data address of the instruction is in storage that is caching inhibited because 
decorated load operations defined by integrated devices that contain the e6500 core can modify memory.

The number of bits of decoration that are delivered along with the address for decorated load, store and 
notify operations is implementation dependent based on how many bits of decoration the interconnect 
supports. For the e6500 core, only the low-order 4 bits of the decoration in rA are implemented.

3.4.4 Floating-point execution model

The e6500 core provides hardware support for all single- and double-precision floating-point operations 
for most value representations and all rounding modes. The PowerPC architecture provides for hardware 
implementation of a floating-point system as defined in ANSI/IEEE Standard 754-1985, IEEE Standard 
for Binary Floating Point Arithmetic. For detailed information about the floating-point execution model, 
see the “Operand Conventions” chapter in EREF. 

The IEEE 754 standard includes 64- and 32-bit arithmetic. The standard requires that single-precision 
arithmetic be provided for single-precision operands. The standard permits double-precision arithmetic 

Table 3-18. Decorated load and store instructions

Instruction Mnemonic Syntax Description

Load Byte with Decoration Indexed lbdx rD,rA,rB The byte, halfword, word, doubleword, or floating-point 
doubleword addressed by EA (in rB) using the decoration 
supplied by rA is loaded into the target GPR rD. Load Halfword with Decoration Indexed lhdx rD,rA,rB

Load Word with Decoration Indexed lwdx rD,rA,rB

Load Doubleword with Decoration Indexed lddx rD,rA,rB

Load Floating-Point Doubleword with 
Decoration Indexed

lfddx frD,rA,rB

Store Byte with Decoration Indexed stbdx rS,rA,rB The contents of rS and the decoration supplied by 
GPR(rA) are stored into byte, halfword, word, doubleword, 
or floating-point doubleword in storage addressed by EA 
(rB).

Store Halfword with Decoration Indexed sthdx rS,rA,rB

Store Word with Decoration Indexed stwdx rS,rA,rB

Store Doubleword with Decoration Indexed stddx rS,rA,rB

Store Floating-Point Doubleword with 
Decoration Indexed

stfddx frS,rA,rB

Decorated Storage Notify dsn rA,rB Address-only operation that sends a decoration without 
any associated load or store semantics. 
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instructions to have either (or both) single-precision and/or double-precision operands, but states that 
single-precision arithmetic instructions should not accept double-precision operands. 

The floating-point instructions follow these guidelines: 

• Double-precision arithmetic instructions may have single-precision operands but always produce 
double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision and always 
produce single-precision results.

For arithmetic instructions, conversions from double- to single-precision must be done explicitly by 
software, while conversions from single- to double-precision are done implicitly.

All Power ISA implementations provide the equivalent of the execution models described in this chapter 
to ensure that identical results are obtained. The definition of the arithmetic instructions for infinities, 
denormalized numbers, and NaNs follow conventions described in the following sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic uses two 
additional bit positions to avoid potential transient overflow conditions. An extra bit is required when 
denormalized, double-precision numbers are pre-normalized. A second bit is required to permit 
computation of the adjusted exponent value in the following examples when the corresponding exception 
enable bit is one:

• Underflow during multiplication using a denormalized factor

• Overflow during division using a denormalized divisor

3.4.4.1 Floating-point instructions

This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions

• Floating-point multiply-add instructions

• Floating-point rounding and conversion instructions

• Floating-point compare instructions

• Floating-point status and control register instructions

• Floating-point move instructions

See Section 3.4.3.2, “Load and store instructions,” for information about floating-point loads and stores.

EREF supports a floating-point system as defined in the IEEE 754 standard, but requires software support 
to conform with that standard. All floating-point operations conform to the IEEE 754 standard, except if 
software sets the non-IEEE mode bit (NI) in FPSCR. The e6500 core is in the non-denormalized mode 
when the NI bit is set in FPSCR. If set, the following behavioral changes occur:

• If a denormalized result is produced, a default result of zero is generated. The generated zero has 
the same sign as the denormalized number. 

• If a denormalized value occurs on input, a zero value of the same sign as the input is used in the 
calculation in place of the denormalized number.
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The core performs single- and double-precision floating-point operations compliant with the IEEE 754 
floating-point standard.

3.4.4.1.1 Floating-point arithmetic instructions

This table lists the floating-point arithmetic instructions.

3.4.4.1.2 Floating-point multiply-add instructions

These instructions combine multiply and add operations without an intermediate rounding operation. The 
fractional part of the intermediate product is 106 bits wide, and all 106 bits take part in the add/subtract 
portion of the instruction.

This table lists the floating-point multiply-add instructions.

Table 3-19. Floating-point arithmetic instructions

Name Mnemonic Operand Syntax

Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB

Floating Add Single fadds (fadds.) frD,frA,frB

Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB

Floating Divide Single fdivs (fdivs.) frD,frA,frB

Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC

Floating Multiply Single fmuls (fmuls.) frD,frA,frC

Floating Reciprocal Estimate Single fres (fres.) frD,frB

Floating Reciprocal Square Root Estimate frsqrte (frsqrte.) frD,frB

Floating Select fsel (fsel.) frD,frA,frC,frB

Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB

Floating Subtract Single fsubs (fsubs.) frD,frA,frB

Table 3-20. Floating-point multiply-add instructions

Name Mnemonic Operand Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB

Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB

Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB

Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB

Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB

Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB

Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB

Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB
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3.4.4.1.3 Floating-point rounding and conversion instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit double-precision 
number to a 32-bit single-precision floating-point number. The floating-point conversion instructions 
convert a 64-bit double-precision floating-point number to signed integer numbers.

Examples of uses of these instructions to perform various conversions can be found in Appendix D, 
“Floating-Point Models,” in EREF. 

This table lists the floating-point rounding and conversion instructions.

3.4.4.1.4 Floating-point compare instructions

Floating-point compare instructions compare the contents of two floating-point registers. The comparison 
ignores the sign of zero (that is +0 = –0). 

This table lists the floating-point compare instructions.

3.4.4.1.5 Floating-Point Status and Control (FPSCR) register instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point instructions executed by 
a given thread. Executing an FPSCR instruction ensures that all floating-point instructions previously 
initiated by the given thread appear to have completed before the FPSCR instruction is initiated and that 

Table 3-21. Floating-point rounding and conversion instructions

Name Mnemonic Operand Syntax

Floating Convert from Integer Doubleword fcfid (fcfid.) frD,frB

Floating Convert to Integer Word fctiw (fctiw.) frD,frB

Floating Convert to Integer Word with Round Toward Zero fctiwz (fctiwz.) frD,frB

Floating Convert to Integer Doubleword fctid (fctid.) frD,frB

Floating Convert to Integer Doubleword with Round Toward Zero fctidz (fctidz.) frD,frB

Floating Round to Single-Precision frsp (frsp.) frD,frB

Table 3-22. Floating-point compare instructions

Name Mnemonic Operand Syntax

Floating Compare Ordered fcmpo crfD,frA,frB

Floating Compare Unordered fcmpu crfD,frA,frB
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no subsequent floating-point instructions appear to be initiated by the given thread until the FPSCR 
instruction of the thread has completed. 

This table lists the FPSCR instructions.

NOTE
The architecture notes that, in some implementations, the Move to FPSCR 
Fields (mtfsfx) instruction may perform more slowly when only a portion of 
the fields are updated as opposed to all of the fields. This is not the case in 
the e6500 core. 

3.4.4.1.6 Floating-point move instructions

Floating-point move instructions copy data from one floating-point register to another. The floating-point 
move instructions do not modify the FPSCR. The CR update option in these instructions controls the 
placing of result status into CR1. 

This table lists the floating-point move instructions.

3.4.5 AltiVec instructions

AltiVec instructions use vector registers (VRs) to provide single instruction multiple data (SIMD) 
computation using byte, halfword, and word elements. Depending on the instruction, computation can be 
performed using unsigned or signed and modulo or saturating integer arithmetic, as well as 
single-precision floating-point operations.

The e6500 core implements the AltiVec instruction set as described in AltiVec Technology Programming 
Environments Manual for Power ISA Processors. AltiVec instructions are listed here by function.

Table 3-23. Floating-Point Status and Control (FPSCR) register instructions

Name Mnemonic Operand Syntax

Move from FPSCR mffs (mffs.) frD

Move to Condition Register from FPSCR mcrfs crfD,crfS

Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) crbD

Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crbD

Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM

Move to FPSCR Fields mtfsf (mtfsf.) FM,frB

Table 3-24. Floating-point move instructions

Name Mnemonic Operand Syntax

Floating Absolute Value fabs (fabs.) frD,frB

Floating Move Register fmr (fmr.) frD,frB

Floating Negate fneg (fneg.) frD,frB

Floating Negative Absolute Value fnabs (fnabs.) frD,frB
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3.4.5.1 AltiVec integer instructions

Most integer instructions have both signed and unsigned versions and many have both modulo 
(wrap-around) and saturating clamping modes. Saturation occurs whenever the result of a saturating 
instruction does not fit in the result field. Unsigned saturation clamps results to zero on underflow and to 
the maximum positive integer value (2n – 1, for example, 255 for byte fields) on overflow. Signed 
saturation clamps results to the smallest representable negative number (–2n–1, for example, –128 for byte 
fields) on underflow, and to the largest representable positive number (2n–1–1, for example, +127 for byte 
fields) on overflow. When a modulo instruction is used, the resultant number truncates overflow or 
underflow for the length (byte, halfword, word, quad-word) and type of operand (unsigned, signed). 
AltiVec provides a way to detect saturation and sets the SAT bit in the Vector Status and Control 
(VSCR[SAT]) register in a saturating instruction. 

Borderline cases that generate results equal to saturation values, for example unsigned 0 + 0 → 0 and 
unsigned byte 1 + 254 → 255, are not considered saturation conditions and do not cause VSCR[SAT] to 
be set.

This table lists the AltiVec integer arithmetic instructions.

Table 3-25. AltiVec integer arithmetic instructions

Name Mnemonic Operand Syntax

Vector Absolute Differences Unsigned [Byte, 
Halfword, Word]

vabsdub
vabsduh
vabsduw

vD,vA,vB

Vector Add Unsigned Integer [b,h,w] Modulo vaddubm
vadduhm
vadduwm

vD,vA,vB

Vector Add Unsigned Integer [b,h,w] Saturate vaddubs
vadduhs
vadduws

vD,vA,vB

Vector Add Signed Integer [b,h,w] Saturate vaddsbs
vaddshs
vddsws

vD,vA,vB

Vector Add and Write Carry-Out Unsigned 
Word

vaddcuw vD,vA,vB

Vector Subtract Unsigned Integer Modulo
[b,h,w]

vsububm
vsubuhm
vsubuwm

vD,vA,vB

Vector Subtract Unsigned Integer Saturate 
[b,h,w]

vsububs
vsubuhs
vsubuws

vD,vA,vB

Vector Subtract Signed Integer Saturate
[b,h,w]

vsubsbs
vsubshs
vsubsws

vD,vA,vB

Vector Subtract and Write Carry-Out Unsigned 
Word

vsubcuw vD,vA,vB
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Vector Multiply Odd Unsigned Integer [b,h] 
Modulo

vmuloub
vmulouh

vD,vA,vB

Vector Multiply Odd Signed Integer [b,h] 
Modulo

vmulosb
vmulosh

vD,vA,vB

Vector Multiply Even Unsigned Integer [b,h] 
Modulo

vmuleub
vmuleuh

vD,vA,vB

Vector Multiply Even Signed Integer [b,h] 
Modulo

vmulesb
vmulesh

vD,vA,vB

Vector Multiply-High and Add Signed Halfword 
Saturate

vmhaddshs vD,vA,vB,vC

Vector Multiply-High Round and Add Signed 
Halfword Saturate

vmhraddshs vD,vA,vB,vC

Vector Multiply-Low and Add Unsigned 
Halfword Modulo

vmladduhm vD,vA,vB,vC

Vector Multiply-Sum Unsigned Integer [b,h] 
Modulo

vmsumubm
vmsumuhm

vD,vA,vB,vC

Vector Multiply-Sum Signed Halfword Saturate vmsumshs vD,vA,vB,vC

Vector Multiply-Sum Unsigned Halfword 
Saturate

vmsumuhs vD,vA,vB,vC

Vector Multiply-Sum Mixed Sign Byte Modulo vmsummbm vD,vA,vB,vC

Vector Multiply-Sum Signed Halfword Modulo vmsumshm vD,vA,vB,vC

Vector Sum Across Signed Word Saturate vsumsws vD,vA,vB

Vector Sum Across Partial (1/2) Signed 
Word Saturate

vsum2sws vD,vA,vB

Vector Sum Across Partial (1/4) Unsigned Byte 
Saturate

vsum4ubs vD,vA,vB

Vector Sum Across Partial (1/4) Signed Integer 
Saturate

vsum4sbs
vsum4shs

vD,vA,vB

Vector Average Unsigned Integer [b,h,w] vavgub
vavguh
vavguw

vD,vA,vB

Vector Average Signed Integer [b,h,w] vavgsb
vavgsh
vavgsw

vD,vA,vB

Vector Maximum Unsigned Integer [b,h,w] vmaxub
vmaxuh
vmaxuw

vD,vA,vB

Vector Maximum Signed Integer [b,h,w] vmaxsb
vmaxsh
vmaxsw

vD,vA,vB

Table 3-25. AltiVec integer arithmetic instructions (continued)

Name Mnemonic Operand Syntax
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3.4.5.2 AltiVec integer compare instructions

The vector integer compare instructions algebraically or logically compare the contents of the elements in 
vector register vA with the contents of the elements in vB. Each compare result vector is comprised of 
TRUE (0xFF, 0xFFFF, 0xFFFFFFFF) or FALSE (0x00, 0x0000, 0x00000000) elements of the size 
specified by the compare source operand element (byte, halfword, or word). The result vector can be 
directed to any vector register and can be manipulated with any of the instructions as normal data (for 
example, combining condition results). Vector compares provide equal-to and greater-than predicates. 
Others are synthesized from these by logically combining or inverting result vectors.

This table lists the AltiVec integer compare instructions.

3.4.5.3 AltiVec integer logical instructions

The AltiVec integer logical instructions shown in the following table perform bit-parallel operations on the 
operands.

Vector Minimum Unsigned Integer [b,h,w] vminub
vminuh
vminuw

vD,vA,vB

Vector Minimum Signed Integer [b,h,w] vminsb
vminsh
vminsw

vD,vA,vB

Table 3-26. AltiVec integer compare instructions

Name Mnemonic Syntax

Vector Compare Greater Than Unsigned Integer 
[b,h,w]

vcmpgtub[.]
vcmpgtuh[.]
vcmpgtuw[.]

vD,vA,vB

Vector Compare Greater Than Signed Integer 
[b,h,w]

vcmpgtsb[.]
vcmpgtsh[.]
vcmpgtsw[.]

vD,vA,vB

Vector Compare Equal To Unsigned Integer 
[b,h,w]

vcmpequb[.]
vcmpequh[.]
vcmpequw[.]

vD,vA,vB

Table 3-27. AltiVec integer logical instructions

Name Mnemonic Syntax

Vector Logical AND vand vD,vA,vB

Vector Logical OR vor vD,vA,vB

Vector Logical XOR vxor vD,vA,vB

Table 3-25. AltiVec integer arithmetic instructions (continued)

Name Mnemonic Operand Syntax
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3.4.5.4 AltiVec integer rotate and shift instructions

This table lists the AltiVec integer rotate instructions.

This table lists the AltiVec integer shift instructions.

3.4.5.5 AltiVec floating-point instructions

This section describes the vector floating-point instructions, which include the following:

• Arithmetic 

• Rounding and conversion

• Compare

• Estimate

The AltiVec floating-point data format complies with the ANSI/IEEE-754 standard. A quantity in this 
format represents one of the following:

• A signed normalized number

• A signed denormalized number

• A signed zero

• A signed infinity

Vector Logical AND with Complement vandc vD,vA,vB

Vector Logical NOR vnor vD,vA,vB

Table 3-28. AltiVec integer rotate instructions

Name Mnemonic Syntax

Vector Rotate Left Integer [b,h,w] vrlb
vrlh
vrlw

vD,vA,vB

Table 3-29. AltiVec integer shift instructions

Name Mnemonic Syntax

Vector Shift Left Integer [b,h,w] vslb
vslh
vslw

vD,vA,vB

Vector Shift Right Integer [b,h,w] vsrb
vsrh
vsrw

vD,vA,vB

Vector Shift Right Algebraic Integer [b,h,w] vsrab
vsrah
vsraw

vD,vA,vB

Table 3-27. AltiVec integer logical instructions (continued)

Name Mnemonic Syntax
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• A quiet not a number (QNaN)

• A signaling NaN (SNaN) 

Operations perform to a Java/IEEE/C9X-compliant subset of the IEEE standard. AltiVec does not report 
IEEE exceptions, but rather produces default results as specified by the Java/IEEE/C9X standard. For 
further details on exceptions, see AltiVec Technology Programming Environments Manual for Power ISA 
Processors.

3.4.5.5.1 AltiVec floating-point behavior for special case data

This section describes the implementation-specific features of AltiVec with respect to floating-point data 
types as implemented on the e6500 core. The descriptions in this section cover both Java and non-Java 
modes and include the following special case data:

• Denorm data for all instructions

• NaNs, denorms, and zeros for compare, min, and max operations

• Zero and Nan data for round to float integral operations

The following list describes the e6500 core behavior in various special cases:

• The core defaults to Java mode (VSCR[NJ] = 0).

• The core handles NaN operands the same way regardless of Java or non-Java mode. If any operand 
is a NaN, the e6500 core returns a NaN result.

• If the proper result can be determined to be a NaN, the core ignores any denorm inputs and returns 
the NaN result.

• The core handles most denorms in Java mode by taking an Altivec assist interrupt, but, for some 
instructions, the e6500 core can produce the exact result without taking the interrupt.

• VFPU detects underflows and production of denormalized numbers on vector float results before 
rounding, not after.

• The vrefp instruction returns the exact answer for operand of power of two. For example: 
vrefp(+2.0) = +0.50.

• The vrefp instruction does not overflow. Reciprocal of smallest normalized number: mantissa = 
1.0, unbiased exponent = -126. Result is: 1.0 x 2^ 126, so overflow is not possible.

• The vrefp instruction can underflow before rounding. Reciprocal of largest number: mantissa 
1.11---111, unbiased exponent +127. Result: unnormalized mantissa has at least one leading zero, 
while the exponent before normalization is -127. Therefore, the intermediate result before rounding 
is a denormalized number.

• The vrsqrtefp instruction does not round the least significant bit of the mantissa.

• VFPU executes mfvscr and mtvscr.

• vctuxs: When the input operand falls into this range:   -1.0 < vB * 2^UIMM < 0.0, VFPU produces 
result of 0x0000_0000 but does not write 1 to VSCR[SAT]. The supporting argument is if the 
intermediate value of vB * 2^UIMM is a negative fraction, then the integer approximation of that 
negative fraction is representable as an unsigned integer with a value of 0x0000_0000. Therefore, 
the result is not considered saturated and VSCR[SAT] should not be set.



Instruction Model

e6500 Core Reference Manual, Rev 0

3-32 Freescale Semiconductor
 

Table 3-30, Table 3-31, Table 3-32, Table 3-33, and Table 3-34 detail the implementation-specific 
behaviors for AltiVec floating-point operation. The term “trap” means that an AltiVec assist interrupt is 
taken and software must retrieve and emulate the instruction to provide correct behavior.

Table 3-30.  AltiVec denorm handling

Instruction
Input Denorm detected Output Denorm detected

Java Non-Java Java Non-Java

vaddfp, vsubfp, 
vmaddfp, vnmsubfp

Trap (unless 
result is NaN)1

1 If the instruction has a denorm operand but produces a NaN result, the e6500 core returns the NaN result. For example, 
(0 * infinity) + denorm returns a NaN result and does not cause an AltiVec assist interrupt in Java mode.

Input treated as correctly 
signed zero

Trap Result squashed to correctly 
signed zero

vrefp Trap Denorm squashed to 
zero, returning ± infinity

Trap Result squashed to zero

vrsqrtefp Trap Denorm squashed to 
zero, returning ± infinity

Never produces 
a denorm

Never produces a denorm

vlogefp Trap Denorm squashed to 
zero, returning -infinity

Never produces 
a denorm

Never produces a denorm

vexptefp Result is +1.0 Input squashed to zero, 
output result is +1.0

Trap Result squashed to zero

vcfux, vcfsx never sees denorms

vctsxs, vctuxs Trap1 Output result is 0x0 Never produces 
a denorm

Never produces a denorm

Table 3-31. AltiVec floating-point compare, min, and max in non-Java mode

VA VB vminfp vmaxfp vcmpgtfp vcmpgefp vcmpeqfp
vcmpbfp

LE GE

NaN_A - qNaN_A qNaN_A False False False 0 0

- NaN_B qNaN_B qNaN_B False False False 0 0

+Den_A -B -B +Zero True True False 0 0

-Den_A -B -B -Zero True True False 0 0

+Den_A +B +Zero +B False False False 1 1

-Den_A +B -Zero +B False False False 1 1

-A +Den_B -A +Zero False False False 1 0

-A -Den_B -A -Zero False False False 1 0

+A +Den_B +Zero +A True True False 0 1

+A -Den_B -Zero +A True True False 0 1

+Den_A/+Zero +Den_B/+Zero +Zero +Zero False True True 1 1

+Den_A/+Zero -Den_B/-Zero -Zero +Zero False True True 1 1
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-Den_A/-Zero +Den_B/+Zero -Zero +Zero False True True 1 1

-Den_A/-Zero -Den_B/-Zero -Zero -Zero False True True 1 1

Table 3-32. AltiVec floating-point compare, min, and max in Java mode

VA VB vminfp vmaxfp vcmpgtfp vcmpgefp vcmpeqfp
vcmpbfp

LE GE

NaN_A - qNaN_A qNaN_A False False False 0 0

- NaN_B qNaN_B qNaN_B False False False 0 0

+Den_A -B -B +Den_A True True False 0 0

-Den_A -B -B -Den_A True True False 0 0

+Den_A +B +Den_A +B False False False 1 1

-Den_A +B -Den_A +B False False False 1 1

-A +Den_B -A +Den_B False False False 1 0

-A -Den_B -A -Den_B False False False 1 0

+A +Den_B +Den_B +A True True False 0 1

+A -Den_B -Den_B +A True True False 0 1

+Den_A +-Zero +-Zero +Den_A True True False 0 1

-Den_A +-Zero -Den_A +-Zero False False False 1 0

+-Zero +Den_B +-Zero +Den_B False False False 1 1

+-Zero -Den_B -Den_B +-Zero True True False 0 0

-Den_A +Den_B -Den_A +Den_B False False False 1 See 
Note 1

1 Result depends on input operands.

+Den_A -Den_B -Den_B +Den_A True True False 0 See 
Note1 

-Den_A -Den_B See Note1 0

+Den_A +Den_B 1

Table 3-31. AltiVec floating-point compare, min, and max in non-Java mode

VA VB vminfp vmaxfp vcmpgtfp vcmpgefp vcmpeqfp
vcmpbfp

LE GE
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The round-to-integer instructions never produce denorms.

Table 3-33. AltiVec round to integer instructions in non-Java mode

VB sign VB exponent vrfin vrfiz vrfip vrfim

neg 127 > exp > 24 VB VB VB VB

neg 23 > exp > 0 Round towards 
nearest

Truncate fraction Round towards 
+Inf

Round towards 
-Inf

neg exp = -1 Round to nearest -zero -zero -1.0

neg -2 > exp > -126 -zero -zero -zero -1.0

neg input is denorm -zero -zero -zero -zero

neg input is zero -zero -zero -zero -zero

pos input is zero +zero +zero +zero +zero

pos input is denorm +zero +zero +zero +zero

pos -126 < exp < -2 +zero +zero +1.0 +zero

pos exp = -1 Round towards 
nearest

+zero +1.0 +zero

pos 0 < exp < 23 Round towards 
nearest

Truncate fraction Round towards 
+Inf

Round towards 
-Inf

pos 24 < exp < 126 VB VB VB VB

Table 3-34. AltiVec round to integer instructions in Java mode

VB sign VB exponent vrfin vrfiz vrfip vrfim

neg 127 > exp > 24 VB VB VB VB

neg 23 > exp > 0 Round towards 
nearest

Truncate 
fraction

Round towards 
+Inf

Round towards 
-Inf

neg exp = -1 Round to nearest -zero -zero -1.0

neg -2 > exp > -126 -zero -zero -zero -1.0

neg input is denorm Trap Trap Trap Trap

neg input is zero -zero -zero -zero -zero

pos input is zero +zero +zero +zero +zero

pos input is denorm Trap Trap Trap Trap

pos -126 < exp < -2 +zero +zero +1.0 +zero

pos exp = -1 Round towards 
nearest

+zero +1.0 +zero

pos 0 < exp < 23 Round to nearest Truncate 
fraction

Round to +Inf Round to -Inf

pos 24 < exp < 126 VB VB VB VB
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3.4.5.5.2 Floating-point division and square root

AltiVec instructions do not have division or square root instructions. AltiVec implements Vector 
Reciprocal Estimate Floating-Point (vrefp) and Vector Reciprocal-Square-Root Estimate Floating-Point 
(vrsqrtefp) instructions along with a Vector Negative Multiply-Subtract Floating-Point (vnmsubfp) 
instruction assisting in the Newton-Raphson refinement of the estimates. To accomplish division, simply 
multiply by the reciprocal estimate of the dividend (x/y = x * 1/y) and square root by multiplying the 
original number by the reciprocal of the square root estimate (√x = x * 1/√x). In this way, AltiVec provides 
inexpensive divides and square-roots that are fully pipelined, sub-operation scheduled, and faster even than 
many hardware dividers. Software methods are available to further refine these to correct IEEE results. See 
AltiVec Technology Programming Environments Manual for Power ISA Processors for a more complete 
description of floating-point division and square root computation.

3.4.5.5.3 AltiVec floating-point arithmetic instructions

This table lists the AltiVec floating-point arithmetic instructions.

3.4.5.5.4 AltiVec floating-point multiply-add instructions

This table lists the AltiVec floating-point multiply-add instructions.

3.4.5.5.5 Floating-point rounding and conversion instructions

All AltiVec floating-point arithmetic instructions use the IEEE default rounding mode, round-to-nearest. 
AltiVec does not provide the IEEE directed rounding modes.

AltiVec provides separate instructions for converting floating-point numbers to integral floating-point 
values for all IEEE rounding modes as follows:

• Round-to-nearest (vrfin) (round)

• Round-toward-zero (vrfiz) (truncate)

• Round-toward-minus-infinity (vrfim) (floor)

• Round-toward-positive-infinity (vrfip) (ceiling)

Table 3-35. AltiVec floating-point arithmetic instructions

Name Mnemonic Syntax

Vector Add Floating-Point vaddfp vD,vA,vB

Vector Subtract Floating-Point vsubfp vD,vA,vB

Vector Maximum Floating-Point vmaxfp vD,vA,vB

Vector Minimum Floating-Point vminfp vD,vA,vB

Table 3-36. AltiVec floating-point multiply-add instructions

Name Mnemonic Syntax

Vector Multiply-Add Floating-Point vmaddfp vD,vA,vC,vB

Vector Negative Multiply-Subtract Floating-Point vnmsubfp vD,vA,vC,vB
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Floating-point conversions to integers (vctuxs, vctsxs) use round-toward-zero (truncate). 

This table lists the floating-point rounding and conversion instructions.

3.4.5.5.6 AltiVec floating-point compare instructions

All AltiVec floating-point compare instructions (vcmpeqfp, vcmpgtfp, vcmpgefp, and vcmpbfp) return 
FALSE if either operand is a NaN. Not equal-to, not greater-than, not greater-than-or-equal-to, and 
not-in-bounds NaNs compare to everything, including themselves.

The AltiVec floating-point compare instructions compare the elements in two vector registers 
word-by-word, interpreting the elements as single-precision numbers. With the exception of the Vector 
Compare Bounds Floating-Point (vcmpbfp) instruction, they set the target vector register, and CR[6] if 
Rc = 1, in the same manner as do the vector integer compare instructions.

The Vector Compare Bounds Floating-Point (vcmpbfp) instruction sets the target vector register, and 
CR[6] if Rc = 1, to indicate whether the elements in vA are within the bounds specified by the 
corresponding element in vB, as explained in the instruction description. A single-precision value x is said 
to be within the bounds specified by a single-precision value y if (–y ≤ x ≤ y).

This table lists the AltiVec floating-point compare instructions.

Table 3-37. AltiVec floating-point rounding and conversion instructions

Name Mnemonic Syntax

Vector Round to Floating-Point Integer Nearest vrfin vD,vB

Vector Round to Floating-Point Integer Toward Zero vrfiz vD,vB

Vector Round to Floating-Point Integer Toward Positive Infinity vrfip vD,vB

Vector Round to Floating-Point Integer Toward Minus Infinity vrfim vD,vB

Vector Convert from Unsigned Fixed-Point Word vcfux vD,vB, UIMM

Vector Convert from Signed Fixed-Point Word vcfsx vD,vB, UIMM

Vector Convert to Unsigned Fixed-Point Word Saturate vctuxs vD,vB, UIMM

Vector Convert to Signed Fixed-Point Word Saturate vctsxs vD,vB, UIMM

Table 3-38. AltiVec floating-point compare instructions

Name Mnemonic Syntax

Vector Compare Greater Than Floating-Point [Record] vcmpgtfp[.] vD,vA,vB

Vector Compare Equal to Floating-Point [Record] vcmpeqfp[.] vD,vA,vB

Vector Compare Greater Than or Equal to Floating-Point [Record] vcmpgefp[.] vD,vA,vB

Vector Compare Bounds Floating-Point [Record] vcmpbfp[.] vD,vA,vB
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3.4.5.5.7 AltiVec floating-point estimate instructions

This table lists the AltiVec floating-point estimate instructions.

3.4.5.6 AltiVec compatibility instructions

The data stream control instructions present in some implementations of earlier PowerPC processors to 
assist in reducing latency by stream prefetching are provided as a means to correctly run AltiVec code 
written for such processors. On the e6500 core, these instructions execute as no-ops.

This table lists the AltiVec compatibility instructions.

3.4.5.7 AltiVec permutation and formatting instructions

Vector pack, unpack, merge, splat, permute, and select can be used to accelerate various vector math and 
vector formatting. Details of the various instructions are provided in the following sections.

3.4.5.7.1 AltiVec pack instructions

Halfword vector pack instructions (vpkuhum, vpkuhus, vpkshus, vpkshss) truncate the 16 halfwords 
from two concatenated source operands producing a single result of 16 bytes (quad word) using either 
modulo (28), 8-bit signed-saturation, or 8-bit unsigned-saturation to perform the truncation. Similarly, 
word vector pack instructions (vpkuwum, vpkuwus, vpkswus, and vpksws) truncate the eight words 
from two concatenated source operands producing a single result of eight halfwords using modulo (2^16), 
16-bit signed-saturation, or 16-bit unsigned-saturation to perform the truncation.

Table 3-39. AltiVec floating-point estimate instructions

Name Mnemonic Syntax

Vector Reciprocal Estimate Floating-Point vrefp vD,vB

Vector Reciprocal Square Root Estimate Floating-Point vrsqrtefp vD,vB

Vector Log2 Estimate Floating-Point vlogefp vD,vB

Vector 2 Raised to the Exponent Estimate Floating-Point vexptefp vD,vB

Table 3-40. AltiVec compatibility instructions

Name Mnemonic Syntax

Data Stream Stop1

1 The data stream control instructions are provided to permit AltiVec code from earlier PowerPC 
processors to correctly execute. These instructions perform no action and are treated as no-ops.

dss STRM

Data Stream Stop All1 dssall

Data Stream Touch1 dst STRM,vD,vA,vB

Data Stream Touch for Store1 dstst STRM,vD,vA,vB

Data Stream Touch for Store Transient11 dststt STRM,vD,vA,vB

Data Stream Touch Transient dstt STRM,vD,vA,vB
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One special form of Vector Pack Pixel (vpkpx) instruction packs eight 32-bit (8/8/8/8) pixels from two 
concatenated source operands into a single result of eight 16-bit (1/5/5/5) αRGB pixels. The least 
significant bit of the first 8-bit element becomes the 1-bit α field, and each of the three 8-bit R, G, and B 
fields are reduced to 5 bits by ignoring the 3 least significant bits.

This table describes the AltiVec pack instructions.

3.4.5.7.2 AltiVec unpack instructions

Byte vector unpack instructions unpack the eight low bytes (or eight high bytes) of one source operand into 
eight halfwords using sign extension to fill the most significant bits. Halfword vector unpack instructions 
unpack the four low halfwords (or four high halfwords) of one source operand into four words using sign 
extension to fill the most significant bits.

A special-purpose form of vector unpack is provided, the Vector Unpack Low Pixel (vupklpx) and the 
Vector Unpack High Pixel (vupkhpx) instructions for 1/5/5/5 αRGB pixels. The 1/5/5/5 pixel vector 
unpacks the four low 1/5/5/5 pixels (or four 1/5/5/5 high pixels) into four 32-bit (8/8/8/8) pixels. The 1-bit 
α element in each pixel is sign extended to 8 bits, and the 5-bit R, G, and B elements are each zero extended 
to 8 bits.

This table describes the AltiVec unpack instructions.

Table 3-41. AltiVec pack instructions

Name Mnemonic Syntax

Vector Pack Unsigned Integer [h,w] Unsigned Modulo vpkuhum
vpkuwum

vD,vA,vB

Vector Pack Unsigned Integer [h,w] Unsigned Saturate vpkuhus
vpkuwus

vD,vA,vB

Vector Pack Signed Integer [h,w] Unsigned Saturate vpkshus
vpkswus

vD,vA,vB

Vector Pack Signed Integer [h,w] Signed Saturate vpkshss
vpkswss

vD,vA,vB

Vector Pack Pixel vpkpx vD,vA,vB

Table 3-42. AltiVec unpack instructions

Name Mnemonic Syntax

Vector Unpack High Signed Integer [b,h] vupkhsb
vupkhsh

vD,vB

Vector Unpack High Pixel vupkhpx vD,vB

Vector Unpack Low Signed Integer [b,h] vupklsb
vupklsh

vD,vB

Vector Unpack Low Pixel vupklpx vD,vB
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3.4.5.7.3 AltiVec merge instructions

Byte vector merge instructions interleave the eight low bytes (or eight high bytes) from two source 
operands producing a result of 16 bytes. Similarly, halfword vector merge instructions interleave the four 
low halfwords (or four high halfwords) of two source operands to produce a result of eight halfwords. 
Word vector merge instructions interleave the two low words (or two high words) from two source 
operands producing a result of four words. The vector merge instruction has many uses; most notably 
among them is a way to efficiently transpose SIMD vectors. 

This table describes the merge instructions.

3.4.5.7.4 AltiVec splat instructions

This table describes the AltiVec splat instructions.

3.4.5.7.5 AltiVec Permute instruction

The Permute instruction allows any byte in any two source vector registers to be directed to any byte in the 
destination vector. The fields in a third source operand specify from which field in the source operands the 
corresponding destination field is taken. 

This table describes the vector permute instruction.

Table 3-43. AltiVec merge instructions

Name Mnemonic Syntax

Vector Merge High Integer [b,h,w] vmrghb
vmrghh
vmrghw

vD,vA,vB

Vector Merge Low Integer [b,h,w] vmrglb
vmrglh
vmrglw

vD,vA,vB

Table 3-44. AltiVec splat instructions

Name Mnemonic Syntax

Vector Splat Integer [b,h,w] vspltb
vsplth
vspltw

vD,vB,UIMM

Vector Splat Immediate Signed Integer [b,h,w] vspltisb
vspltish
vspltisw

vD,SIMM

Table 3-45. AltiVec Permute instruction

Name Mnemonic Syntax

Vector Permute vperm vD,vA,vB,vC 
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3.4.5.7.6 AltiVec Select instruction

The vsel instruction selects one field from one or the other of two source operands under control of its mask 
operand. Use of the TRUE/FALSE compare result vector with select in this manner produces a 
two-instruction equivalent of conditional execution on a per-field basis. 

This table describes the vsel instruction.

3.4.5.7.7 AltiVec shift instructions

The AltiVec shift instructions shift the contents of a vector register or of a pair of vector registers left or 
right by a specified number of bytes (vslo, vsro, vsldoi) or bits (vsl, vsr). Depending on the instruction, 
this shift count is specified either by low-order bits of a vector register or by an immediate field in the 
instruction. In the former case, the low-order seven bits of the shift count register give the shift count in 
bits (0 ≤ count ≤ 127). 

This table describes the AltiVec shift instructions.

3.4.5.7.8 AltiVec status and control register instructions

This table summarizes the instructions for reading from or writing to the Vector Status and Control 
(VSCR) register. 

3.4.5.7.9 GPR to AltiVec move instructions

This table summarizes the instructions for moving data from GPRs to a vector register.

Table 3-46. AltiVec Select instruction

Name Mnemonic Syntax

Vector Select vsel vD,vA,vB,vC

Table 3-47. AltiVec shift instructions

Name Mnemonic Syntax

Vector Shift Left vsl vD,vA,vB

Vector Shift Right vsr vD,vA,vB

Vector Shift Left Double by Octet Immediate vsldoi vD,vA,vB,SH

Vector Shift Left by Octet vslo vD,vA,vB

Vector Shift Right by Octet vsro vD,vA,vB

Table 3-48. Move to/from the AltiVec status and control register instructions

Name Mnemonic Syntax

Move to Vector Status and Control Register mtvscr vB

Move from Vector Status and Control Register mfvscr vD
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3.4.6 Branch and flow control instructions 

Some branch instructions can redirect instruction execution conditionally based on the bit values in CR. 
Information about branch instruction address calculation is provided in EREF. 

3.4.6.1 Conditional branch control

For branch conditional instructions, the BO operand specifies the conditions under which the branch is 
taken. The first four bits of the BO operand specify how the branch is affected by or affects the condition 
and count registers. The fifth bit, shown in Table 3-51 as having the value t, is used by some 
implementations for branch prediction; this is not used on the e6500 core. 

NOTE
The e6500 core ignores the BO operand for branch prediction and the BH 
field in the branch conditional to count register and branch conditional to 
link register instructions. Instead, it implements dynamic branch prediction 
as part of the branch table buffer (BTB), described in Section 10.4.1, 
“Branch execution unit.”

This table provides the BO bit descriptions.

This table provides the BO operand encodings.

Table 3-49. Move to vector register from GPR instructions

Name Mnemonic Syntax

Move to Vector from Integer Double Word and Splat mvidsplt vD,rA,rB

Move to Vector from Integer Word and Splat mviwsplt vD,rA,rB

Table 3-50. BO bit descriptions

BO Bits Description

0 Setting this bit causes the CR bit to be ignored.

1 Bit value to test against

2 Setting this causes the decrement to not be decremented.

3 Setting this bit reverses the sense of the CTR test.

4 The e6500 core does not use static branch prediction and ignores this bit. 

Table 3-51. BO operand encodings

BO Description

0000z Decrement the CTR, then branch if the decremented CTR ≠ 0 and the condition is FALSE.

0001z Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001at Branch if the condition is FALSE.

0100z Decrement the CTR, then branch if the decremented CTR ≠ 0 and the condition is TRUE.
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The 5-bit BI operand in branch conditional instructions specifies which CR bit represents the condition to 
test. The CR bit selected is BI +32.

If branch instructions use immediate addressing operands, target addresses can be computed ahead of the 
branch instruction so instructions can be fetched along the target path. If the branch instructions use LR or 
CTR, instructions along the path can be fetched if the LR or CTR is loaded sufficiently ahead of the branch 
instruction.

Branching can be conditional or unconditional, and, optionally, a branch return address is created by 
storing the EA of the instruction following the branch instruction in the LR after the branch target address 
has been computed. This is done regardless of whether the branch is taken. 

3.4.6.2 Branch instructions 

The following table lists branch instructions. Appendix A, “Simplified Mnemonics,” lists simplified 
mnemonics and symbols provided for the most frequently used forms of branch conditional, compare, trap, 
rotate and shift, and certain other instructions. The e6500 core does not use the BO operand for static 
branch prediction. 

0101z Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011at Branch if the condition is TRUE.

1a00t Decrement the CTR, then branch if the decremented CTR ≠ 0.

1a01t Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

Note:
1. In this table, z indicates a bit that is ignored. Note that the z bits should be cleared, as they may be assigned a meaning in 

some future version of the architecture.

2. The a and t bits provide a hint about whether a conditional branch is likely to be taken and may be used by some 
implementations to improve performance. e6500 always uses dynamic prediction and ignores these bits.

Table 3-52. Branch instructions

Name Mnemonic Syntax 

Branch b (ba bl bla) target_addr 

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr 

Branch Conditional to Link Register bclr (bclrl) BO,BI 

Branch Conditional to Count Register bcctr (bcctrl) BO,BI 

Table 3-51. BO operand encodings (continued)

BO Description
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3.4.6.3 Integer Select (isel) instruction

Integer Select (isel), shown in the following table, is a conditional register move instruction that helps 
eliminate branches. Programming guidelines for isel are given in EREF.

3.4.6.4 Condition register logical instructions

The following table shows the condition register logical instructions. Both of these instructions and the 
Move Condition Register Field (mcrf) instruction are also defined as flow control instructions. 

Any of these instructions for which the LR update option is enabled are considered invalid. 

3.4.6.5 Trap instructions 

Trap instructions, shown in the following table, test for a specified set of conditions. If a condition is met, 
a system trap program interrupt is taken. If no conditions are met, execution continues normally. See 
Section 4.9.8, “Program interrupt—IVOR6 and Appendix A, “Simplified Mnemonics,” for more 
information.

Table 3-53. Integer Select instruction

Name Mnemonic Syntax

Integer Select isel rD,rA,rB,crB

Table 3-54. Condition register logical instructions

Name Mnemonic Syntax 

Condition Register AND crand crbD,crbA,crbB

Condition Register OR cror crbD,crbA,crbB

Condition Register XOR crxor crbD,crbA,crbB

Condition Register NAND crnand crbD,crbA,crbB

Condition Register NOR crnor crbD,crbA,crbB

Condition Register Equivalent creqv crbD,crbA,crbB

Condition Register AND with Complement crandc crbD,crbA,crbB

Condition Register OR with Complement crorc crbD,crbA,crbB

Move Condition Register Field mcrf crfD,crfS

Table 3-55. Trap instructions

Name Mnemonic Syntax 

Trap Word Immediate twi TO,rA,SIMM 

Trap Word tw TO,rA,rB 

Trap Doubleword 
Immediate 

tdi TO,rA,SIMM 

Trap Doubleword td TO,rA,rB 
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3.4.6.6 System linkage instruction 

The System Call (sc) instruction permits a program to call on the system to perform a service or an 
operating system to call on the hypervisor to perform a service. For additional details, see Section 3.4.12.1, 
“System linkage and MSR access instructions.”

This table lists the system linkage instruction.

Executing sc invokes the system call interrupt handler or the hypervisor system call interrupt handler, 
depending on the value of the LEV field. See Section 4.9.10, “System call/hypervisor system call 
interrupt—IVOR8/GIVOR8/IVOR40.”

An sc instruction without the level field is treated by the assembler as an sc with LEV = 0.

3.4.6.7 Hypervisor privilege instruction

The hypervisor facility defines the Generate Embedded Hypervisor Privilege Exception instruction 
(ehpriv), which generates a hypervisor privilege exception. See Section 4.9.21, “Hypervisor privilege 
interrupt—IVOR41.” ehpriv is fully described in EREF. Note that the OC field is not interpreted by 
hardware but is for the use of the hypervisor to provide specific emulation.

This table shows the hypervisor privilege instruction.

3.4.7 Processor control instructions

Processor control instructions read from and write to CR, MSR, and SPRs, as well as the wait instruction. 

3.4.7.1 Move to/from Condition Register instructions 

This table summarizes the instructions for reading from or writing to the CR.

Table 3-56. System Linkage Instruction

Name Mnemonic Syntax 

System Call sc LEV

Table 3-57. Hypervisor privilege instruction

Name Mnemonic Syntax 

Hypervisor Privilege ehpriv OC

Table 3-58. Move to/from Condition Register instructions

Name Mnemonic Syntax Implementation Note

Move to Condition Register Fields mtcrf CRM,rS On some implementations, mtcrf may perform more slowly if 
only a portion of the fields are updated. This is not so for the 
e6500 core.

Move to Condition Register from XER mcrxr crD —

Move from Condition Register mfcr rD —
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This table lists the mtspr and mfspr instructions. 

3.4.7.2 Wait for Interrupt instruction

wait stops synchronous thread activity until an asynchronous interrupt or a debug instruction complete 
exception occurs (or, optionally, when the thread’s reservation is not valid). In a core, the wait condition 
of all threads also terminates when a cache stash is received by the core.

On the e6500 core, wait also causes power consumption to be reduced when the processor is waiting. 
Power reduction is stepped over time; although, specifying WH = 1 causes immediate power reduction. 
Specifying WH = 1 should only be used if it is known that the wait will be a longer period of time. 

Power reduction states caused by the wait instruction are further described in Section 8.3, “Core power 
management states.” wait also causes any prefetched instructions to be discarded, and thread instruction 
fetching ceases until the wait condition terminates.

3.4.8 Performance monitor instructions (user level)

The performance monitor provides read-only, application-level access to some performance monitor 
resources. This table lists the performance monitor instructions.

Move from One Condition Register Field mfocrf rD,FXM See EREF for a full description of this instruction.

Move to One Condition Register Field mtocrf FXM,rS See EREF for a full description of this instruction.

Table 3-59. Move to/from Special-Purpose Register instructions

Name Mnemonic Syntax Comments

Move to Special-Purpose Register mtspr SPR,rS —

Move from Special-Purpose Register mfspr rD,SPR —

Move from Time Base mftb rD,TBR mftb behaves as if it were an mfspr. Although mftb is supported, 
mfspr is prefered, because mftb can only be used to read from 
TBL and TBU; mfspr can be used to read TBL, TBU, and ATB 
SPRs. 

Table 3-60. Wait for interrupt instruction

Name Mnemonic Syntax 

Wait for Interrupt wait WC,WH

Table 3-61. Performance monitor instructions

Name Mnemonic Syntax

Move from Performance Monitor Register mfpmr rD,PMRN

Table 3-58. Move to/from Condition Register instructions (continued)

Name Mnemonic Syntax Implementation Note
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The user-level PMRs listed in Table 2-16 are accessed with mfpmr. Attempting to write user-level PMRs 
in either mode causes an illegal instruction exception.

3.4.9 Memory synchronization instructions

Memory synchronization instructions control the order in which memory operations complete with respect 
to asynchronous events and the order in which memory operations are seen by other mechanisms that 
access memory. See the section, “Atomic Update Primitives Using lwarx and stwcx.,” in EREF for 
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additional information about these instructions and about related aspects of memory synchronization. See 
Table 3-62 for a summary.

This table describes the memory synchronization instructions.

Table 3-62. Memory synchronization Instructions

Name Mnemonic Syntax Implementation Notes

Instruction 
Synchronize

isync — isync is refetch serializing. The e6500 core waits for previous instructions (including 
interrupts they generate) to complete before isync executes. This purges all instructions 
from the thread and refetches the next instruction. isync does not wait for pending 
stores in the store queue to complete. Any subsequent instruction sees all effects of 
instructions before the isync.
Because it prevents execution of subsequent instructions until previous instructions 
complete, if an isync follows a conditional branch instruction that depends on the value 
returned by a preceding load, the load on which the branch depends is performed before 
any loads caused by instructions after the isync, even if the effects of the dependency 
are independent of the value loaded (for example, the value is compared to itself and the 
branch tests selected, CRn[EQ]), and even if branch targets the next sequential 
instruction.

Load (Byte, 
Halfword, 
Word, 
Doubleword)
and Reserve 
Indexed 

lbarx
lharx
lwarx
ldarx

rD,rA,rB Load and reserve instructions (lbarx, lharx, lwarx, ldarx) when paired with store 
conditional instructions (stbcx., sthcx., stwcx., stdcx.) can emulate semaphore 
operations, such as test and set, compare and swap, exchange memory, and fetch and 
add. Both instructions should use the same real address, the same size of operation 
(byte, halfword, word or doubleword); however, the e6500 core only requires that the real 
addresses be in the same coherence granule and the size of operation is ignored with 
respect to whether the store conditional is performed or not. The address must be 
naturally aligned, and should be in pages that are marked as WIMGE = 001xx. The 
e6500 core makes reservations on behalf of aligned 64-byte sections of address space 
(coherence granule). 
While the e6500 core supports making reservations to cache-inhibited memory or to 
cached memory when the cache is disabled, doing so may not be supported in the 
future. Additionally, while the e6500 core supports making the reservations and store 
conditionals to real addresses that differ but are within the same coherence granule or 
with different size operations to the same granule, doing so may not be supported in the 
future.
Executing load and reserve or store conditional instructions to a page marked 
write-through (WIMGE = 10xxx) causes a data storage exception. If the location is not 
naturally aligned, an alignment exception occurs. 
See “Atomic Update Primitives Using lwarx and stwcx.,” in EREF.
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Memory Barrier mbar MO mbar provides a memory barrier. The behavior of mbar depends on the value of the MO 
operand. Note that mbar uses the same opcode as eieio, defined by the PowerPC 
architecture, and with which mbar (MO = 1) semantics are identical. 
MO = 0—mbar instruction provides a storage ordering function for all memory access 
instructions executed by the processor executing mbar. Executing mbar ensures that all 
data storage accesses caused by instructions preceding the mbar have completed 
before any data storage accesses caused by any instructions after the mbar. This order 
is seen by all mechanisms.
MO = 1—mbar functions identically to eieio. For more information, see Section 3.4.9.1, 
“mbar (MO = 1).”

Table 3-62. Memory synchronization Instructions (continued)

Name Mnemonic Syntax Implementation Notes
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Memory 
Synchronize 

sync
(msync)

L,E sync (former versions of the architecture used the mnemonic msync) provides a 
memory barrier to ensure the order of affected load and store memory accesses. sync 
provides several types of memory barriers specified by the L and E fields:
 • L = 0 (“heavyweight sync”). The memory barrier is throughout the memory hierarchy. 

In the e6500 core, sync 0,0 waits for proceeding data memory accesses to become 
visible to the entire memory hierarchy; then, it is broadcast on the CoreNet interface. 
sync 0,0 completes only after its address tenure. Subsequent instructions can 
execute out of order but complete only after the sync 0,0 completes. The simplified 
mnemonics hwsync, sync, and msync are equivalent to sync 0,0.

 • L = 1 (“lightweight sync”). The memory barrier provides an ordering function for the 
storage accesses caused by load, store, and dcbz type instructions executed by the 
processor executing the sync instruction and for which the specified storage 
locations are neither write through required nor caching inhibited. The applicable 
pairs are all pairs ai,bj of such accesses, except those in which ai is an access caused 
by a store or dcbz type instruction and bj is an access caused by a load instruction.
The sync 1,0 instruction memory barrier orders accesses described by the applicable 
pairs above to the local caches of the processor such that ai is performed in all caches 
local to the processor prior to any bj access. The simplified mnemonic lwsync is 
equivalent to sync1,0.

 • E (elemental sync). When the E operand is specified and is not 0, the bits of the E 
field (E[0] - E[3]), if set to 1, provide a memory barrier for the storage accesses 
caused by load, store, and dcbz type instructions executed by the processor 
executing the sync instruction and for which the specified storage locations are 
neither write through required nor caching inhibited. The applicable pairs are all pairs 
ai,bj of such accesses which are defined by how bits in the E field are set as follows:
E[0]—load with load. ai is an access caused by a load instruction, and bj is an access 
caused by a load instruction.
E[1]—load with store. ai is an access caused by a load instruction, and bj is an access 
caused by a store or dcbz type instruction.
E[2]—store with load. ai is an access caused by a store or dcbz type instruction, and 
bj is an access caused by a load instruction.
E[3]—store with store. ai is an access caused by a store or dcbz type instruction, and 
bj is an access caused by a store or dcbz type instruction.

All four bits of the E operand can be specified simultaneously. For example, E = 
0b1101 is equivalent to lwsync.
The simplified mnemonic for elemental sync is esync E. Omitting the E operand for 
sync assumes a value of 0 for E.

Memory accesses performed by a hardware page table translation are treated as loads 
with respect to the sync 0,0 (hwsync) memory barrier. In particular, hwsync provides 
an ordering function for all preceding stores to a page table caused by store instructions 
and the implicit loads that may occur during a page table translation after the hwsync 
instruction completes. Executing a hwsync instruction ensures that all such stores are 
performed with respect to the thread executing the hwsync instruction, before any 
implicit accesses to the affected PTEs (targets of pervious stores) due to a page table 
translation are performed with respect to that thread.
sync latency depends on the processor state when it is dispatched and on various 
system-level conditions. Frequent use of sync 0,0 degrades performance and esync 
should be used where possible.
In multiprocessing code that performs locking operations to lock shared data structures:
 • sync—ensures that all stores into a data structure caused by store instructions 

executed in a critical section of a program are performed with respect to another 
processor before the store that releases the lock is performed with respect to that 
processor. esync 0b0001 is preferable in many cases.

 • Unlike a context-synchronizing operation, sync does not discard prefetched 
instructions.

Table 3-62. Memory synchronization Instructions (continued)

Name Mnemonic Syntax Implementation Notes
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The section, “Lock Acquisition and Import Barriers,” in EREF describes how the sync and mbar 
instructions can be used to control memory access ordering when memory is shared between programs.

3.4.9.1 mbar (MO = 1) 

As defined by the architecture, mbar (MO = 1) functions like eieio, as it is defined by the PowerPC 
architecture. It provides ordering for the effects of certain classes of load and store instructions. These 
instructions consist of two sets, which are ordered separately. The two sets follow:

• Caching-inhibited, guarded loads and stores to memory, and write-through-required stores to 
memory. mbar (MO = 1) controls the order in which accesses are performed in main memory. It 
ensures that all applicable memory accesses caused by instructions preceding the mbar have 
completed with respect to main memory before any such accesses caused by instructions following 
mbar access main memory. It acts like a barrier that flows through the memory queues and to main 
memory, preventing the reordering of memory accesses across the barrier. No ordering is 
performed for dcbz type instructions if the instruction causes the system alignment error handler 
to be invoked.

All accesses in this set are ordered as one set; there is not one order for guarded, caching-inhibited 
loads and stores and another for write-through-required stores.

• Stores to memory that are caching-allowed, write-through not required, and memory-coherency 
required. mbar (MO = 1) controls the order in which accesses are performed with respect to 
coherent memory. It ensures that, with respect to coherent memory, applicable stores caused by 
instructions before the mbar complete before any applicable stores caused by instructions after it. 

Memory accesses caused by dcbz or dcba type instructions are ordered like a store. 

Except for dcbz and dcba type instructions, mbar (MO = 1) does not affect the order of cache operations 
(whether caused explicitly by a cache management instruction or implicitly by the cache coherency 
mechanism). Also, mbar does not affect the order of accesses in one set with respect to accesses in the 
other.

mbar (MO = 1) may complete before memory accesses caused by instructions preceding it have been 
performed with respect to main memory or coherent memory as appropriate. mbar (MO = 1) is intended 
for use in managing shared data structures, in accessing memory-mapped I/O, and in preventing load/store 
combining operations in main memory. For the first use, the shared data structure and the lock that protects 
it must be altered only by stores in the same set (for both cases described above). For the second use, mbar 
(MO = 1) can be thought of as placing a barrier into the stream of memory accesses issued by a core, such 
that any given access appears to be on the same side of the barrier to both the core and the I/O device.

Store (Byte, 
Halfword, 
Word, 
Doubleword)
Conditional 
Indexed 

stbcx.
sthcx.
stwcx.
stdcx.

rS,rA,rB See lbarx, lharx, lwarx, ldarx (listed in this table) for a description of how load and 
reserve and store conditional instructions are used in pairs. For stbcx., sthcx., stwcx., 
stdcx., the e6500 core takes a data storage exception if the page is marked 
write-through (WIMGE = 10xxx) and takes an alignment exception if the access is not 
naturally aligned. 

Table 3-62. Memory synchronization Instructions (continued)

Name Mnemonic Syntax Implementation Notes
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Because the threads perform store operations in order to memory that is designated as both 
caching-inhibited and guarded, mbar (MO = 1) is needed for such memory only when loads must be 
ordered with respect to stores or with respect to other loads.

The section, “Lock Acquisition and Import Barriers,” in EREF describes how sync and mbar control 
memory access ordering when programs share memory. 

3.4.10 Reservations 

The ability to emulate an atomic operation using load with reservation and store conditional instructions 
is based on the conditional behavior of stbcx., sthcx., stwcx., stdcx., the reservation set by lbarx, lharx, 
lwarx, ldarx, and the clearing of that reservation if the target location is modified by another processor or 
mechanism before the store conditional instruction performs its store. Behavior of these instructions is 
described in EREF. On the e6500 core, a reservation by a thread will be lost for any of the following 
reasons:

• The thread executes a store condition instruction.

• Some other processor successfully modifies a location in the reservation granule and the address 
containing the reservation is marked as Memory Coherence Required (M = 1). If the modification 
is done using a decorated load, decorated store, or decorated notify instruction, it is undefined 
whether the reservation is lost.

• Execution of another load with reservation instruction, which removes the old reservation and 
establishes a reservation at the address specified in the load with reservation instruction

• Some other processor successfully executes a dcbtst, dcbtstep, dcbtstls, dcbal, or dcba to a 
location in the reservation granule, and the address containing the reservation is marked as Memory 
Coherence Required (M = 1).

• Some other processor executes.

System software should always perform a store conditional instruction to a scratch location when 
performing a context switch or a partition switch to ensure that any held reservation is lost prior to 
initiating the new context.

Software should not perform decorated storage operations to the same reservation granule that is a target 
of load and reserve instructions, as doing so does not guarantee that reservations are cleared appropriately.

3.4.11 Memory control instructions

Memory control instructions can be classified as follows: 

• User- and supervisor-level cache management instructions

• Supervisor-level-only translation lookaside buffer management instructions 

This section describes the user-level cache management instructions. See Section 3.4.12.4, 
“Supervisor-level memory control instructions,” for information about supervisor-level cache and 
translation lookaside buffer management instructions. Cache-locking instructions are described in 
Section 3.4.11.2, “Cache locking instructions.” 
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3.4.11.1 User-level cache instructions

The instructions listed in Table 3-63 help user-level programs manage on-chip caches if they are 
implemented. See Chapter 5, “Core Caches and Memory Subsystem,” for more information about cache 
topics. The following sections describe how these operations are treated with respect to the e6500 core’s 
caches.

3.4.11.1.1 CT field values

The e6500 core supports the following CT values:

• CT = 0 indicates the L1 cache.

• CT = 2 indicates the L2 cache.

• CT = 1 indicates the platform cache, if one is implemented on the integrated device. 

Additional values may be defined by the integrated device.

Only CT = 0 or CT = 2 may be used with a dcblq. or an icblq. instruction. All other CT values used 
with these instructions set CR0 to 0b000 || XER[SO].

• The CT values 1, 3, 5, and 7 are not supported and produce undefined results when used with an 
address that is mapped to PCI address space on the integrated device. 

As with other memory-related instructions, the effects of cache management instructions on memory are 
weakly ordered. If the programmer must ensure that cache or other instructions have been performed with 
respect to all other processors and system mechanisms, a sync must be placed after those instructions.

Section 3.4.11.2, “Cache locking instructions,” describes cache-locking instructions. 

This table describes the user-level cache instructions.
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Table 3-63. User-level cache instructions 

Name Mnemonic Syntax Implementation Notes

Data Cache 
Block Allocate 

dcba rA,rB If L1CSR0[DCBZ32] = 0, dcba operates on all bytes in the cache line (cache-line 
operation).

If L1CSR0[DCBZ32] = 1, dcba operates on 32 bytes (32-byte operation).
The dcba instruction performs the same address translation and protection as a store 
and is treated as a store for debug events. The dcba instruction is treated as a 32 or 
cache-line number of bytes store of zeros operation. The store operation is always size 
aligned to a 32-byte granule for a 32-byte operation and a cache-line granule for a 
cache-line operation by truncating the EA as necessary to achieve the appropriate 
granule. Using dcba with 32-byte operation may perform inferior to using cache-line 
operation and should be avoided when possible.

The dcba is treated as a no-op if any of the following occur:
 • The page is marked write-through.
 • The page is marked caching-inhibited.
 • A DTLB miss exception or protection violation occurs. 
 • An L2 MMU multi-way hit is detected.
 • The targeted cache is disabled.
When dcba is treated as a no-op, executing the dcba can result in IAC debug events, but 
does not cause DAC debug events.

Data Cache 
Block Allocate 
by Line

dcbal rA,rB This instruction behaves the same as dcba except it always operates on all bytes in the 
cache line, regardless of the setting of L1CSR0[DCBZ32].

Data Cache 
Block Flush

dcbf rA,rB The EA is computed, translated, and checked for protection violations: 
 • For cache hits with the tag marked modified, the cache block is written back to memory 

and the cache entry is invalidated. 
 • For cache hits with the tag marked not modified, the entry is invalidated. 
 • For cache misses, no further action is taken. 
A dcbf is broadcast if WIMGE = xx1xx (coherency enforced). dcbf acts like a load with 
respect to address translation and memory protection. It executes in the LSU, regardless 
of whether the cache is disabled or locked.

For the e6500 core, if dcbf is performed to memory that is not caching inhibited, memory 
coherent, and not write through required (WIMGE = 0b001xx), it is treated as a store with 
respect to memory barriers established by lwsync and esync.

Data Cache 
Block Set to 
Zero 

dcbz rA,rB If L1CSR0[DCBZ32] = 0, dcbz operates on all bytes in cache line (cache-line operation).
If L1CSR0[DCBZ32] = 1, dcbz operates on 32 bytes (32-byte operation).
dcbz performs the same address translation and protection as a store and is treated as 
a store for debug events. The dcbz instruction is treated as a 32 or cache-line number of 
bytes store of zeros operation. The store operation is always size aligned to a 32-byte 
granule for a 32-byte operation and a cache-line granule for a cache-line operation by 
truncating the EA as necessary to achieve the appropriate granule. Using dcbz with 
32-byte operation may perform inferior to using cache-line operation and should be 
avoided when possible.
dcbz will take an alignment exception if any of the following occur:
 • The page is marked write-through.
 • The page is marked caching-inhibited.

Data Cache 
Block Set to 
Zero by Line

dcbzl rA,rB This instruction behaves the same as dcbz except it always operates on all bytes in the 
cache line, regardless of the setting of L1CSR0[DCBZ32].



Instruction Model

e6500 Core Reference Manual, Rev 0

3-54 Freescale Semiconductor
 

3.4.11.2 Cache locking instructions

Table 3-64 describes the implementation of the cache locking instructions, which are fully described in 
EREF. 

The dcbtls, dcbtstls, dcblc, icbtls, icblc, dcblq., and icblq. cache-locking instructions require hypervisor 
state privilege to execute when MSRP[UCLEP] = 1. Execution of these instructions in the guest-supervisor 

Data Cache 
Block Store 

dcbst rA,rB dcbst is implemented identically to dcbf. 

Data Cache 
Block Touch 

dcbt TH,rA,rB 1 When dcbt executes, the e6500 core checks for protection violations (as for a load 
instruction). dcbt is treated as a no-op in the following cases on the e6500 core:
 • The access causes a DSI or DTLB Miss exception.
 • The page is marked Caching Inhibited.
 • The page is marked Guarded.
 • The targeted cache is disabled.
 • An L2 MMU multi-way hit is detected.
 • A dcbf (or dcbst, dcbstep, dcbfep) was previously executed and has not yet 

performed its flush, and the dcbt and dcbf (or dcbst, dcbstep, dcbfep) specify the 
same cache line but specify a different byte address within the cache line.

 • HID0[NOPTI] = 1.
Otherwise, if no data is in the cache location, then a cache line fill is requested.
When dcbt is treated as a no-op, executing the dcbt can result in IAC debug events, but 
does not cause DAC debug events.

Data Cache 
Block Touch 
for Store

dcbtst TH,rA,rB 1 dcbtst is treated as a dcbt except that the line is allocated and an attempt is made to 
mark it as exclusive in the specified cache.

Instruction 
Cache Block 
Invalidate

icbi rA,rB icbi is broadcast on the CoreNet interface. It should always be followed by a sync and 
an isync to make sure its effects are seen by instruction fetches and instruction execution 
following the icbi itself.

Instruction 
Cache Block 
Touch 

icbt CT,rA,rB When icbt executes, the e6500 core checks for protection violations (as for a load 
instruction). icbt is treated as a no-op in the following cases on the e6500 core:
 • The access causes a DSI or TLB Miss exception.
 • The page is marked Caching Inhibited.
 • The page is marked Guarded.
 • The targeted cache is disabled.
 • An L2 MMU multi-way hit is detected.
 • HID0[NOPTI] = 1
Otherwise, if no data is in the cache location, then a cache line fill is requested.
When icbt is treated as a no-op, executing the icbt can result in IAC debug events, but 
does not cause DAC debug events.
Note: The primary instruction cache (CT=0) on the e6500 core does not perform icbt 
instructions and they are treated as a no-op.

Make it So miso — miso is a hint to the processor that performance will be improved if all stores previously 
executed are performed as soon as possible. On the e6500 core, this causes all the store 
gather buffers to be sent to the L2 cache, which is the point of coherency. miso can 
improve multiprocessor performance if other processors are waiting to see a store 
performed.

1 TH was formerly defined as CT.

Table 3-63. User-level cache instructions  (continued)

Name Mnemonic Syntax Implementation Notes
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state when MSRP[UCLEP] = 1 causes a hypervisor privilege exception. User mode execution of these 
instructions is unaffected and is controlled by MSR[UCLE].

The CT field designates the specified cache in the cache hierarchy.

Unless otherwise stated, the behavior applies to all instructions. 

Full descriptions of these instructions are in the “Instruction Set” chapter of EREF. Note the following 
behaviors for the e6500 core:

• Unable to lock conditions occur if the locking instruction has no exceptions and the line cannot be 
locked when CT = 0 or CT = 2. When an unable-to-lock condition occurs, the line is not loaded or 
locked. An unable-to-lock condition occurs when:

— The targeted cache is not enabled.

— The target address is marked Caching Inhibited (WIMGE = 0bx1xx).

— An error loading the line occurred either on the CoreNet interface or from the L2 cache.

• An overlocking condition occurs if the locking instruction has no exceptions and if all available 
ways in the specified cache are locked. 

— If an overlocking condition occurs in the primary cache (CT=0), the line is not loaded or locked. 

— If an overlocking condition occurs in the L2 cache (CT=2), the line is not loaded or locked.

• Setting L1CSR0[CLFC] flash invalidates all primary data cache lock bits and setting 
L1CSR1[ICLFC] flash invalidates all primary instruction cache lock bits, allowing system 
software to clear all cache locking in the L1 cache without knowing the addresses of the locked 
lines. 

Because L1 cache locking is persistent, setting L1CSR0[CFI] or L1CSR1[ICFI] does not clear the 
locks in the respective caches when the lines containing the locks are invalidated.

Table 3-64. Cache locking instructions

Name Mnemonic Syntax Implementation Details

Data Cache Block 
Lock Clear

dcblc CT,rA,rB The line in the specified cache is unlocked, making it eligible for replacement.

Data Cache Block 
Touch and Lock Set

dcbtls CT,rA,rB The line is loaded and locked into the specified cache.

Data Cache Block 
Touch for Store and 
Lock Set

dcbtstls CT,rA,rB The line is loaded and locked into the specified cache. The line is marked as 
modified.

Data Cache Block 
Lock Query

dcblq. CT,rA,rB If the line is locked in the specified cache, CR0[EQ] is set to 1; otherwise, it is set to 
0. dcblq. can only be used with CT = 0 and CT = 2, other values of CT cause the 
instruction to set CR0 to b000 || XER[SO].

Instruction Cache 
Block Lock Clear

icblc CT,rA,rB The line in the specified cache is unlocked, making it eligible for replacement.

Instruction Cache 
Block Touch and 
Lock Set

icbtls CT,rA,rB The line is loaded and locked into the specified cache.

Instruction Cache 
Block Lock Query

icblq. CT,rA,rB If the line is locked in the specified cache, CR0[EQ] is set to 1; otherwise, it is set to 
0. icblq. can only be used with CT = 0 and CT = 2, other values of CT cause the 
instruction to set CR0 to b000 || XER[SO].
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• Touch and lock set instructions (icbtls, dcbtls, and dcbtstls) are always executed and are not 
treated as hints.

Cache locking clear instructions (dcblc and icblc) are no-oped if the specified cache is the L1 or L2 cache 
and the cache is not enabled.

Consult the SoC documentation to determined behavior for the platform cache (CT = 1).

To precisely detect an overlock or unable-to-lock condition in the primary data cache, system software 
must perform the following code sequence:

dcbtls
dcblq.
(check CR0[EQ] to determine if the line is locked)

The following code sequence precisely detects an overlock in the primary instruction cache:

icbtls
icblq.
(check CR0[EQ] to determine if the line is locked)

• “CR0 = 0” means the instruction is completed without accessing the cache and the CR0 field is set 
to 0.

3.4.12 Hypervisor- and supervisor-level instructions 

The architecture includes the structure of the memory management model, supervisor-level registers, and 
the interrupt model. This section describes the hypervisor- and supervisor-level instructions implemented 
on the e6500. Instructions described here have an associated privilege and actions, as described in the 
following table.

3.4.12.1 System linkage and MSR access instructions 

Table 3-66 describes system linkage instructions as they are implemented on the e6500 core. The 
user-level sc (LEV = 0) instruction lets a user program call on the system to perform a service and causes 
the thread to take a system call interrupt. The sc (LEV = 1) instruction is also used for the supervisor to 
involve the hypervisor to perform a service and causes the thread to take an embedded hypervisor system 
call interrupt. The supervisor-level rfi and rfgi instructions are used for returning from an interrupt handler. 
The hypervisor-level rfci instruction is used for critical interrupts; rfdi is used for debug interrupts; rfmci 
is used for machine check interrupts.

Table 3-65. Instruction execution based on privilege level

Privilege Level 
of Instruction

User Mode
(MSR[GS,PR] = 0bx1)

Guest-Supervisor Mode
(MSR[GS,PR] = 0b10)

Hypervisor Mode
(MSR[GS,PR] = 0b00)

User Execute normally Execute normally Execute normally

Guest Supervisor Privileged instruction exception Execute normally Execute normally

Hypervisor
Privileged instruction exception

Embedded hypervisor privilege 
exception

Execute normally
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Guest-supervisor software should use rfi, rfci, rfdi, and rfmci when returning from their associated 
interrupts. When a guest operating system executes rfi, the thread maps the instruction to rfgi, ensuring 
that the appropriate guest save/restore registers are used for the return. For rfci, rfdi, and rfmci, the 
hypervisor should emulate these instructions as it will emulate the taking of these interrupts in the 
guest-supervisor state.

Privileges are as follows:

• sc is user privileged.

• rfi (rfgi), mfmsr, mtmsr, wrtee, wrteei are guest–supervisor privileged.

• rfci, rfdi, rfmci are hypervisor privileged.

This table lists the supervisor-level system linkage instructions.

This table lists instructions for accessing the MSR. 

Certain encodings of the SPR field of mtspr and mfspr instructions (shown in Table 3-59) provide access 
to supervisor-level SPRs. Encodings for SPRs are listed in Table 2-2. Simplified mnemonics are provided 
for mtspr and mfspr. See Section 3.3.3, “Synchronization requirements,” and EREF for more information 
on context synchronization requirements when altering certain SPRs.

3.4.12.2 Thread management instructions

The thread management instructions provide read-write access to thread management resources that allow 
the e6500 threads to be controlled. Thread management instructions are hypervisor privileged. 

This table lists the thread management instructions.

Table 3-66. System linkage instructions—supervisor-level 

Name Mnemonic Syntax Implementation Notes

Return from Interrupt rfi — These instructions are context-synchronizing, which, for the 
e6500 core, means they work their way to the final execute 
stage, update architected registers, and redirect instruction 
flow. 
In the guest-supervisor state (MSR[GS,PR]=0b10), rfi (rfgi) 
cannot alter MSR[GS] or any bits protected by MSRP.
Guest-supervisor state maps rfi to rfgi. Guest-supervisor 
state cannot execute rfci, rfdi, or rfmci because they are 
hypervisor privileged and are emulated by the hypervisor.

Return from Guest Interrupt rfgi —

Return from Critical Interrupt rfci —

Return from Debug Interrupt rfdi —

Return from Machine Check Interrupt rfmci —

System Call sc LEV

Table 3-67. Move to/from Machine State register instructions

Name Mnemonic Syntax Notes

Move from Machine State Register mfmsr rD —

Move to Machine State Register mtmsr rS In the guest-supervisor state (MSR[GS,PR]=0b10), mtmsr 
cannot alter MSR[GS] or any bits protected by MSRP.

Write MSR External Enable wrtee rS —

Write MSR External Enable Immediate wrteei E —
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The TMRs listed in Section 2.15.2, “Thread management registers (TMRs)” are accessed with mftmr and 
mttmr instructions.

INIAn and IMSRn TMRs can only be written with mttmr when its associated thread ‘n’ is disabled. 
Writes to INIA or IMSR of an enabled thread are ignored.

Executing mftmr or mttmr in the guest-supervisor state to a valid TMR causes an embedded hypervisor 
privilege interrupt.

3.4.12.3 External PID load and store instructions

External PID load and store instructions are used by the operating system and hypervisor to perform load, 
store, and cache management instruction to a separate address space while still fetching and executing in 
the normal supervisor or hypervisor context. The operating system or hypervisor selects the address space 
to target by altering the contents of the EPLC and EPSC registers for loads and stores, respectively. When 
the effective address specified by the external PID load or store instruction is translated, the translation 
mechanism uses ELPID, EPID, EAS, EPR, and EGS values from the EPLC or EPSC register instead of 
LPIDR, PID, MSR[DS], MSR[PR], and MSR[GS] values. Such instructions are useful for an operating 
system to manipulate a process’ virtual memory using the context and credentials of the process.

The external PID instructions are implemented as described in EREF. Any implementation-specific 
behaviors for external PID instructions is the same as the non-external PID analogous instruction for the 
e6500 core (except that the translation mechanism is changed as described). See the appropriate 
description of the analogous instruction for any implementation-specific details. All external PID 
instructions are guest-supervisor privileged.

This table lists external PID load and store instructions.

Table 3-68. Thread management instructions

Name Mnemonic Syntax

Move from Thread Management Register mftmr rD,TMRN

Move to Thread Management Register mttmr TMRN,rS

Table 3-69. External PID load and store instructions

Instruction Mnemonic Syntax

Non External 
PID 

Analogous 
Instruction

Load Byte by External PID Indexed lbepx rD,rA,rB lbzx

Load Floating-Point Doubleword by External PID Indexed lfdepx frD,rA,rB lfdx

Load Halfword by External PID Indexed lhepx rD,rA,rB lhzx

Load Vector by External PID Indexed lvepx vD,rA,rB lvx

Load Vector by External PID Indexed LRU lvepxl vD,rA,rB lvxl

Load Word by External PID Indexed lwepx rD,rA,rB lwzx
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3.4.12.4 Supervisor-level memory control instructions 

Memory control instructions include the following: 

• Cache management instructions (supervisor-level and user-level) 

• Translation lookaside buffer management instructions 

This section describes supervisor-level memory control instructions. Section 3.4.11, “Memory control 
instructions,” describes user-level memory control instructions. 

3.4.12.4.1 Supervisor-level cache instruction

The following table lists the supervisor-level cache management instructions except for cache 
management instructions, which are part of the External PID instructions.

Load Doubleword by External PID Indexed ldepx rD,rA,rB ldx

Store Byte by External PID Indexed stbepx rS,rA,rB stbx

Store Floating-Point Doubleword by External PID Indexed stfdepx frS,rA,rB stfdx

Store Halfword by External PID Indexed sthepx rS,rA,rB sthx

Store Vector by External PID Indexed stvepx vS,rA,rB stvx

Store Vector by External PID Indexed LRU stvepxl vS,rA,rB stvxl

Store Word by External PID Indexed stwepx rS,rA,rB stwx

Store Doubleword by External PID Indexed stdepx rS,rA,rB stdx

Data Cache Block Flush by External PID Indexed dcbfep rA,rB dcbf

Data Cache Block Store by External PID Indexed dcbstep rA,rB dcbst

Data Cache Block Touch by External PID Indexed dcbtep TH,rA,rB dcbt

Data Cache Block Touch for Store by External PID Indexed dcbtstep TH,rA,rB dcbtst

Data Cache Block Zero by External PID Indexed dcbzep rA,rB dcbz

Data Cache Block Zero Long by External PID Indexed dcbzlep rA,rB dcbzl

Instruction Cache Block Invalidate by External PID Indexed icbiep rA,rB icbi

Table 3-69. External PID load and store instructions (continued)

Instruction Mnemonic Syntax

Non External 
PID 

Analogous 
Instruction
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dcbi is guest supervisor privileged.

See Section 3.4.11.1, “User-level cache instructions,” for cache instructions that provide user-level 
programs the ability to manage on-chip caches. 

3.4.12.4.2 Supervisor-level TLB management instructions

The address translation mechanism is defined in terms of TLBs and page table entries (PTEs) used to 
locate the logical-to-physical address mapping for an access. Chapter 6, “Memory Management Units 
(MMUs),” describes TLB operations. TLB management instructions are implemented as defined in EREF. 
The e6500 core implements MMU architecture version 2.

Table 3-70. Supervisor-level cache management instruction 

Name Mnemonic Syntax Implementation Notes

Data Cache 
Block 

Invalidate

dcbi rA,rB dcbi executes as defined in EREF but has implementation-dependent behaviors. When the 
address to be invalidated is marked Memory Coherence Required (WIMGE = 0bx01xx), a 
dcbf is performed that first flushes the line if modified prior to invalidation. If the address is 
not marked as Memory Coherence Required (WIMGE=0bx00xx), the line is not flushed and 
is invalidated. In this case, if the line was modified, the modified data is lost.
In the e6500 core, dcbi cannot generate a cache-locking exception. 

For the e6500 core, if dcbi is performed to memory that is not caching inhibited, memory 
coherent, and not write through required (WIMGE = 0b001xx), it is treated as a store with 
respect to memory barriers established by lwsync and esync.
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This table summarizes the operation of the TLB instructions in the e6500 core.

Table 3-71. TLB management instructions

Name Mnemonic Syntax Implementation Notes

TLB Invalidate 
Local

tlbilx T,rA, rB Invalidates TLB entries in the processor, which executes the tlbilx instruction. TLB entries 
that are protected by the IPROT attribute (entryIPROT=1) are not invalidated. tlbilx can be 
used to invalidate all entries corresponding to a LPID value, all entries corresponding to a 
PID value, or a single entry.
tlbilx is guest supervisor privileged; however, it causes an embedded hypervisor privilege 
exception if EPCR[DGTMI] is set.
Note: tlbilx is the preferred way of performing TLB invalidations, especially for operating 

systems running as a guest to the hypervisor because invalidations are partitioned 
and do not require hypervisor privilege.

Note: tlbilx requires the same local-processor synchronization as tlbivax, but not the 
cross-processor synchronization (that is, it does not require tlbsync). 

Note: tlbilx will invalidate the TLB entries of all threads on the e6500 core but will not be 
synchronized with respect to the data accesses and instruction fetches in the threads 
on which tlbilx is not executed. If the invalidation must be synchronized in the other 
threads, then software must arrange to execute tlbilx on all threads.

TLB Invalidate 
Virtual 

Address 
Indexed

tlbivax rA, rB A TLB invalidate operation is performed whenever tlbivax is executed. tlbivax invalidates 
any TLB entry in the targeted TLB array that corresponds to the virtual address calculated 
by this instruction as long as IPROT is not set; this includes invalidating TLB entries 
contained in TLBs on other processors and devices in addition to the processor executing 
tlbivax. Thus, an invalidate operation is broadcast throughout the coherent domain of the 
processor executing tlbivax. For more information, see Section 6.3, “Translation lookaside 
buffers (TLBs).”
tlbivax is hypervisor privileged.

TLB Read 
Entry

tlbre — tlbre causes the contents of a single TLB or LRAT entry to be extracted from the MMU and 
be placed in the corresponding fields of the MAS registers. The entry extracted is specified 
by the ATSEL, TLBSEL, ESEL, and EPN fields of MAS0 and MAS2. The contents extracted 
from the MMU are placed in MAS0–MAS3, MAS7, and MAS8. See Section 6.3, “Translation 
lookaside buffers (TLBs).”
tlbre is hypervisor privileged.

TLB Search 
Indexed

tlbsx rA, rB tlbsx searches the MMU for a particular entry based on the computed EA and the search 
values in MAS5 and MAS6. If a match is found, MAS0[V] is set and the found entry is read 
into MAS0–MAS3, MAS7, and MAS8. If the entry is not found, MAS0[V] is set to 0. See 
Section 6.3, “Translation lookaside buffers (TLBs).”
tlbsx is hypervisor privileged.
Note that rA = 0 is a preferred form for tlbsx and that some Freescale implementations, 
including the e6500 core, take an illegal instruction exception if rA != 0. 
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Implementation notes:

• If an attempt is made to write a TLB1 entry and MAS1[TSIZE] specifies an invalid size (that is, 0), 
the TSIZE for the entry is set to 2 (4 KB).

• If an attempt is made to write an LRAT entry and MAS1[TSIZE] specifies an invalid size (that is, 
0, 1, or 31), the LSIZE for the entry is set to 2 (4 KB).

• Reads (tlbre) from TLB0 ignore the value of MAS0[HES] and always perform reads as if 
MAS0[HES] = 0.

• Reads (tlbre or tlbsx) from TLB1 that read indirect, valid entries (TLB[V] = 1 and TLB[IND] = 
1) should always return MAS3[SPSIZE] = 0b00010 and write TLB[UND] = TLB[SR].

• Writes (tlbwe) to TLB1 that write indirect, valid entries (TLB[V] = 1 and TLB[IND] = 1) always 
write TLB[SR] = MAS3[UND].

• Writes (tlbwe) that write TLB entries when executing in 32-bit mode (MSR[CM] = 0) write 0 to 
the upper 32 bits of the EPN field of the TLB entry.

• TLB0 does not store the IND attribute and it is ignored on writes to TLB0.

• The TLB management instructions from Power ISA 2.06 contain a significant amount of optional 
capabilities. Although these capabilities are described in configuration registers, Freescale 
implementations only utilize a portion of the these capabilities. To minimize compatibility 
problems, system software should incorporate uses of these instructions into sub-routines.

• Executing tlbsx with rA != 0 causes an illegal instruction exception on the e6500 core. Software 
should always use tlbsx with rA = 0.

3.4.12.5 Message Clear and Message Send instructions

The e6500 core can generate messages to other processors and devices in the system. Messages are 
generated by using the Message Send (msgsnd) instruction. When a thread executes a msgsnd instruction, 
that message is sent to all other processors in the coherence domain. Depending on the message type and 

TLB 
Synchronize

tlbsync — Causes a TLBSYNC transaction on the CoreNet interface. See Section 6.3, “Translation 
lookaside buffers (TLBs).” 
tlbsync is hypervisor privileged.
Note that only one tlbsync can be in process at any given time on all processors of a 
coherence domain. The hypervisor or operating system should ensure this by doing the 
appropriate mutual exclusion. If the e6500 core detects multiple tlbsync operations at the 
same time, a machine check can occur.

TLB Write 
Entry

tlbwe — tlbwe causes the contents of certain fields of MAS0–MAS3, MAS7, and MAS8 to be written 
into a single TLB or LRAT entry in the MMU. If a TLB entry is written by the guest supervisor 
and a matching LRAT entry is found, the RPN fields of MAS3 and MAS7 are translated 
through the LRAT and the resulting translation is written into the RPN field of the TLB entry. 
The entry written is specified by the ATSEL, TLBSEL, ESEL (ESEL is not used if HES = 1 
and TLBSEL = 0, and hardware selects which way to write) and EPN fields of MAS0 and 
MAS2. See Section 6.3, “Translation lookaside buffers (TLBs).”
tlbwe is hypervisor privileged if EPCR[DGTMI] = 1. TLB entries may be written to TLB0 by 
the guest supervisor if a matching LRAT entry is found.

Table 3-71. TLB management instructions (continued)

Name Mnemonic Syntax Implementation Notes



Instruction Model

e6500 Core Reference Manual, Rev 0

Freescale Semiconductor 3-63
 

the payload of the message (specified by rB), other processors that receive this message may take one of 
several types of doorbell interrupts. The e6500 core accepts the following message types, which generate 
corresponding interrupts:

• Processor doorbell

• Processor doorbell critical

• Guest processor doorbell

• Guest processor doorbell critical

• Guest processor doorbell machine check

Messages that have already been accepted by a processor but have not caused one of the associated 
interrupts because the interrupt is masked may be cleared by the Message Clear (msgclr) instruction.

Both msgsnd and msgclr instructions are implemented as described in the architecture and in EREF.

See Section 4.9.20.1, “Doorbell interrupt definitions,” for more information about doorbell interrupt types.

This table lists the Message Clear and Message Send instructions.

msgsnd and msgclr are hypervisor privileged.

3.4.12.6 Performance monitor instructions (supervisor level)

Software communicates with the performance monitor through performance monitor registers (PMRs) 
with the instructions listed in the following table. 

Writing to a performance monitor register (mtpmr) requires guest-supervisor privilege. User-level access 
is limited to read-only access to certain registers through aliases designed to be accessed by user level 
software. Supervisor software can access these, as well as all other defined performance monitor registers. 
Attempting to access an undefined performance monitor register causes an illegal instruction exception. 
PMRs are listed in Section 2.16, “Performance monitor registers (PMRs).”

3.4.13 Recommended simplified mnemonics 

The description of each instruction includes the mnemonic and a formatted list of operands. Compliant 
assemblers support the mnemonics and operands listed. Simplified mnemonics and symbols are provided 
for frequently used instructions. See Appendix A, “Simplified Mnemonics,” for a complete list. Programs 

Table 3-72. Message Clear and Message Send instructions

Name Mnemonic Syntax

Message Clear msgclr rB

Message Send msgsnd rB

Table 3-73. Supervisor performance monitor instructions

Name Mnemonic Syntax

Move from Performance Monitor Register mfpmr rD,PMRN

Move to Performance Monitor Register mtpmr PMRN,rS
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written to be portable across the various assemblers should not assume the existence of mnemonics not 
described in this document. 

3.4.14 Context synchronization

Context synchronization is achieved by post- and pre-synchronizing instructions. An instruction is 
pre-synchronized by completing all instructions before dispatching the pre-synchronized instruction. 
Post-synchronizing is implemented by not dispatching any later instructions until the post-synchronized 
instruction is completely finished. 

3.5 Debug instruction model
The Debugger Notify Halt instruction (dnh) is implemented as defined in EREF. dnh can be used to halt 
the thread when an external debugger is attached and has enabled halting by setting EDBCR0[DNH_EN]. 
When the thread is halted, the DUI field is passed directly to the debugger as information describing the 
reason for the halt. The DCTL has uses defined for triggering functions in the integrated device. See 
Section 9.9.16.2, “Debugger Notify Halt (dnh) instruction.” If an external debugger is not attached or has 
not enabled halting, dnh takes an illegal instruction exception. 

The dni instruction can be used to signal a debug interrupt when MSR[DE] = 1.

This table lists the dnh debug instructions.

3.6 Instruction listing
This table lists the instructions implemented on the e6500 core. 

Table 3-74. dnh debug instruction

Name Mnemonic Syntax Implementation Details

Debugger Notify Halt dnh DUI,DCTL —

Debugger Notify Interrupt dni DUI,DCTL —

Table 3-75. e6500 core instruction set

Mnemonic Syntax Classification Cross-Reference

add rD,rA,rB Integer Table 3-5

add. rD,rA,rB Integer Table 3-5

addc rD,rA,rB Integer Table 3-5

addc. rD,rA,rB Integer Table 3-5

addco rD,rA,rB Integer Table 3-5

addco. rD,rA,rB Integer Table 3-5

adde rD,rA,rB Integer Table 3-5

adde. rD,rA,rB Integer Table 3-5

addeo rD,rA,rB Integer Table 3-5
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addeo. rD,rA,rB Integer Table 3-5

addi rD,rA,SIMM Integer Table 3-5

addic rD,rA,SIMM Integer Table 3-5

addic. rD,rA,SIMM Integer Table 3-5

addis rD,rA,SIMM Integer Table 3-5

addme rD,rA Integer Table 3-5

addme. rD,rA Integer Table 3-5

addmeo rD,rA Integer Table 3-5

addmeo. rD,rA Integer Table 3-5

addo rD,rA,rB Integer Table 3-5

addo. rD,rA,rB Integer Table 3-5

addze rD,rA Integer Table 3-5

addze. rD,rA Integer Table 3-5

addzeo rD,rA Integer Table 3-5

addzeo. rD,rA Integer Table 3-5

and rA,rS,rB Integer logical Table 3-7

and. rA,rS,rB Integer logical Table 3-7

andc rA,rS,rB Integer logical Table 3-7

andc. rA,rS,rB Integer logical Table 3-7

andi. rA,rS,UIMM Integer logical Table 3-7

andis. rA,rS,UIMM Integer logical Table 3-7

b LI Branch Table 3-52

ba LI Branch Table 3-52

bc BO,BI,BD Branch Table 3-52

bca BO,BI,BD Branch Table 3-52

bcctr BO,BI Branch Table 3-52

bcctrl BO,BI Branch Table 3-52

bcl BO,BI,BD Branch Table 3-52

bcla BO,BI,BD Branch Table 3-52

bclr BO,BI Branch Table 3-52

bclrl BO,BI Branch Table 3-52

bl LI Branch Table 3-52

bla LI Branch Table 3-52

Table 3-75. e6500 core instruction set (continued)
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bpermd rA,rS,rB Integer logical Table 3-7

cmp crfD,L,rA,rB Compare Table 3-6

cmpb rA,rS,rB Integer logical Table 3-7

cmpi crfD,L,rA,SIMM Compare Table 3-6

cmpl crfD,L,rA,rB Compare Table 3-6

cmpli crfD,L,rA,UIMM Compare Table 3-6

cntlzd rA,rS Integer logical Table 3-7

cntlzd. rA,rS Integer logical Table 3-7

cntlzw rA,rS Integer logical Table 3-7

cntlzw. rA,rS Integer logical Table 3-7

crand crbD,crbA,crbB Condition register logical Table 3-6

crandc crbD,crbA,crbB Condition register logical Table 3-6

creqv crbD,crbA,crbB Condition register logical Table 3-6

crnand crbD,crbA,crbB Condition register logical Table 3-6

crnor crbD,crbA,crbB Condition register logical Table 3-6

cror crbD,crbA,crbB Condition register logical Table 3-6

crorc crbD,crbA,crbB Condition register logical Table 3-6

crxor crbD,crbA,crbB Condition register logical Table 3-6

dcba rA,rB Cache control Table 3-63

dcbal rA,rB Extended cache line/cache control Table 3-63

dcbf rA,rB Cache control Table 3-63

dcbfep rA,rB External PID load/store Table 3-69

dcbi rA,rB Cache control Table 3-63

dcblc CT,rA,rB Cache locking Table 3-64

dcblq. CT,rA,rB Cache locking Table 3-64

dcbst rA,rB Cache control Table 3-63

dcbstep rA,rB External PID load/store Table 3-69

dcbt TH,rA,rB Cache control Table 3-63

dcbtep TH,rA,rB External PID load/store Table 3-69

dcbtls CT,rA,rB Cache locking Table 3-64

dcbtst CT,rA,rB Cache control Table 3-63

dcbtstep TH,rA,rB External PID load/store Table 3-69

dcbtstls CT,rA,rB Cache locking Table 3-64

Table 3-75. e6500 core instruction set (continued)
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dcbz rA,rB Cache control Table 3-63

dcbzep rA,rB External PID load/store Table 3-69

dcbzl rA,rB Extended cache line/cache control Table 3-63

dcbzlep rA,rB External PID load/store Table 3-69

divd rD,rA,rB Integer Table 3-5

divd. rD,rA,rB Integer Table 3-5

divdo rD,rA,rB Integer Table 3-5

divdo. rD,rA,rB Integer Table 3-5

divdu rD,rA,rB Integer Table 3-5

divdu. rD,rA,rB Integer Table 3-5

divduo rD,rA,rB Integer Table 3-5

divduo. rD,rA,rB Integer Table 3-5

divw rD,rA,rB Integer Table 3-5

divw. rD,rA,rB Integer Table 3-5

divwo rD,rA,rB Integer Table 3-5

divwo. rD,rA,rB Integer Table 3-5

divwu rD,rA,rB Integer Table 3-5

divwu. rD,rA,rB Integer Table 3-5

divwuo rD,rA,rB Integer Table 3-5

divwuo. rD,rA,rB Integer Table 3-5

dnh DUI,DCTL Debug Table 3-74

dni DUI,DCTL Debug Table 3-74

dsn rA,rB Decorated load/store Table 3-18

dss STRM AltiVec compatibility Table 3-40

dssall AltiVec compatibility Table 3-40

dst STRM,vD,vA,vB AltiVec compatibility Table 3-40

dstst STRM,vD,vA,vB AltiVec compatibility Table 3-40

dststt STRM,vD,vA,vB AltiVec compatibility Table 3-40

dstt STRM,vD,vA,vB AltiVec compatibility Table 3-40

ehpriv OC Hypervisor Table 3-57.”

eqv rA,rS,rB Integer logical Table 3-7

eqv. rA,rS,rB Integer logical Table 3-7

extsb rA,rS Integer logical Table 3-7

Table 3-75. e6500 core instruction set (continued)
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extsb. rA,rS Integer logical Table 3-7

extsh rA,rS Integer logical Table 3-7

extsh. rA,rS Integer logical Table 3-7

extsw rA,rS Integer logical Table 3-7

extsw. rA,rS Integer logical Table 3-7

fabs frD,frB Floating-point Table 3-19

fabs. frD,frB Floating-point Table 3-19

fadd frD,frA,frB Floating-point Table 3-19

fadd. frD,frA,frB Floating-point Table 3-19

fadds frD,frA,frB Floating-point Table 3-19

fadds. frD,frA,frB Floating-point Table 3-19

fcfid frD,frB Floating-point Table 3-19

fcfid. frD,frB Floating-point Table 3-19

fcmpo crfD,frA,frB Floating-point Table 3-19

fcmpu crfD,frA,frB Floating-point Table 3-19

fctid frD,frB Floating-point Table 3-19

fctid. frD,frB Floating-point Table 3-19

fctidz frD,frB Floating-point Table 3-19

fctidz. frD,frB Floating-point Table 3-19

fctiw frD,frB Floating-point Table 3-19

fctiw. frD,frB Floating-point Table 3-19

fctiwz frD,frB Floating-point Table 3-19

fctiwz. frD,frB Floating-point Table 3-19

fdiv frD,frA,frB Floating-point Table 3-19

fdiv. frD,frA,frB Floating-point Table 3-19

fdivs frD,frA,frB Floating-point Table 3-19

fdivs. frD,frA,frB Floating-point Table 3-19

fmadd frD,frA,frC,frB Floating-point Table 3-20

fmadd. frD,frA,frC,frB Floating-point Table 3-20

fmadds frD,frA,frC,frB Floating-point Table 3-20

fmadds. frD,frA,frC,frB Floating-point Table 3-20

fmr frD,frB Floating-point Table 3-24

fmr. frD,frB Floating-point Table 3-24

Table 3-75. e6500 core instruction set (continued)
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fmsub frD,frA,frC,frB Floating-point Table 3-19

fmsub. frD,frA,frC,frB Floating-point Table 3-19

fmsubs frD,frA,frC,frB Floating-point Table 3-19

fmsubs. frD,frA,frC,frB Floating-point Table 3-19

fmul frD,frA,frC Floating-point Table 3-19

fmul. frD,frA,frC Floating-point Table 3-19

fmuls frD,frA,frC Floating-point Table 3-19

fmuls. frD,frA,frC Floating-point Table 3-19

fnabs frD,frB Floating-point Table 3-19

fnabs. frD,frB Floating-point Table 3-19

fneg frD,frB Floating-point Table 3-19

fneg. frD,frB Floating-point Table 3-19

fnmadd frD,frA,frC,frB Floating-point Table 3-20

fnmadd. frD,frA,frC,frB Floating-point Table 3-20

fnmadds frD,frA,frC,frB Floating-point Table 3-20

fnmadds. frD,frA,frC,frB Floating-point Table 3-20

fnmsub frD,frA,frC,frB Floating-point Table 3-20

fnmsub. frD,frA,frC,frB Floating-point Table 3-20

fnmsubs frD,frA,frC,frB Floating-point Table 3-20

fnmsubs. frD,frA,frC,frB Floating-point Table 3-20

fres frD,frB Floating-point Table 3-20

fres. frD,frB Floating-point Table 3-20

frsp frD,frB Floating-point Table 3-20

frsp. frD,frB Floating-point Table 3-20

frsqrte frD,frB Floating-point Table 3-20

frsqrte. frD,frB Floating-point Table 3-20

fsel frD,frA,frC,frB Floating-point Table 3-20

fsel. frD,frA,frC,frB Floating-point Table 3-20

fsub frD,frA,frB Floating-point Table 3-20

fsub. frD,frA,frB Floating-point Table 3-20

fsubs frD,frA,frB Floating-point Table 3-20

fsubs. frD,frA,frB Floating-point Table 3-20

icbi frA,frB Cache control Table 3-63

Table 3-75. e6500 core instruction set (continued)
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icbiep rA,rB External PID load/store Table 3-69

icblc CT,rA,rB Cache locking Table 3-64

icblq. CT,rA,rB Cache locking Table 3-64

icbt CT,rA,rB Cache control Table 3-63

icbtls CT,rA,rB Cache locking Table 3-64

isel rD,rA,rB,crbC Integer select Table 3-53

isync — Synchronization Table 3-62

lbarx rD,rA,rB Synchronization Table 3-62

lbdx rD,rA,rB Decorated load/store Table 3-18

lbepx rD,rA,rB External PID load/store Table 3-69

lbz rD,d(rA) Integer load Table 3-10

lbzu rD,d(rA) Integer load Table 3-10

lbzux rD,rA,rB Integer load Table 3-10

lbzx rD,rA,rB Integer load Table 3-10

ld rD,d(rA) Integer load Table 3-10

ldarx rD,rA,rB Synchronization Table 3-62

ldbrx rD,rA,rB Integer load/store w/byte reverse Table 3-12

lddx rD,rA,rB Decorated load/store Table 3-18

ldepx rD,rA,rB External PID load/store Table 3-69

ldu rD,d(rA) Integer load Table 3-10

ldux rD,rA,rB Integer load Table 3-10

ldx rD,rA,rB Integer load Table 3-10

lfd frD,d(rA) Floating-point load/store Table 3-14

lfddx frD,rA,rB Decorated load/store Table 3-18

lfdepx frD,rA,rB External PID load/store Table 3-69

lfdu frD,d(rA) Floating-point load/store Table 3-14

lfdux frD,rA,rB Floating-point load/store Table 3-14

lfdx frD,rA,rB Floating-point load/store Table 3-14

lfs frD,d(rA) Floating-point load/store Table 3-14

lfsu frD,d(rA) Floating-point load/store Table 3-14

lfsux frD,rA,rB Floating-point load/store Table 3-14

lfsx frD,rA,rB Floating-point load/store Table 3-14

lha rD,d(rA) Integer load Table 3-10
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lharx rD,rA,rB Synchronization Table 3-62

lhau rD,d(rA) Integer load Table 3-10

lhaux rD,rA,rB Integer load Table 3-10

lhax rD,rA,rB Integer load Table 3-10

lhbrx rD,rA,rB Integer load/store w/byte reverse Table 3-12

lhdx rD,rA,rB Decorated load/store Table 3-18

lhepx rD,rA,rB External PID load/store Table 3-69

lhz rD,d(rA) Integer load Table 3-10

lhzu rD,d(rA) Integer load Table 3-10

lhzux rD,rA,rB Integer load Table 3-10

lhzx rD,rA,rB Integer load Table 3-10

lmw rD,d(rA) Integer load Table 3-10

lvebx vD,rA,rB AltiVec load Table 3-16

lvehx vD,rA,rB AltiVec load Table 3-16

lvepx vD,rA,rB External PID load/store Table 3-69

lvepxl vD,rA,rB External PID load/store Table 3-69

lvewx vD,rA,rB AltiVec load Table 3-16

lvexbx vD,rA,rB AltiVec load Table 3-16

lvexhx vD,rA,rB AltiVec load Table 3-16

lvexwx vD,rA,rB AltiVec load Table 3-16

lvtlx vD,rA,rB AltiVec load Table 3-16

lvtlxl vD,rA,rB AltiVec load Table 3-16

lvtrx vD,rA,rB AltiVec load Table 3-16

lvtrxl vD,rA,rB AltiVec load Table 3-16

lvsl vD,rA,rB AltiVec load Table 3-16

lvsm vD,rA,rB AltiVec load Table 3-16

lvsr vD,rA,rB AltiVec load Table 3-16

lvswx vD,rA,rB AltiVec load Table 3-16

lvswxl vD,rA,rB AltiVec load Table 3-16

lvx vD,rA,rB AltiVec load Table 3-16

lvxl vD,rA,rB AltiVec load Table 3-16

lwa rD,d(rA) Integer load Table 3-10

lwarx rD,rA,rB Synchronization Table 3-62

Table 3-75. e6500 core instruction set (continued)
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lwaux rD,rA,rB Integer load Table 3-10

lwax rD,rA,rB Integer load Table 3-10

lwbrx rD,rA,rB Integer load/store w/byte reverse Table 3-12

lwdx rD,rA,rB Decorated load/store Table 3-18

lwepx rD,rA,rB External PID load/store Table 3-69

lwz rD,d(rA) Integer load Table 3-10

lwzu rD,d(rA) Integer load Table 3-10

lwzux rD,rA,rB Integer load Table 3-10

lwzx rD,rA,rB Integer load Table 3-10

mbar — Synchronization Table 3-62

mcrf crfD,crfS Condition register logical Table 3-6

mcrfs crfD,crfS_FP Condition register logical Table 3-6

mcrxr crfD Condition register logical Table 3-58

mfcr rD Condition register logical Table 3-58

mffs frD FPSCR Table 3-23

mffs. frD FPSCR Table 3-23

mfmsr rD MSR Table 3-67

mfocrf rD,CRM CR logical Table 3-58

mfpmr rD,PMRN Move from PMR Table 3-73

mfspr rD,SPR SPR Table 3-59

mftb rD,SPR Move from time base Table 3-59

mftmr rD,TMRN Thread Management Table 3-68

mfvscr vD AltiVec status and control register Table 3-48

miso — Cache control Table 3-63

msgclr rB Doorbell Table 3-72

msgsnd rB Doorbell Table 3-72

mtcrf CRM,rS Condition register logical Table 3-58

mtfsb0 crbD_FP FPSCR Table 3-23

mtfsb0. crbD_FP FPSCR Table 3-23

mtfsb1 crbD_FP FPSCR Table 3-23

mtfsb1. crbD_FP FPSCR Table 3-23

mtfsf FM,fB FPSCR Table 3-23

mtfsf. FM,fB FPSCR Table 3-23
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mtfsfi crfD_FP,FP_IMM FPSCR Table 3-23

mtfsfi. crfD_FP,FP_IMM FPSCR Table 3-23

mtmsr rS MSR Table 3-67

mtocrf CRM,rS CR logical Table 3-58

mtpmr PMRN,rS Move to PMR Table 3-61

mtspr SPR,rS SPR Table 3-59

mttmr TMRN,rS Thread Management Table 3-68

mtvscr vB AltiVec status and control register Table 3-48

mulhd rD,rA,rB Integer Table 3-5

mulhd. rD,rA,rB Integer Table 3-5

mulhdu rD,rA,rB Integer Table 3-5

mulhdu. rD,rA,rB Integer Table 3-5

mulhw rD,rA,rB Integer Table 3-5

mulhw. rD,rA,rB Integer Table 3-5

mulhwu rD,rA,rB Integer Table 3-5

mulhwu. rD,rA,rB Integer Table 3-5

mulld rD,rA,rB Integer Table 3-5

mulld. rD,rA,rB Integer Table 3-5

mulldo rD,rA,rB Integer Table 3-5

mulldo. rD,rA,rB Integer Table 3-5

mulli rD,rA,SIMM Integer Table 3-5

mullw rD,rA,rB Integer Table 3-5

mullw. rD,rA,rB Integer Table 3-5

mullwo rD,rA,rB Integer Table 3-5

mullwo. rD,rA,rB Integer Table 3-5

mvidsplt vD,rA,rB GPR to AltiVec move Table 3-49

mviwsplt vD,rA,rB GPR to AltiVec move Table 3-49

nand rA,rS,rB Integer logical Table 3-7

nand. rA,rS,rB Integer logical Table 3-7

neg rD,rA Integer Table 3-5

neg. rD,rA Integer Table 3-5

nego rD,rA Integer Table 3-5

nego. rD,rA Integer Table 3-5
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nor rA,rS,rB Integer logical Table 3-7

nor. rA,rS,rB Integer logical Table 3-7

or rA,rS,rB Integer logical Table 3-7

or. rA,rS,rB Integer logical Table 3-7

orc rA,rS,rB Integer logical Table 3-7

orc. rA,rS,rB Integer logical Table 3-7

ori rA,rS,UIMM Integer logical Table 3-7

oris rA,rS,UIMM Integer logical Table 3-7

popcntb rA,rS Integer logical Table 3-7

popcntd rA,rS Integer logical Table 3-7

popcntw rA,rS Integer logical Table 3-7

prtyd rA,rS Integer logical Table 3-7

prtyw rA,rS Integer logical Table 3-7

rfci — System Linkage Table 3-66

rfdi — System Linkage Table 3-66

rfgi — System Linkage Table 3-66

rfi — System Linkage Table 3-66

rfmci — System Linkage Table 3-66

rldcl rA,rS,rB,MB Integer rotate Table 3-8

rldcl. rA,rS,rB,MB Integer rotate Table 3-8

rldcr rA,rS,rB,ME Integer rotate Table 3-8

rldcr. rA,rS,rB,ME Integer rotate Table 3-8

rldic rA,rS,SH,MB Integer rotate Table 3-8

rldic. rA,rS,SH,MB Integer rotate Table 3-8

rldicl rA,rS,SH,MB Integer rotate Table 3-8

rldicl. rA,rS,SH,MB Integer rotate Table 3-8

rldicr rA,rS,SH,ME Integer rotate Table 3-8

rldicr. rA,rS,SH,ME Integer rotate Table 3-8

rldimi rA,rS,SH,MB Integer rotate Table 3-8

rldimi. rA,rS,SH,MB Integer rotate Table 3-8

rlwimi rA,rS,SH,MB,ME Integer rotate Table 3-8

rlwimi. rA,rS,SH,MB,ME Integer rotate Table 3-8

rlwinm rA,rS,SH,MB,ME Integer rotate Table 3-8
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rlwinm. rA,rS,SH,MB,ME Integer rotate Table 3-8

rlwnm rA,rS,rB,MB,ME Integer rotate Table 3-8

rlwnm. rA,rS,rB,MB,ME Integer rotate Table 3-8

sc LEV System call Table 3-8

sld rA,rS,rB Integer shift Table 3-9

sld. rA,rS,rB Integer shift Table 3-9

slw rA,rS,rB Integer shift Table 3-9

slw. rA,rS,rB Integer shift Table 3-9

srad rA,rS,rB Integer shift Table 3-9

srad. rA,rS,rB Integer shift Table 3-9

sradi rA,rS,SH Integer shift Table 3-9

sradi. rA,rS,SH Integer shift Table 3-9

sraw rA,rS,rB Integer shift Table 3-9

sraw. rA,rS,rB Integer shift Table 3-9

srawi rA,rS,SH Integer shift Table 3-9

srawi. rA,rS,SH Integer shift Table 3-9

srd rA,rS,rB Integer shift Table 3-9

srd. rA,rS,rB Integer shift Table 3-9

srw rA,rS,rB Integer shift Table 3-9

srw. rA,rS,rB Integer shift Table 3-9

stb rS,d(rA) Integer store Table 3-11

stbcx. rS,rA,rB Synchronization Table 3-62

stbdx rS,rA,rB Decorated load/store Table 3-18

stbepx rS,rA,rB External PID load/store Table 3-69

stbu rS,d(rA) Integer store Table 3-11

stbux rS,rA,rB Integer store Table 3-11

stbx rS,rA,rB Integer store Table 3-11

std rS,d(rA) Integer store Table 3-11

stdbrx rS,rA,rB Integer load/store w/byte reverse Table 3-12

stdcx. rS,rA,rB Synchronization Table 3-62

stddx rS,rA,rB Decorated load/store Table 3-18

stdepx rS,rA,rB External PID load/store Table 3-69

stdu rS,d(rA) Integer store Table 3-11
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stdux rS,rA,rB Integer store Table 3-11

stdx rS,rA,rB Integer store Table 3-11

stfd frS,d(rA) Floating-point store Table 3-15

stfddx frS,rA,rB Decorated load/store Table 3-18

stfdepx frS,rA,rB External PID load/store Table 3-69

stfdu frS,d(rA) Floating-point store Table 3-15

stfdux frS,rA,rB Floating-point store Table 3-15

stfdx frS,rA,rB Floating-point store Table 3-15

stfiwx frS,rA,rB Floating-point store Table 3-15

stfs frS,d(rA) Floating-point store Table 3-15

stfsu frS,d(rA) Floating-point store Table 3-15

stfsux frS,rA,rB Floating-point store Table 3-15

stfsx frS,rA,rB Floating-point store Table 3-15

sth rS,d(rA) Integer store Table 3-11

sthbrx rS,rA,rB Integer load/store w/byte reverse Table 3-12

sthcx. rS,rA,rB Synchronization Table 3-62

sthdx rS,rA,rB Decorated load/store Table 3-18

sthepx rS,rA,rB External PID load/store Table 3-69

sthu rS,d(rA) Integer store Table 3-11

sthux rS,rA,rB Integer store Table 3-11

sthx rS,rA,rB Integer store Table 3-11

stmw rS,d(rA) Integer store Table 3-11

stvebx vS,rA,rB AltiVec store Table 3-17

stvehx vS,rA,rB AltiVec store Table 3-17

stvepx vS,rA,rB External PID load/store Table 3-69

stvepxl vS,rA,rB External PID load/store Table 3-69

stvewx vS,rA,rB AltiVec store Table 3-17

stvexbx vS,rA,rB AltiVec store Table 3-17

stvexhx vS,rA,rB AltiVec store Table 3-17

stvexwx vS,rA,rB AltiVec store Table 3-17

stvflx vS,rA,rB AltiVec store Table 3-17

stvflxl vS,rA,rB AltiVec store Table 3-17

stvfrx vS,rA,rB AltiVec store Table 3-17
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stvfrxl vS,rA,rB AltiVec store Table 3-17

stvswx vS,rA,rB AltiVec store Table 3-17

stvswxl vS,rA,rB AltiVec store Table 3-17

stvx vS,rA,rB AltiVec store Table 3-17

stvxl vS,rA,rB AltiVec store Table 3-17

stw rS,d(rA) Integer store Table 3-11

stwbrx rS,rA,rB Integer load/store w/byte reverse Table 3-12

stwcx. rS,rA,rB Synchronization Table 3-62

stwdx rS,rA,rB Decorated load/store Table 3-18

stwepx rS,rA,rB External PID load/store Table 3-69

stwu rS,d(rA) Integer store Table 3-11

stwux rS,rA,rB Integer store Table 3-11

stwx rS,rA,rB Integer store Table 3-11

subf rD,rA,rB Integer Table 3-5

subf. rD,rA,rB Integer Table 3-5

subfc rD,rA,rB Integer Table 3-5

subfc. rD,rA,rB Integer Table 3-5

subfco rD,rA,rB Integer Table 3-5

subfco. rD,rA,rB Integer Table 3-5

subfe rD,rA,rB Integer Table 3-5

subfe. rD,rA,rB Integer Table 3-5

subfeo rD,rA,rB Integer Table 3-5

subfeo. rD,rA,rB Integer Table 3-5

subfic rD,rA,SIMM Integer Table 3-5

subfme rD,rA Integer Table 3-5

subfme. rD,rA Integer Table 3-5

subfmeo rD,rA Integer Table 3-5

subfmeo. rD,rA Integer Table 3-5

subfo rD,rA,rB Integer Table 3-5

subfo. rD,rA,rB Integer Table 3-5

subfze rD,rA Integer Table 3-5

subfze. rD,rA Integer Table 3-5

subfzeo rD,rA Integer Table 3-5
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subfzeo. rD,rA Integer Table 3-5

sync
(msync)

L,E Synchronization Table 3-62

td TO,rA,rB Trap Table 3-55

tdi TO,rA,SIMM Trap Table 3-55

tlbilx T,rA,rB TLB management Table 3-71

tlbivax rA,rB TLB management Table 3-71

tlbre — TLB management Table 3-71

tlbsx rA,rB TLB management Table 3-71

tlbsync — TLB management Table 3-71

tlbwe — TLB management Table 3-71

tw TO,rA,rB Trap Table 3-55

twi TO,rA,SIMM Trap Table 3-55

vabsdub vD,vA,vB AltiVec integer Table 3-25

vabsduh vD,vA,vB AltiVec integer Table 3-25

vabsduw vD,vA,vB AltiVec integer Table 3-25

vaddcuw vD,vA,vB AltiVec integer Table 3-25

vaddfp vD,vA,vB AltiVec floating-point arithmetic Table 3-35

vaddsbs vD,vA,vB AltiVec integer Table 3-25

vaddshs vD,vA,vB AltiVec integer Table 3-25

vaddsws vD,vA,vB AltiVec integer Table 3-25

vaddubm vD,vA,vB AltiVec integer Table 3-25

vaddubs vD,vA,vB AltiVec integer Table 3-25

vadduhm vD,vA,vB AltiVec integer Table 3-25

vadduhs vD,vA,vB AltiVec integer Table 3-25

vadduwm vD,vA,vB AltiVec integer Table 3-25

vadduws vD,vA,vB AltiVec integer Table 3-25

vand vD,vA,vB AltiVec logical Table 3-27

vandc vD,vA,vB AltiVec logical Table 3-27

vavgsb vD,vA,vB AltiVec integer Table 3-25

vavgsh vD,vA,vB AltiVec integer Table 3-25

vavgsw vD,vA,vB AltiVec integer Table 3-25

vavgub vD,vA,vB AltiVec integer Table 3-25
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vavguh vD,vA,vB AltiVec integer Table 3-25

vavguw vD,vA,vB AltiVec integer Table 3-25

vcfsx vD,vB, UIMM AltiVec floating-point rounding and 
conversion

Table 3-37

vcfux vD,vB, UIMM AltiVec floating-point rounding and 
conversion

Table 3-37

vcmpbfp vD,vA,vB AltiVec floating-point compare Table 3-38

vcmpbfp. vD,vA,vB AltiVec floating-point compare Table 3-38

vcmpeqfp vD,vA,vB AltiVec floating-point compare Table 3-38

vcmpeqfp. vD,vA,vB AltiVec floating-point compare Table 3-38

vcmpequb vD,vA,vB AltiVec integer compare Table 3-26

vcmpequb. vD,vA,vB AltiVec integer compare Table 3-26

vcmpequh vD,vA,vB AltiVec integer compare Table 3-26

vcmpequh. vD,vA,vB AltiVec integer compare Table 3-26

vcmpequw vD,vA,vB AltiVec integer compare Table 3-26

vcmpequw. vD,vA,vB AltiVec integer compare Table 3-26

vcmpgefp vD,vA,vB AltiVec floating-point compare Table 3-38

vcmpgefp. vD,vA,vB AltiVec floating-point compare Table 3-38

vcmpgtfp vD,vA,vB AltiVec floating-point compare Table 3-38

vcmpgtfp. vD,vA,vB AltiVec floating-point compare Table 3-38

vcmpgtsb vD,vA,vB AltiVec integer compare Table 3-26

vcmpgtsb. vD,vA,vB AltiVec integer compare Table 3-26

vcmpgtsh. vD,vA,vB AltiVec integer compare Table 3-26

vcmpgtsw vD,vA,vB AltiVec integer compare Table 3-26

vcmpgtsw. vD,vA,vB AltiVec integer compare Table 3-26

vcmpgtub vD,vA,vB AltiVec integer compare Table 3-26

vcmpgtub. vD,vA,vB AltiVec integer compare Table 3-26

vcmpgtuh vD,vA,vB AltiVec integer compare Table 3-26

vcmpgtuh. vD,vA,vB AltiVec integer compare Table 3-26

vcmpgtuw vD,vA,vB AltiVec integer compare Table 3-26

vcmpgtuw. vD,vA,vB AltiVec integer compare Table 3-26

vctsxs vD,vB, UIMM AltiVec floating-point rounding and 
conversion

Table 3-37
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vctuxs vD,vB, UIMM AltiVec floating-point rounding and 
conversion

Table 3-37

vexptefp vD,vB AltiVec floating-point estimate Table 3-39

vlogefp vD,vB AltiVec floating-point estimate Table 3-39

vmaddfp vD,vA,vC,vB AltiVec floating-point mulptipy-add Table 3-36

vmaxfp vD,vA,vB AltiVec floating-point arithmetic Table 3-35

vmaxsb vD,vA,vB AltiVec integer Table 3-25

vmaxsh vD,vA,vB AltiVec integer Table 3-25

vmaxsw vD,vA,vB AltiVec integer Table 3-25

vmaxub vD,vA,vB AltiVec integer Table 3-25

vmaxuh vD,vA,vB AltiVec integer Table 3-25

vmaxuw vD,vA,vB AltiVec integer Table 3-25

vmhaddshs vD,vA,vB,vC AltiVec integer Table 3-25

vmhraddshs vD,vA,vB,vC AltiVec integer Table 3-25

vminfp vD,vA,vB AltiVec floating-point arithmetic Table 3-35

vminsb vD,vA,vB AltiVec integer Table 3-25

vminsh vD,vA,vB AltiVec integer Table 3-25

vminsw vD,vA,vB AltiVec integer Table 3-25

vminub vD,vA,vB AltiVec integer Table 3-25

vminuh vD,vA,vB AltiVec integer Table 3-25

vminuw vD,vA,vB AltiVec integer Table 3-25

vmladduhm vD,vA,vB,vC AltiVec integer Table 3-25

vmrghb vD,vA,vB AltiVec merge Table 3-43

vmrghh vD,vA,vB AltiVec merge Table 3-43

vmrghw vD,vA,vB AltiVec merge Table 3-43

vmrglb vD,vA,vB AltiVec merge Table 3-43

vmrglh vD,vA,vB AltiVec merge Table 3-43

vmrglw vD,vA,vB AltiVec merge Table 3-43

vmsummbm vD,vA,vB,vC AltiVec integer Table 3-25

vmsumshm vD,vA,vB,vC AltiVec integer Table 3-25

vmsumshs vD,vA,vB,vC AltiVec integer Table 3-25

vmsumubm vD,vA,vB,vC AltiVec integer Table 3-25

vmsumuhm vD,vA,vB,vC AltiVec integer Table 3-25
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vmsumuhs vD,vA,vB,vC AltiVec integer Table 3-25

vmulesb vD,vA,vB AltiVec integer Table 3-25

vmulesh vD,vA,vB AltiVec integer Table 3-25

vmuleub vD,vA,vB AltiVec integer Table 3-25

vmuleuh vD,vA,vB AltiVec integer Table 3-25

vmulosb vD,vA,vB AltiVec integer Table 3-25

vmulosh vD,vA,vB AltiVec integer Table 3-25

vmuloub vD,vA,vB AltiVec integer Table 3-25

vmulouh vD,vA,vB AltiVec integer Table 3-25

vnmsubfp vD,vA,vC,vB AltiVec floating-point multiply-add Table 3-36

vnor vD,vA,vB AltiVec logical Table 3-27

vor vD,vA,vB AltiVec logical Table 3-27

vperm vD,vA,vB,vC AltiVec permute Table 3-45

vpkpx vD,vA,vB AltiVec pack Table 3-41

vpkshss vD,vA,vB AltiVec pack Table 3-41

vpkshus vD,vA,vB AltiVec pack Table 3-41

vpkswss vD,vA,vB AltiVec pack Table 3-41

vpkswus vD,vA,vB AltiVec pack Table 3-41

vpkuhum vD,vA,vB AltiVec pack Table 3-41

vpkuhus vD,vA,vB AltiVec pack Table 3-41

vpkuwum vD,vA,vB AltiVec pack Table 3-41

vpkuwus vD,vA,vB AltiVec pack Table 3-41

vrefp vD,vB AltiVec floating-point estimate Table 3-39

vrfim vD,vB AltiVec floating-point rounding and 
conversion

Table 3-37

vrfin vD,vB AltiVec floating-point rounding and 
conversion

Table 3-37

vrfip vD,vB AltiVec floating-point rounding and 
conversion

Table 3-37

vrfiz vD,vB AltiVec floating-point rounding and 
conversion

Table 3-37

vrlb vD,vA,vB AltiVec shift and rotate Table 3-28

vrlh vD,vA,vB AltiVec shift and rotate Table 3-28

vrlw vD,vA,vB AltiVec shift and rotate Table 3-28
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vrsqrtefp vD,vB AltiVec floating-point estimate Table 3-39

vsel vD,vA,vB,vC AltiVec select Table 3-46

vsl vD,vA,vB AltiVec shift Table 3-47

vslb vD,vA,vB AltiVec shift and rotate Table 3-29

vsldoi vD,vA,vB,SH AltiVec shift Table 3-47

vslh vD,vA,vB AltiVec shift and rotate Table 3-29

vslo vD,vA,vB AltiVec shift Table 3-47

vslw vD,vA,vB AltiVec shift and rotate Table 3-29

vspltb vD,vB,UIMM AltiVec splat Table 3-44

vsplth vD,vB,UIMM AltiVec splat Table 3-44

vspltisb vD,SIMM AltiVec splat Table 3-44

vspltish vD,SIMM AltiVec splat Table 3-44

vspltisw vD,SIMM AltiVec splat Table 3-44

vspltw vD,vB,UIMM AltiVec splat Table 3-44

vsr vD,vA,vB AltiVec shift Table 3-47

vsrab vD,vA,vB AltiVec shift and rotate Table 3-29

vsrah vD,vA,vB AltiVec shift and rotate Table 3-29

vsraw vD,vA,vB AltiVec shift and rotate Table 3-29

vsrb vD,vA,vB AltiVec shift and rotate Table 3-29

vsrh vD,vA,vB AltiVec shift and rotate Table 3-29

vsro vD,vA,vB AltiVec shift Table 3-47

vsrw vD,vA,vB AltiVec shift and rotate Table 3-29

vsubcuw vD,vA,vB AltiVec integer Table 3-25

vsubfp vD,vA,vB AltiVec floating-point arithmetic Table 3-35

vsubsbs vD,vA,vB AltiVec integer Table 3-25

vsubshs vD,vA,vB AltiVec integer Table 3-25

vsubsws vD,vA,vB AltiVec integer Table 3-25

vsububm vD,vA,vB AltiVec integer Table 3-25

vsububs vD,vA,vB AltiVec integer Table 3-25

vsubuhm vD,vA,vB AltiVec integer Table 3-25

vsubuhs vD,vA,vB AltiVec integer Table 3-25

vsubuwm vD,vA,vB AltiVec integer Table 3-25

vsubuws vD,vA,vB AltiVec integer Table 3-25
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vsum2sws vD,vA,vB AltiVec integer Table 3-25

vsum4sbs vD,vA,vB AltiVec integer Table 3-25

vsum4shs vD,vA,vB AltiVec integer Table 3-25

vsum4ubs vD,vA,vB AltiVec integer Table 3-25

vsumsws vD,vA,vB AltiVec integer Table 3-25

vupkhpx vD,vB AltiVec unpack Table 3-42

vupkhsb vD,vB AltiVec unpack Table 3-42

vupkhsb vD,vB AltiVec unpack Table 3-42

vupklpx vD,vB AltiVec unpack Table 3-42

vupklsb vD,vB AltiVec unpack Table 3-42

vupklsh vD,vB AltiVec unpack Table 3-42

vxor vD,vA,vB AltiVec logical Table 3-27

wait WC,WH Wait Table 3-62

wrtee rS MSR Table 3-67

wrteei E MSR Table 3-67

xor rA,rS,rB Integer logical Table 3-7

xor. rA,rS,rB Integer logical Table 3-7

xori rA,rS,UIMM Integer logical Table 3-7

xoris rA,rS,UIMM Integer logical Table 3-7

Table 3-75. e6500 core instruction set (continued)

Mnemonic Syntax Classification Cross-Reference



Instruction Model

e6500 Core Reference Manual, Rev 0

3-84 Freescale Semiconductor
 



e6500 Core Reference Manual, Rev 0

Freescale Semiconductor 4-1
 

Chapter 4  
Interrupts and Exceptions
This chapter provides a general description of the interrupt and exception model as it is implemented in 
the e6500 core. It identifies and describes the portions of the interrupt model that are defined by EREF and 
those that are specific to the e6500 core.

4.1 Overview
Although the e6500 core has two simultaneously executing threads, most interrupts only interrupt one 
thread. If both threads are enabled and one thread is interrupted, the other thread continues to execute 
normally because it is logically a separate processor.

A note on terminology:

The terms ‘interrupt’ and ‘exception’ are used as follows:

• An interrupt is the action in which the processor saves its context (typically the machine state 
register (MSR) and next instruction address) and begins execution at a predetermined interrupt 
handler address with a modified MSR.

• An exception is the event that, if enabled, may cause the processor to take an interrupt. Multiple 
exceptions may occur during the execution of an instruction, and the exception priority mechanism 
determines which of the exceptions causes an associated interrupt. In some cases, when an 
asynchronous exception has occurred but the associated interrupt is not enabled, other actions 
within the processor may clear the exception condition prior to it being enabled, which prevents 
the associated interrupt from occurring. The architecture describes exceptions as being generated 
by instructions, the internal timer facility, debug events, error conditions, and signals from internal 
and external peripherals.

There are four categories of interrupts, described as follows:

• Standard interrupts

• Critical interrupts

• Debug interrupts

• Machine check interrupts

Standard interrupts are first-level interrupts that allow the processor to change program flow to handle 
conditions generated by external signals, errors, or conditions arising from program execution or from 
programmable timer-related events. These interrupts are largely identical to those defined originally by the 
PowerPC OEA. They use save and restore registers (SRR0/SRR1) to save the state when they are taken, 
and they use the rfi instruction to restore that state. Asynchronous, non-critical interrupts can be masked 
by the external interrupt enable bit, MSR[EE], when not in a guest state.
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Guest interrupts are standard interrupts that are handled by guest-supervisor software. They use guest save 
and restore registers (GSRR0/GSRR1) to save the state when they are taken, and they use the rfgi 
instruction to restore that state. Guest interrupts are listed in Table 2-11.

Section 2.2.2.1, “Register mapping in the guest–supervisor state,” describes how accesses to non-guest 
registers are changed by the processor to their guest register equivalents when MSR[PR] = 0 and 
MSR[GS] = 1. 

Critical interrupts (critical input and watchdog timer interrupts) can be taken during regular program flow 
or during a standard interrupt. They use the critical save and restore registers (CSRR0/CSRR1) and the rfci 
instruction. Critical input and watchdog timer critical interrupts can be masked by the critical enable bit, 
MSR[CE]. 

Debug interrupts can be taken during regular program flow, during a standard interrupt, or during a critical 
interrupt. They use the debug save and restore registers (DSRR0/DSRR1) and the rfdi instruction. See 
Section 4.9.16, “Debug interrupt—IVOR15.” Debug interrupts can be masked by the debug enable bit, 
MSR[DE]. 

Machine check interrupts can be taken during regular program flow, during a standard interrupt, during a 
critical interrupt, or during a debug interrupt. They use the machine check save and restore registers 
(MCSRR0/MCSRR1) and the rfmci instruction. See Section 4.9.3, “Machine check interrupt—IVOR1.” 
Machine check interrupts can be masked by the machine check enable bit, MSR[ME]. 

The e6500 core also implements precise synchronous machine check error report interrupts, as well as an 
asynchronous non-maskable interrupt (NMI), which are not masked by MSR[ME]. For e6500 core details, 
see Section 4.9.3, “Machine check interrupt—IVOR1.”

All asynchronous interrupts except the NMI interrupt are ordered because each type of interrupt has its 
own set of save/restore registers. Only one interrupt of each category is reported (standard, critical, debug, 
machine check, and guest), and, when it is processed (taken), no program state is lost. Program state may 
be lost if synchronous exceptions occur within the interrupt handler for those same synchronous 
exceptions before software has successfully saved the state of the save/restore registers. For example, 
executing an illegal instruction as the first instruction of the program interrupt handler causes another 
program interrupt to change the state of the SRR0/SRR1 registers before software can save them, which 
destroys the return path to the original interrupt. See Section 4.6.1, “Interrupt ordering and masking,” for 
additional details.

All interrupts except the machine check interrupt are context synchronizing, as defined in the instruction 
model chapter of EREF. A machine check interrupt acts like a context-synchronizing operation with 
respect to subsequent instructions. 

4.2 e6500 implementation of interrupt architecture
This section describes the architecture-defined interrupt model as implemented on the e6500 core. Specific 
details are also provided throughout this chapter. Each thread of the e6500 core implements all the 
interrupts defined by the embedded category and implements the following interrupts that are defined by— 
but not required by—optional parts of the embedded architecture:
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• In general, each e6500 thread implements the machine check interrupt as it is defined by Power 
ISA 2.06 but extends the definition to include synchronous error reports and a non-maskable 
interrupt (NMI).

Each thread of the e6500 core implements three types of machine check interrupts: asynchronous, 
error report, and NMI. Some asynchronous machine check events are logged directly into the 
MCSR of both threads. If such an event is logged in the MCSR and MSR[ME] = 1 or MSR[GS] = 
1, a machine check interrupt is taken by a thread. But, if some of the MCSR asynchronous bits are 
set and MSR[ME] = 0 and MSR[GS] = 0, the asynchronous machine check exception is pending. 
If these bits are still set when MSR[ME] or MSR[GS] is changed to 1, the asynchronous machine 
check interrupt occurs. The e6500 core does not take a checkstop, as is the case with some previous 
e500 cores. 

In addition, each thread of the e6500 core implements error report machine check exceptions, 
which are recorded in certain defined MCSR bits. Error report machine check interrupts are not 
gated by MSR[ME] (or MSR[GS]) and are synchronous and precise. They occur only if there is an 
error condition on an instruction that would otherwise complete execution, and do not occur for 
instructions that have not completed and deallocated. For example, the thread does not take an error 
report on an instruction in a mispredicted branch path or on an instruction that gets flushed by some 
other interrupt (such as an asynchronous machine check interrupt).

• Each thread of the e6500 core implements interrupt signals from the integrated device for external 
input critical input, machine check, and NMI. There is one set of these signals for each thread from 
the interrupt controller on the integrated device. See the integrated device reference manual for 
more information.

• Each thread of the e6500 core implements debug interrupts as described by the 
embedded.enhanced debug category, which provides a separate set of debug save/restore registers 
(DSRR0 and DSRR1) per thread.

• Each thread of the e6500 core implements the performance monitor interrupt from the 
embedded.performance monitor category.

• Each thread of the e6500 core implements the enabled floating-point exception (program interrupt) 
and the floating-point unavailable interrupt from the floating-point category.

• Each thread of the e6500 core implements the AltiVec available exception and the AltiVec 
unavailable interrupt from the vector category.

• Each thread of the e6500 core implements the AltiVec assist exception and the AltiVec assist 
interrupt from the vector category.

• Each thread of the e6500 core implements the following interrupts defined by the 
embedded.processor control category:

— Processor doorbell

— Processor doorbell critical

• Each thread of the e6500 core implements the following interrupts defined by the 
embedded.hypervisor category:

— Hypervisor privilege

— Hypervisor system call

— Guest processor doorbell interrupt
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— Guest processor doorbell critical interrupt

— Guest processor doorbell machine check interrupt

• The e6500 core does not implement the unimplemented operation exception of the program 
interrupt. All unimplemented instructions take an illegal instruction exception.

• Interrupt priorities differ from those specified in the architecture, as described in Section 4.11, 
“Interrupt priorities.”

4.3 Directed interrupts
Interrupts on an e6500 thread are directed to either the guest state or the hypervisor state. The state to which 
an interrupt is directed determines which SPRs are used to form the vector address, which save/restore 
register are used to capture the thread state at the time of the interrupt, and which ESR is used to post the 
exception status. Interrupts directed to the guest state use the GIVPR to determine the upper 48 bits of the 
vector address and use GIVORs to provide the lower 16 bits. Interrupts directed to the hypervisor state use 
the IVPR and the IVORs. Interrupts directed to the guest state use GSRR0/GSRR1 registers to save the 
context at interrupt time. Interrupts directed to the hypervisor state use SRR0/SRR1, CSRR0/CSRR1, 
DSRR0/DSRR1, and MCSRR0/MCSRR1 for standard, critical, debug, and machine check interrupts 
(respectively) with the exception of guest processor doorbell interrupts, which use GSRR0/GSRR1.

In general, all interrupts are directed to the hypervisor state except for the following cases:

• The system call interrupt is directed to the state from which the interrupt was taken. If an sc 0 
instruction is executed in guest state, the interrupt is directed to the guest state. If an sc 0 instruction 
is executed in hypervisor state, the interrupt is directed to the hypervisor state. Note that sc 1 is 
always directed to the hypervisor state and produces a hypervisor system call interrupt.

• One of the following interrupts occurs while the thread processor is in the guest state, and the 
associated control bit in the EPCR is set to configure the interrupt to be directed to the guest state:

— External input (EPCR[EXTGS] = 1) 

— Data TLB error (EPCR[DTLBGS] = 1) 

— Instruction TLB error (EPCR[ITLBGS] = 1) 

— Data storage (EPCR[DSIGS] = 1 and TLB[VF] = 0 [not a virtualization fault]) 

— Instruction storage (EPCR[ISIGS] = 1 and (TLB[IND] = 0 or TLB[VF] = 0))

— Performance monitor (EPCR[PMGS] = 1)

Note that a data storage interrupt caused by a virtualization fault exception is always taken in the 
hypervisor state.

An interrupt is never directed to the guest state when the processor executes in the hypervisor state.

For more specific information about how interrupts are directed, see EREF.

4.4 Recoverability and MSR[RI]
MSR[RI] is an MSR (and save/restore register) storage bit for compatibility with pre-Book E PowerPC 
processors. When an interrupt occurs, the recoverable interrupt bit, MSR[RI], is unchanged by the interrupt 
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mechanism when a new MSR is established; however, when a machine check, error report, or NMI 
interrupt occurs, MSR[RI] is cleared.

If used properly, RI determines whether an interrupt that is taken at the machine check interrupt vector can 
be safely returned from (that is, the architected state set by the interrupt mechanism has been safely stored 
by software). RI should be set by software when all MSR values are first established. When an interrupt 
occurs that is taken at the machine check interrupt vector, software should set RI when it has safely stored 
MCSRR0 and MCSRR1. The associated MCSRR1 bit should be checked to determine whether the 
interrupt occurred when another machine check interrupt was being processed and before the state was 
successfully saved. If MCSRR1[RI] is set, it is safe to return when processing is complete.

4.5 Interrupt registers
The following table summarizes registers used for interrupt handling. EREF provides full descriptions.

NOTE
In this manual, references to xSRR0 and xSRR1 apply to the respective 
(standard, critical, machine check, and guest) Save Restore 0 and Save 
Restore 1 registers. References to (G)register refer to register if the interrupt 
is taken in hypervisor state, or Gregister if the interrupt is taken in guest 
state. For example (G)DEAR refers to DEAR and GDEAR registers.

Section 4.3, “Directed interrupts” describes, in detail, whether the interrupt 
is directed to hypervisor or guest-supervisor software.

Table 4-1. Interrupt registers

Register Description

Save/Restore 0 
(SRR0, CSRR0, 
DSRR0, GSRR0, 
MCSRR0) registers

On an interrupt, xSRR0 holds the EA at which thread execution continues when the corresponding return 
from interrupt instruction executes. Typically, this is the EA of the instruction that caused the interrupt or 
the subsequent instruction.

Save/Restore 1 
registers (SRR1, 
CSRR1, DSRR1, 
GSRR1, MCSRR1) 
registers

When an interrupt is taken, MSR contents are placed into xSRR1. When the return from interrupt (rfi, rfgi, 
rfci, rfdi, rfmci) instruction executes, the values are restored to the MSR from xSRR1. xSRR1 bits that 
correspond to reserved MSR bits are also reserved. Note that an MSR bit that is reserved may be altered 
by a return from interrupt instruction.

(Guest)Data 
Exception Address 
(DEAR/GDEAR) 
registers

Contains the address referenced by a load, store, or cache management instruction that caused an 
alignment, data TLB miss, LRAT error, or data storage interrupt. When executing in the guest state 
(MSR[GS] = 1), accesses to DEAR are mapped to GDEAR upon executing mtspr or mfspr. 
DEAR and GDEAR are described in Section 2.9.2, “(Guest) Data Exception Address (DEAR/GDEAR) 
registers.” 

(Guest)Exception 
Proxy (EPR/GEPR) 
registers

Defined by the external interrupt proxy facility, which is described in Section 4.9.6.1, “External proxy.” EPR 
is used to convey the peripheral-specific interrupt vector associated with the external input interrupt 
triggered by the programmable interrupt controller (PIC) in the integrated device. When executing in the 
guest state (MSR[GS] = 1), accesses to the EPR are mapped to GEPR upon executing mfspr. 
EPR and GEPR are described in Section 2.9.6, “(Guest) External Proxy (EPR/GEPR) registers.” 
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NOTE
System software may need to identify the type of instruction that caused the 
interrupt and examine the TLB entry and ESR to fully identify the exception 
or exceptions. For example, because both protection violation and 
byte-ordering exception conditions may be present and either causes a data 
storage interrupt, system software must look beyond ESR[BO] (to the state 
of MSR[PR] in SRR1 and the TLB entry page protection bits) to determine 
if a protection violation also occurred.

4.6 Exceptions
Exceptions are caused directly by instruction execution or by an asynchronous event. In either case, the 
exception may cause one of several types of interrupts to be invoked.

The following examples are of exceptions caused directly by instruction execution:

• An attempt to execute a reserved-illegal instruction (illegal instruction exception-type program 
interrupt)

• An attempt by an application program to execute a privileged instruction or to access a privileged 
SPR (privileged instruction exception-type program interrupt)

(Guest)Interrupt 
Vector Prefix 
(IVPR/GIVPR) 
registers

(G)IVPR[0–47] provides the high-order 48 bits of the address of the interrupt handling routine for each 
interrupt type. The 16-bit vector offsets are concatenated to the right of (G)IVPR to form the address of 
the interrupt handling routine.
The IVPR is shared by the threads (processors) of an e6500 because it is expected that only one 
hypervisor will be present. In contrast, there is a GIVPR private to each thread since it is intended that 
threads can host different guests.

(Guest)Exception 
Syndrome 
(ESR/GESR) registers

Identifies a syndrome for differentiating exception conditions that can generate the same interrupt. When 
such an exception occurs, corresponding (G)ESR bits are set and all others are cleared. Other interrupt 
types do not affect the (G)ESR. (G)ESR does not need to be cleared by software. When executing in the 
guest state (MSR[GS] = 1), accesses to the ESR are mapped to GESR upon executing mtspr or mfspr. 
See Section 2.9.7, “(Guest) Exception Syndrome (ESR/GESR) registers.”

(Guest)Interrupt 
Vector Offset 
(IVORs/GIVORs) 
registers

Holds the quad-word index from the base address provided by the (G)IVPR for each interrupt type. 
Table 4-2 lists the (G)IVOR assignments for the e6500 core. Supported (G)IVORs and the associated 
interrupts are listed in Table 4-2.
The IVOR is shared by the threads (processors) of an e6500 because it is expected that only one 
hypervisor will be present. In contrast, there is a GIVOR private to each thread since it is intended that 
threads can host different guests.

Machine-check 
address registers 
(MCAR/MCARU/
MCARUA)

On a machine check interrupt, MCAR/MCARU/MCARUA is updated with the address of the data 
associated with the machine check if applicable. See Section 2.9.9, “Machine-check address registers 
(MCAR/MCARU/MCARUA).”

Machine Check 
Syndrome (MCSR) 
registers

On a machine check interrupt, MCSR is updated with a syndrome to indicate exceptions, listed in 
Table 2-14 and fully described in the EREF. Section 2.9.10, “Machine Check Syndrome (MCSR) register,” 
describes MCSR bit fields as they are defined for the e6500.

Table 4-1. Interrupt registers (continued)

Register Description
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• An attempt to access a non-existent SPR (illegal-operation program exception on all accesses to 
undefined SPRs, regardless of MSR[GS,PR])

• An attempt to execute an instruction in guest-supervisor state that accesses hypervisor-only 
resources or is hypervisor privileged (embedded hypervisor privilege)

• An attempt to write a TLB entry in guest-supervisor state and a matching LRAT entry does not exist 
(LRAT error interrupt)

• An attempt to access a location that is either unavailable (instruction or data TLB error interrupt) 
or not permitted (instruction or data storage interrupt)

• An attempt to access a location with an effective address alignment not supported by the 
implementation (alignment interrupt)

• Execution of a System Call (sc) instruction (system call/hypervisor system call interrupt). Whether 
a system call interrupt occurs or a hypervisor system call interrupt occurs depends on the value of 
the LEV operand. 

• Execution of a trap instruction whose trap condition is met (trap interrupt type)

• Execution of an unimplemented, defined instruction (illegal instruction exception)

Invocation of an interrupt is precise. When the interrupt is invoked imprecisely, the excepting instruction 
does not appear to complete before the next instruction starts because the invocation of the interrupt 
required to complete execution has not occurred.

4.6.1 Interrupt ordering and masking

Multiple exceptions that can each generate an interrupt can exist simultaneously. However, the architecture 
does not provide for reporting multiple simultaneous interrupts of the same class. Therefore, the 
architecture defines that interrupts must be ordered with one another and provides a way to mask certain 
persistent interrupt types, as described in EREF.

4.7 Interrupt classification
All interrupts except machine check are grouped by two independent characteristics:

• The set of resources assigned to the interrupt

— Standard interrupts use SRR0/SRR1 and the rfi instruction. Guest-supervisor versions of these 
interrupts use GSRR0/GSRR1 and the rfgi instruction. Note that SRR0, SRR1, and rfi accesses 
are mapped to GSRR0, GSRR1, and rfgi by the processor when in the guest-supervisor state.

— Critical interrupts use CSRR0/CSRR1 and the rfci instruction. 

— Debug interrupts use DSRR0/DSRR1 and the rfdi instruction.

— Machine check interrupts use MCSRR0/MCSRR1 and the rfmci instruction.

• Whether the interrupt is asynchronous or synchronous. Asynchronous interrupts are caused by 
events external to instruction execution; synchronous interrupts are caused by instruction 
execution. Some synchronous interrupts can be imprecise with respect to the instructions that cause 
the exception. EREF describes asynchronous and synchronous interrupts.
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4.8 Interrupt processing
Each interrupt has a vector, that is, the address of the initial instruction that is executed when an interrupt 
occurs. When an interrupt is taken by a thread, the following steps are performed:

1. xSRR0 is loaded with an instruction address at which processing resumes when the corresponding 
return from interrupt instruction executes.

2. The (G)ESR or MCSR may be loaded with exception-specific information. See descriptions of 
individual descriptions in Section 4.9, “Interrupt definitions.”

3. xSRR1 is loaded with a copy of the MSR contents.

4. New MSR values take effect beginning with the first instruction of the interrupt handler. These 
settings vary somewhat for certain interrupts, as described in Section 4.9, “Interrupt definitions.” 

MSR fields are described in Section 2.7.1, “Machine State (MSR) register.”

5. Instruction fetching and execution resumes, using the new MSR value, at a location specific to the 
interrupt type ([G]IVPR[0–47] || (G)IVORn[48–59] || 0b0000).

The (G)IVORn for the interrupt type is described in Table 4-2. (G)IVPR and (G)IVOR contents are 
indeterminate upon reset and must be initialized by system software.

At the end of an interrupt handling routine, executing the appropriate return from interrupt instruction 
causes MSR to be restored from xSRR1 and instruction execution to resume at the address contained in 
xSRR0. 

NOTE
At process switch, due to possible data availability requirements and 
process interlocks, the operating system should consider executing the 
following:

• stwcx.—Clear outstanding reservations to prevent pairing a load and 
reserve instruction in the old process with a store conditional instruction 
in the new one.

• sync—Ensure that memory operations of an interrupted process 
complete with respect to other processors before that process begins 
executing on another processor.

• Return from interrupt instructions—Ensure that instructions in the new 
process execute in the new context. Normally, an operating system must 
use such an instruction to atomically begin executing in the new process 
context at the appropriate privilege level.

4.9 Interrupt definitions

In the e6500 core, an asynchronous machine check interrupt is posted to both threads if the source of the 
machine check is common to both threads and the exception cannot be attributed to a particular thread.
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This table summarizes each interrupt type, exceptions that may cause each interrupt, the interrupt 
classification, which (G)ESR bits can be set, which MSR bits can mask the interrupt type, and which IVOR 
is used to specify the vector address.

Table 4-2. Interrupt summary by (G)IVOR

IVOR Interrupt Exception
Directing State at 

Exception
(G)ESR1 Enabled by Type2

Save and 
Restore 

Registers
Page

IVOR0 Critical input —  — MSR[CE] or 
MSR[GS]

A CSRRs 4-13

IVOR1 Machine check — — MSR[ME] or 
MSR[GS]

A MCSRRs 4-14

Error report — — — SP MCSRRs 4-14

IVOR2 Data storage 
(DSI)

Access or 
virtualization fault

MSR[GS] = 0 or 
EPCR[DSIGS] = 0 or 
TLB[VF] = 1

[ST], [FP,SPV], 
[EPID], [PT]

— SP SRRs 4-20

Page table fault SP

Load reserve or 
store conditional 
to write-through 
required location 
(W = 1)

[ST] SP

Cache locking [DLK,ILK],[ST] SP

Byte ordering [ST],[FP],BO, 
[EPID]

SP

GIVOR2 Data storage 
(DSI)

Access MSR[GS] = 1 and¶ 
EPCR[DSIGS] = 1

[ST], [FP,SPV], 
[EPID], [PT]

— SP GSRRs 4-20

Page table fault SP

Load reserve or 
store conditional 
to write- through 
required location 
(W = 1)

[ST] SP

Cache locking [DLK,ILK],[ST] SP

Byte ordering [ST],[FP],BO, 
[EPID]

SP

IVOR3 Instruction 
storage (ISI)

Access MSR[GS] = 0 or 
EPCR[ISIGS] = 0

[PT] — SP SRRs 4-23

Page table fault SP

Instruction 
virtualization fault

TLB[VF]=1 and 
TLB[IND]=1

SP

GIVOR3 Instruction 
storage (ISI)

Access MSR[GS] = 1 and 
EPCR[ISIGS] = 1

[PT] — SP GSRRs 4-23

Page table fault SP

IVOR4 External input 3 EPCR[EXTGS] = 0 — MSR[EE] or 
MSR[GS]

A SRRs 4-25
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GIVOR4 External input 3 EPCR[EXTGS] = 1 — MSR[EE] and 
MSR[GS]

A GSRRs 4-25

IVOR5 Alignment — [ST],[FP,SPV], 
[EPID]

— SP SRRs 4-27

IVOR6 Program Illegal — PIL — SP SRRs 4-28

Privileged PPR — SP

Trap PTR — SP

Floating-point 
enabled 

FP,[PIE] MSR[FE0] ¶ 
MSR[FE1]

SP
SP*
SI
SI*

Unimplemented 
op

PUO4 — SP

IVOR7 Floating-point unavailable — — — SP SRRs 4-29

IVOR8 System call MSR[GS] = 0 — — SP* SRRs 4-30

GIVOR8 System call MSR[GS] = 1 — — SP* GSRRs 4-30

IVOR10 Decrementer — — (MSR[EE] or 
MSR[GS]) 

and TCR[DIE]

A SRRs 4-31

IVOR11 Fixed interval timer — — (MSR[EE] or 
MSR[GS]) 

and TCR[FIE]

A SRRs 4-31

IVOR12 Watchdog — — (MSR[CE] or 
MSR[GS]) 

and 
TCR[WIE]

A CSRRs 4-32

IVOR13 Data TLB 
error

Data TLB miss MSR[GS] = 0 or 
EPCR[DTLBGS] = 0

[ST],[FP,SPV],
[EPID]

— SP SRRs 4-33

GIVOR13 Data TLB 
error

Data TLB miss MSR[GS] = 1 and 
EPCR[DTLBGS] = 1

[ST],[FP,SPV],
[EPID]

— SP GSRRs 4-33

IVOR14 Instruction 
TLB error

Instruction TLB 
miss

MSR[GS] = 0 or
EPCR[ITLBGS] = 0

— — SP SRRs 4-34

GIVOR14 Instruction 
TLB error

Instruction TLB 
miss

MSR[GS] = 1 and 
EPCR[ITLBGS] = 1

— — SP GSRRs 4-34

Table 4-2. Interrupt summary by (G)IVOR (continued)

IVOR Interrupt Exception
Directing State at 

Exception
(G)ESR1 Enabled by Type2

Save and 
Restore 

Registers
Page
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IVOR15 Debug Trap 
(synchronous)

— — MSR[DE] and 
DBCR0[IDM]

In guest state, 
if 
EPCR[DUVD] 
= 1 and 
MSR[GS] = 0, 
debug events 
(except for 
unconditional 
debug events) 
are not posted 
in the DBSR. 
See 
Section 4.9.1
6.1, 
“Suppressing 
debug events 
in hypervisor 
mode.”

SP5 DSRRs 4-35

Instruction 
address compare 
(synchronous)

Data address 
compare 
(synchronous)

Instruction 
complete

Branch taken

Return from 
interrupt

Return from 
critical interrupt

Interrupt taken

Critical interrupt 
taken

Unconditional 
debug event

A

IVOR32 AltiVec unavailable — SPV — SP SRRs 4-36

IVOR33 AltiVec assist — SPV — SP SRRs 4-37

IVOR35 Performance monitor EPCR[PMGS] = 0 — MSR[EE] or 
MSR[GS]

A SRRs 4-37

GIVOR35 Performance monitor EPCR[PMGS] = 1 — MSR[EE] and 
MSR[GS]

A GSRRs 4-37

IVOR36 Processor doorbell — — MSR[EE] or 
MSR[GS]

A SRRs 4-39

IVOR37 Processor doorbell critical — — MSR[CE] or 
MSR[GS]

A CSRRs 4-39

IVOR38 Guest processor doorbell — — MSR[EE] and 
MSR[GS]

A GSRRs 4-40

IVOR39 Guest processor doorbell critical — — MSR[CE] and 
MSR[GS]

A CSRRs 4-40

Guest processor doorbell 
machine check

— — MSR[ME] and 
MSR[GS]

A CSRRs 4-41

IVOR40 Hypervisor system call — — — SP* SRRs 4-30

Table 4-2. Interrupt summary by (G)IVOR (continued)

IVOR Interrupt Exception
Directing State at 

Exception
(G)ESR1 Enabled by Type2

Save and 
Restore 

Registers
Page
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4.9.1 Partially executed instructions

In general, the architecture permits load and store instructions to be partially executed, interrupted, and 
then restarted from the beginning upon return from the interrupt. To guarantee that a particular load or store 
instruction completes without being interrupted and restarted, software must mark the memory as guarded 
and use an elementary (non-multiple) load or store aligned on an operand-sized boundary.

To guarantee that load and store instructions can, in general, be restarted and completed correctly without 
software intervention, the following rules apply when an execution is partially executed and then 
interrupted:

• For an elementary load, no part of a target register rD is altered.

• For update forms of load or store, the update register, rA, is not altered.

The following effects are permissible when certain instructions are partially executed and then restarted:

• For any store, bytes at the target location may have been altered (if write access to that page in 
which bytes were altered is permitted by the access control mechanism). In addition, for store 
conditional instructions, CR0 has been set to an undefined value, and it is undefined whether the 
reservation has been cleared.

• For any load, bytes at the addressed location may have been accessed (if read access to that page in 
which bytes were accessed is permitted by the access control mechanism).

IVOR41 Hypervisor privilege — — — SP SRRs 4-42

IVOR42 LRAT error — [ST], [FP,SPV], 
[EPID], [PT], 

[DATA]

— SP SRRs 4-45

1 In general, when an interrupt affects an (G)ESR as indicated in the table, it also causes all other (G)ESR bits to be cleared. 
Special rules may apply for implementation-specific (G)ESR bits. 

Legend:
xxx (no brackets) means (G)ESR[xxx] is set.
[xxx] means (G)ESR[xxx] could be set.
[xxx,yyy] means either (G)ESR[xxx] or (G)ESR[yyy] may be set, but not both.
{xxx,yyy} means either (G)ESR[xxx] or (G)ESR[yyy] and possibly both may be set.

2 Interrupt types:

SP = synchronous and precise 
SI = synchronous and imprecise
A = asynchronous
* = post completion interrupt. xSRR0 registers point after the instruction causing the exception.

3  Section 4.9.6.1, “External proxy,” describes how the e6500 core interacts with a programmable interrupt controller (PIC) defined 
by the integrated device.

4 PUO does not occur on the e6500 core.
5 This debug interrupt may be made pending if MSR[DE] = 0 at the time of the exception

Table 4-2. Interrupt summary by (G)IVOR (continued)

IVOR Interrupt Exception
Directing State at 

Exception
(G)ESR1 Enabled by Type2

Save and 
Restore 

Registers
Page
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• For load multiple, some registers in the range to be loaded may have been altered. Inclusion of the 
addressing registers rA and possibly rB in the range to be loaded is a programming error, and the 
rules for partial execution do not protect these registers against overwriting.

Access control is not violated in any case.

As previously stated, elementary, aligned, and guarded loads and stores are the only access instructions 
guaranteed not to be interrupted after being partially executed. The following list identifies the specific 
instruction types for which interruption after partial execution may occur, as well as the specific interrupt 
types that could cause the interruption:

• Any load or store (except elementary, aligned, and guarded):

— Any asynchronous interrupt

— Machine check

— Decrementer

— Fixed-interval timer

— Watchdog timer

— Debug (unconditional debug event)

• Misaligned elementary load or store, or any multiple:

All of the above loads/stores, plus the following:

— Alignment 

— Data storage (if the access crosses a page boundary and protections on the two pages differ)

— Data TLB (if the access crosses a page boundary and one of the pages is not in the TLB)

— Debug (data address compare)

4.9.2 Critical input interrupt—IVOR0

A critical input interrupt occurs when no higher priority interrupt exists, a critical input exception is 
presented to the interrupt mechanism, and MSR[CE] = 1 or MSR[GS] = 1. The reference manual for the 
integrated device describes how this exception is signaled. Typically, the signal is described as cint. Each 
thread has a signal pin.

As defined by the architecture, CSRR0, CSRR1, and MSR are updated as shown in the following table.

Instruction execution resumes at address IVPR[0–47] || IVOR0[48–59] || 0b0000.

Table 4-3. Critical input interrupt register settings

Register Setting

CSRR0 Set to the effective address of the next instruction to be executed.

CSRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME and DE are unchanged.
 • MSR[CM] is set to EPCR[ICM].
 • RI is not cleared.
 • All other MSR bits are cleared.
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NOTE
To avoid redundant critical input interrupts, software must take any actions 
required by the implementation to clear any critical input exception status 
before re-enabling MSR[CE] or setting MSR[GS].

4.9.3 Machine check interrupt—IVOR1

The machine check interrupt consists of three different, but related, types of exception conditions that all 
use the same interrupt vector and the same interrupt registers. The three different interrupts are as follows:

• Asynchronous machine check exceptions—the result of error conditions directly detected by the 
processor or as a result of the assertion of the machine check signal pin (typically described in the 
integrated device reference manual as the mcp signal) as described in Section 4.9.3.4, 
“Asynchronous machine check exceptions.” Each thread has a signal pin.

• Synchronous error report exceptions—the result of an instruction encountering an error condition, 
but execution cannot continue without propagating data derived from the error condition as 
described in Section 4.9.3.3, “Machine check error report synchronous exceptions.”

• Non-maskable (NMI) interrupts—non-maskable, non-recoverable interrupts that are signaled 
from the SoC (typically described in the integrated device reference manual as the nmi signal) as 
described by Section 4.9.3.2, “NMI exceptions.” Each thread has a signal pin.

For all of these interrupts, the following occur:

• MCSRR0 and MCSRR1 save the return address and MSR.

• An address related to the machine check may be stored in MCAR (and MCARU/MCARUA), 
according to Table 4-4.

• The Machine-Check Syndrome (MCSR) register is used to log information about the error 
condition. The MCSR is described in Section 2.9.10, “Machine Check Syndrome (MCSR) 
register.”

• At the end of the machine check interrupt software handler, a Return from Machine Check Interrupt 
(rfmci) instruction may be used to return to the state saved in MCSRR0 and MCSRR1.

Machine check exceptions are typically caused by a hardware failure or by software performing actions 
for which the hardware has not been designed to handle or cannot provide a suitable result. Machine check 
exceptions may be caused indirectly by execution of an instruction but may not be recognized or reported 
until long after the processor has executed that instruction.

4.9.3.1 General machine check, error report, and NMI mechanism

Asynchronous machine check, error report machine check, and NMI exceptions are independent of each 
other, even though they share the same interrupt vector. The general flow of error detection and reporting 
occurs as follows:

• When the processor detects an error directly (that is, the error occurs within the processor) or the 
machine check signal pin (mcp) is asserted, the error is posted to MCSR by setting an error status 
bit corresponding to the error that was detected. If the error bit set in MCSR is one of the 
asynchronous machine check error conditions, an asynchronous machine check occurs when 
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MSR[ME] = 1 or MSR[GS] = 1. Note that an asynchronous machine check interrupt always occurs 
when the asynchronous machine check interrupt is enabled and any of the asynchronous error bits 
in the MCSR are non-zero. If the error causing the asynchronous machine check interrupt is not 
associated with a specific thread, it is posted to both threads. 

• If an instruction in a thread is a consumer of data associated with the error, the instruction has an 
error report exception associated with the instruction ensuring that if the instruction reaches the 
point of completion, then the instruction takes an error report machine check interrupt on that 
thread to prevent the erroneous data from propagating.

• It is possible that a single error within a thread can set both an asynchronous machine check error 
condition in the MCSR and associate an error report with the instruction that consumed data 
associated with the error. The asynchronous error bit will always be set. If this triggers an 
asynchronous machine check interrupt before the instruction that has the error report exception 
completes, the asynchronous machine check interrupt flushes the instruction with the error report, 
and the error report does not occur. Likewise, if the instruction with the error report exception 
attempts to complete before the asynchronous error bit is set in MCSR, the error report machine 
check interrupt is taken. In this case, the processor still sets the MCSR asynchronous error bit, 
probably well before software reads the MCSR. When software reads the MCSR, it appears that 
both an asynchronous machine check exception and a synchronous error report occurred because 
the error report causes the error report bits to be set and the processor set an asynchronous machine 
check error bit. This can easily happen if the error occurs when MSR[ME] = 0 and MSR[GS] = 0 
because the asynchronous machine check interrupt is not enabled.

• It is also possible that an error report machine check interrupt occurs without an associated 
asynchronous machine check error bit being set in the MCSR. This can occur when the thread is 
the consumer of some data for which the error was detected by some agent other than the thread. 
For example, an error in DRAM may occur and, if the thread executed a load instruction that 
accessed that DRAM where the error occurred, the load instruction takes an error report machine 
check interrupt if it attempted to complete execution.

• A non-maskable interrupt (NMI) occurs when the integrated device asserts the NMI signal to an 
e6500 thread. MCSR[NMI] is set when the interrupt occurs. The NMI signal is non-maskable and 
occurs regardless of the state of MSR[ME] or MSR[GS].

Note that the taking of an asynchronous machine check interrupt always occurs when any of the 
asynchronous machine check error bits are not zero and the asynchronous machine check interrupt is 
enabled (MSR[ME] = 1 or MSR[GS] = 1). The condition persists until software clears the asynchronous 
machine check error bits in MCSR. To avoid multiple asynchronous machine check interrupts, software 
should always read the contents of the MCSR within the asynchronous machine check interrupt handler 
and clear any set bits in the MCSR prior to re-enabling machine check interrupts by setting MSR[ME] or 
MSR[GS]. The processor may set asynchronous machine check error bits in MCSR at any time as errors 
are detected, including when the processor is in the asynchronous machine check interrupt handler and 
MSR[ME] = 0.

An asynchronous machine check, error report, or NMI interrupt occurs when no higher priority interrupt 
exists and an asynchronous machine check, error report, or NMI exception is presented to the interrupt 
mechanism. 

The following general rules apply:
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• The instruction whose address is recorded in MCSRR0 has not completed, but may have attempted 
to execute.

• No instruction after the one whose address is recorded in MCSRR0 has completed execution.

• Instructions in the architected instruction stream prior to this instruction have all completed 
successfully.

When a machine check interrupt is taken, registers are updated as shown in the following table.

Instruction execution resumes at address IVPR[0–47] || IVOR1[48–59] || 0b0000.

NOTES
For implementations on which a machine check interrupt is caused by 
referring to an invalid physical address, executing dcbz, dcbzl, dcba, or 
dcbal can ultimately cause a machine check interrupt long after the 
instruction executed by establishing a data cache block associated with an 
invalid physical address. The interrupt can occur later on an attempt to write 
that block to main memory. For example, an interrupt can occur as the result 
of executing an instruction that causes a cache miss for which the block is 
the target for replacement or as the result of executing dcbst or dcbf.

The e6500 machine check exception sources are specified in the following table. 

Table 4-4. Machine check interrupt settings

Register Setting

MCSRR0 The thread sets this to an EA of an instruction executing or about to execute when the exception occurred. 

MCSRR1 Set to the contents of the MSR at the time of the exception.

MSR  • MSR[CM] is set to EPCR[ICM].
 • RI is cleared.
 • All other MSR bits are cleared.

MCAR 
(MCARU)

MCAR is updated with the address of the data associated with the machine check. See Section 2.9.9, 
“Machine-check address registers (MCAR/MCARU/MCARUA).”

MCSR Set according to the machine check condition. See Table 2-14.

Table 4-5. Machine check exception sources

Source Additional Enable Bits1

Machine check input signal asserted. Set immediately on recognition of assertion of the 
mcp input of a thread. This input comes from the SoC and is a level-sensitive signal. This 
usually occurs as the result of an error detected by the SoC. 

HID0[EMCP]

Instruction cache tag or data array parity error L1CSR1[ICPE] and
L1CSR1[ICE]

Data cache data or tag parity error due to a load or store L1CSR0[DCPE] and L1CSR0[DCE]

L2 MMU multi-way hit HID0[EN_L2MMU_MHD]

LRAT multi-way hit. An LRAT multi-way hit can occur due to a page table translation while 
in guest mode or from a tlbwe in guest mode and multiple entries hit during LRAT 
translation.

HID0[EN_L2MMU_MHD]
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4.9.3.2 NMI exceptions

Non-maskable interrupt exceptions cause an interrupt on the machine check vector. A non-maskable 
interrupt occurs when the integrated device asserts the nmi signal to an e6500 thread. The nmi signal is 
non-maskable and occurs regardless of the state of MSR[ME] or MSR[GS]. Software should clear the 
NMI bit in MCSR after the NMI interrupt has been taken before setting MSR[ME] or MSR[GS].

NMI interrupts are by definition non-recoverable because the interrupt occurs asynchronously and the 
interrupt cannot be masked by software. Unrecoverability can occur if the NMI occurs while the processor 
is in the early part of an asynchronous machine check, error report machine check, or another NMI 
interrupt handler and the return state in MCSRR0 and MCSRR1 have not yet been saved by software. It is 
possible for software to use MSR[RI] to determine whether software believes it is safe to return, but the 
system designer must allow for the case in which MCSRR0 and MCSRR1 have not been saved.

4.9.3.3 Machine check error report synchronous exceptions 

Error report machine checks are intended to limit the propagation of bad data. For example, if a cache 
parity error is detected on a load, the load instruction is not allowed to complete, a synchronous error report 
machine check is generated to the associated thread, and the thread’s MCSRR0 holds the address of the 
load instruction with which the parity error is associated. For more details about instruction completion, 
see Chapter 10, “Execution Timing.”

Preventing the load instruction from completing prevents the bad data from reaching the GPRs and 
prevents any subsequent instructions dependent on that data from executing. Error reports do not indicate 
the source of the problem (such as the cache parity error in the current example); the source is indicated 
by an asynchronous machine check. When an error report type of machine check occurs, the thread’s 
MCSR indicates the operation that incurred the error as follows:

• Instruction fetch error report (MCSR[IF]). An error occurred while attempting to fetch the 
instruction corresponding to the address contained in MCSRR0.

• Load instruction error report (MCSR[LD]). An error occurred while attempting to execute the load 
instruction corresponding to the address contained in MCSRR0.

Non-maskable interrupt None

Self-test error. In the e6500 core, this condition is set due to a power-on reset self-test 
failure. If the self-test failure is related to a resource that is shared by both threads in the 
core (for example, an L2MMU array), the exception is posted to thread 0 because only that 
thread is enabled. If power-on reset self-test is enabled, then software should read MCSR 
to determine success or failure of the self-test. If software does not clear STE before 
enabling machine checks (by setting MSR[ME] or MSR[GS]), a machine check interrupt 
occurs due to the setting of MSR[ME] or MSR[GS].

None

1 “Additional Enable Bits” indicates any other state that, if not enabled, inhibits the recognition of this particular error condition.

Table 4-5. Machine check exception sources (continued)

Source Additional Enable Bits1
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• Guarded load instruction error report (MCSR[LDG]). If LD is set and the load was a guarded load 
(that is, has the guarded storage attribute), this bit may be set. Note that some implementations may 
have specific conditions that govern when this bit is set.

• Store instruction error report (MCSR[ST]). An error occurred while attempting to perform address 
translation on the instruction corresponding to the address contained in MCSRR0. Because stores 
may complete with respect to the processor pipeline before their effects are seen in all memory 
subsystem areas, only translation errors are reported as error reports with stores. Note that some 
instructions that are considered load instructions with respect to permission checking and debug 
events are reported as store error reports (MCSR[ST] is set). See Section 2.9.10, “Machine Check 
Syndrome (MCSR) register,” for which instructions set MCSR[LD] or MCSR[ST].

• tlbwe instruction error report. An error occurred performing logical-to-real address translation in 
the LRAT while attempting to execute the tlbwe instruction corresponding to the address contained 
in MCSRR0. Note that no synchronous machine check error report bits are set as the result of this 
error; however, the asynchronous bit MCSR[LRAT_MHIT] always appears as set if the error report 
occurs.

Table 4-6 describes which error sources generate which error report status bits in MCSR.

Note that there is no MCSR error status bit for CoreNet data errors that are forwarded to a thread as an 
RLnk error. If an RLnk error occurs on a load or instruction fetch and the instruction reaches the bottom 
of the completion buffer, an error report occurs. But, because there is no MCSR error status bit for data 
errors, the thread does not generate an asynchronous machine check. The device that detects the error is 
expected to report it. For example, assume that a thread attempts to perform a load from a PCI device that 
encounters an error. The PCI device signals a “PCI Master Abort” and signals the error to the 
programmable interrupt controller (PIC). 

The thread’s memory transaction should be completed with a data error so that the thread is not hung 
awaiting the transaction. Eventually, the PIC should interrupt the thread. (The PIC should be programmed 
to direct such an error to take a machine check interrupt.)

Error reports are intended to be a mechanism to stop the propagation of bad data; the asynchronous 
machine check is intended to allow software to attempt to recover gracefully from errors. 

In a multicore system, the PIC is likely to steer all PCI error interrupts to one thread. For the PCI Master 
Abort example, assume that thread B performs a load that gets a PCI Master Abort, and the PIC steers the 
PCI's error signal to thread (processor) A’s machine check input signal. Here, the error report in thread B 
prevents the propagation of bad data; thread A gets the task of attempting a graceful recovery. Some 
interprocessor communication is likely necessary. 

Table 4-6. Synchronous machine check error reports

Synchronous Machine Check Source Error Type MCSR Update1 Precise2

Instruction fetch Instruction cache data array parity error  IF Within fetch group3

Instruction cache tag array parity error

L2MMU multi-way hit, TLB0 parity error, or 
LRAT multi-way hit

CoreNet bad data / RLnk error
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An error report occurs only if the instruction that encountered the error reaches the bottom of the 
completion buffer (that is, it becomes the oldest instruction currently in execution) and the instruction 
would have completed otherwise. If the instruction is flushed (possibly due to a mispredicted branch or 
asynchronous interrupt, including an asynchronous machine check) before reaching the bottom of the 
completion buffer, the error report does not occur.

4.9.3.4 Asynchronous machine check exceptions

An asynchronous machine check occurs only when MSR[ME] = 1 or MSR[GS] = 1 and an MCSR 
asynchronous error bit is set. Because MSR[ME] and MSR[GS] are cleared whenever a machine check 
interrupt occurs, a synchronous error report interrupt may clear MSR[ME] and MSR[GS] before the 
MCSR error bit is posted. If the error report handler clears the MCSR error bit before setting MSR[ME] 
or MSR[GS], no asynchronous machine check interrupt occurs.

Load (or touch) instruction Data cache data array parity error  LD, [LDG]4 Yes

Data cache tag parity error

Data cache tag multi-way hit

L2MMU multi-way hit, TLB0 parity error, or 
LRAT multi-way hit

CoreNet Bad Data / RLnk error (on load 
data or read of PTE during page table 
translation)

Store or cache operation instruction L2MMU multi-way hit, TLB0 parity error, or 
LRAT multi-way hit

 ST Yes

CoreNet Bad Data / RLnk error (on read of 
PTE during page table translation)

Data cache tag multi-way hit

tlbwe instruction LRAT multi-way hit  — Yes

1 The MCSR update column indicates which MCSR bits are updated when the machine check interrupt is taken.
2 The Precise column either indicates ‘yes’ or ‘within fetch group’. If “yes,” the error type causes a machine check in which 

MCSRR0 points to the instruction that encountered the error, provided that MSR[ME] or MSR[GS] were set when the instruction 
was executed.

3 Error report machine check interrupts caused by instruction fetches (denoted by MCSR[IF]) are associated with all instructions 
within a given fetch group. If any instruction within the fetch group encountered an error of any type, then all instructions within 
the fetch group are marked with an instruction fetch error report exception. Therefore, if the error report exception later causes 
a machine check interrupt, MCSRR0 will point to the oldest instruction from that fetch group.

4 LDG is set if the load was a guarded load (WIMGE = xxx1x).

Table 4-6. Synchronous machine check error reports (continued)

Synchronous Machine Check Source Error Type MCSR Update1 Precise2
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This table describes asynchronous machine check and NMI exceptions.

4.9.4 Data storage interrupt (DSI)—IVOR2/GIVOR2

A DSI occurs when no higher priority interrupt exists and a data storage exception is presented to the 
interrupt mechanism. The interrupt is directed to the hypervisor unless the following conditions exist: 

• The exception is not a virtualization fault (TLB[VF] = 0).

• The exception occurs in the guest state (MSR[GS] = 1).

• The interrupt is programmed to be directed to the guest state (EPCR[DSIGS] = 1).

If all the above conditions are met, the DSI is directed to the guest-supervisor state.

Table 4-7. Asynchronous machine check and NMI exceptions

Error Source Error Type Transaction Source MCSR Update1

1 The MCSR update column indicates which MCSR bits are updated when the exception is logged.

MCAR Update2

2 The MCAR update column indicates whether the error type provides either a real, logical, or effective address (RA, LA, or EA) 
or no address associated with the error.

External Machine check input (mcp) pin3

3 The machine check input pin is used by the SoC to indicate all types of machine check type errors that are detected by the 
SoC. Software must query error logging information within the SoC to determine the specific error condition and source.

N/A MCP None

NMI pin N/A NMI None

Self-test Self test error. N/A STE None

Instruction 
cache

Data array parity error Instruction fetch MAV ICPERR EA

Tag array parity error RA

Data cache Data array parity error Load
Snoop  4

MAV DCPERR RA

Tag array parity error Load, store, touch, or cache 
operation
Snoop  4

LRAT Multi-way hit tlbwe or page table translation MAV LRAT_MHIT LA4

4 LA is the logical address (guest space RA) to be translated into a real (physical) address.

L2 MMU Multi-way hit tlbsx, tlbre, instruction fetch, 
load, touch, store, cache op (all 
types)

 MAV L2MMU_MHIT EA5

5 The lower 12 bits of the EA may be cleared.

TLB0 parity tlbsx, tlbre, instruction fetch, 
load, touch, store, cache op (all 
types), tlbivax snoop

 MAV TLBPERROR EA5
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This table (taken from Table 4-2) summarizes exception conditions and behavior for the data storage and 
guest data storage interrupts. 

This table describes exceptions as defined by the architecture, noting any e6500-specific behavior.

Table 4-8. Data storage interrupt 

IVOR Interrupt Exception
Directing State at 

Exception
(G)ESR1

1 In general, when an interrupt affects a (G)ESR, as indicated in the table, it also causes all other (G)ESR bits to be cleared. 
Special rules may apply for implementation-specific (G)ESR bits. 

Legend:
xxx (no brackets) means (G)ESR[xxx] is set.
[xxx] means (G)ESR[xxx] could be set.
[xxx,yyy] means either (G)ESR[xxx] or (G)ESR[yyy] may be set, but not both.
{xxx,yyy} means either (G)ESR[xxx] or (G)ESR[yyy] and possibly both may be set.

Save/Restore
Registers

IVOR2 Data
storage
(DSI)

Virtualization fault TLB[VF] = 1 (from 
direct or indirect 
matching TLB entry)

 [ST], [FP,SPV], [EPID], 
[PT]

SRRs

Read access MSR[GS] = 0 or 
EPCR[DSIGS] = 0

 [FP,SPV], [EPID], [PT]

Write access  ST, [FP,SPV], [EPID], 
[PT]

Page table fault [ST], [FP,SPV], [EPID], 
PT

Load reserve or store conditional to 
write-through required location (W = 1)

[ST]

Cache locking [DLK,ILK],[ST]

Byte ordering [ST],[FP,SPV],BO, [EPID]

GIVOR2 Guest 
data 
storage 
(DSI)

Read access MSR[GS] = 1 and 
EPCR[DSIGS] = 1

 [FP,SPV], [EPID], [PT] GSRRs

Write access  ST, [FP,SPV], [EPID], 
[PT]

Page table fault [ST], [FP,SPV],[EPID], PT

Load reserve or store conditional to 
write-through required location (W = 1)

[ST]

Table 4-9. Data storage interrupt exception conditions

Exception Cause

Virtualization 
fault 

Loads and stores translated by TLB entries with TLB[VF] = 1 or an indirect entry during a page table translation 
always take a data storage interrupt directed to the hypervisor state.

Page table fault A page table translation occurs on a load, store, or cache management instruction, and the resulting PTE is not 
valid (PTE[V] = 0).
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Read access 
control 
exception

Occurs when one of the following conditions exists:
 • In user mode (MSR[PR] = 1), a load or load-class cache management instruction attempts to access a 

memory location that is not user-mode read enabled (page access control bit UR = 0).
 • In supervisor mode (MSR[PR] = 0), a load or load-class cache management instruction attempts to access 

a location that is not supervisor-mode read enabled (page access control bit SR = 0).
 • During page table translation, the following conditions exist (if these conditions exist, (G)ESR[PT] is set if no 

TLB entry was created from the page table translation):
 • MSR[PR] = 1 (user mode)
 • A load or load-class cache management instruction caused the page table translation
 • The resulting PTE is valid (PTE[V] = 1)
 • PTE[BAP4] & PTE[R] = 0 (no read permission)
 • During page table translation, the following conditions exist (if these conditions exist, (G)ESR[PT] is set if no 

TLB entry was created from the page table translation):
 • MSR[PR] = 0 (supervisor mode)
 • A load or load-class cache management instruction caused the page table translation
 • The resulting PTE is valid (PTE[V] = 1)
 • PTE[BAP5] & PTE[R] = 0 (no read permission)

Write access 
control 
exception

Occurs when either of the following conditions exists:
 • In user mode (MSR[PR] = 1), a store or store-class cache management instruction attempts to access a 

location that is not user-mode write enabled (page access control bit UW = 0).
 • In supervisor mode (MSR[PR] = 0), a store or store-class cache management instruction attempts to access 

a location that is not supervisor-mode write enabled (page access control bit SW = 0).
 • During page table translation, the following conditions exist (if these conditions exist, (G)ESR[PT] is set if no 

TLB entry was created from the page table translation):
 • MSR[PR] = 1 (user mode)
 • A store or store-class cache management instruction caused the page table translation
 • The resulting PTE is valid (PTE[V] = 1)
 • PTE[BAP2] & PTE[R] & PTE[C] = 0 (no write permission)
 • During page table translation, the following conditions exist (if these conditions exist, (G)ESR[PT] is set if no 

TLB entry was created from the page table translation):
 • MSR[PR] = 0 (supervisor mode)
 • A store or store-class cache management instruction caused the page table translation
 • The resulting PTE is valid (PTE[V] = 1)
 • PTE[BAP3] & PTE[R] & PTE[C] = 0 (no write permission)

Byte-ordering 
exception

Data cannot be accessed in the byte order specified by the page’s endian attribute.
Note: This exception is provided to assist implementations that cannot support dynamically switching byte 

ordering between consecutive accesses, the byte order for a class of accesses, or misaligned accesses 
using a specific byte order. On the e6500 core, load/store accesses that cross a page boundary such 
that endianness changes cause a byte-ordering exception. 

Cache-locking 
exception 

The locked state of one or more cache lines may potentially be altered. Occurs with the execution of icbtls, 
icblc, icblq., dcbtls, dcbtstls, dcblq., or dcblc when (MSR[PR] = 1) and (MSR[UCLE] = 0). ESR is set as 
follows:
 • For icbtls, icblq., and icblc, ESR[ILK] is set. 
 • For dcbtls, dcbtstls, dcblq., or dcblc, ESR[DLK] is set. 
The architecture refers to this as a cache-locking exception.

Storage 
synchronization 
exception

Occurs when a lbarx, lharx, lwarx, ldarx, stbcx., sthcx., stwcx., or stdcx. instruction attempts to access a 
location marked write-through required. 

See “Atomic Update Primitives Using lwarx and stwcx. ,” in the “Instruction Model” chapter of EREF. 

Table 4-9. Data storage interrupt exception conditions (continued)

Exception Cause
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Regardless of the EA, icbt, dcbt, dcbtst, dcba and dcbal instructions cannot cause a data storage interrupt. 
Because many DSI exceptions are based on the EA, store conditional instructions may result in DSI 
exceptions regardless of whether the store was performed or not. See “Atomic Update Primitives Using 
lwarx and stwcx.,” in the “Instruction Model” chapter of EREF.

NOTE
icbi, icbt, icblc, icblq., and icbtls are treated as loads from the addressed 
byte with respect to translation and protection. All use MSR[DS], not 
MSR[IS], to determine translation for their operands. Instruction storage 
and TLB error interrupts are associated with instruction fetching and not 
execution. Data storage and TLB error interrupts are associated with 
execution of instruction cache management instructions.

When the interrupt occurs, the thread suppresses execution of the instruction that caused it. Registers 
associated with the thread are updated as described in the following table:

Instruction execution resumes at address (G)IVPR[0–47] || (G)IVOR2[48–59] || 0b0000.

4.9.5 Instruction storage interrupt (ISI)—IVOR3/GIVOR3

An ISI occurs when no higher priority interrupt exists and an instruction storage interrupt is presented to 
the interrupt mechanism. 

The interrupt is directed to the hypervisor unless the following conditions exist:

• The exception occurs in the guest state (MSR[GS] = 1).

Table 4-10. Data storage interrupt register settings  

Register Setting

(G)SRR0 Set to the EA of the instruction causing the interrupt

(G)SRR1 Set to the MSR contents at the time of the interrupt

(G)ESR ST Set if the instruction causing the interrupt is a store or store-class cache management instruction
DLK Set when a DSI occurs because dcbtls, dcbtstls, dcblq., or dcblc is executed in user mode and MSR[UCLE] 

= 0
ILK Set when a DSI occurs because icbtls, icblq.,or icblc is executed in user mode and MSR[UCLE] = 0
BO Set if the instruction caused a byte-ordering exception
[PT] Set during a page table translation if a read or write access control exception occurred and no TLB entry was 

created, or if a page table fault exception or a virtualization fault exception occurred (A page table fault occurs if 
the associated PTE[V] bit is 0.)

All other defined ESR bits are cleared.

MSR  • ME, CE, and DE are unchanged.
 • GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.
 • UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
 • CM is set to EPCR[ICM] if the interrupt is directed to hypervisor state.
 • CM is set to EPCR[GICM] if the interrupt is directed to guest state.
 • RI is not cleared.
 • All other MSR bits are cleared.

(G)DEAR Set to the EA of a byte that lies both within the range of bytes being accessed by the access or cache management 
instruction and within the page whose access caused the exception.
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• The interrupt is programmed to be directed to the guest state (EPCR[ISIGS] = 1) and an instruction 
virtualization fault does not occur.

If all the above conditions are met, the ISI is directed to the guest-supervisor state.

This table describes exception conditions.

When an ISI occurs, the thread suppresses execution of the instruction causing the interrupt. 

Registers associated with the thread are updated as shown in the following table.

Table 4-11. Instruction storage interrupt exception conditions

Exception Cause

Execute access 
control exception

Occurs when one of the following conditions exists:
 • In user mode (MSR[PR] = 1), an instruction fetch attempts to access a memory location that is not 

user-mode execute enabled (page access control bit UX = 0).
 • In supervisor mode (MSR[PR] = 0), an instruction fetch attempts to access a memory location that is not 

supervisor-mode execute enabled (page access control bit SX = 0).
 • During page table translation, the following conditions exist (if these conditions exist (G)ESR[PT] is set) 

if no TLB entry was created from the page table translation):
 • MSR[PR] = 1 (user mode)
 • an instruction fetch caused the page table translation
 • the resulting PTE is valid (PTE[V] = 1)
 • PTE[BAP0] & PTE[R] = 0 (no execute permission)
 • During page table translation, the following conditions exist (if these conditions exist (G)ESR[PT] is set) 

if no TLB entry was created from the page table translation):
 • MSR[PR] = 0 (supervisor mode)
 • a load or load-class cache management instruction caused the page table translation
 • the resulting PTE is valid (PTE[V] = 1)
 • PTE[BAP1] & PTE[R] = 0 (no execute permission)

Page table fault A page table translation occurs on an instruction fetch and the resulting PTE is not valid (PTE[V] = 0).

Instruction 
virtualization fault 

A page table translation occurs on an instruction fetch and the matching indirect entry has TLB[VF]=1.

Table 4-12. Instruction storage interrupt register settings

Register Setting

(G)SRR0 Set to the EA of the instruction causing the interrupt

(G)SRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME, CE, and DE are unchanged.
 • GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.
 • UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
 • CM is set to EPCR[ICM] if the interrupt is directed to hypervisor state.
 • CM is set to EPCR[GICM] if the interrupt is directed to guest state.
 • RI is not cleared.
 • All other MSR bits are cleared.

(G)ESR BO Set if the interrupt-causing instruction encountered a byte-ordering exception; otherwise, it is cleared.
PT Set during a page table translation if an execute access control exception occurred and no TLB entry was 

created, if a page table fault exception occurred (if the associated PTE[V] = 0), or if an instruction virtualization 
fault occurred because the indirectly entry has TLB[VF] = 1.

All other defined ESR bits are cleared.
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Instruction execution resumes at address (G)IVPR[0–47] || (G)IVOR3[48–59] || 0b0000.

4.9.6 External input interrupt—IVOR4/GIVOR4

An external input interrupt occurs when no higher priority interrupt exists, an external input interrupt 
(typically described in the integrated reference manual as the int signal) is presented to the interrupt 
mechanism, and the external input interrupt is enabled. There is a signal pin for each thread. The interrupt 
is directed to the hypervisor unless the following conditions exist: 

• The exception occurs in the guest state (MSR[GS] = 1).

• The interrupt is programmed to be directed to the guest state (EPCR[EXTGS] = 1).

If all the above conditions are met, the external input interrupt is directed to the guest-supervisor state. The 
interrupt is enabled by MSR[EE], MSR[GS], and EPCR[EXTGS] as follows:

• If EPCR[EXTGS] = 0, the interrupt is enabled if MSR[EE] = 1 or MSR[GS] = 1.

• If EPCR[EXTGS] = 1, the interrupt is enabled if MSR[EE] = 1 and MSR[GS] = 1.

In an integrated device, external interrupts are typically signaled to a specific thread in the core from a 
programmable interrupt controller (PIC), which manages and prioritizes interrupt requests from integrated 
peripheral devices such that the highest priority request is guaranteed to be presented to the designated 
thread of the core as quickly as possible. 

The e6500 core provides two methods of receiving external input interrupts, which are controlled through 
a register field in the PIC:

• In one method, the legacy method, a thread of the core takes an external input interrupt when the 
int signal from the PIC is asserted and the external input interrupt is enabled in the thread. The input 
is level sensitive and if int is deasserted before the interrupt is enabled, no interrupt occurs. If the 
interrupt is enabled and occurs, software reads the memory-mapped Interrupt Acknowledge 
(IACK) register, which contains the specific vector of the interrupt. This causes the PIC to deassert 
int until another interrupt is requested. Management of the interrupt is software’s responsibility (it 
is in-service) until it performs an associated End of Interrupt (EOI) memory-mapped register write 
to the PIC.

• In the alternate method known as External Proxy, a signaling protocol occurs between a thread in 
the core and the PIC. Instead of just signaling int, the PIC also provides the specific vector for the 
interrupt. When the interrupt is enabled and the PIC asserts a vector, the interrupt occurs and the 
thread communicates to the PIC that the interrupt has been taken and provides the vector from the 
PIC in the (G)EPR register, which software then can read. As part of the communication with the 
PIC, the PIC puts the specific interrupt in-service as if software had read the IACK register in the 
legacy method. This method is further described in Section 4.9.6.1, “External proxy.” 

Registers of the interrupted thread are updated as shown in the following table.

Table 4-13. External Input Interrupt Register Settings

Register Setting

(G)SRR0 Set to the effective address of the next instruction to be executed

(G)SRR1 Set to the MSR contents at the time of the interrupt
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Instruction execution resumes at address (G)IVPR[0–47] || (G)IVOR4[48–59] || 0b0000.

NOTE
To avoid redundant external input interrupts, software must take any actions 
required to clear any external input exception status before re-enabling 
MSR[EE].

4.9.6.1 External proxy

The external proxy facility defines an interface for using a core-to-interrupt controller hardware interface 
for acknowledging external interrupts from a programmable interrupt controller (PIC) implemented as part 
of the integrated device. This functionality is enabled through a register field defined by the PIC and 
documented in the reference manual for the integrated device. 

Using this interface reduces the latency required to read and acknowledge the interrupt that normally 
requires a cache-inhibited guarded load to the memory controller.

In previous integrated devices, when the core received a signal from the PIC indicating that the external 
interrupt was necessary to handle a condition typically presented by an integrated peripheral device, the 
interrupt handler responded by reading a memory-mapped register (interrupt acknowledge, or IACK) 
defined by the Open PIC standard. In addition to providing an additional vector offset specific to the 
peripheral device, this read negated the internal signal and changed the status of the interrupt request from 
pending to in-service, in which state it would remain until the completion of the interrupt handling. 

The external proxy eliminates the need to read the IACK register by presenting the vector to the external 
proxy register (EPR), or guest external proxy register (GEPR), of the interrupted thread, as described in 
Section 2.9.6, “(Guest) External Proxy (EPR/GEPR) registers.”

Instead of just signaling int, the PIC also provides the specific vector for the interrupt. When the interrupt 
is enabled and the PIC asserts a vector, the interrupt occurs and the interrupted thread of the core 
communicates to the PIC that the interrupt has been taken and provides the vector from the PIC in the 
(G)EPR register of the thread, which software then can read. As part of the communication with the PIC, 
the PIC puts the specific interrupt in-service as if software had read the IACK register in the legacy method. 
The PIC always asserts the highest priority pending interrupt to the thread, and the interrupt that is put 
in-service is determined by when the thread takes the interrupt based on the appropriate enabling 

MSR  • ME, CE, and DE are unchanged.
 • GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.
 • UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
 • CM is set to EPCR[ICM] if the interrupt is directed to hypervisor state.
 • CM is set to EPCR[GICM] if the interrupt is directed to guest state.
 • RI is not cleared.
 • All other MSR bits are cleared.

(G)EPR If external proxy is used, (G)EPR holds the vector offset that identifies the source that generated the interrupt triggered 
from the PIC. For external interrupts not generated using interrupt proxy, (G)EPR is updated to all zeros.

Table 4-13. External Input Interrupt Register Settings (continued)

Register Setting
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conditions. From a system software perspective, the thread does not acknowledge the interrupt until the 
external input interrupt is taken.

Software in the external input interrupt handler then reads (G)EPR to determine the vector for the interrupt. 
The value of the vector in (G)EPR does not change until the next external input interrupt occurs; therefore, 
software must read (G)EPR before re-enabling the interrupt.

When using external proxy (and even with the legacy method), software must ensure that end-of-interrupt 
(EOI) processing is synchronized with taking of external input interrupts such that the EOI indicator is 
received so that the interrupt controller can properly pair it with the source. For example, writing the EOI 
register for the PIC requires that the following sequence occurs:

block interrupts; // turn EE off for external interrupts
write EOI register; // signal end of interrupt
read EOI register; // ensure write has completed
unblock interrupts; // allow interrupts

4.9.7 Alignment interrupt—IVOR5

An alignment interrupt occurs when no higher priority exception exists and an alignment exception is 
presented to the interrupt mechanism. On the e6500 core, these exceptions are as follows: 

• The following accesses are not word aligned:

— Floating-point loads and stores (including lfddx and stfddx)

— Load multiple or store multiple instruction (lmw and stmw).

• A load and reserve or store conditional instruction that is not aligned to the data size of the 
instruction:

— lharx or sthcx. which is not halfword aligned,

— lwarx or stwcx. which is not word aligned,

— ldarx or stdcx. which is not doubleword aligned.

NOTE
The architecture does not support use of a misaligned EA by load and 
reserve or store conditional instructions. If a misaligned EA is specified, the 
alignment interrupt handler must treat the instruction as a programming 
error and not attempt to emulate the instruction.

• A dcbz or dcbzl is attempted to a page marked write-through or cache-inhibited.

• A stvflx, stvflxl, stvfrx, or stvfrxl of more than 8 bytes is attempted to a page marked 
write-through or cache-inhibited.

For other accesses, the e6500 core performs misaligned accesses in hardware within a single cycle if the 
misaligned operand lies within a double-word boundary. Accesses that cross a double-word boundary 
degrade performance. Although many misaligned memory accesses are supported in hardware, their 
frequent use is discouraged because they can compromise overall performance. Only one outstanding 
misalignment at a time is supported, which means it is non-pipelined. A misaligned access that crosses a 
page boundary completely restarts if the second portion of the access causes a TLB miss or a DSI after the 
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associated interrupt has been serviced and the TLB miss or DSI handler has returned to re-execute the 
instruction. This can cause the first access to be repeated. 

When an alignment interrupt occurs, the thread suppresses execution of the instruction causing the 
alignment interrupt. Registers of the interrupted thread are updated as shown in the following table.

Instruction execution of the thread resumes at address IVPR[0–47] || IVOR5[48–59] || 0b0000.

4.9.8 Program interrupt—IVOR6

A program interrupt occurs when no higher priority exception exists and a program interrupt is presented 
to the interrupt mechanism. This table lists program interrupt exceptions.

Table 4-14. Alignment interrupt register settings

Register Setting

SRR0 Set to the EA of the instruction causing the alignment interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • CM is set to EPCR[ICM].
 • RI is not cleared.
 • All other MSR bits are cleared.

DEAR Set to the EA of a byte in the range of bytes being accessed and on the page whose access caused the exception.

ESR The following bits may be set:
ST Set only if the instruction causing the exception is a store and is cleared for a load
All other defined ESR bits are cleared.

Table 4-15. Program interrupt exception conditions

Exception Cause ESR Bits Set

Floating-point 
enabled

A floating-point enabled exception is caused when FPSCR[FEX] is set to 1 by the execution 
of a floating-point instruction that causes an enabled exception, including the case of a Move 
to FPSCR instruction that causes an exception bit and the corresponding enable bit both to 
be 1. Note that, in this context, the term ‘enabled exception’ refers to the enabling provided by 
control bits in FPSCR.

FP

Illegal 
instruction

Execution of any of the following causes an illegal instruction exception:
 • A reserved-illegal instruction or an undefined instruction encoding
 • A mtspr or mfspr that specifies a SPRN value that is not implemented
 • A mtspr that specifies a read-only SPRN
 • A mfspr that specifies a write-only SPRN
 • A defined, unimplemented instruction
On the e6500 core, an instruction in an invalid form causes boundedly undefined results.

PIL

Privileged 
instruction 

MSR[PR] = 1 and execution is attempted of any of the following:
 • A privileged instruction or a hypervisor privileged instruction
 • A mtspr or mfspr that specifies a privileged SPR
 • A mtpmr or mfpmr that specifies a privileged PMR

PPR
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Registers are updated as shown in the following table.

Instruction execution resumes at address IVPR[0–47] || IVOR6[48–59] || 0b0000.

4.9.9 Floating-point unavailable interrupt—IVOR7 

A floating-point unavailable interrupt occurs when no higher priority interrupt exists, an attempt is made 
to execute a floating-point instruction (including floating-point load, store, and move instructions), and the 
floating-point available bit in the MSR is disabled (MSR[FP] = 0). SRR0, SRR1, and MSR are updated as 
shown in the following table.

Instruction execution resumes at address IVPR[0–47] || IVOR7[48–59] || 0b0000.

Trap When any of the conditions specified in a trap instruction are met and the exception is not also 
enabled as a debug interrupt. If enabled as a debug interrupt (that is, (DBCR0[TRAP] = 1, 
DBCR0[IDM] = 1, MSR[DE] = 1), and (MSR[GS] | ~EPCR[DUVD])), then a debug interrupt is 
taken instead of the program interrupt.

PTR

Unimplemented 
operation 

The e6500 core does not take unimplemented operation exceptions. All defined but 
unimplemented instructions take an illegal instruction exception.

—

Table 4-16. Program interrupt register settings

Register Description

SRR0 Set to the EA of the instruction that caused the interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged
 • CM is set to EPCR[ICM]
 • RI is not cleared
 • All other MSR bits are cleared.

ESR FP Set if an enabled floating-point exception-type program interrupt; otherwise, it is cleared.
PIL Set if an illegal instruction exception-type program interrupt; otherwise, it is cleared.
PPR Set if a privileged instruction exception-type program interrupt; otherwise, it is cleared.
PTR Set if a trap exception-type program interrupt; otherwise, it is cleared.
All other defined ESR bits are cleared.

Table 4-17. Floating-point unavailable interrupt register settings

Register Description

SRR0 Set to the EA of the instruction causing the floating-point unavailable interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • CM is set to EPCR[ICM].
 • RI is not cleared.
 • All other MSR bits are cleared.

Table 4-15. Program interrupt exception conditions (continued)

Exception Cause ESR Bits Set
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4.9.10 System call/hypervisor system call 
interrupt—IVOR8/GIVOR8/IVOR40

A system call interrupt occurs when no higher priority exception exists and a System Call (sc) instruction 
with LEV = 0 is executed. (G)SRR0, (G)SRR1, and MSR are updated as shown in Table 4-19.

The system call interrupt is directed to the hypervisor if executed in the hypervisor state (MSR[GS] = 0) 
and is directed to the guest supervisor if executed in the guest state (MSR[GS] = 1).

A hypervisor system call interrupt occurs when no higher priority exception exists and a System Call (sc) 
instruction with LEV = 1 is executed. SRR0, SRR1, and MSR are updated as shown in Table 4-18.

This table describes which (G)IVOR is taken based on the setting of MSR[GS] and the value of the LEV 
operand.

For a system call interrupt, instruction execution resumes at address (G)IVPR[0–47] || (G)IVOR8[48–59] 
|| 0b0000.

For a hypervisor system call interrupt, instruction execution resumes at address IVPR[0–47] || 
IVOR40[48–59] || 0b0000.

Hypervisor system call interrupts are provided as a way to communicate with the hypervisor software.

NOTE
The hypervisor should check SRR1[PR,GS] to determine the privilege level 
of the software making a hypervisor system call to determine what action, 
if any, should be taken as a result of the hypervisor system call.

Table 4-18. System call/hypervisor system call interrupt selection

LEV MSR[GS] Interrupt

> 1 — Undefined

1 — IVOR40

0 0 IVOR8

1 GIVOR8

Table 4-19. System call/hypervisor system call interrupt register settings 

Register Description

(G)SRR0 Set to the EA of the instruction after the sc instruction.

(G)SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.
 • UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
 • MSR[CM] is set to EPCR[ICM] if the interrupt is directed to hypervisor state.
 • MSR[CM] is set to EPCR[GICM] if the interrupt is directed to guest state.
 • RI is not cleared.
 • All other MSR bits are cleared.
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4.9.11 Decrementer interrupt—IVOR10

A decrementer interrupt occurs when no higher priority exception exists, a decrementer exception exists 
(TSR[DIS] = 1), and the interrupt is enabled (TCR[DIE] = 1 and (MSR[EE] = 1 or MSR[GS])). MSR[EE] 
also enables external input, processor doorbell, guest processor doorbell, and fixed-interval timer 
interrupts. 

This table shows register updates.

Instruction execution resumes at address IVPR[0–47] || IVOR10[48–59] || 0b0000.

NOTE
To avoid a subsequent redundant decrementer interrupt, software is 
responsible for clearing the decrementer exception status prior to 
re-enabling MSR[EE] or MSR[GS]. To clear the decrementer exception, the 
interrupt handling routine must clear TSR[DIS] by writing a word to TSR 
using mtspr with a 1 in any bit position that is to be cleared and 0 in all other 
positions. The write-data to the TSR is not direct data, but a mask. Writing 
a 1 causes the bit to be cleared; writing a 0 has no effect.

4.9.12 Fixed-interval timer interrupt—IVOR11

A fixed-interval timer interrupt occurs when no higher priority interrupt exists, a fixed-interval timer 
exception exists (TSR[FIS] = 1), and the interrupt is enabled (TCR[FIE] = 1 and (MSR[EE] or 
MSR[GS] = 1)). The “Timers” chapter in EREF describes the architecture definition of the fixed-interval 
timer.

The fixed-interval timer period is determined by TCR[FP], which, when concatenated with TCR[FPEXT], 
specifies one of 64 bit locations of the time base used to signal a fixed-interval timer exception on a 
transition from 0 to 1.

TCR[FPEXT || FP] = 000000 selects bit 0 of the Time Base (TBL[0] or TBU[32]).
TCR[FPEXT || FP] = 11_1111 selects TBL[63].

NOTE
MSR[EE] also enables external input, processor doorbell, guest processor 
doorbell, and decrementer interrupts.

Table 4-20. Decrementer interrupt register settings

Register Setting

SRR0 Set to the effective address of the next instruction to be executed.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • CM is set to EPCR[ICM].
 • RI is not cleared.
 • All other MSR bits are cleared.

TSR DIS is set. 
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Registers are updated as shown in the following table.

Instruction execution resumes at address IVPR[0–47] || IVOR11[48–59] || 0b0000.

NOTE
To avoid redundant fixed-interval timer interrupts, before re-enabling 
MSR[EE], the interrupt handler must clear TSR[FIS] by writing a word to 
TSR with a 1 in any bit position to be cleared and 0 in all others. Data written 
to the TSR is a mask. Writing a 1 causes the bit to be cleared; writing a 0 has 
no effect.

4.9.13 Watchdog timer interrupt—IVOR12

A watchdog timer interrupt occurs when no higher priority interrupt exists, a watchdog timer exception 
exists (TSR[WIS] = 1), and the interrupt is enabled (TCR[WIE] = 1 and (MSR[CE] or MSR[GS] = 1)). 
The “Timers” chapter in EREF describes the architecture definition of the watchdog timer.

NOTE
MSR[CE] also enables the critical input interrupt.

Registers are updated as shown in the following table.

Instruction execution resumes at address IVPR[0–47] || IVOR12[48–59] || 0b0000.

Table 4-21. Fixed-interval timer interrupt register settings

Register Setting

SRR0 Set to the EA of the next instruction to be executed.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • CM is set to EPCR[ICM]
 • RI is not cleared.
 • All other MSR bits are cleared.

TSR FIS is set. 

Table 4-22. Watchdog timer interrupt register settings

Register Setting

CSRR0 Set to the EA of the next instruction to be executed

CSRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME and DE are unchanged.
 • CM is set to EPCR[ICM].
 • RI is not cleared.
 • All other MSR bits are cleared.

TSR WIS is set. 
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NOTE
To avoid redundant watchdog timer interrupts, before re-enabling 
MSR[CE], the interrupt handling routine must clear TSR[WIS] by writing a 
word to TSR with a 1 in any bit position to be cleared and 0 in all others. 
Data written to the TSR is a mask. Writing a 1 to this bit causes it to be 
cleared; writing a 0 has no effect.

4.9.14 Data TLB error interrupt—IVOR13/GIVOR13

A data TLB error interrupt occurs when no higher priority interrupt exists and the exception described in 
Table 4-23 is presented to the interrupt mechanism. The interrupt is directed to the hypervisor unless the 
following conditions exist: 

• The exception occurs in the guest state (MSR[GS] = 1).

• The interrupt is programmed to be directed to the guest state (EPCR[DTLBGS] = 1).

If all the above conditions are met, the DTLB is directed to the guest supervisor state.

When the interrupt occurs, the thread suppresses execution of the excepting instruction. Registers are 
updated as shown in the following table.

Table 4-23. Data TLB error interrupt exception condition

Exception Description

Data TLB miss exception Virtual addresses associated with a data access do not match any valid TLB entry, and 
the resulting page table translation fails because the associated indirect entry does not 
match any valid TLB entry. (That means there is no associated indirect TLB entry in the 
TLB.)

Table 4-24. Data TLB error interrupt register settings

Register Setting

(G)SRR0 Set to the EA of the instruction causing the data TLB error interrupt

(G)SRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME, CE, and DE are unchanged.
 • GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.
 • UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
 • CM is set to EPCR[ICM] if the interrupt is directed to the hypervisor state.
 • CM is set to EPCR[GICM] if the interrupt is directed to the guest state.
 • RI is not cleared.
 • All other MSR bits are cleared.

(G)DEAR Set to the EA of a byte that is both within the range of the bytes being accessed by the memory access or cache 
management instruction and within the page whose access caused the exception.



Interrupts and Exceptions

e6500 Core Reference Manual, Rev 0

4-34 Freescale Semiconductor
 

Instruction execution resumes at address (G)IVPR[0–47] || (G)IVOR13[48–59] || 0b0000.

Implementation notes:

If a store conditional instruction produces an EA for which a normal store would cause a data TLB error 
interrupt, but the processor does not have the reservation from a load and reserve instruction, the e6500 
core always takes the DTLB interrupt. 

4.9.15 Instruction TLB error interrupt—IVOR14/GIVOR14

An instruction TLB error interrupt occurs when no higher priority interrupt exists and the exception 
described in Table 4-25 is presented to the interrupt mechanism. The interrupt is directed to the hypervisor 
unless the following conditions exist: 

• The exception occurs in the guest state (MSR[GS] = 1).

• The interrupt is programmed to be directed to the guest state (EPCR[ITLBGS] = 1).

If all the above conditions are met, the ITLB is directed to the guest supervisor state.

When an instruction TLB error interrupt occurs, the processor suppresses execution of the instruction 
causing the exception.

Registers are updated as shown in the following table.

(G)ESR [ST] Set if the instruction causing the interrupt is a store, dcbi, dcbz, or dcbzl; otherwise, it is cleared.
[FP] Set if the instruction causing the interrupt is a floating-point load or store.
[EPID] Set if the instruction causing the interrupt is an external PID instruction.
All other defined ESR bits are cleared.
[SPV] Set if the instruction causing the interrupt is an AltiVec load or store.

MASn If EPCR[DMIUH] = 1 and an instruction TLB error, data TLB error, instruction storage, or data storage interrupt is 
directed to the hypervisor, MAS registers are not changed.
See Table 6-11

Table 4-25. Instruction TLB error interrupt exception condition

Exception Description

Instruction TLB miss exception Virtual addresses associated with an instruction fetch do not match any valid TLB entry and 
the resulting page table translation fails because the associated indirect entry does not match 
any valid TLB entry. (That means there is no associated indirect TLB entry in the TLB.)

Table 4-26. Instruction TLB error interrupt register settings

Register Setting

(G)SRR0 Set to the EA of the instruction causing the instruction TLB error interrupt

(G)SRR1 Set to the MSR contents at the time of the interrupt

Table 4-24. Data TLB error interrupt register settings (continued)

Register Setting
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Instruction execution resumes at address (G)IVPR[0–47] || (G)IVOR14[48–59] || 0b0000.

4.9.16 Debug interrupt—IVOR15

A debug interrupt occurs when no higher priority interrupt exists, a debug exception is indicated in the 
DBSR, and debug interrupts are enabled (DBCR0[IDM] = 1 and MSR[DE] = 1). A debug exception occurs 
when a debug event causes a corresponding DBSR bit to be set. 

The e6500 core does not support imprecise debug events and DBSR bits are not set while MSR[DE] = 0.

The “Debug Support,” chapter of EREF describes such architectural aspects of the debug interrupt. 

Registers are updated as shown in the following table.

MSR  • ME, CE, and DE are unchanged.
 • GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.
 • UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
 • CM is set to EPCR[ICM] if the interrupt is directed to hypervisor state.
 • CM is set to EPCR[GICM] if the interrupt is directed to guest state.
 • RI is not cleared.
 • All other MSR bits are cleared.

MASn If EPCR[DMIUH] = 1 and an instruction TLB error, data TLB error, instruction storage, or data storage interrupt is 
directed to the hypervisor, MAS registers are not changed.
See Table 6-11.

Table 4-27. Debug interrupt register settings

Register Description

DSRR0 For exceptions occurring while debug interrupts are enabled (DBCR0[IDM] and MSR[DE] = 1), DSRR0 is set as 
follows:
 • For Instruction Address Compare (IAC) registers, data address compare (DAC1R, DAC1W, DAC2R, and 

DAC2W), trap (TRAP), or branch taken (BRT) debug exceptions, set to the EA of the instruction causing the 
interrupt.

 • For interrupt taken (IRPT) debug exceptions (CIRPT for critical interrupts), set to the EA of the first instruction of 
the interrupt that caused the event.

 • For instruction complete (ICMP) debug exceptions, set to the EA of the instruction that would have executed after 
the one that caused the interrupt.

 • For return from interrupt (RET) debug exceptions, set to the EA of the instruction (rfi, rfci, or rfgi) that caused the 
interrupt.

 • For unconditional debug event (UDE) debug exceptions, set to the EA of the instruction that would have executed 
next had the interrupt not occurred.

For exceptions occurring while debug interrupts are disabled (DBCR0[IDM] = 0 or MSR[DE] = 0), the interrupt occurs 
at the next synchronizing event if DBCR0[IDM] and MSR[DE] are modified such that they are both set and if the 
DBSR still indicates status. When this occurs, DSRR0 holds the EA of the instruction that would have executed next, 
not the address of the instruction that modified DBCR0 or MSR and caused the interrupt.

DSRR1 Set to the MSR contents at the time of the interrupt

Table 4-26. Instruction TLB error interrupt register settings (continued)

Register Setting
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Note that on the e6500 core, if DBCR0[IDM] is cleared, no debug events occur. That is, regardless of 
MSR, DBCR0, DBCR1, and DBCR2 settings, no debug events are logged in DBSR and no debug 
interrupts are taken. 

The e6500 core complies with the architecture debug definition, except as follows:

• Data address compare is only supported for effective addresses.
• Instruction address compares IAC3 and IAC4 are not supported.
• Instruction address compare is only supported for effective addresses.
• Data value compare is not supported.

Instruction execution resumes at address IVPR[0–47] || IVOR15[48–59] || 0b0000.

4.9.16.1 Suppressing debug events in hypervisor mode

Synchronous debug events can be suppressed when executing in the hypervisor state. This prevents debug 
events from being recorded (and subsequent debug interrupts from occurring) when executing in the 
hypervisor state when the guest operating system is using the debug facility.

When EPCR[DUVD] = 1 and MSR[GS] = 0, all debug events, except the unconditional debug event, are 
suppressed and are not posted in the DBSR, and the associated exceptions do not occur. 

4.9.17 AltiVec unavailable interrupt—IVOR32 

An AltiVec unavailable interrupt occurs when no higher priority interrupt exists, an attempt is made to 
execute an AltiVec instruction (including AltiVec load, store, and move instructions), and the AltiVec 
available bit in the MSR is disabled (MSR[SPV] = 0). SRR0, SRR1, and MSR are updated as shown in the 
following table.

Instruction execution resumes at address IVPR[0–47] || IVOR32[48–59] || 0b0000.

MSR  • ME, is unchanged.
 • CM is set to EPCR[ICM]
 • RI is not cleared.
 • All other MSR bits are cleared.

DBSR Set to indicate type of debug event. See Section 2.14.9, “Debug Status (DBSR/DBSRWR) register”

Table 4-28. AltiVec Unavailable Interrupt Register Settings

Register Description

SRR0 Set to the EA of the instruction causing the AltiVec unavailable interrupt

SRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME, CE, and DE are unchanged.
 • CM is set to EPCR[ICM].
 • RI is not cleared.
 • All other MSR bits are cleared.

Table 4-27. Debug interrupt register settings (continued)

Register Description



Interrupts and Exceptions

e6500 Core Reference Manual, Rev 0

Freescale Semiconductor 4-37
 

When MSR[SPV] = 0 and an AltiVec unavailable interrupt occurs, software should determine the state of 
the AltiVec device in CDCSR0 and bring the device up to a ready state if it wishes to set SPV and 
re-execute the instruction that caused the interrupt.

4.9.18 AltiVec assist interrupt—IVOR33 

The AltiVec assist interrupt occurs when no higher priority exception exists and an AltiVec assist exception 
is presented to the interrupt mechanism due to a denormalized floating-point number used as an operand 
to an AltiVec floating-point instruction requiring software assist. The instruction handler is required to 
emulate the interrupt causing instruction to provide correct results with the denormalized input. SRR0, 
SRR1, and MSR are updated as shown in the following table.

Instruction execution resumes at address IVPR[0–47] || IVOR33[48–59] || 0b0000.

4.9.19 Performance monitor interrupt—IVOR35/GIVOR35

A performance monitor interrupt is implemented as defined in EREF. Conditions that can be programmed 
to trigger an interrupt on an e6500 thread are described in Section 9.12, “Performance monitor.” The 
interrupt is triggered by an enabled performance monitor condition or event. For a performance monitor 
interrupt to be signaled on an enabled condition or event for a given thread, PMGC0[PMIE] must be set. 
A PMCn register overflow condition occurs with the following settings:

• PMLCan[CE] = 1—For the given counter the overflow condition is enabled.
• PMCn[OV] = 1—The given counter indicates an overflow.

Performance monitor counters can be frozen on a triggering-enabled condition or event if 
PMGC0[FCECE] = 1.

Performance monitor interrupts are directed to the guest-supervisor state if EPCR[PMGS] = 1; otherwise, 
they are directed to the hypervisor state. When the performance monitor interrupt is directed to the 
guest-supervisor state, it is masked from being taken if MSR[GS] = 0 or MSR[EE] = 0. When the 
performance monitor interrupt is directed to the hypervisor state, it is masked from being taken if 
MSR[GS] = 0 and MSR[EE] = 0.

Although the interrupt condition could occur when the performance monitor interrupt is masked, the 
interrupt cannot be taken until the masking condition is changed. If a counter overflows while 
PMGC0[FCECE] = 0, PMLCan[CE] = 1, and the interrupt is masked, the counter can wrap around to all 
zeros again without the interrupt being taken.

Table 4-29. AltiVec assist interrupt register settings

Register Description

SRR0 Set to the EA of the instruction causing the AltiVec assist interrupt

SRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME, CE, and DE are unchanged.
 • CM is set to EPCR[ICM].
 • RI is not cleared.
 • All other MSR bits are cleared.
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The registers of a thread (processor) are updated as shown in the following table.

Instruction execution resumes at address (G)IVPR[0–47] || (G)IVOR35[48–59] || 0b0000.

4.9.20 Doorbell interrupts—IVOR36–IVOR39
Doorbell interrupts provide a mechanism for a processor to send messages to all devices within its 
coherence domain. These messages can generate interrupts on core or thread devices and can be filtered 
by the processors that receive the message to observe (cause an exception) or to ignore the message. 

Doorbell interrupts are useful for sending interrupts to a thread. EREF defines how threads send messages 
and the actions that threads take upon receipt of a message. Actions taken by devices other than processors 
are not defined.

msgsnd and msgclr instructions are provided for sending messages to threads and clearing received and 
accepted messages. These instructions are hypervisor privileged. See Section 3.4.12.5, “Message Clear 
and Message Send instructions.”

The e6500 threads filter, accept, and handle the message types defined in Table 4-31. These message types 
result in the exceptions and interrupts described later in this section.

The message type is specified in the message and is determined by the contents of register rB[32–36] used 
as the operand in the msgsnd instruction.

Table 4-30. Performance monitor interrupt register settings

Register Setting

(G)SRR0 Set to the EA of the next instruction to be executed

(G)SRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME, CE, and DE are unchanged.
 • GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.
 • UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits 

of MSRP are 0.
 • CM is set to EPCR[ICM] if the interrupt is directed to the hypervisor state.
 • CM is set to EPCR[GICM] if the interrupt is directed to the guest state.
 • RI is not cleared.
 • All other MSR bits are cleared.

Table 4-31. Message types

Value Description

0 Doorbell interrupt (DBELL). Causes a processor doorbell exception on a thread that receives and accepts the message. 

1 Doorbell critical interrupt (DBELL_CRIT). Causes a processor doorbell critical exception on a thread that receives and 
accepts the message.

2 Guest processor doorbell interrupt (G_DBELL). Causes a guest processor doorbell exception on a thread that receives 
and accepts the message.
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No other message type is accepted on the e6500 core.

4.9.20.1 Doorbell interrupt definitions

The architecture defines the following doorbell interrupts, which are implemented on the e6500 core:

• Processor doorbell (IVOR36)

• Processor doorbell critical (IVOR37)

• Guest processor doorbell (IVOR38)

— Note that guest processor doorbell uses GSRR0 and GSRR1 to save state.

• Guest processor doorbell critical (IVOR39)

• Guest processor doorbell machine check (IVOR39)

4.9.20.1.1 Processor doorbell interrupt (IVOR36)

A processor doorbell interrupt occurs when no higher priority exception exists, a processor doorbell 
exception is present, and MSR[EE] or MSR[GS] = 1. Processor doorbell exceptions are generated when 
doorbell type messages are received and accepted by the thread.

Registers are updated as shown in the following table.

Instruction execution resumes at address IVPR[0–47] || IVOR36[48–59] || 0b0000.

4.9.20.1.2 Processor doorbell critical interrupt—IVOR37

A processor doorbell critical interrupt occurs when no higher priority exception exists, a processor 
doorbell critical exception is present, and MSR[CE] or MSR[GS] = 1. Processor critical doorbell 
exceptions are generated when doorbell critical type messages are received and accepted by the processor. 

Registers are updated as shown in the following table.

3 Guest processor doorbell critical interrupt (G_DBELL_CRIT). Causes a guest processor doorbell critical exception on a 
thread that receives and accepts the message.

4 Guest processor doorbell machine check interrupt (G_DBELL_MC). Causes a guest processor doorbell machine check 
exception on a thread that receives and accepts the message.

Table 4-32. Processor doorbell interrupt register settings

Register Setting

SRR0 Set to the EA of the next instruction to be executed

SRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME, CE, and DE are unchanged.
 • CM is set to EPCR[ICM]
 • RI is not cleared.
 • All other MSR bits are cleared.

Table 4-31. Message types (continued)

Value Description
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Instruction execution resumes at address IVPR[0–47] || IVOR37[48–59] || 0b0000.

4.9.20.1.3 Guest processor doorbell interrupts—IVOR38

A guest processor doorbell interrupt occurs when no higher priority exception exists, a guest processor 
doorbell exception is present, and MSR[EE] and MSR[GS] = 1. Guest processor doorbell exceptions are 
generated when guest doorbell type messages are received and accepted by the thread. 

Registers are updated as shown in the following table.

Instruction execution resumes at address IVPR[0–47] || IVOR38[48–59] || 0b0000.

NOTE
Although the guest processor doorbell interrupt is always directed to the 
hypervisor, it uses GSRR0 and GSRR1 to save state. This is because the 
interrupt is guaranteed to interrupt out of the guest state when it is safe to 
update the guest save/restore registers. The hypervisor should use this 
mechanism to reflect interrupts to the guest state. In this scenario, GSRR0 
and GSRR1 is already set appropriately for the hypervisor.

4.9.20.1.4 Guest processor doorbell critical interrupts—IVOR39

A guest processor doorbell critical interrupt occurs when no higher priority exception exists, a processor 
doorbell exception is present, and MSR[CE] and MSR[GS] = 1. Guest processor doorbell critical 
exceptions are generated when guest doorbell critical type messages are received and accepted by the 
thread. 

Thread registers are updated as shown in the following table.

Table 4-33. Processor doorbell critical interrupt register settings

Register Setting

CSRR0 Set to the EA of the next instruction to be executed

CSRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME and DE are unchanged.
 • CM is set to EPCR[ICM]
 • RI is not cleared.
 • All other MSR bits are cleared.

Table 4-34. Guest processor doorbell interrupt register settings

Register Setting

GSRR0 Set to the EA of the next instruction to be executed

GSRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME, CE, and DE are unchanged.
 • CM is set to EPCR[ICM]
 • RI is not cleared.
 • All other MSR bits are cleared.
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Instruction execution resumes at address IVPR[0–47] || IVOR39[48–59] || 0b0000.

NOTE
The guest processor doorbell critical and the guest processor doorbell 
machine check interrupts use the same IVOR to vector interrupts. Software 
can examine CSRR1 and its own data structures to determine which 
interrupt occurred.

4.9.20.1.5 Guest processor doorbell machine check interrupts—IVOR39

A guest processor doorbell machine check interrupt occurs when no higher priority exception exists, a 
guest processor doorbell machine check exception is present, and MSR[ME] and MSR[GS] = 1. Guest 
processor doorbell machine check exceptions are generated when guest doorbell machine check type 
messages are received and accepted by the thread (processor). 

Thread (processor) registers are updated as shown in the following table.

Instruction execution resumes at address IVPR[0–47] || IVOR39[48–59] || 0b0000.

NOTE
The guest processor doorbell critical and the guest processor doorbell 
machine check interrupts use the same IVOR to vector interrupts. Software 
can examine CSRR1 and its own data structures to determine which 
interrupt occurred.

Table 4-35. Guest processor doorbell critical interrupt register settings

Register Setting

CSRR0 Set to the EA of the next instruction to be executed

CSRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME and DE are unchanged.
 • CM is set to EPCR[ICM].
 • RI is not cleared.
 • All other MSR bits are cleared.

Table 4-36. Guest processor doorbell machine check interrupt register settings

Register Setting

CSRR0 Set to the EA of the next instruction to be executed

CSRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME and DE are unchanged.
 • CM is set to EPCR[ICM].
 • RI is not cleared.
 • All other MSR bits are cleared.
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4.9.21 Hypervisor privilege interrupt—IVOR41

A hypervisor privilege exception occurs when the processor executes an instruction in the guest supervisor 
state and the operation is allowed only in the hypervisor state. A hypervisor privilege exception also occurs 
when an ehpriv instruction is executed, regardless of the state of the thread. See Section 3.4.6.7, 
“Hypervisor privilege instruction.”

Thread registers are updated as shown in the following table.

Instruction execution resumes at address IVPR[0–47] || IVOR41[48–59] || 0b0000.

Hypervisor privilege interrupts are provided as a means for restricting the guest supervisor state from 
performing operations allowed only in the hypervisor state.

This table lists the resources that cause a hypervisor privilege exception when accessed in the 
guest-supervisor state.

Table 4-37. Hypervisor privilege interrupt register settings

Register Setting

SRR0 Set to the EA of the instruction which caused the exception

SRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME, CE, and DE are unchanged.
 • CM is set to EPCR[ICM].
 • RI is not cleared.
 • All other MSR bits are cleared.

Table 4-38. Hypervisor privilege exceptions from the guest-supervisor state

Resource
Hypervisor 
Privilege 
on Read

Hypervisor 
Privilege 
on Write

Hypervisor 
Privilege 

on Execute
Notes

Instructions

ehpriv — — Yes —

msgclr — — Yes —

msgsnd — — Yes —

rfci — — Yes —

rfdi — — Yes —

rfi — — No Guest supervisor state execution of rfi maps to rfgi.

rfmci — — Yes —

tlbilx — — Yes or No Hypervisor privilege occurs only when EPCR[DGTMI] = 1.

tlbivax — — Yes —

tlbre — — Yes —

tlbsx — — Yes —

tlbsync — — Yes —
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tlbwe — — Yes or No Hypervisor privilege occurs only when EPCR[DGTMI] = 1 or an 
attempt to write TLB1.

SPRs

CDCSR0 Yes Yes — —

BUCSR Yes Yes — —

CSRR0 Yes Yes — —

CSRR1 Yes Yes — —

DACn Yes Yes — —

DBCRn Yes Yes — —

DBSR Yes Yes — —

DBSRWR — Yes — Illegal instruction occurs on attempted read.

DEAR No No — Guest supervisor state access to DEAR maps to GDEAR.

DEC Yes Yes — —

DECAR — Yes — Illegal instruction occurs on attempted read.

EPCR Yes Yes — New register allows hypervisor to direct certain interrupts and mask 
hypervisor debug events.

EPR No No — Guest supervisor state access to EPR maps to GEPR.

ESR No No — Guest supervisor state access to ESR maps to GESR.

GIVORn No Yes — Hypervisor privilege occurs on mtspr in guest state.

GIVPR No Yes — Occurs on mtspr in guest state.

GPIR No Yes — —

HID0 Yes Yes — —

IACn Yes Yes — —

IVORn Yes Yes — —

IVPR Yes Yes — —

L1CSRn Yes Yes — —

LPER Yes Yes — —

LPERU Yes Yes — —

LPIDR Yes Yes — —

LRATCFG Yes — — Illegal instruction occurs on attempted write.

LRATPS Yes — — Illegal instruction occurs on attempted write.

MAS5 Yes Yes — —

Table 4-38. Hypervisor privilege exceptions from the guest-supervisor state (continued)

Resource
Hypervisor 
Privilege 
on Read

Hypervisor 
Privilege 
on Write

Hypervisor 
Privilege 

on Execute
Notes
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MAS8 Yes Yes — —

MCAR Yes Yes — —

MCARU
MCARUA

Yes Yes — —

MCSR Yes Yes — —

MCSRRn Yes Yes — —

MMUCFG Yes — — Illegal instruction occurs on attempted write.

MMUCSR0 Yes Yes — —

MSRP Yes Yes — —

NSPC Yes Yes — —

NSPD Yes Yes — —

PIR No Yes — Guest supervisor state access to PIR maps to GPIR for reads.

PWRMGTCR0 Yes Yes — —

SCCSRBAR Yes — — Illegal instruction occurs on attempted write

SPRG0–SPRG3 No No — Guest supervisor state access to SPRG0–SPRG3 maps to 
GSPRG0–GSPRG3.

SPRG8 Yes Yes — —

SRR0 No No — Guest supervisor state access maps to GSRR0.

SRR1 No No — Guest supervisor state access maps to GSRR1.

TBL(R) No — — Illegal instruction occurs on attempted write.

TBL(W) — Yes — Illegal instruction occurs on attempted read.

TBU(R) No — — Illegal instruction occurs on attempted write.

TBU(W) — Yes — Illegal instruction occurs on attempted read.

TCR Yes Yes — —

TLB0CFG Yes — — Illegal instruction occurs on attempted write.

TLB1CFG Yes — — Illegal instruction occurs on attempted write.

TSR Yes Yes — —

USPRG1-31 No No — Guest user state access to USPRGn maps to GSPRGn.

PMRs

PMCn Yes/no2 Yes/no2 — —

PMLCAn Yes/no2 Yes/no2 — —

Table 4-38. Hypervisor privilege exceptions from the guest-supervisor state (continued)

Resource
Hypervisor 
Privilege 
on Read

Hypervisor 
Privilege 
on Write

Hypervisor 
Privilege 

on Execute
Notes
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4.9.22 LRAT error interrupt—IVOR42

An LRAT error exception occurs when one of the following occurs:

• The processor executes a tlbwe instruction in the guest supervisor state, EPCR[DGTMI] = 0, 
MAS0[TLBSEL] = 0, and there is no matching translation in the LRAT.

• The processor executes a page table translation in the guest supervisor state and there is no 
matching translation in the LRAT corresponding to the PTE[ARPN] field.

LRAT error interrupts occur because the logical-to-real address translation cannot be performed in the 
LRAT.

Thread registers are updated as shown in the following table.

PMLCBn Yes/no2 Yes/no2 — —

PMGC0 Yes/no2 Yes/no2 — —

1 USPRG0 is a separate physical register from SPRG0.
2 Access to PMRs is based on the setting of MSRP[PMMP]. If MSRP[PMMP] = 0, reads and writes are allowed to PMRs. If 

MSRP[PMMP] = 1, reads and writes produce a hypervisor privilege exception in supervisor mode and are no-oped in user mode.

Table 4-39. LRAT error interrupt register settings

Register Setting

SRR0 Set to the EA of the instruction which caused the exception.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • CM is set to EPCR[ICM].
 • RI is not cleared.
 • All other MSR bits are cleared.

DEAR If the LRAT error interrupt occurred for a page table translation, set to the EA of a byte that is both within the range of 
the bytes being accessed by the memory access or cache management instruction and within the page whose access 
caused the exception. If the LRAT error interrupt occurred as a result of a tlbwe instruction, then DEAR is undefined.

ESR [ST] Set if the instruction causing the interrupt is a store, dcbi, dcbz, or dcbzl; otherwise cleared
[FP] Set if the instruction causing the interrupt is a floating-point load or store.
[SPV] Set if the instruction causing the interrupt is an AltiVec load or store.
[EPID] Set if the instruction causing the interrupt is an external PID instruction and the translation of the operand 

address causes the interrupt.
[DATA] Set if the instruction causing the interrupt is a load, store, or cache management instruction and the translation 

of the operand address causes the interrupt. 
[PT] Set if the interrupt is the result of a page table translation.
All other defined ESR bits are cleared.

LPER Set to the values of the lower 28 bits of PTE[ARPN], PTE[WIMGE], and PTE[PS] if the LRAT error interrupt was a 
result of a page table translation. If the interrupt was a result of a tlbwe instruction, LPER is set to 0.

Table 4-38. Hypervisor privilege exceptions from the guest-supervisor state (continued)

Resource
Hypervisor 
Privilege 
on Read

Hypervisor 
Privilege 
on Write

Hypervisor 
Privilege 

on Execute
Notes
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Instruction execution resumes at address IVPR[0–47] || IVOR42[48–59] || 0b0000.

4.10 Guidelines for system software
When software takes an interrupt, it generally wants to save the save/restore registers in case another 
exception occurs while processing the current interrupt. In general, software must ensure that no other 
interrupt occurs before the save/restore registers are appropriately saved to memory (usually the stack). 
Hardware automatically disables asynchronous interrupt enables associated with the save/restore register 
pair when the new MSR is established taking the interrupt. For example, on taking an interrupt that uses 
SRR0/1, MSR[EE] is set to 0 preventing external input, decrementer, fixed interval timer, and processor 
doorbell interrupts from occurring. Software must ensure that synchronous exceptions do not occur prior 
to saving the save/restore registers.

This table lists actions system software must avoid before saving save/restore register contents.

4.11 Interrupt priorities
Except for the occurrence of multiple synchronous imprecise interrupts, all synchronous (precise and 
imprecise) interrupts are reported in program order, as required by the sequential execution model. Upon 
a synchronizing event, all previously executed instructions of the associated thread are required to report 
any synchronous imprecise interrupt-generating exceptions. The interrupt is then generated with all of 
those exception types reported cumulatively in the (G)ESR and in any status registers associated with the 
particular exception.

For any single instruction attempting to cause multiple exceptions for which the corresponding 
synchronous interrupt types are enabled, this section defines the priority order by which the instruction is 
permitted to cause a single enabled exception, thus, generating a particular synchronous interrupt. Note 

Table 4-40. Operations to avoid before the save/restore registers are saved to memory

Operation Reason

Re-enabling MSR[EE] , MSR[CE], MSR[DE], or 
MSR[ME] in interrupt handlers

This prevents any asynchronous interrupts, as well as any debug interrupts 
(in the case of MSR[DE]), including synchronous and asynchronous types.

Branching (or sequential execution) to addresses 
not mapped by the TLB, mapped without SX set, or 
causing large address or instruction address 
overflow exceptions

This prevents instruction storage, instruction TLB error, and instruction 
address overflow interrupts.

Load, store, or cache management instructions to 
addresses not mapped or without permissions

This prevents data storage and data TLB error interrupts.

Execution of System Call (sc), trap (tw, twi, td, tdi), 
or ehpriv instructions 

This prevents system call and trap exception-type program interrupts. Note 
that ehpriv instructions can be executed in the guest-supervisor state.

Re-enabling of MSR[PR] Prevents privileged instruction exception-type program interrupts. 
Alternatively, software could re-enable MSR[PR] but avoid executing any 
privileged instructions.

Execution of any illegal instructions Prevents illegal instruction exception-type program interrupts.

Execution of any instruction that could cause an 
alignment interrupt

Prevents alignment interrupts, as described in Section 4.9.7, “Alignment 
interrupt—IVOR5.” 
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that it is this exception priority mechanism, along with the requirement that synchronous interrupts be 
generated in program order, that guarantees that only one of the synchronous interrupt types exists at any 
given time. The exception priority mechanism also prevents certain debug exceptions from existing in 
combination with certain other synchronous interrupt-generating exceptions.

This section does not define the permitted setting of multiple exceptions for which the corresponding 
interrupt types are disabled. The generation of exceptions for which the corresponding interrupt types are 
disabled has no effect on the generation of other exceptions for which the corresponding interrupt types 
are enabled. Conversely, if a particular exception for which the corresponding interrupt type is enabled is 
shown in the following sections to be of a higher priority than another exception, it prevents the setting of 
that other exception, independent of whether that other exception’s corresponding interrupt type is enabled 
or disabled.

Except as specifically noted, only one of the exception types listed for a given instruction type is permitted 
to be generated at any given time.

NOTE
Mutually exclusive exception types with the same priority are listed in the 
order suggested by the sequential execution model.

4.12 Exception priorities 
The architecture defines exception priorities for all exceptions, including those defined in optional 
functionality. Exception types are defined to be either synchronous, in which case the exception occurs as 
a direct result of an instruction in execution, or asynchronous, which occurs based on an event external to 
the execution of a particular instruction or an instruction removes a gating condition to a pending 
exception. Exceptions are exclusively either synchronous or asynchronous.

Because asynchronous exceptions may temporally be sampled either before or after an instruction is 
completed, an implementation can order asynchronous exceptions among only asynchronous exceptions 
and can order synchronous exceptions among only synchronous exceptions. The distinction is important 
because certain synchronous exceptions require post-completion actions. These exceptions (for example, 
system call and debug instruction complete) cannot be separated from the completion of the instruction. 
Therefore, asynchronous exceptions cannot be sampled during the completion and post-completion 
synchronous exceptions for a given instruction.

Table 4-41 and Table 4-42 describes the relative priority of each exception type. Exception priority is listed 
from highest to lowest, and the lower the numerical relative priorities shown imply a higher priority. In 
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many cases, it is impossible for certain exceptions (such as the trap and illegal program exceptions) to 
occur at the same time. Such exceptions are grouped together at the same relative priority.

Table 4-41.  Asynchronous exception priorities

Relative
Priority

Exception
Interrupt

Level1

1 The interrupt level defines which set of save/restore registers are used when the interrupt is taken. They are: Base: SRR0/1, 
Critical: CSRR0/1, Debug: DSRR0/1, and Machine Check: MCSRR0/1.

Interrupt
Nature

Pre- or Post-
Completion2

2 Pre- or Post-Completion refers to whether the exception occurs before an instruction completes (pre) and the corresponding 
interrupt points to the instruction causing the exception, or if the instruction completes (post) and the corresponding interrupt 
points to the next instruction to be executed.

Comments

0 Machine Check Machine Check Async N/A Asynchronous exceptions may come from 
the processor or from an external source.

1 Guest Processor 
Doorbell Machine Check

Critical Async N/A —

2 Debug - UDE Debug Async N/A Debug-UDE is often used for an externally 
generated high priority attention signal.

Debug - Interrupt Taken Debug Async N/A Debug interrupt taken after original interrupt 
has changed NIA and MSR.

Debug - Critical Interrupt 
Taken

Debug Async N/A Debug interrupt taken after original critical 
interrupt has changed NIA and MSR.

3 Critical Input Critical Async N/A —

4 Watchdog Critical Async N/A —

5 Processor Doorbell 
Critical

Critical Async N/A —

6 Guest Processor 
Doorbell Critical

Critical Async N/A —

7 External Input Base Async N/A —

14 Program - Delayed 
Floating Point Enabled

Base Async N/A Delayed Floating Point Enabled exceptions 
occur when FPCSR[FEX] = 1 and 
MSR[FE0,FE1] change from 0b00 to a 
non-zero value.

22 Fixed Interval Timer Base Async N/A —

23 Decrementer Base Async N/A —

24 Processor Doorbell Base Async N/A —

25 Guest Processor 
Doorbell

Base Async N/A —

26 Performance Monitor Base Async N/A —
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Table 4-42. Synchronous exception priorities

Relative
Priority Exception

Interrupt
Level1

Interrupt
Nature

Pre or Post
Completion2 Comments

0 Error Report Machine Check Sync Pre —

8 Debug - Instruction 
Address Compare

Debug Sync Pre —

9 ITLB Base Sync Pre —

9.5 ISI Base Sync Pre —

10 LRAT error on 
instruction fetch

Base Sync Pre —

11 Program - Privileged 
Instruction

Base Sync Pre —

Embedded Hypervisor 
Privilege

Base Sync Pre —

12 FP Unavailable Base Sync Pre —

AltiVec Unavailable Base Sync Pre —

13 Debug - Trap Debug Sync Pre —

14 Program - Illegal 
Instruction

Base Sync Pre —

Program - 
Unimplemented 

Operation

Base Sync Pre —

Program - Trap Base Sync Pre —

Program - Floating 
Point Enabled

Base Sync Pre —

15 DTLB Base Sync Pre —

15.5 DSI Base Sync Pre A DSI Virtualization Fault always takes 
priority over all other causes of DSI.

16 Alignment Base Sync Pre —

17 LRAT error on data 
access or tlbwe

Base Sync Pre —

18 System Call Base Sync Post System Call Interrupt has SRR0 pointing 
to instruction after sc (that is, post 
completion).

Embedded Hypervisor 
System Call

Base Sync Post Embedded Hypervisor System Call 
Interrupt has SRR0 pointing to instruction 
after sc (that is, post completion).

AltiVec Assist Base Sync Post —
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19 Debug - Return from 
Interrupt

Debug Sync Pre —

Debug - Return from 
Critical Interrupt

Debug Sync Pre —

Debug - Branch Taken Debug Sync Pre —

20 Debug - Data Address 
Compare

Debug Sync Pre —

21 Debug - Instruction 
Complete

Debug Sync Post Debug - Instruction Complete Interrupt has 
DSRR0 pointing to next instruction (that is, 
post completion).

1 The interrupt level defines which set of save/restore registers are used when the interrupt is taken. They are: Base: SRR0/1, 
Critical: CSRR0/1, Debug: DSRR0/1, and Machine Check: MCSRR0/1.

2 Pre- or Post-Completion refers to whether the exception occurs before an instruction completes (pre) and the corresponding 
interrupt points to the instruction causing the exception, or if the instruction completes (post) and the corresponding interrupt 
points to the next instruction to be executed.

Table 4-42. Synchronous exception priorities

Relative
Priority

Exception
Interrupt

Level1
Interrupt
Nature

Pre or Post
Completion2 Comments
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Chapter 5  
Core Caches and Memory Subsystem
This chapter describes the caches and cache structures that are local to the e6500 core, as well as the 
e6500’s memory subsystem (MSS), which encompasses the L1 caches, the dual Load/Store Units (LSU), 
the Instruction Unit (also called the Fetch Unit), the cluster L2 cache, and the cluster CoreNet interface 
(commonly called a Bus Interface Unit or BIU).

The e6500 core contains separate 32 KB, eight-way set associative level 1 (L1) instruction and data caches 
to provide the execution units and registers rapid access to instructions and data.

The dual LSU, one per thread, manage how data passes between the LSU and the memory resources, both 
with respect to how data is loaded from system memory into the on-chip caches and to how data used by 
those instructions is loaded and stored in the caches and system memory.

The Fetch Unit manages how instructions are passed between the memory resources and the caches and 
into the instruction stream.

Clusters of cores share a 2048 KB, four-bank, 16-way set associative shared L2 cache. In addition, there 
is also support for a platform cache implemented by the integrated device. 

The BIU is the interface from the cluster to the rest of the integrated device utilizing the CoreNet 
architecture for access to memory and devices that support transactions to addresses in real storage space.

NOTE
In this chapter, the term ‘multiprocessor’ is used in the context of 
maintaining cache coherency. These multiprocessor devices could be 
processors or other devices that can access system memory, maintain their 
own caches, and function as bus masters requiring cache coherency.

The terms ‘cache line’ and ‘cache block’ are used interchangeably. In 
particular, cache control instructions include the term ‘cache block’ in their 
names. The size of a cache block is determined by the implementation and, 
on the e6500 core, a cache block or line is 16 words.

5.1 Overview
This section lists features of the dual LSU, the Instruction Unit (also called the Fetch Unit), the L1 cache, 
the cluster shared L2 cache, and cluster CoreNet interface. 

The dual LSU has the following features:

• Dual Load and Store pipelines, one per thread, accessing a shared Level 1 Cache
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• Accesses to system memory are performed (critical data first). For data accesses, the LSU receives 
the critical data as soon as it is available; it does not wait for all 64 bytes. That data is forwarded to 
the requesting unit before being written to the cache, minimizing stalls due to cache fill latency. 

• Store queueing. Stores cannot execute speculatively and remain queued until completion logic 
indicates that the store is to be committed. Stores are deallocated from the queue, regardless of 
whether the cache is updated. If the address is caching-inhibited, the store passes from the queue 
to the cluster BIU and into the memory subsystem.

• L1 load miss queueing. On a load miss, an entry in the load miss queue is allocated and then a bus 
transaction is queued to read the line. Load hits and load misses continue to be processed until there 
are more than eight outstanding load misses and L1 stashes.

• Store gathering. When a caching-allowed store misses in the data cache, the store data is written to 
a cache line–wide store gather buffer. Individual store requests from the store queue are gathered 
if they are to the same cache line and meet the conditions for store gathering. Store gather buffer 
entries are sent to the L2 cache if the store gather buffer entry is complete or if other conditions for 
advancing a store gather buffer entry are met.

• Data reload buffering contains all cache line reloads to the L1 cache. 

The L1 cache implementation has the following features:

• Separate 32 KB instruction and data caches (Harvard architecture)

• Eight-way set-associative, non-blocking caches

• Physically addressed cache directories. The physical (real) address tag is stored in the cache 
directory. 

• Two-cycle access time provides three-cycle read latency for instruction and data caches accesses; 
pipelined accesses provide single-cycle throughput from caches. For details about latency issues, 
see Chapter 10, “Execution Timing.”

• Instruction and data caches have 64-byte cache blocks. A cache block is the block of memory that 
a coherency state describes, also referred to as a cache line.

• Both L1 caches support parity generation and checking (enabled through L1CSR0 and L1CSR1 
bits), as follows:

— Instruction cache: one parity bit per word of instruction, one bit of parity per tag

— Data cache: one parity bit per byte of data, one bit of parity per tag

See Section 5.4.4, “L1 cache parity.”

• Both caches also support parity error injection, which provides a way to test error recovery 
software by intentionally injecting parity errors into the instruction and data caches. See 
Section 5.4.5, “L1 cache parity error injection.”

• The data cache and instruction cache do not contain modified data. See Section 5.5.1, “Data cache 
coherency model.”

• The L1 instruction cache supports automatic error correction by invalidation when an access 
detects an error. The subsequent reporting and taking of a machine check or error report interrupt 
causes the instruction to be refetched after invalidation, thus, correcting the error.
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• The L1 data cache supports automatic error correction by invalidation when an access detects an 
error. The subsequent reporting and taking of a machine check or error report interrupt causes the 
instruction to be re-executed after invalidation, thus, correcting the error.

• Each cache can be independently invalidated through cache flash invalidate (CFI) control bits 
located in L1CSR1 and L1CSR0. See Section 5.6.3, “L1 cache flash invalidation.”

• The L1 data cache uses a First-In-First-Out replacement algorithm. See Section 5.7.2.1, “FIFO 
replacement.”

• The L1 instruction cache uses a Pseudo-Least-Recently-Used (PLRU) replacement algorithm. See 
Section 5.7.2.2, “PLRU replacement.”

• Support for individual line locking with persistent locks. See Section 5.6.4, “Instruction and data 
cache line locking and unlocking.”

• Support for cache stashing to the L1 data cache from other devices in the integrated device

• Both instruction and data cache lines are reloaded in a single-cycle, 64-byte write from a reload 
buffer as described in Section 5.3.1, “Dual Load/Store Unit (LSU).” Cache reloads write all 64 
bytes at once and, therefore, do not occur until all data has been buffered from the CoreNet 
interface.

The cluster shared L2 cache has the following features:

• Dynamic Harvard architecture, merged instruction and data cache.

• 2048 KB array divided into four banks of 512 KB, organized as 512 sixteen-way sets of 64-byte 
cache lines

• 40-bit physical address

• Modified, exclusive, shared, invalid, incoherent, locked, and stale states

• Support for modified, exclusive, and shared intervention from the L2 cache

• Support for cache stashing to the L2 cache from other devices in the integrated device

• 16-way set associativity with Streaming Pseudo Least Recently Used with Aging (SPLRU with 
Aging) replacement. Additional support for Pseudo Least Recently Used (PLRU), Streaming 
Pseudo Least Recently Used (SPLRU), and First-In-First-Out (FIFO) replacement.

• Supports way partitioned cache operation. See Section 5.8.4.5, “L2 cache partitioning.”

• 64-byte (16-word) cache-line, coherency-granule size.

• Support for individual line locking with persistent locks. See Section 5.8.4.4, “L2 cache line 
locking and unlocking.”

• Inclusive for data lines and generally inclusive for instruction lines

• Reloaded whenever the L1 instruction cache makes a request, but L1 instruction cache entries 
remain even if they are evicted from the L2 (there is no back invalidation)

• An instruction fetch does not cause eviction of modified lines if they hit in L2. Both the instruction 
cache and L2 have a copy of the line.

• Pipelined data array access with two-cycle repeat rate

• ECC protection for data, tag and status arrays

• ABIST support
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The cluster BIU is the interface manager to the CoreNet interface and the rest of the system. The cluster 
BIU sends and receives transactions from the CoreNet interface and routes them to the appropriate core 
that requires them.

The cluster BIU is connected to the CoreNet interface, which provides the interprocessor and inter-device 
connection for address-based transactions. CoreNet itself is not described in this document, but has the 
following features:

• The CoreNet interface fabric provides interconnections among the cores, peripheral devices, and 
system memory in a multicore implementation. Along with handling basic storage accesses, it 
manages cache coherency and consistency. CoreNet interfaces run synchronously or 
asynchronously to the processor core frequency. When asynchronous, it allows arbitrary frequency 
ratios between the core the rest of the system. The synchronous or asynchronous nature of the 
CoreNet interface is a function of the design of the integrated device.

• Power Architecture ordering semantics

• Power Architecture coherency support

• Supports intervention (where a cache line is supplied directly from another cache without having 
to first be written to memory)

• Non-retry based protocol

• Supports stashing to core caches from certain devices

5.2 The cache programming model 
This section describes aspects of the cache programming model architecture in the context of the 
implementation of architecture-defined resources implemented on the e6500 core. 

5.2.1 Cache identifiers

Instructions having a cache target (CT) or TH field for specifying a specific cache hierarchy, such as dcbt, 
dcbtst, dcbtls, dcbtstls, dcblc, icbtls, icblc, and icbt, use the values described in Section 3.4.11.1.1, “CT 
field values,” for cache targets.

5.2.2 Cache stashing

Caches may be targets of cache stashing, an operation initiated by a device, specifying a hint that the 
addresses should be prefetched into a target cache specified by a cache identifier set by system software or 
predefined by hardware. For the L1 data cache, the identifier is defined in L1CSR2[DCSTASHID]. For the 
cluster shared L2 cache, the identifier is defined in L2CSR1[L2STASHID]. A cache identifier value of 0 
indicates that the cache does not accept or perform stashing.

Cache identifiers (stash IDs) within the entire system should be set to unique values. That is, cache IDs 
should not be set such that more than one cache in the system has the same ID (other than 0, which disables 
stashing for that cache). Doing so is considered a programming error and may cause a core or the system 
to hang.
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Like a prefetch or “touch” operation, stashing to a cache is a performance hint. The stash operation 
initiated by a device can improve performance if the stashed data is prefetched into the targeted cache prior 
to when the data is accessed. This avoids the latency of bringing the data into the cache at the time it is 
needed by the processor. However, because stash operations are hints, depending on conditions within the 
memory hierarchy and the core, stashes may not always be performed when requested. An integrated 
device that initiates stashing operations to the core can optimize its usage of stashing if it is configured to 
understand the amount of buffering dedicated to incoming stashing operations.

5.3 Core memory subsystem block diagram
The instruction and data caches are integrated with the Dual LSU, the instruction unit, and the eLink 
core/cluster interface is shown in the following table. 

Figure 5-1. Core memory subsystem block diagram

The following sections briefly describe the Dual LSU, the instruction unit, and the core/cluster interface. 

5.3.1 Dual Load/Store Unit (LSU)

The Dual LSU pipelines, one per thread, access a shared Level 1 Cache. Each thread-specific LSU 
executes integer, floating-point, and AltiVec load and store instructions for their respective threads and 
manages transactions between the caches and the register files (GPRs and FPRs). Each thread-specific 
LSU provides the logic required to calculate effective addresses, handles data alignment, and interfaces 
with the BIU. Write operations to the data cache can be performed on a byte, halfword, word, doubleword, 
or quad-word basis. The data cache is provided with a 64-byte interface (the width of a cache block).
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This section provides an overview of how each thread-specific LSU coordinates traffic in their instruction 
pipeline with load and store traffic with memory, ensuring that the core maintains a coherent and consistent 
view of data. See Section 5.5.5, “Load/store operation ordering,” for information on architectural 
coherency implications of load/store operations and the LSU. Section 10.4.4, “Load/store execution,” 
describes other aspects of the LSU and instruction scheduling.

5.3.1.1 Caching-allowed loads and the LSU

When free of data dependencies, cached loads execute in the thread-specific LSU in a speculative manner 
with a maximum throughput of one instruction per cycle and a total 3-cycle latency for integer loads. Data 
returned from the cache on a load is held in a rename buffer until the completion logic commits the value 
to the processor state. Caching-inhibited loads that are not guarded are also executed in a speculative 
manner, but the latency is longer and is based on the latency through the BIU, CoreNet, and the target 
device.

5.3.1.2 L1 Load Miss Queue (LMQ)

On a load miss, the thread-specific LSU allocates an LMQ entry and then queues a  core/cluster interface 
transaction to read the line.

5.3.1.3 Store Queue

Stores cannot execute speculatively and remain in the thread-specific LSU Store Queue, shown in 
Figure 5-1, until completion logic indicates that the store is to be committed. The Store Queue arbitrates 
for access to the L1 data cache. When arbitration is successful, the data cache is written and the store is 
removed from the queue. If a store is caching-inhibited, the operation moves through the Store Queue onto 
the rest of the memory subsystem. Stores do not execute speculatively, but they can be performed out of 
order with respect to other loads and stores if they are not marked as guarded.

5.3.1.4 Store Gather Buffer

The thread-specific LSU Store Gather Buffer gathers individual store requests from the Store Queue into 
a single core/cluster interface request. This gather function is extremely important to improve store 
performance and power consumption of the L1 and L2 cache memory subsystem.

5.3.1.5 Data Reload Data Buffer (DRLDB)

The Data Reload Data Buffer (DRLDB) is a three-entry buffer that holds data used to reload the L1 data 
cache after a load miss. This structure is associated with the L1 data cache and is not replicated per thread.

5.3.2 Instruction Unit

The Instruction Unit (also called the Fetch Unit) interfaces with the L1 instruction cache and the  
core/cluster interface. As with the data caches, instructions that miss in the instruction cache are buffered 
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as they are fetched into the four-entry Instruction Reload Data Buffer (IRLDB). After an entire line is 
available, it is written into the instruction cache. 

5.3.3 Core/Cluster interface

The Core/Cluster interface is the interface between the core and the cluster shared L2.

5.4 L1 cache structure
The L1 instruction and data caches are each organized as 64 sets of eight blocks with 64 bytes in each cache 
line. The following subsections describe the differences in the organization of the instruction and data 
caches.
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5.4.1 L1 data cache organization 

This figure shows the organization of the L1 data cache. 

Figure 5-2. L1 data cache organization
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The data cache has separate tag arrays per thread and a shared data array. The data array is banked by 
doubleword. The data array can be accessed simultaneously by both threads when the threads target 
different doublewords. If both threads target the same doubleword, a winner is determined through 
round-robin arbitration. Note that accesses requiring more than one doubleword, such as AltiVec 
instructions or full cache-line instructions such as dcbzl, create additional thread collision scenarios.

Each tag entry contains an address tag, status information, and lock information. Each data entry contains 
64 bytes of data. Also, although it is not shown in Figure 5-2, the data cache has one parity bit/byte (eight 
parity bits/doubleword) and one parity bit/tag.

Each cache block is loaded from a 16-word boundary (that is, physical addresses bits 34–39 are zero). 
Cache blocks are also aligned on page boundaries. The tags consist of physical address bits PA[0:27]. 
Address translation occurs in parallel with set selection. Physical address bits PA[28:33] provide the index 
to select a cache set. Physical address bits PA[34:36] select the doubleword bank. Physical address bits 
PA[37:39] locate a byte within the selected doubleword.

The data cache can be accessed internally while a fill for a miss is pending (allowing hits under misses) 
and the data from a hit can be used as soon as it is available. The LSU forwards the critical data to any 
pending load misses and allows them to finish. Later, when all the data for the miss has arrived, the entire 
cache line is reloaded. In addition, subsequent misses can also be sent to the memory subsystem before the 
original miss is serviced (allowing misses under misses). 

5.4.2 Write-through cache

The L1 data cache is a write-through cache and does not contain modified data.

If data or tags are corrupted in the L1 cache, the line can be invalidated and repopulated with valid data 
from the rest of the memory hierarchy.

5.4.3 L1 instruction cache organization

This figure shows the organization of the L1 instruction cache. 
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Figure 5-3. L1 instruction cache organization
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5.4.4 L1 cache parity

The L1 caches are protected by parity. Parity information is written into the L1 caches whenever one of 
the following occurs:

• A store instruction (or dcbz, dcbzep, dcbzl, dcbzlep, dcba, or dcbal)
• A reload occurs into the instruction or data cache

L1 cache parity is checked whenever:

• A load instruction hits in the L1 data cache

• An instruction fetch hits in the L1 instruction cache

Also, the e6500 core implements a cache tag parity bit per entry/set. Cache tag parity is checked for all 
cache transactions, including snoops.

L1 cache parity checking is disabled by default and can be enabled by writing 1 to L1CSR0[DCPE] and 
to L1CSR1[ICECE].

If an instruction cache data or tag parity error is detected, the following occurs: 

• The instruction cache is automatically flash invalidated.

• A machine-check interrupt (or an error report machine check interrupt) occurs, as described in 
Section 4.9.3, “Machine check interrupt—IVOR1”.

If a data cache data or tag parity error is detected, the following occurs: 

• The data cache is automatically flash invalidated.

• A machine-check interrupt (or an error report machine check interrupt) occurs, as described in 
Section 4.9.3, “Machine check interrupt—IVOR1”.

5.4.5 L1 cache parity error injection

Cache parity error injection provides a way to test error recovery software by intentionally injecting parity 
errors into the instruction and data caches, as follows:

• If L1CSR1[ICEI] = 1, any instruction cache line fill has all instruction parity bits inverted in the 
instruction cache. The tag parity is not inverted.

• If L1CSR0[CPI] = 1, any data cache line fill has all data and tag parity bits inverted in the data 
cache. Additionally, inverted parity bits are generated for any bytes stored into the data cache by 
store instructions, dcbz, dcbzl, dcba, or dcbal.

NOTE
Parity checking for the L1 instruction cache must be enabled 
(L1CSR1[ICECE] = 1) when L1CSR1[ICEI] = 1. Similarly for the data 
cache, L1CSR0[DCPE] must be set if L1CSR0[DCPI] = 1. L1CSR0[DCPI] 
cannot be set (using mtspr) without setting L1CSR0[DCPE]. 
L1CSR1[ICEI] cannot be set without setting L1CSR1[ICECE].

If a cache parity error is detected, a machine check interrupt occurs. Sources for cache parity errors are 
described in Section 4.9.3, “Machine check interrupt—IVOR1.”
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5.5 L1 cache coherency support and memory access ordering
This section describes the L1 cache coherency and coherency support.

5.5.1 Data cache coherency model

The data cache supports only invalid and valid states.

The core provides full hardware support for cache coherency and ordering instructions and for TLB 
management instructions. 

5.5.2 Instruction cache coherency model

The instruction cache supports only invalid and valid states.

The instruction cache is loaded only as a result of instruction fetching or by an Instruction Cache Block 
Touch and Lock Set (icbtls) instruction. It is not snooped for general coherency with other caches; 
however, it is snooped when the Instruction Cache Block Invalidate (icbi or icbiep) instruction is executed 
by this processor or any other processor in the system. Instruction cache coherency must be maintained by 
software and is supported by a fast hardware flash invalidation capability, as described in Section 5.6.5, 
“L1 data cache flushing.” Also, the flushing requirement of modifying code from the data cache is 
described in EREF.

5.5.3 Snoop signaling

Hardware maintains cache coherency by snooping address transactions on the CoreNet interface. Software 
enables such transactions to be made visible to other masters in the coherence domain by setting the 
coherency-required bit (M) in the TLBs (WIMGE = 0bxx1xx). The M bit state is sent with the address on 
CoreNet transactions. If asserted, the CoreNet interface transaction should be snooped by other bus 
masters.

The instruction cache is not snooped, except in the case of transactions initiated by a icbi, so coherency 
must be maintained by software. 

5.5.4 WIMGE settings and the effect on caches

All instruction and data accesses are performed under control of the WIMGE bits. This section generally 
describes how WIMGE bit settings affect the behavior of the L1 and L2 caches when accesses are marked 
with the “M” bit set (that is, are coherent). The detailed description of all the states and transitions are 
beyond the scope of this manual. For more information about WIMGE bits and their meanings, see EREF.

5.5.4.1 Write-back stores

A write-back store is a store to a memory address that has a WIMGE setting of 0b00xxx.

A write-back store that hits in the L1 data cache updates the line and allocates into the Store Gather Buffer 
to access the shared L2 cache.
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A write-back store that misses in the L1 data cache allocates into the Store Gather Buffer to access the 
shared L2 cache. The L1 data cache is not reloaded.

5.5.4.2 Write-through stores

A write-through store is a store to a memory address that has a WIMGE setting of 0b10xxx.

A write-through store that hits in the L1 data cache updates the line and allocates into the Store Gather 
Buffer to access the shared L2 cache.

A write-through store the misses in the L1 data cache allocates into the Store Gather Buffer to access the 
shared L2 cache. The L1 data cache is not reloaded.

5.5.4.3 Caching-inhibited loads and stores

A caching-inhibited load or store (WIMGE = 0bx1xxx) that hits in the cache presents a cache coherency 
paradox and is normally considered a programming error. If a caching-inhibited load hits in the cache, the 
cache data is ignored and the load is provided from CoreNet as a single-beat read. If a caching-inhibited 
store hits in the cache, the cache may be altered but the store is performed on CoreNet as a single-beat 
write.

If the aliasing of caching and caching-inhibited writes must be performed, software should ensure that all 
cached addresses are flushed with dcbf followed by sync before executing caching-inhibited loads and 
stores using the aliased addresses.

5.5.4.4 Misaligned accesses and the Endian (E) bit

Misaligned accesses that cross page boundaries could corrupt data if one page is big endian and the other is 
little endian. When this situation occurs, the core takes a DSI and sets the byte ordering (BO) bit in the 
Exception Syndrome (ESR) register instead of performing the accesses.

5.5.4.5 Speculative accesses and guarded memory 

If a memory area is marked as execute-permitted (UX/SX = 1), there is no restriction on how the core 
performs instruction fetching from guarded memory. Software should assume that any page that is marked 
as execute-permitted will generate instruction fetches even if software never attempts to execute those 
addresses. This is because the fetch unit can generate fetch addresses based on mispredicted speculative 
paths for which the resulting addresses would be such that they are never actually generated by software. 
Note that to prevent inadvertent instruction fetching from memory, such memory should be marked as 
no-execute (UX/SX = 0). Then, if the effective address of a fetched instruction is in no-execute memory, 
an execute access control exception occurs, preventing the access from occurring to that address.

Speculative data accesses to memory have special consideration, as well. Memory addresses must be 
marked as guarded (G = 1) to prevent speculative load accesses to those addresses. Like speculative 
fetching, the processor can generate any effective memory address as the result of a mispredicted branch 
(including forming addresses on that path from index registers which may hold unknown contents at the 
time). Thus, to avoid inadvertent speculative references that may cause undesired results, memory that is 
not “well behaved” (well-behaved memory can tolerate speculative reads without any side effects) should 
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always be marked as guarded (G = 1) or, if there is no underlying real addresses in the system, should not 
be mapped in the TLB.

The core does not perform speculative stores to guarded memory (or to any memory). However, loads from 
guarded memory may be accessed speculatively if the target location is valid in the data cache.

For more information, see EREF.

5.5.5 Load/store operation ordering

Load and store operations in Power Architecture are considered to be weakly ordered. That is, certain 
memory accesses can be performed in a different order than the sequential processor execution model 
specifies them. While this appears extraordinarily complicated to the programmer, in fact several 
restrictions placed by the architecture, EREF, and the implementation simplify this greatly. In practice, this 
requires that the programmer only be aware of the ordering of memory accesses that are used by another 
core or another device and the other core or device care about the order. In general, this reduces even 
further to the following three scenarios:

• The SMP case:

— Code is running on more than one processor. 

— Data being manipulated is accessed from more than one processor. 

— Software is designed, in general, with some sort of mutual exclusion or locking mechanism, 
regardless of the architecture (because software running on one processor must make several 
updates to data structure atomically).

• The device driver case:

— Code is running that controls a device through memory-mapped addresses. 

— Accesses to these memory-mapped registers usually need to occur in a specific order because 
the accesses have side effects. For example, a store to an address causes the device to perform 
some action and the order these actions are performed must be explicitly controlled in order for 
the device to perform correctly. 

— Addresses are usually marked as caching-inhibited and guarded because the memory is not 
“well behaved.”

• The processor synchronization case:

— Some registers within the processor, such as the MSR, have special synchronization 
requirements associated with them to guarantee when changes that may affect memory 
accesses occur. See Section 3.3.3, “Synchronization requirements,” for the specific registers 
and their synchronization requirements.

— Only system programmers modifying these special registers need be aware of this case. 
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5.5.5.1 Architecture ordering requirements

Power Architecture and EREF require certain memory accesses to be ordered implicitly as follows:

1. All loads and stores appear to execute in-order on the same processor. That is, each memory access 
a processor performs, if that memory location is not stored to by another processor or device, it 
appears to be performed in order to the processor. For example, a processor executes the following 
sequence:

lwz r3,0(r4)
lwz r5,100(r4)

Because there is no way for the processor to distinguish which order these loads occurred in 
(because the memory is “well behaved”), the loads can be performed in any order. Similarly, the 
sequence

stw r3,0(r4)
stw r5,100(r4)

may also be performed out of order because the processor cannot distinguish which order the stores 
are performed in. However, the sequence

stw r3,0(r4)
lwz r5,0(r4)

must be performed in order because the processor can distinguish a difference depending on 
whether the store or the load is performed first. 

In general, this means that the processor performs memory accesses in order between any two 
accesses to overlapping addresses. The core may decide that accesses overlap if they touch the 
same cache line and not merely a common byte.

2. Any load or store that depends on data from a previous load or store must be performed in order. 
For example, a load retrieves the address that is used in a subsequent load:

lwz r3,0(r4)
lwz r5,0(r3)

Because the second load’s address depends on the first load being performed and providing data, 
the processor must ensure that the first load occurs before the second is attempted. In fact, the 
processor must ensure the first load has returned data before even attempting translation.

3. Guarded caching-inhibited stores must be performed in order with respect to other guarded 
caching-inhibited stores. Guarded caching-inhibited loads must also be performed in order with 
respect to other guarded caching-inhibited loads. This generally only applies to writing device 
drivers that control memory-mapped devices with side effects through store operations.

4. A store operation cannot be performed before a previous load operation, regardless of the 
addresses. That is, if a load is followed by a store, then the load is always performed before the 
store. This is an EREF requirement of Freescale processors. It is unlikely, but possible, that other 
Power Architecture cores may not require this.

5.5.5.2 Forcing load and store ordering (memory barriers)

The implicit ordering requirements enforced by the processor handle the vast majority of all the 
programming cases when accessing memory locations from a single core. Normal software should only 
be concerned in ordering when the memory locations being accessed are done so in an SMP environment 
or the memory locations are part of a device’s memory-mapped locations. If these cases occur, then 
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software must place explicit memory barriers to control the order of memory accesses. A memory barrier 
causes ordering between memory accesses that occur before the barrier in the instruction stream and 
memory accesses that occur after the barrier in the instruction stream.

There are five memory barriers that can be used on the e6500 core to order memory accesses, depending 
on the type of memory (the WIMGE attributes) being accessed and the level of performance desired. 
Memory barriers, by definition, can slow down the processor because they prevent the processor from 
performing loads and stores in their most efficient order. The barriers from strongest (that is, enforces the 
most ordering between different types of accesses) to weakest are as follows:

• sync (or sync 0 or msync)—sync creates a barrier such that all memory accesses that occur before 
the sync (regardless of WIMGE attributes) are performed before any accesses after the sync. sync 
also ensures that no other instructions after the sync are initiated until the instructions before the 
sync and the sync itself have performed their operations. sync also has the most negative effect on 
performance. sync can be used regardless of the memory attributes of the access and can be used 
in the place of any of the other barriers. However, it should only be used when performance is not 
an issue or if no other barrier orders the memory accesses.

• mbar (or mbar 0)—mbar creates the same barrier that sync creates; however, it does not restrict 
instructions following mbar from being initiated. It does prevent memory accesses following the 
mbar from being performed until all the memory accesses prior to the mbar have been performed. 
mbar affects performance almost as much as sync does.

• mbar 1—mbar 1 creates a memory barrier that is the same as the eieio instruction from the 
original PowerPC architecture. It creates two different barriers:

— Loads and stores that are both caching-inhibited and guarded (WIMGE = 0b01x1x), as well as 
stores that are write-through required (WIMGE = 0b10xxx). This is useful for the device driver 
case, which would be doing loads and stores to caching-inhibited memory.

— Stores that have the following attributes: not caching-inhibited, not write-through required, and 
memory coherence required (WIMGE = 0b001xx). These are stores to normal cacheable 
coherent memory.

mbar 1 is a better performing memory barrier than sync or mbar.

• lwsync (or sync 1)—lwsync (lightweight sync) creates a barrier for normal cacheable memory 
accesses (WIMGE = 0b001xx). It orders all combinations of the loads and stores except for a store 
followed by a load.

lwsync is a better performing memory barrier than sync, mbar, or mbar 1.

• Elemental memory barriers (sync x,E) create targeted barriers when the storage locations accessed 
by the instructions are neither write-through required nor caching inhibited.

— If E0 = 1, then elemental barrier load with load.

— If E1 = 1, then elemental barrier load with store.

— If E2 = 1, then elemental barrier store with load.

— If E3 = 1, then elemental barrier store with store.

Any combination of these memory barriers can be specified simultaneously by setting the 
appropriate bit in the E field. The memory barrier orders accesses described above to the local 
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caches of the processor. This is the most efficient barrier for normal SMP programming when 
dealing with multiprocessor locks and critical regions.

Another method exists for ordering all caching-inhibited guarded loads and stores. The HID0[CIGLSO] 
bit can be set to force all caching-inhibited guarded loads and stores to be performed in order. This is not 
a barrier, per se, but a system attribute that causes the core to always order these accesses. This is likely to 
perform better than inserting mbar in specific places.

5.5.5.2.1 Simplified memory barrier recommendations

The general simplistic recommendation for adding required barriers is as follows:

• For the device driver case, device drivers that access caching-inhibited memory, ensure that 
memory is also guarded and write HID0[CIGLSO] = 1 at boot time. This should order all such 
caching-inhibited guarded accesses. If there is software that deals with other types of memory 
attributes (or needs to order accesses between cached and caching-inhibited memory), those 
barriers must be inserted into the code at the appropriate places. In general, those barriers are mbar 
0.

• For the SMP case, normally all that needs to be done is to deal with interactions between multiple 
cores. This is generally already isolated into locking routines that acquire multiprocessor locks and 
release multiprocessor locks. In general, all that is required to modify such routines is to:

— Insert a lwsync barrier or appropriate esync barrier after the lock has been acquired, and before 
the first load of any data protected by the lock. This ensures that the load of the protected data 
structure occurs after the load of the lock itself. Note that lbarx, lharx, lwarx, ldarx and 
stbcx., sthcx., stwcx., stdcx. should be used to ensure the lock is properly acquired.

— Insert a lwsync barrier or appropriate esync barrier after the last store to the protected data 
structure and the store that releases the lock. This ensures that the store to the protected data 
structure occurs prior to the store that releases the lock.

Locking software and multiprocessing software may have various other types of mutual exclusion 
and those should be examined with ordering semantics in mind. Power ISA 2.06 Book II Appendix 
B gives programming examples for various types of shared storage accesses.

5.5.5.3 Memory access ordering

The following table displays the Power ISA and EREF memory access ordering requirements based on the 
WIMG attributes and access type. For access where the attributes differ, ordering between these types of 
access generally requires mbar 0 (or sync), except that write-through required and guarded 
caching-inhibited loads or stores may be ordered with mbar 1. In this table, entries suggest the most 
efficient barrier or may suggest more than one. ‘Yes’ means that the given ordering is already guaranteed 
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by the architecture and no barrier is required. Not all possible barriers are listed and sync 0 or mbar 0 will 
enforce all barriers.

5.5.5.4 msgsnd ordering

It may be required to order when messages are sent (which may cause interrupts on other cores) with stores 
performed by the core executing msgsnd. A typical example of this is when a processor stores a value in 
memory and then sends a message to another core to cause an interrupt telling the receiving core that there 
is work for it do, which is represented by the stores performed by the sending processor. In this case, a sync 
0 should be placed between the stores and the msgsnd. This will guarantee that the store is performed 
before the message is sent.

In all respects of memory ordering and barriers, msgsnd is ordered as if it is a caching inhibited store.

5.5.5.5 Atomic memory references

The e6500 core implements lbarx, lharx, lwarx, ldarx and stbcx., sthcx., stwcx., stdcx. as described in 
EREF. 

The e6500 core takes a data storage interrupt if the location is write-through required but does not take the 
interrupt if the location is caching inhibited (that is, if caching-inhibited reservations are permitted). 
Software should avoid using reservations on storage that is caching inhibited because future cores may not 
support this.

If the EA is not naturally aligned for any load and reserve or store conditional instruction, an alignment 
interrupt is invoked.

As specified in the architecture, the core requires that, for a store conditional instruction to succeed, its real 
address must be to the same reservation granule as the real address of a preceding load and reserve 
instruction that established the reservation. The e6500 core makes reservations on behalf of aligned 
64-byte blocks of the memory address space. 

If the reservation is canceled for any reason (or the reservation does not match the real address specified 
by the store conditional instruction), then the store conditional instruction fails and clears CR0[EQ]. 

The reservation may be invalidated by several events. Those events are described in Section 3.4.10, 
“Reservations.”

Table 5-1. Architectural memory access ordering

Memory Access Attributes WIMGE
Store-Store 

Ordered
Load-Load 

Ordered
Store-Load 

Ordered
Load-Store 

Ordered

Caching-inhibited and guarded 0b01x1x Yes Yes HID0[CIGLSO]

mbar 1
Yes

Caching-inhibited and non-guarded 0b01x0x mbar 0 mbar 0 mbar 0 Yes

Cacheable write-through 0b10xxx mbar 1 mbar 0 mbar 0 Yes

Cacheable write-back 0b00xxx lwsync
sync x,E=xxx1

lwsync
sync x,E=1xxx

mbar 0
sync x,E=xx1x

Yes
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5.6 L1 cache control
This section describes how the cache control instructions and L1CSRn bits are used to control the L1 
cache.

5.6.1 Cache control instructions

The e6500 core implements the cache control instructions as described in Section 3.4.11.1, “User-level 
cache instructions,” and Section 3.4.12.4.1, “Supervisor-level cache instruction.” Note that on the e6500 
core, Data Cache Block Store (dcbst) is mapped to dcbf, dcbstep is mapped to dcbfep, and Instruction 
Cache Touch (icbt) when CT = 0 is treated as a no-op. 

If the EA cannot be translated, all cache control instructions generate TLB miss exceptions, except dcba, 
dcbal, dcbt, dcbtep, icbt, dcbtst, and dcbtstep, which are treated as no-ops and do not cause DAC debug 
exceptions. 

If a dcbt, dcbtep, dcbtst, or dcbtstep instruction accesses a page marked caching-inhibited, it is treated 
as a no-op.

5.6.2 Enabling and disabling the L1 caches

The instruction and data caches are enabled and disabled using the cache enable bits, L1CSR0[CE] and 
L1CSR1[ICE], respectively. Disabling a cache does not cause all memory accesses to be performed as 
caching-inhibited. When caching-inhibited accesses are desired, the pages must be marked as 
caching-inhibited in the MMU pages.

When either the instruction or data cache is disabled, the cache tag state bits are ignored and the 
corresponding cache is not accessed. Caches are disabled at start-up (L1CSR0[CE] = 0 and 
L1CSR1[ICE] = 0). 

Disabling the data cache has the following effects:

• Touch instructions (dcbt, dcbtst, dcbtls, dcbtstls, dcblc, dcblq., icbt, icbtls, icblc, and icblq.) 
targeting a disabled cache do not affect the cache.

• A dcbz, dcbzl, dcba, or dcbal instruction to a disabled data cache zeros the cache line in memory, 
but does not affect the cache when it is disabled.

• Cache lines are not snooped. Before the data cache is disabled, it must be invalidated to prevent 
coherency problems when it is enabled again. 

• Data accesses bypass the data cache and are forwarded to the memory subsystem as 
caching-allowed. Returned data is forwarded to the requesting execution unit but is not loaded into 
the data cache.

• Other cache management instructions do not affect the disabled cache. 

When the instruction cache is disabled (L1CSR1[ICE] = 0), instruction accesses bypass the instruction 
cache. These accesses are forwarded to the memory subsystem as caching-allowed. When the instructions 
are returned, they are forwarded to the instruction unit but are not loaded into the instruction cache.

When an L1 cache is enabled, software must first properly flash invalidate it to prevent stale data (in the 
case where it has been disabled for some period of time during operation) or unknown state (in the case of 
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power-on reset). Software should perform the invalidation by setting the flash invalidation bit (CFI or 
ICFI) in the appropriate L1 cache control and status register, and then continue to read CFI (or ICFI) until 
the bit is cleared. Software should then perform an isync to ensure that instructions that may have been 
prefetched prior to the cache invalidation are discarded. The setting of L1CSR0[CE] or L1CSR1[ICE] 
must be preceded by a sync and isync instruction to prevent a cache from being disabled or enabled in the 
middle of a data or instruction access. See Section 3.3.3, “Synchronization requirements,” for more 
information on synchronization requirements.

Note that enabling either L1 cache without first enabling the L2 cache is not supported.

5.6.3 L1 cache flash invalidation

The data cache can be invalidated by executing a series of dcbi instructions, or it can be flash invalidated 
by setting L1CSR0[CFI].

The instruction cache can be invalidated by setting L1CSR1[ICFI]. The L1 caches can be flash invalidated 
independently. The setting of L1CSR0[CFI] and L1CSR1[ICFI] must be preceded by an msync and isync, 
respectively.

The instruction cache is automatically flash invalidated if any parity error (tag or data) occurs.

Software must set the CFI bits if invalidation is desired after a warm reset. This causes a flash invalidation, 
after which the CFI bits are cleared automatically (CFI bits are not sticky). Flash invalidate operations are 
local only to the core that performs them, and other core’s L1 caches are not affected. Software should 
always poll the CFI bits after setting them to determine when the invalidation is completed and then 
perform an isync.

Individual instruction or data cache blocks can be invalidated by using icbi and dcbi. Also note that, with 
dcbi, the e6500 core invalidates the cache block without pushing it out to memory. See Section 3.4.12.4.1, 
“Supervisor-level cache instruction.” Because the instruction and data caches support persistent locks, 
invalidating the caches does not reset lock bits.

Exceptions and other events that can access the L1 cache should be disabled during this time so that the 
replacement algorithm can function undisturbed.

5.6.4 Instruction and data cache line locking and unlocking

User-mode instructions perform cache line locking and unlocking based on the complete address of the 
cache line. dcbtls, dcbtstls, and dcblc are used for data cache locking and unlocking, and icbtls and icblc 
are used for instruction cache locking and unlocking. In addition, the e6500 also provides dcblq. and icblq. 
to query the lock status. For descriptions, see Section 3.4.11.2, “Cache locking instructions.”

The CT operand is used to indicate the cache target of the cache line locking instruction. See 
Section 3.4.11.1.1, “CT field values.”

Lock instructions (including icbtls and icblc) are treated as loads when translated by the data TLB, and 
they cause exceptions when data TLB errors or data storage interrupts occur.

The user-mode cache lock enable bit, MSR[UCLE], is used to restrict user-mode cache line locking by the 
operating system. If MSR[UCLE] = 0, any cache lock instruction executed in user mode (MSR[PR] = 1) 
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causes a cache-locking DSI exception and sets either ESR[DLK] or ESR[ILK]. This allows the OS to 
manage and track the locking and unlocking of cache lines by user-mode tasks. If MSR[UCLE] is set, the 
cache-locking instructions can be executed in user mode and do not cause a DSI for cache locking. 
However, they may still cause a DSI for access violations.

This table shows how cache locking operations are affected by MSR[GS,PR,UCLE] and MSRP[UCLEP], 
which determine whether the core is operating in hypervisor, guest-supervisor, or user (problem-state) 
mode. 

If all of the ways are locked in a cache set, an attempt to lock another line in that set results in an 
overlocking situation. The new line is not placed in the cache, and either the data cache overlock bit 
(L1CSR0[CLO]) or instruction cache overlock bit (L1CSR1[ICLO]) is set. This does not cause an 
exception condition. See Section 3.4.11.2, “Cache locking instructions” for a description of what 
conditions set these bits.

It is acceptable to lock all ways of a cache set. A non-locking reload for data to a new address in a 
completely locked cache set is dropped and not put into the cache.

The cache-locking DSI handler must decide whether to lock a given cache line based on available cache 
resources.

5.6.4.1 Effects of other cache instructions on locked lines

Other cache management instructions have no effect on the locked state of lines unless an instruction 
causes an invalidate operation on a line. If a dcbi, icbi, icbiep, dcbf, dcbfep, dcbst, or dcbstep targets a 
locked line, the line is invalidated but the lock is persistent.

5.6.4.2 Flash clearing of lock bits

The core allows flash clearing of the instruction and data cache lock bits under software control. Each 
cache’s lock bits can be independently flash cleared through the CLFC control bits in L1CSR0 and 
L1CSR1.

Lock bits in both caches are cleared automatically upon power-up. A subsequent reset operation does not 
clear the lock bits automatically. Software must use the CLFC controls if flash clearing of the lock bits is 
desired after a warm reset. Setting CLFC bits causes a flash lock clear performed in a single CPU cycle, 
after which the CLFC bits are automatically cleared (CLFC bits are not sticky).

Table 5-2. Cache locking based on MSR[GS,PR,UCLE] and MSRP[UCLEP]

MSR[GS] MSR[PR] MSR[UCLE] MSRP[UCLEP] Result

0 0 x x Execute

x 1 0 x DSI, ESR[DLK or ILK] set

x 1 1 x Execute

x 0 x 0 Execute

1 0 x 1 Embedded hypervisor privilege
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5.6.5 L1 data cache flushing

Because the L1 Data Cache contains no modified data, no flush routine is required.

5.7 L1 cache operation
This section describes operations performed by the L1 instruction and data caches.

5.7.1 Cache miss and reload operations

This section describes the actions taken by the L1 caches on misses for caching-allowed accesses. It also 
describes what happens on cache misses for caching-inhibited accesses, as well as disabled and locked L1 
cache conditions.

5.7.1.1 Data cache reloads

The core data cache blocks are reloaded from an L2 cache or the memory subsystem when data load misses 
occur for caching-allowed accesses, as described in Section 5.3.1, “Dual Load/Store Unit (LSU).”

When the data cache is disabled (L1CSR0[CE] = 0), data accesses bypass the data cache and are forwarded 
to the memory subsystem as caching-allowed. Returned data is forwarded to the requesting execution unit 
but is not loaded into the data cache. See Section 5.6.2, “Enabling and disabling the L1 caches.”

Each of the eight ways of each set in the data cache can be locked by locking all of the cache lines in the 
way with the dcbtls or dcbtstls instruction. When at least one way is unlocked, misses are treated normally 
and are allocated to one of the unlocked ways on a reload. If all eight ways are locked, store/load misses 
proceed to the memory subsystem as normal caching-allowed accesses. In this case, the data is forwarded 
to the requesting execution unit when it returns, but it is not loaded into the data cache.

Note that caching-inhibited stores should not access any of the caches. See Section 5.5.4.3, 
“Caching-inhibited loads and stores,” for more information. 

5.7.1.2 Instruction cache reloads

On an L1 instruction cache hit, up to four instructions can be made available to the instruction unit in a 
single clock cycle. On a miss, the cache line is loaded in one 64-byte beat; the instruction cache is 
non-blocking, providing for hits under misses. 

The instruction cache operates similarly to the data cache when all eight ways of a set are locked. When 
the instruction cache is disabled (L1CSR1[ICE] = 0), instruction accesses bypass the instruction cache and 
are forwarded to the memory subsystem as caching-allowed. When the line is returned, up to four 
instructions are forwarded to the instruction unit in a single clock cycle, but the line is not loaded into the 
instruction cache.

For caching-inhibited fetches, a full cache line of data is fetched from the memory subsystem. When the 
line is returned, up to four instructions are forwarded to the instruction unit in a single clock cycle, but the 
line is not loaded into the instruction cache.
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5.7.1.3 Cache allocation on misses

If there is a data cache miss for a caching-allowed load and the line is not already going to be allocated 
into the data cache as a result of a previous load miss, the data load miss causes a new line to be allocated 
into the data cache on a First-In-First-Out (FIFO) basis, provided the cache is not completely locked or 
disabled. Store misses in the data cache do not cause an allocation. Also, cache operations such as dcbi 
and dcbf that miss in the cache do not cause an allocation.

Instruction cache misses cause a new line to be allocated into the instruction cache on a 
Pseudo-Least-Recently-Used (PLRU) basis, provided the cache is not completely locked or disabled.

5.7.2 L1 cache block replacement 

When a new block needs to be placed in the data cache, the FIFO replacement algorithm is used. Data 
cache replacement selection is performed at reload time and not when the data load miss occurs. Because 
the L1 data cache contains no modified data, no castout activities are performed.

When a new block needs to be placed in the instruction cache, the PLRU replacement algorithm is used. 
Instruction cache replacement selection is performed at reload time and not when an instruction cache miss 
is first recognized.

5.7.2.1 FIFO replacement

FIFO replacement is performed using a binary decision tree. FIFO replacement is implemented by only 
updating the tree when a new coherency granule is allocated.

Because the cache supports persistent locking, it does not replace locked lines. Lock bits are used at reload 
time to steer the decision tree away from selecting locked cache lines.

5.7.2.2 PLRU replacement

PLRU replacement is performed using a binary decision tree. There is an identifying bit for each cache 
way, L[0–7]. There are seven PLRU bits, B[0–6], for each set in the cache to determine the line to be cast 
out (the replacement victim). The PLRU bits are updated when a new line is allocated or replaced and when 
there is a hit in the set. 
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This algorithm prioritizes the replacement of invalid entries over valid ones starting with way 0. Otherwise, 
if all ways are valid, one is selected for replacement according to the PLRU bit encodings shown in the 
following table.

Table 5-3. L1 PLRU replacement way selection

PLRU Bits Way Selected for Replacement

B0 0 B1 0 B3 0 L0

0 0 1 L1

0 1 B4 0 L2

0 1 1 L3

1 B2 0 B5 0 L4

1 0 1 L5

1 1 B6 0 L6

1 1 1 L7
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This figure shows the decision tree used to generate the victim line in the PLRU algorithm.

Figure 5-4. PLRU replacement algorithm

During power-up or hard reset, the valid bits of the L1 caches are automatically cleared to point to way L0 
of each set.

5.7.2.3 PLRU bit updates

Except for snoop accesses, each time a cache block is accessed, it is tagged as the most-recently-used way 
of the set. For every hit in the cache or when a new block is reloaded, the PLRU bits for the set are updated 
using the rules specified in the following table.

Note that only three PLRU bits are updated for any access. 

Because the cache supports persistent locking, it does not replace locked lines. Lock bits are used at reload 
time to steer the decision tree away from selecting locked cache lines.

Table 5-4. PLRU bit update rules

Current Access
New State of the PLRU Bits

B0 B1 B2 B3 B4 B5 B6

L0 1 1 No change 1 No change No change No change

L1 1 1 No change 0 No change No change No change

L2 1 0 No change No change 1 No change No change

L3 1 0 No change No change 0 No change No change

L4 0 No change 1 No change No change 1 No change

L5 0 No change 1 No change No change 0 No change

L6 0 No change 0 No change No change No change 1

L7 0 No change 0 No change No change No change 0

Replace
L0

Replace
L1

Replace
L2

Replace
L3

Replace
L4

Replace
L5

Replace
L6

Replace
L7

B0 = 0

B4 = 0

B1 = 0 B1 = 1 B2 = 1B2 = 0

B0 = 1

B3 = 0 B3 = 1 B4 = 1 B5 = 0 B5 = 1 B6 = 0 B6 = 1
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5.8 Cluster shared L2 cache
The cluster shared L2 cache has the following features:

• Dynamic Harvard architecture, merged instruction, and data cache

• 2048 KB array divided into four banks of 512 KB, organized as 512 sixteen-way sets of 64-byte 
cache lines

• 40-bit physical address

• Modified, exclusive, shared, invalid, incoherent, locked, and stale states

• Support for modified, exclusive, and shared intervention from the L2 cache

• Support for cache stashing to the L2 cache from other devices in the integrated device

• 16-way set associativity with Streaming Pseudo Least Recently Used with Aging (SPLRU with 
Aging) replacement. Additional support for Pseudo Least Recently Used (PLRU), Streaming 
Pseudo Least Recently Used (SPLRU), and First-In-First-Out (FIFO) replacement.

• Supports way partitioned cache operation. See Section 5.8.4.5, “L2 cache partitioning.”

• 64-byte (16-word) cache-line, coherency-granule size.

• Support for individual line locking with persistent locks. See Section 5.8.4.4, “L2 cache line 
locking and unlocking.”

• Inclusive for data lines and generally inclusive for instruction lines

• Reloaded whenever the L1 instruction cache makes a request, but L1 instruction cache entries 
remain even if they are evicted from the L2 (there is no back invalidation)

• An instruction fetch does not cause eviction of modified lines if they hit in L2. Both the instruction 
cache and L2 have a copy of the line.

• Pipelined data array access with two-cycle repeat rate

• ECC protection for data, tag and status arrays

• ABIST support
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5.8.1 Cluster memory subsystem block diagram

This figure shows the cluster memory subsystem. 

Figure 5-5. Cluster memory subsystem block diagram

5.8.1.1 Core/Cluster interface

The Core/Cluster interface is the interface between the core and the cluster shared L2 cache. There is one 
Core/Cluster interface block per core in the cluster.

The block arbitrates between instruction and data requests, forwards back invalidate requests to the core, 
forwards critical data to the core, and forwards reload data to the core Instruction Reload Data Buffer 
(IRLDB) and Data Reload Data Buffer (DRLDB).

5.8.1.2 L2 cache

The L2 cache is a shared L2 cache that supports the cores in the cluster. It it fully coherent with the system. 
The L2 cache is broken into 4 banks to support simultaneous access from all cores in the cluster, provided 
those accesses are to different banks.

The block arbitrates among core accesses to the L2 and provides back invalidate and reload queuing.
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5.8.1.3 CoreNet Bus Interface Unit (BIU)

The CoreNet BIU handles all ordering and bus protocol and is the interface between the cluster and the 
external memory and caches. The CoreNet BIU also handles all snoop transactions for the cluster.

5.8.2 L2 cache structure

The L2 cache is divided into 4 identical 512 KB banks.

This figure shows the organization of a single bank of the L2 cache. 

Figure 5-6. L2 cache bank organization

Each block (line) consists of 64 bytes of data, an address tag, and status bits. Also, although it is not shown 
in the previous figure, the cache has 8 ECC bits/doubleword and 7 ECC bits/tag.

Each cache block contains 16 contiguous words from memory that are loaded from a 16-word boundary 
(that is, physical addresses bits 34–39 are zero). In Decode Bank Hash Mode, physical address bits 
PA[23:31] provide the index to select a cache set and physical address bits PA[32:33] select the cache bank. 
In XOR Bank Hash mode, physical address bits PA[25:33] provide the index to select a cache set and an 
XOR of physical address bits PA[18:33] select the cache bank. Lower address bits PA[34:39] locate a byte 
within the selected block in both bank hash modes.

Way 5

Way 6

Way 7

Way 4

Way 1

Way 2

Way 3

Way 0

16 Words/Block (Line)

Way 13

Way 14

Way 15

Way 12

Way 9

Way 10

Way 11

Way 8

512 Sets

Words [0–15]

Words [0–15]

Words [0–15]

Words [0–15]

Words [0–15]

Words [0–15]

Words [0–15]

Words [0–15]

Words [0–15]

Words [0–15]

Words [0–15]

Words [0–15]

Words [0–15]

Words [0–15]

Words [0–15]

Words [0–15]

Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Address Tag 8

Address Tag 9

Address Tag 10

Address Tag 11

Address Tag 12

Address Tag 13

Address Tag 14

Address Tag 15

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status

512 Sets



Core Caches and Memory Subsystem

e6500 Core Reference Manual, Rev 0

Freescale Semiconductor 5-29
 

5.8.3 L2 cache coherency support and memory access ordering

This section describes the L2 cache coherency and coherency support.

5.8.3.1 L2 cache coherency model

The L2 cache supports a Modified/Exclusive/Shared/Invalid (MESI ) based cache coherency protocol for 
each cache line.

The MESI based protocol supports efficient and frequent sharing of data between masters.

Each 64-byte data cache block contains status that defines the coherency state of the cache line. The 
CoreNet interface uses this status to support coherency protocols and to direct coherency operations. 

This table describes general MESI cache states.

The cluster provides full hardware support for cache coherency and ordering instructions. 

The cluster broadcasts cache management instructions (dcbst, dcbstep, dcbf, dcbi (M = 1), mbar, sync 
0, tlbsync, icbi, icbiep) and cache touch or locking instructions with CT = 1.

5.8.3.2 Snoop signaling

Hardware maintains cache coherency by snooping address transactions on the CoreNet interface. Software 
enables such transactions to be made visible to other masters in the coherence domain by setting the 
coherency-required bit (M) in the TLBs (WIMGE = 0bxx1xx). The M bit state is sent with the address on 
CoreNet transactions. If asserted, the CoreNet interface transaction should be snooped by other bus 
masters.

5.8.3.3 Dynamic Harvard implementation

The L2 cache is implemented as a unified cache. That is, entries in the cache can be either instructions that 
were fetched or data resulting from load/store operations. The L2 cache treats lines that are fetched as 
instructions as incoherent in a manner similar to the way that the line would be treated if the L2 cache had 
separate instruction and data caches (as, for example, the L1 caches are). Instead of providing separate 
structures for instruction and data, the fetched instructions are marked with a status bit (N) to denote that 

Table 5-5. Cache line state definitions

Name Description

Modified (M) The line in the cache is modified with respect to main memory. It does not reside in any other coherent cache.

Exclusive (E) The line is in the cache, and this cache has exclusive ownership of it. It is in no other coherent cache and it is 
the same as main memory. This processor may subsequently modify this line without notifying other bus 
masters.

Shared (S) The addressed line is in the cache, it may be in another coherent cache, and it is the same as main memory. 
It cannot be modified by any processor.

Invalid (I) The cache location does not contain valid data.
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the line was loaded incoherently. Once N is set, L2 data-side transactions do not hit to it, and when a fetch 
establishes an instruction line in the L2 cache, that fetch access is performed non-global and is not snooped 
by other processors. This L2 cache implementation is called “dynamic Harvard” because it has the 
properties of a harvard cache in that the behaviors of the instruction side and the data side differ, but also 
has the properties that the instruction side and the data side both allocate out of the same pool of available 
lines (that is, the cache is physically unified).

This dynamic Harvard implementation allows fetches to be treated as non-global and reduces the overall 
snoop overhead that otherwise might be required by the system, while still allowing instructions and data 
lines to allocate from the same pool of available lines in the L2 cache. This means that the amount of lines 
in use by instructions or data varies according to how the processor is executing.

When N is set for any line and fetch for that line is sent to CoreNet and marked as non global, a data 
transaction does not hit to that line. Any data transaction that targets a line with the N bit set is sent out to 
CoreNet to acquire coherent data. When the data line is received by the L2 cache, if a line with the same 
tag exists that is valid and has the N bit set, the line is replaced in the L2 cache by the data line and the N 
bit status is cleared.

To implement dynamic Harvard, the L2 cache snoops icbi operations that are performed, regardless of the 
core that performs them. icbi operations do not hit to lines that are marked as coherent (N is not set) 
because the operation affects only the instruction cache. Similarly, snoops for data operations from data 
cache block operations or from stores do not hit to lines that are marked as incoherent (N is set) because 
the operation affects only the data cache.

Software must deal with the incoherence of instruction lines in the L2 cache in the same manner that it 
does with the Harvard L1 instruction cache. To perform instruction modification, data must first be pushed 
from the L2 cache. When that operation is complete, the instruction side must be invalidated using icbi. 
Power architecture already requires software to perform this operation, so no additional software is 
required. If software had previously depended on the flash invalidation of the L1 instruction cache to clear 
any cache fetched instructions, this method does not work when the L2 cache is enabled and caching 
instruction fetches. For this reason, software is strongly encouraged to performed the architectural method 
of modifying instructions using dcbf and icbi.

5.8.4 L2 cache control

This section describes how cache control instructions, L2CSRn bits, and partitioning bits are used to 
control the L2 cache.

5.8.4.1 Cache control instructions

The e6500 core implements the cache control instructions as described in Section 3.4.11.1, “User-level 
cache instructions,” and Section 3.4.12.4.1, “Supervisor-level cache instruction.” The L2 cache is 
identified as CT = 2.
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5.8.4.2 Enabling and disabling the L2 cache

The L2 cache is enabled and disabled with the cache enable bit, L2CSR0[L2E]. Disabling the L2 cache 
does not cause all memory accesses to be performed as caching-inhibited. When caching-inhibited 
accesses are desired, the pages must be marked as caching-inhibited in the MMU pages.

When the L2 cache is disabled, the cache tag state bits are ignored and the cache is not accessed. The L2 
cache is disabled at start-up (L2CSR0[L2E] = 0).

Disabling the data cache has the following effects:

• Touch instructions (dcbt, dcbtst, dcblc, dcbtls, dcbtstls, dcblc, dcblq., icblc, icbtls, and icblq.) 
targeting a disabled cache do not affect the cache.

• A dcbz, dcbzl, dcba, or dcbal instruction to a disabled cache zeros the cache line in memory but 
does not affect the cache when it is disabled.

• Cache lines are not snooped. Before the L2 cache is disabled, it must be flushed and invalidated to 
prevent coherency problems when it is enabled again. 

• Accesses bypass the L2 cache and are forwarded to the CoreNet interface as caching-allowed. 
Returned data is forwarded to the requesting core.

• Other cache management instructions do not affect the disabled cache. 

When an L2 cache is enabled, software must first properly flash invalidate it to prevent stale data (in the 
case where it has been disabled for some period of time during operation) or unknown state (in the case of 
power on reset). Software should perform a flash invalidation by setting L2CSR0[L2FI], and then continue 
to read L2FI until the bit is cleared. Software should then perform an isync to ensure that instructions that 
may have been prefetched prior to the cache invalidation are discarded. The setting of L2CSR0[L2E] must 
be preceded by a sync and isync instruction to prevent a cache from being disabled or enabled in the middle 
of a data or instruction access. See Section 3.3.3, “Synchronization requirements,” for more information 
on synchronization requirements.

Note that enabling either L1 cache without first enabling the L2 cache is not supported.

5.8.4.3 L2 cache flash invalidation

The L2 cache can be flash invalidated by setting L2CSR0[L2FI]. Note that this operation takes many 
cycles.

Software must set the L2FI bit if invalidation is desired after a reset. This causes a flash invalidation, after 
which the L2FI bit is cleared automatically (L2FI bit is not sticky). A flash invalidate operation is local 
only to the cluster that performs it, and other cluster’s L2 caches are not affected. Software should always 
poll the L2FI bit after setting it to determine when the invalidation has been completed and then perform 
an isync.

Note that if L2CSR0[L2FI] and L2CSR0[L2LFC] are set simultaneously with the same register write 
operation, then the L2 flash invalidate function and the L2 lock flash clear function are performed in 
parallel. In this case, hardware will clear both the valid and lock bits for each coherency granule, as well 
as all the tag and PLRU bits, with a single pass through all indices of the cache.
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5.8.4.4 L2 cache line locking and unlocking

The L2 supports persistent locking. If a coherency granule is invalidated in any way while locked, the lock 
bit remains set and the line in the cache remains un-allocatable by other coherency granules. If the same 
address accesses the cache with an allocatable request, the request misses but allocates to the same line in 
the cache to which it was previously allocated.

Lines are locked in the L2 cache by software using a series of “touch and lock set” instructions. The 
following instructions can lock a line in the L2 cache:

• Data Cache Block Touch and Lock Set—dcbtls (CT = 2)

• Data Cache Block Touch for Store and Lock Set—dcbtstls (CT = 2) 

• Instruction Cache Block Touch and Lock Set—icbtls (CT = 2)

Similarly, lines are unlocked from the L2 cache by software using a series of “lock clear” instructions. The 
following instructions are used to clear the lock in the L2 cache.

• Data Cache Block Lock Clear—dcblc (CT = 2) 

• Instruction Cache Block Lock Clear—icblc (CT = 2) 

There is no distinction between icblc and dcblc in the L2 as both clear the lock on a line, regardless of 
whether the lock was previously established as an instruction-side or data-side lock.

Software can clear all the locks in the L2 cache by setting L2CSR0[L2LFC], as described in Section 2.12, 
“L2 cache registers.” Note that this operation takes many cycles.

5.8.4.5 L2 cache partitioning

The L2 cache supports a flexible allocation and partitioning policy. Each transaction that misses in the 
cache looks in a table to determine whether or not to allocate and which ways are available for allocation. 
Table entries are matched by comparing Partition IDs. Allocation is then controlled dependent on 
transaction type and WIMG attributes, as well as stashing control signals.

Each entry in the table is composed of a set of three registers: L2PIRn/L2PARn/L2PWRn.

L2PIR contains a bit for each possible Partition ID value. A 1 indicates that the Partition ID must follow 
the allocation rules as defined by the L2PAR/L2PWR registers.

L2PAR controls allocation of the following individual allocation types:

• Instruction read

• Data read

• Store

• Stash

L2PWR controls which ways are allocatable for the given set of allocation rules. All bits of the 
L2PIR/L2PAR/L2PWR registers default to 1 at reset so that all Partition IDs and transaction types are 
allocatable to all ways. For more information on how to partition the ways of the L2 cache, see 
Section 2.12.4, “L2 cache partitioning registers.”
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5.8.4.6 L2 cache flushing

The L2 cache can be flushed of modified data by setting L2CSR0[L2FL]. The L2 cache must be enabled 
for the flush operation to take effect. Note that this operation takes many cycles.

To flush the L2 cache and ensure that no valid entries exist after the flush, the following instruction 
sequence should be used:

• Clear all bits of L2PAR or L2PARn to prevent future operations from allocating in the L2 cache.

• Write 1 to L2CSR0[L2FL].

• Wait for L2CSR0[L2FL] to be cleared by hardware.

5.8.5 L2 cache operation

5.8.5.1 L2 cache block replacement

If a transaction must allocate in the L2 cache, it must select a location in the cache and determine whether 
or not an existing coherency granule needs to be cast out before the new coherency granule can be 
established in its place. Victim selection involves decoding a PLRU binary tree and the current state of the 
lock bits and involves partitioning information to select an available location in the cache.

If all ways of the cache are already locked, then an overflow condition occurs and the L2CSR0[L2LO] bit 
is set. If the L2CSR0[L2LOA] = 1, the allocating transaction replaces one of the current locked lines. If 
the L2CSR0[L2LOA] = 0, the allocating transaction is not allowed to allocate.

The L2CSR0[L2_REP] field determines the L2 replacement policy, as described in the following table.

5.8.5.1.1 PLRU replacement

PLRU replacement is performed using a binary decision tree. There is an identifying bit for each cache 
way, L[0–15]. There are fifteen PLRU bits, B[0–14], for each set in the cache to determine the line to be 
cast out (the replacement victim). The PLRU bits are updated when a new line is allocated or replaced and 
when there is a hit in the set. 

Table 5-6. L2 replacement policy

L2CSR0[L2_REP] Mode Description

00 SPLRU with Aging Streaming-Pseudo-Least-Recently-Used with Aging (default)

01 FIFO First-In-First-Out

10 SPLRU Streaming-Pseudo-Least-Recently-Used

11 PLRU Pseudo-Least-Recently-Used
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This algorithm prioritizes the replacement of invalid entries over valid ones starting with way 0. Otherwise, 
if all ways are valid, one is selected for replacement according to the PLRU bit encodings shown in the 
following table.

5.8.5.1.2 SPLRU and SPLRU with Aging replacement

SPLRU and SPLRU with Aging replacement can be used to help detect streaming data that is transient and 
should not remain in the cache.

5.8.5.1.3 FIFO replacement

FIFO replacement is performed using a binary decision tree. FIFO replacement is implemented by only 
updating the tree when a new coherency granule is allocated.

5.8.5.2 Special scenarios for L2 cache

This section describes special scenarios of operations in the L2 cache. 

Table 5-7. L2 PLRU replacement way selection

PLRU Bits Way Selected for Replacement

B0 0 B1 0 B3 0 B7 0 L0

0 0 0 1 L1

0 0 1 B8 0 L2

0 0 1 1 L3

0 1 B4 0 B9 0 L4

0 1 0 1 L5

0 1 1 B10 0 L6

0 1 1 1 L7

1 B2 0 B5 0 B11 0 L8

1 0 0 1 L9

1 0 1 B12 0 L10

1 0 1 1 L11

1 1 B6 0 B13 0 L12

1 1 0 1 L13

1 1 1 B14 0 L14

1 1 1 1 L15
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5.8.5.2.1 Instruction Cache Block Invalidate (icbi)

icbi operations are snooped from the CoreNet interface. If an icbi snoop hits, the line is invalidated if it is 
marked as non-coherent. No special actions are performed for icbi executed on the local processor as those 
operations will also be snooped when the icbi is sent out on the CoreNet interface.

5.8.6 L2 cache errors

The L2 data is protected by 8 bits of ECC per doubleword. L2 tag is protected by 7 bits of ECC per 
entry/set.

L2 tag and data ECC is written whenever one of the following occurs:

• A store instruction (or dcbz, dcbzep, dcbzl, dcbzlep, dcba, or dcbal)
• A reload into the L2 cache

L2 data ECC is checked whenever:

• A load instruction hits in the L2 cache

• An instruction fetch hits in the L2 cache

L2 tag ECC is checked for all cache transactions, including snoops.

L2 error checking is disabled by default and can be enabled by writing 1 to L2CSR0[L2PE].

Each type of L2 error is recorded in the L2ERRDET register, provided L2CSR0[L2PE] = 1.

Each type of L2 error checking can be enabled or disabled with the L2ERRDIS register. By default, each 
type of L2 error checking is enabled, provided L2CSR0[L2PE] = 1.

Each type of L2 error interrupt can be enabled or disabled with the L2ERRINTEN register. By default, 
each type of L2 error interrupt is disabled, provided L2CSR0[L2PE] = 1. L2 error interrupts are serviced 
by the on-chip MPIC block.

Thresholds for L2 ECC errors can be set in the L2ERRCTL register. By default, the threshold is set to 0, 
provided L2CSR0[L2PE] = 1.

This table describes how L2ERRDET is updated for L2 tag errors. 

Table 5-8. L2 tag errors

Error
L2CSR0 L2ERRDIS L2ERRINTEN L2ERRDET

L2PE TMHITDIS TMBECC
DIS

TSBECC
DIS

TMHIT
INTEN

TMBECC
INTEN

TSBECC
INTEN

TMHIT TMBECC
ERR

TSBECC
ERR

Tag multi-way
hit

0 x x x x x x 0 0 0

1 0 x x 0 x x 1 0 0

1 0 x x 1 x x 1 0 0

1 1 x x 0 x x 0 0 0

1 1 x x 1 x x 0 0 0
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This table describes how L2ERRDET is updated for L2 data errors. 

5.8.6.1 L2 cache ECC error injection

ECC error injection provides a way to test error recovery software by intentionally injecting ECC errors 
into the L2 cache.

L2ERRINJCTL provides bits to inject ECC errors into the L2 tag (L2ERRINJCTL[TERRIEN]) and the 
L2 data (L2ERRINJCTL[DERRIEN]). In addition, L2ERRINJCTL also provides an error injection mask 
for ECC syndrome bits (L2ERRINJCTL[ECCERRIM]).

L2ERRINJHI and L2ERRINJLO provide error injection masks for the tag and data itself.

5.8.7 L2 cache performance monitor events

Performance monitor events associated with the L2 cache are described in 9.12.6, “Event selection.”

Tag single bit 
ECC error

0 x x x x x x 0 0 0

1 x x 0 x x 0 0 0 1

1 x x 0 x x 1 0 0 1

1 x x 1 x x x 0 0 0

Tag multi bit 
ECC error

0 x x x x x x 0 0 0

1 x 0 x x 0 x 0 1 0

1 x 0 x x 1 x 0 1 0

1 x 1 x x x x 0 0 0

Table 5-9. L2 data errors

Error
L2CSR0 L2ERRDIS L2ERRINTEN L2ERRDET

L2PE MBECC
DIS

SBECC
DIS

MBECC
INTEN

SBECC
INTEN

MBECC
ERR

SBECC
ERR

Data single-bit 
ECC error

0 x x x x 0 0

1 x 0 x 0 0 1

1 x 0 x 1 0 1

1 x 1 x x 0 0

Data multi-bit 
ECC error

0 x x x x 0 0

1 0 x 0 x 1 0

1 0 x 1 x 1 0

1 1 x x x 0 0

Table 5-8. L2 tag errors (continued)

Error
L2CSR0 L2ERRDIS L2ERRINTEN L2ERRDET

L2PE TMHITDIS TMBECC
DIS

TSBECC
DIS

TMHIT
INTEN

TMBECC
INTEN

TSBECC
INTEN

TMHIT TMBECC
ERR

TSBECC
ERR
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5.9 CoreNet Bus Interface Unit (BIU)
The CoreNet BIU handles all ordering and bus protocol and is the interface between the cluster and the 
external memory and caches. The CoreNet BIU also handles all snoop transactions for the cluster.

CoreNet itself is not described in this document.
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Chapter 6  
Memory Management Units (MMUs)
This chapter describes the implementation details of the e6500 MMU. EREF provides full descriptions of 
the MMU definition, and the register, instruction, and interrupt models as they are defined by the Power 
ISA and the Freescale implementation standards.

6.1 e6500 MMU overview
The e6500 cores employ a two-level MMU architecture, with separate data and instruction level 1 (L1) 
MMUs in hardware backed up by a unified level 2 (L2) MMU. The L1 MMUs are completely invisible 
with respect to the architecture and software programming model. The programming model for 
implementing translation look-aside buffers (TLBs) provided by the architecture applies to the L2 MMU. 
The e6500 core implements MMU architecture version 2, described in EREF as “MMU V2.”

6.1.1 MMU features

The e6500 core has the following features:

• 64-bit effective address (EA) translated to 40-bit real (physical) address (using an 86-bit virtual 
address) 

• Two-level MMU containing a total of eight TLBs for maximizing TLB hit rates

• Logical Partition ID (LPIDR) register for supporting up to 64 partitions at any time in the TLB

• Process ID (PID) register for supporting up to 16 K translation IDs at any time in the TLB per 
partition

• TLB entries for variable-sized, 4 KB to 1 TB pages in powers of two and fixed-size (4 KB) pages

• Support for both software and hardware tablewalk. Hardware tablewalk is supported for 4 KB 
pages, which are loaded into TLB0 on a TLB miss

• TLBs maintained by system software through the TLB instructions and nine MMU assist (MAS) 
registers and through hardware tablewalk for TLB0

• An eight entry fully associative logical-to-real address translation (LRAT) allowing guest operating 
systems to perform TLB writes without hypervisor intervention. The LRAT also performs logical- 
to-real address translation during hardware tablewalks for guest TLB misses.

The Level 1 MMUs have the following features:

• Two 8-entry, fully-associative TLB arrays (one for instruction accesses and one for data accesses) 
supporting a large range of variable size page (VSP) page sizes, as shown in Section 6.2.5, 
“Variable-sized pages.”

• Two 64-entry, four-way set-associative TLB arrays (one for instruction accesses and one for data 
accesses) that support only 4 KB pages
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• L1 MMU access occurs in parallel with L1 cache access time (address translation/L1 cache access 
can be fully pipelined so one load/store can be completed on every clock). 

• Performs parallel L1 TLB lookups for instruction and data accesses

• L1 TLB1 entries are a proper subset of TLB1 entries resident in L2 MMU (completely maintained 
by the hardware).

• L1 TLB0 entries are not a proper subset of TLB0 entries resident in L2 MMU.

The Level 2 MMU has the following features:

• A 64-entry, fully-associative unified (for instruction and data accesses) L2 TLB array (TLB1) 
supporting a large range of VSP page sizes, as shown in Section 6.2.5, “Variable-sized pages”

• A 1024-entry, 8-way set-associative unified (for instruction and data accesses) L2 TLB array 
(TLB0) supports only 4 KB pages.

• Hardware assistance for TLB miss exceptions

• TLB1 and TLB0 managed by tlbre, tlbwe, tlbsx, tlbsync, tlbivax, tlbilx, mfspr, and mtspr 
instructions

• TLB0 also managed through hardware tablewalk

• Parity detection for TLB0

• Performs invalidations in TLB1 and TLB0 caused by tlbivax and tlbilx instructions executed by 
this core. Snoops TLB1 and TLB0 for tlbivax invalidations executed by other processors. 

• Setting IPROT implemented in TLB1 protects critical entries from invalidation.

6.1.2 TLB entry maintenance features

The TLB entries must be loaded and maintained by the system software; this includes performing any 
required table search operations in memory. The e6500 core provides support for maintaining TLB entries 
in software with the resources shown in the following table. Section 6.6, “TLB entry 
maintenance—details,” describes hardware assistance features. 

Table 6-1. TLB maintenance programming model

Features Description Section/Page

TLB 
Instructions

tlbre TLB Read Entry instruction 6.5.1/6-27

tlbwe TLB Write Entry instruction 6.5.2/6-27

tlbsx rA, rB (software must use the 
preferred form: tlbsx 0, rB)

TLB Search for Entry instruction 6.5.3/6-29

tlbilx TLB Invalidate Local instruction 6.5.4/6-29

tlbivax rA, rB TLB Invalidate instruction 6.5.5/6-30

tlbsync TLB Synchronize Invalidations 6.5.6/6-31
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6.2 Effective-to-real address translation
This section discusses effective-to-real address translation.

6.2.1 Address translation

The fetch and load/store units generate 64-bit effective addresses. The MMU translates these addresses to 
40-bit real addresses, which are used for memory accesses, using an interim virtual address. In multicore 
implementations, such as the e6500 core, the virtual address is formed by concatenating 
MSR[GS] || LPIDR || MSR[IS|DS] || PID || EA, as shown in Figure 6-1.

The appropriate L1 MMU (instruction or data) is checked for a matching address translation. The 
instruction L1 MMU and data L1 MMU operate independently and can be accessed in parallel, so that hits 
for instruction accesses and data accesses can occur in the same clock. If an L1 MMU misses, the request 

Registers PID Process ID register Table 6-10

LPIDR Logical Partition ID register

LRATCFG Logical-to-Real Address Translation Configuration 
register

LRATPS Logical-to-Real Address Translation Page Size 
register

MMUCSR0 MMU Control and Status register

MMUCFG MMU Configuration register

TLB0CFG–TLB1CFG TLB configuration registers

TLB0PS–TLB1PS TLB page size registers

EPTCFG Embedded Page Table configuration register

MAS0–MAS8 MMU assist registers

(G)DEAR (Guest)Data Exception Address register

(G)ESR (Guest)Exception Syndrome register

LPER, LPERU Logical Page Exception register (upper)

EPLC External PID Load Context register

EPSC External PID Store Context register

Exceptions/ 
interrupts

Instruction TLB miss Causes instruction TLB error interrupt 4.9.15/4-34

Data TLB miss Causes data TLB error interrupt 4.9.14/4-33

Execute access control
Page table fault

Causes ISI interrupt 4.9.5/4-23

Read access control
Write access control
Virtualization fault
Page table fault
Byte ordering
Cache locking
Storage synchronization

Causes DSI interrupt 4.9.4/4-20

LRAT error Causes LRAT error interrupt 4.9.20.1/44-45

Table 6-1. TLB maintenance programming model (continued)

Features Description Section/Page
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for translation is forwarded to the unified (instruction and data) L2 MMU. If found, the contents of the 
TLB entry are concatenated with the page offset to obtain the physical address of the requested access. On 
misses in the L1 MMU that hit in the L2 MMU, the L1 TLB entries are replaced from their L2 TLB 
counterparts using a true LRU algorithm. If the L2 MMU misses, a page table translation is attempted and 
the L2 MMU is searched for a matching indirect entry and, if found, performs a page table translation. If 
the page table translation finds a valid page table entry (PTE), the PTE is loaded into the L2 MMU and the 
translation is performed using the loaded entry. See Section 6.2.2, “Page table translation.”

The e6500 core contains one set of L1 MMU structures for both threads for instruction address translation 
and a set of private L1 MMU structures per thread for data translations.

Figure 6-1. Effective-to-real address translation flow in e6500

Effective Page Number Byte Address

Real Page Number Byte Address

64-bit EA

0–52 bits*

0–28 bits* 

L2 MMU (unified)

Four 86-bit Virtual Addresses (VAs)

14 bits

Instruction

L1 MMUs

Instruction L1 MMU Data L1 MMU
2 TLBs 4 TLBs

* Number of bits depends on page size: 4 KB to 1 TB

64-Entry Fully-Assoc. Array (TLB1)

 1024-Entry 8-Way Set Assoc. Array (TLB0) 

12–32 bits*

12–40 bits* 

40-bit Real Address

Data 
Access

MSR[IS] MSR[DS]
Access

LPIDR: 
logical partition ID matched 

against TLB[TLPID]

MSR[GS] 
0 = Hypervisor access

1 = guest access

Effective Page Number

GS LPID AS PID

Page table translation
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NOTE
Because a “bare-metal” operating system has no knowledge of explicit 
embedded hypervisor resources for partitioning (such as the LPIDR register 
and MSR[GS]), these values should remain unchanged from 0 values, in 
effect, producing the same virtual address spaces that exist without the 
embedded hypervisor functionality. That is, the virtual addresses that are 
produced are essentially:

0 || 0 || AS || PID || EA
0 || 0 || AS || 0 || EA

In practice, this produces the same effect as not having an embedded 
hypervisor.

6.2.2 Page table translation

Hardware page tables are used to perform translations that miss in the L2 TLB. The result of such a 
translation is that TLB0 is updated with a new entry from the hardware page table, and the original access 
that missed is translated using that new TLB entry.

A page table translation occurs when a virtual address is presented to the MMU for translation and no 
matching TLB entry exists in any TLB array. This is commonly referred to as a hardware page tablewalk. 
A page table translation is performed by hardware by locating and reading a page table entry (PTE) from 
memory and using the contents of the PTE to perform the virtual address to real address translation. In 
guest mode, the contents of the PTE are translated through the LRAT to obtain the real address.

6.2.2.1 Locating a hardware page table and PTE

A hardware page table is defined by an indirect entry in TLB1. An indirect entry is an entry in TLB1 that 
has the indirect bit (IND) equal to 1. Software writes indirect entries into TLB1 with tlbwe, which allows 
the hardware to locate and read the PTE entry associated with a virtual address. Indirect entries cannot be 
written to TLB0 because TLB0 does not support the indirect bit.

An indirect entry matches a VA in the same manner that a non-indirect entry does with the exception that 
the indirect entry has the IND bit set and the lookup that occurs is during a page table translation. Thus the 
address range defined by the EPN field and page size (TSIZE) field describe the range of addresses that 
the indirect entry maps. All other virtual address identifiers are used in the same manner as non-indirect 
entry lookup does. The RPN field of an indirect entry contains the real address of the start of a page table, 
which maps the virtual address space of this indirect entry.

If no indirect entry matches for the VA with IND = 1 lookup, then an instruction TLB miss exception (and 
instruction TLB error interrupt) occurs if the original translation was an instruction fetch or a data TLB 
miss exception (and data TLB error interrupt) occurs if it was not an instruction fetch.

If a matching indirect entry is found and the indirect entry has VF = 1, then a virtualization fault or an 
instruction virtualization fault exception (and data storage interrupt or instruction storage interrupt) occurs.

Page tables consist of consecutive 8-byte PTEs, each of which represents 4 KB of effective address space. 
Each 4 KB of effective address offset from the start of the effective address specified by EPN corresponds 
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to 8 bytes of offset of real address from RPN. During a page table translation, the offset from the EA of 
the original memory reference that caused the page table translation from the EPN of the indirect entry is 
used to determine which PTE in the page table in real memory addressed by RPN is used to map the virtual 
address that caused the page table translation. The real address of the 8-byte PTE is equal to the RPN of 
the indirect entry shifted left 12 bits plus the number of 4 KB blocks of effective address that EA is in from 
EPN times the size of a PTE:

PTE_real_addr = (RPN << 12) + ((EA - (EPN<<12)) / 4096) * 8

For example, assume an indirect entry exists in the TLB, which has the contents described in the following 
table.

In this example, the virtual address space identifiers are GS = 1, LPID = 4, PID = 22, and AS = 1. 
This virtual address space might be a typical virtual address space for a user program. Within that 
address space, the effective address range that is mapped by this entry is 0x0000_0000_1000_0000 
to 0x0000_0000_101f_ffff because the EPN starts at effective address 0x0000_0000_1000_0000 
and the page size is 2MB.

Assume that a memory reference (a lwz instruction, for example) for the same virtual address space 
(MSR[GS] = 1, LPIDR = 4, PID = 22, and MSR[DS] = 1) produces an EA of 
0x0000_0000_1000_3010 and that there is not a direct translation for this virtual address present 
in the TLB. 

The miss in the TLB for this virtual address starts a page table translation and the following actions 
occur:

— The virtual address is looked up as an indirect entry in TLB1: IND=1 with the same VA.

— If the indirect entry is not found, a data TLB error interrupt occurs and system software 
normally writes an indirect TLB1 entry that covers this virtual address and possibly creates and 
initializes the PTE (if it has not already done so). Then, system software would return from the 
interrupt to re-execute the instruction which caused the TLB error.

Table 6-2. Example indirect TLB entry

Field Value

TGS 1

TLPID 4

TID 22

TS 1

EPN 0x0_0000_0001_0000
corresponds to an EA of:

0x0000_0000_1000_0000

TSIZE 11 (2 MB)

RPN 0x0_0000_0000_0501
corresponds to an RA of:
0x0000_0000_0050_1000
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— If the indirect entry is found, and the indirect entry has VF = 1, a virtualization fault exception 
occurs and a DSI interrupt is taken.

— If the indirect entry is found and VF is not set, the offset of the EA from the start address of the 
page from the indirect entry EPN field is calculated. In this example:

offset = EA - (EPN || 0x000)
0x3100 = x0000_0000_1000_3100 - (0x0_0000_0001_0000 || 0x000)

— This offset is divided by 4 K, which represents an index into 4 KB pages, which are defined by 
this indirect entry:

page_4K_index = offset / 4096
3 = 0x3100 / 0x1000

— The 4 KB page index is multiplied by eight to account for the 8 bytes of memory that each PTE 
requires. The result is added to the RPN, giving the real address of the PTE:

PTE_real_addr = (RPN || 0x000) + (page_4K_index * 8)
0x0000_0000_0050_1018 = (0x0_0000_0000_0501 || 0x000) + (3 * 8)

6.2.2.2 Translation and TLB update using a PTE

Once the appropriate PTE is located, it is read from memory and is used to perform translation for the 
original virtual address that caused the page table translation. The PTE memory access uses WIMGE 
settings of 0b00100. The PTE is an 8-byte structure described in Section 6.2.3, “Page table entry (PTE).”

If the PTE is not valid (PTE[V] = 0) then a page table fault exception occurs. In addition, an instruction 
storage interrupt or data storage interrupt occurs depending on whether the original translation was an 
instruction fetch or a data access.

If the PTE is valid, then a TLB entry (entry) is constructed from the fields of the PTE, the virtual address 
of the indirect entry (ind_entry), and the EA of the original translation as follows:

bap ← PTEBAP
ux ← bap0 & PTER
sx ← bap1 & PTER
uw ← bap2 & PTER & PTEC
sw ← bap3 & PTER & PTEC
ur ← bap4 & PTER
sr ← bap5 & PTER

entryUX,SX,UW,SW,UR,SR ← ux,sx,uw,sw,ur,sr
entryV ← PTEV
p ← 0b00010 
entryTSIZE ← p
entryIND ← 0 
entryWIMGE ← PTEWIMGE
entryTID ← ind_entryTID
entryTLPID ← ind_entryTLPID
entryTS ← ind_entryTS
entryTGS ← ind_entryTGS
entryEPN ← EA0:53-p
entryVF ← 0
entryIPROT ← 0
entryU0 ← PTEU0
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entryU1 ← PTEU1
entryU2..U3 ← 0
entryX0 X1 ← PTE48:49

The RPN field of the TLB entry is set depending on whether the page table translation is a hypervisor or 
guest translation.

If the translation is a hypervisor translation (the GS value of the virtual address is 0), then the RPN field 
of the TLB entry is set to the value of the lower 28 bits of the ARPN field of the PTE:

entryRPN ← PTEARPN 

If the translation is a guest translation, the ARPN field of the PTE is translated through the LRAT, as 
described in Section 6.4.5, “LRAT translation” and the resulting real page number is written to the TLB 
entry. If no matching LRAT translation exists, then an LRAT error exception (and LRAT error interrupt) 
occurs and ESR(GSR), DEAR (GDEAR), and LPER are set so that hypervisor software can load an 
appropriate LRAT translation:

if not instruction fetch then
ESRDATA ← 1
DEAR ← EA

ESRPT ← 1
LPERALPN ← PTEARPN
LPERWIMGE ← entryWIMGE
LPERLPS ← entryTSIZE // always 4K page size

Only 4 KB page sizes are allowed for translations represented by PTEs. Setting PTE[PS] to any other value 
is ignored.

The BAP, R, and C fields in the PTE are used to determine access control. Note that all permissions require 
that the PTE[R] bit be set and that write permissions also require the PTE[C] bit be set. PTE[R] 
(referenced) is set by system software when the page has been read or written, and PTE[C] (changed) is 
set by system software when the page has been modified. The combination of the base access permissions 
with the referenced and changed bits for performing permission checks allows software to more easily 
perform referenced and change bit recordings without having to change the base access permissions in the 
PTE.

Access control using the permission bits derived from the PTE is performed in the same manner as access 
control for translations that hit in the TLB. If an access control exception (read, write, or execute) occurs, 
an instruction storage or data storage interrupt occurs the same as normal translation.

If no errors occur during page table translation, the constructed TLB entry is written to TLB0. 

If page table translation results in an error (ISI, DSI, or LRAT Error), the constructed TLB entry is not 
written to TLB0 and ESR[PT] (or GESR[PT]) is set to 1. 

On the e6500 core both software and hardware must ensure that multiple TLB entries for the same virtual 
address are not created in the TLB. Hardware ensures that simultaneous page table translations from 
different threads for the same virtual address do not write multiple TLB entries. Similarly, software must 
ensure that it does not write a TLB entry using tlbwe if another thread can establish the same TLB entry 
either with tlbwe or through a page table translation.
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NOTE
The assignment of the X0 and X1 bits from bits 48:49 of the PTE is specific 
to the e6500 core implementation. Future processors may assign these bits 
differently.

6.2.3 Page table entry (PTE)

The PTE entry is an 8-byte descriptor containing the information required to create a TLB entry during a 
successful page table translation. PTEs are contained in memory in groups that form a page table that is 
located by a corresponding indirect entry in the TLB.

A PTE represents a 4 KB mapping. The PTE[PS] field is ignored on the e6500 core.

This figure shows the in-memory format of a PTE.

This table describes the PTE fields.
 

0 31

ARPN

32 39 40 44 45 46 47 48 49 50 51 52 55 56 61 62 63

ARPN WIMGE R

U
0

U
1 —

S
W

0 C PS BAP

S
W

1 V

Figure 6-2. Page table entry (PTE)

Table 6-3. Page table entry field descriptions

Bits Name Description

0–39 ARPN Abbreviated real page number. Contains the value to be placed in the TLB[RPN] field when creating the TLB 
during a page table translation. If this is a guest PTE, then the ARPN is a logical page number (and will be 
translated through the LRAT when a guest page table translation occurs).

When the e6500 core reads this field during a page table translation, only the low-order 28 bits are used.

40–44 WIMGE Storage control attributes. Contains the value to be placed in the TLB[WIMGE] field when creating the TLB 
during a page table translation. 

45 R Referenced bit. Used by software to denote that the page has been referenced. During page table translation, 
this bit is also used for access control.

46 U0 User defined storage control bit 0. Contains the value to be placed in the TLB[U0] field when creating the 
TLB during a page table translation.

47 U1 User defined storage control bit 1. Contains the value to be placed in the TLB[U1] field when creating the 
TLB during a page table translation.

48–49 — Reserved. For the e6500 core, contains the value to be placed in the TLB[X0,X1] fields when creating the 
TLB during a page table translation.

50 SW0 Available for software use.

51 C Changed bit. Used by software to denote that the page has been modified. During page table translation, this 
bit is also used for access control.
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6.2.4 Address translation using external PID addressing

External PID addressing provides an efficient way for system software to move data and perform cache 
operations across disjunct address spaces. On the e6500 core, this functionality includes the following 
external PID versions of standard load, store, and cache instructions:

• Load-type instructions: lbepx, lhepx, lwepx, ldepx, dcbtep, dcbtstep, dcbfep, dcbstep, icbiep, 
lfdepx, lvepx, and lvepxl

• Store-type instructions: stbepx, sthepx, stwepx, stdepx, dcbzep, dcbzlep, stfdepx, stvepx, and 
stvepxl

Memory translation is performed by substituting the values configured in the external PID load/store 
control registers (EPLC and EPSC):

• External Load Context PR (EPR) replaces MSR[PR] for permissions checking.

• The following fields replace the standard values shown in Figure 6-1 to form a virtual address, as 
shown in Figure 6-3:

— External Guest State (EGS) replaces MSR[GS] in forming the virtual address and is compared 
against TLB[TGS] during translation. EGS is writable only in the hypervisor state.

— External Logical Partition ID (ELPID) replaces LPIDR and is compared against TLB[TLPID]. 
ELPID is writable only in hypervisor state.

— External Load Context AS (EAS) replaces MSR[DS] and is compared against TLB[TS].

— External Load Context Process ID (EPID) replaces PID and is compared against TLB[TID].

This figure shows how to form a virtual address using external PID.

52–55 PS Page size. Represents the page size of this PTE entry. This value is ignored for the e6500 core and 0b00010 
is placed in the TLB[TSIZE] field when creating the TLB during a page table translation.

56–61 BAP Base access permissions. Contains the value to be placed in the TLB[UR,SR, UW, SW, UX, SX] fields when 
creating the TLB during a page table translation as follows:
UX = BAP0 & R
SX = BAP1 & R
UW = BAP2 & R & C
SW = BAP3 & R & C
UR = BAP4 & R
SR = BAP5 & R

Note: The ANDing of the base access permissions with the R and C bits allows software to receive 
appropriate DSI/ISI interrupts for referenced and changed bit handling.

62 SW1 Available for software use.

63 V Valid
0 The PTE entry is not valid (invalid)
1 The PTE entry is valid

Table 6-3. Page table entry field descriptions (continued)

Bits Name Description
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Figure 6-3. Forming a virtual address using external PID

Effective Page Number Byte Address

64-bit EA

0–52 bits 12–40 bits
EPLC[EAS] (load)
EPSC[EAS] (store)

EPxC[ELPID]
logical partition ID matched

against TLB[TLPID]

EPxC[EGS]
0 = Hypervisor access

1 = guest access

EGS ELPID EAS EPID

EPxC[EPID] matched
against TLB[PID]
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6.2.5 Variable-sized pages

The following shows page sizes supported by the fully-associative TLB1 array that support variable-sized 
pages (VSPs). Note that the e6500 core only implements the low-order 28 bits of the architected 52-bit 
RPN field of the TLB.

Table 6-4. TLB1 page sizes

TSIZE
(TLBSIZE)

Page Size
EPN and RPN Bits 

Required to be Zero 
Real Address after 

Translation

0b00010 4KB none RPN24:51 || EA52:63

0b00011 8KB 51 RPN24:50 || EA51:63

0b00100 16KB 50:51 RPN24:49 || EA50:63

0b00101 32KB 49:51 RPN24:48 || EA49:63

0b00110 64KB 48:51 RPN24:47 || EA48:63

0b00111 128KB 47:51 RPN24:46 || EA47:63

0b01000 256KB 46:51 RPN24:45 || EA46:63

0b01001 512KB 45:51 RPN24:44 || EA45:63

0b01010 1MB 44:51 RPN24:43 || EA44:63

0b01011 2MB 43:51 RPN24:42 || EA43:63

0b01100 4MB 42:51 RPN24:41 || EA42:63

0b01101 8MB 41:51 RPN24:40 || EA41:63

0b01110 16MB 40:51 RPN24:39 || EA40:63

0b01111 32MB 39:51 RPN24:38 || EA39:63

0b10000 64MB 38:51 RPN24:37 || EA38:63

0b10001 128MB 37:51 RPN24:36 || EA37:63

0b10010 256MB 36:51 RPN24:35 || EA36:63

0b10011 512MB 35:51 RPN24:34 || EA35:63

0b10100 1GB 34:51 RPN24:33 || EA34:63

0b10101 2GB 33:51 RPN24:32 || EA33:63

0b10110 4GB 32:51 RPN24:31 || EA32:63

0b10111 8GB 31:51 RPN24:30 || EA31:63

0b11000 16GB 30:51 RPN24:29 || EA30:63

0b11001 32GB 29:51 RPN24:28 || EA29:63

0b11010 64GB 28:51 RPN24:27 || EA28:63

0b11011 128GB 27:51 RPN24:26 || EA27:63

0b11100 256GB 26:51 RPN24:25 || EA26:63
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6.2.5.1 Checking for TLB entry hit

A hit to multiple matching TLB entries is considered a programming error. If this occurs, the TLB 
generates an invalid address, TLB entries may be corrupted, and a machine check or error report interrupt 
is generated if HID0[EN_L2MMU_MHD]. If HID0[EN_L2MMU_MHD] is not set when the error occurs, 
the resulting translation is undefined.

This figure shows the compare function used to check the MMU structures for a hit for a virtual address 
that corresponds to an instruction or data access. 

Figure 6-4. Virtual address and TLB-entry compare process

6.2.6 Checking for access permissions

When a TLB entry matches with a virtual addresses of an access, the permission bits of the TLB entry are 
compared with attribute information of the access (read/write, execute/data, user/supervisor) to see if the 
access is allowed to that page. The checking of permissions on the e6500 core functions as described in 
EREF.

0b11101 512GB 25:51 RPN24 || EA25:63

0b11110 1TB 24:51 EA24:63

Table 6-4. TLB1 page sizes (continued)

TSIZE
(TLBSIZE)

Page Size
EPN and RPN Bits 

Required to be Zero 
Real Address after 

Translation

TLB entry matches VA

=0?

=?

=?

 LPIDR

EA Page Number bits

=?

TLB Entry
TGS TLPID TS TID EPN V

=?

=?

=0?

PID

 MSR[GS]

MSR[DS]

MSR[IS]
or
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Note that a page table translation uses PTE[R] and PTE[C] (referenced and changed bits) to form the 
permissions when a TLB entry is loaded from a page table walk.

The e6500 core also requires write permission for caching-inhibited accesses using decorated storage 
loads.

6.3 Translation lookaside buffers (TLBs)
To maximize address translation performance and to provide ample flexibility for the operating system, 
the e6500 core implements eight TLB arrays. Figure 6-5 contains a more detailed description of the 
two-level structure. Note that for an instruction access, both the I-L1VSP and the I-L1TLB4K are checked 
in parallel for a TLB hit. Similarly, for a data access, both the thread’s private D-L1VSP and the 
D-L1TLB4K are checked in parallel for a TLB hit. The instruction L1 MMU and data L1 MMU operate 
independently and can be accessed in parallel so that hits for instruction accesses and data accesses can 
occur in the same clock. The thread’s private data L1 MMUs also operate in parallel with the other thread’s 
private data L1 MMUs, and each thread can hit in the data L1 MMU in the same clock cycle. 

This figure shows the 40-bit real addresses and the eight-way set associative TLB0 used in the e6500 core.

Figure 6-5. Two-level MMU structure

As this figure shows, when the L2 MMU is checked for a TLB entry, both TLB1 and TLB0 are checked 
in parallel. It also identifies the L1 MMUs as invisible to the programming model (not accessible to the 
operating system); they are managed completely by the hardware as caches of the corresponding L2 MMU 
TLB entries. Conversely, the L2 MMU is managed by the TLB instructions by way of the MAS registers 
or through page table translations that load PTEs. 

A hit to multiple TLB entries in the L1 MMU (even if they are in separate arrays) is considered to be a 
programming error. This is also the case if an access results in a hit to multiple TLB entries in the L2 
MMU.

Real Page Number Byte Address

Four virtual addresses (VAs)

L1 MMUs

I-L1VSP

I-L1TLB4K

D-L1VSPs

D-L1TLB4Ks

L2 MMUs (unified)

64-Entry Fully-Assoc. VSP Array (TLB1)

1024-Entry 8-Way Set Assoc. Array (TLB0)

MAS Registers
Data AccessInstr. Access

‘Invisible’

0–28 bits

40-bit Real Address’
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This table lists the various TLBs and describes their characteristics. 

6.3.1 L1 TLB arrays

As shown in Figure 6-1, there are two level 1 (L1) MMUs. As shown in Figure 6-5 and Table 6-5, the 
instruction and data L1 MMUs each implement an eight-entry, fully associative L1VSP array and a 
64-entry, four-way set associative L1TLB4K array, comprising the following L1 MMU arrays:

• Instruction L1VSP—shared between threads; eight-entry, fully associative

• Instruction L1TLB4K—shared between threads; 64-entry, four-way set-associative

• Data L1VSP—per thread; eight-entry, fully associative

• Data L1TLB4K—per thread; 64-entry, four-way set-associative

As their names imply, L1TLB4K arrays support fixed, 4 KB pages, and L1VSP arrays support variable 
page sizes. To perform a lookup for instruction accesses, both L1TLB4K and L1VSP TLBs in the 
instruction MMU are searched in parallel for the matching entry. Similarly, for data accesses, both 
L1TLB4K and L1VSP TLBs in the data MMU are searched in parallel for the matching entry. The contents 
of a matching entry are concatenated with the page offset of the original EA; the bit range that is translated 
is determined by the page size. The result constitutes the real (physical) address for the access. 

L1TLB4K TLB entries are replaced based on a true LRU algorithm. The L1VSP entries are also replaced 
based on a true LRU replacement algorithm. The LRU bits are updated each time a TLB entry is accessed 
for translation. However, there are other speculative accesses performed to the L1 MMUs that cause the 
LRU bits to be updated. The performance of the L1 MMUs is high, even though it is not possible to predict 
exactly which entry is the next to be replaced.

Unlike cores prior to the e6500 core, the L1 MMU entries are not an inclusive set of some entries in the 
L2 MMU. It is possible that a valid L1 MMU entry can exist where no corresponding L2 MMU entry 
exists. In particular, L1TLB4K may not be included in the TLB0 array if the hardware page table 
translation mechanism is used or software writes entries to TLB0 using the hardware entry select 
mechanism (MAS0[HES] = 1). Valid entries in L1VSP are always present in TLB1.

Table 6-5. Index of TLBs

Location Name Page Sizes Supported Associativity Number of TLB Entries Translations Filled by

Instruction
L1 MMU

I-L1VSP Multiple page sizes 1

1 See Section 6.2.5, “Variable-sized pages,” for supported page sizes.

Fully associative 8 Instruction TLB1 hit

I-L1TLB4K 4 KB 4-way 64 Instruction TLB0 hit

Data 
L1 MMU
(one set 

per thread)

D-L1VSP Multiple page sizes 1 Fully associative 8 Data TLB1 hit

D-L1TLB4K 4 KB 4-way 64 Data TLB0 hit

L2 MMU TLB1 Multiple page sizes 1 Fully associative 64 Unified (I and D) tlbwe 

TLB0 4 KB 8-way 1024 Unified (I and D) tlbwe or 
valid 
PTE
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This figure shows the organization of the L1 TLBs in both the instruction and data L1 MMUs.

Figure 6-6. L1 MMU TLB organization

6.3.2 L2 TLB arrays

The level 1 MMUs are backed up by a unified L2 MMU that translates both instruction and data addresses. 
Like each L1 MMU, the L2 MMU consists of two TLB arrays:

• TLB1: a 64-entry, fully associative array that supports multiple page sizes.

• TLB0: 1024-entry, eight-way set associative array that supports only 4 KB page sizes. 
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This figure shows the L2 TLBs.

Figure 6-7. L2 MMU TLB organization

The L2 MMUs are shared between threads and shared between instruction fetches and data accesses.

6.3.2.1 Invalidation protection (IPROT) in TLB1

TLB1 entries with IPROT set can never be invalidated by a tlbivax or tlbilx instruction executed by this 
processor, by a tlbivax instruction executed by another processor, or by a flash invalidate initiated by 
writing to MMUCSR0. IPROT can be used to protect critical code and data, such as interrupt 
vectors/handlers, in order to guarantee that the instruction fetch of those vectors never takes a TLB miss 
exception. Entries with IPROT set can be invalidated only by writing a 0 to the valid bit of the entry. This 
is done by using the MAS registers and executing the tlbwe instruction.

Only TLB entries in TLB1 can be protected from invalidation; entries in TLB0 cannot be protected 
because they do not implement IPROT. Software should assume that TLB0 entries are transient and can 
become invalid at any time.
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Invalidation operations are guaranteed to invalidate the entry that translates the address specified in the 
operand of the tlbivax or tlbilx instruction. Other entries may also be invalidated by this operation if they 
are not protected with IPROT. A precise invalidation can be performed by writing a 0 to the valid bit of a 
TLB entry with MAS0[HES] = 0. Note that successful invalidation operations in the L2 MMU also 
invalidate matching entries in the L1 MMU.

In general, software should avoid using tlbwe to invalidate entries in TLB0 and should instead rely on 
tlbivax or tlbilx to perform invalidations. The e6500 core is a multi-threaded processor that shares TLB0 
among both threads. Each thread can either write to TLB0 with tlbwe or can have an entry loaded by the 
hardware due to a page table translation. In order to perform a precise invalidation with tlbwe, the other 
thread must not be allowed to load another entry that replaces the entry to be invalidated before the tlbwe 
has occurred. This requires software to disable the other thread while reading the TLB entry, setting its 
valid bit to 0 and writing it back to the TLB. In addition, writes to TLB0 that use MAS0[HES] = 1 do not 
back invalidate the victimized entry because software does not know which entry is being written, even if 
the entry is written with its valid bit as 0.

6.3.2.2 Replacement algorithms for L2 MMU entries

The replacement algorithm for TLB1 must be implemented completely by the system software. Thus, 
when an entry in TLB1 is to be replaced, the software selects which entry to replace and writes the entry 
number to MAS0[ESEL] before executing a tlbwe instruction.

TLB0 entry replacement is implemented by software and hardware. To assist the software with TLB0 
replacement, the core provides a hint that can be used for implementing a round-robin replacement 
algorithm. The hint is supplied in the appropriate MAS register fields when certain exceptions occur or a 
tlbsx instruction finds a valid entry. The only parameter required to select the entry to replace is the way 
select value for the new entry. (The entry within the way is selected by EA[45–51].) The mechanism for 
the round-robin replacement uses the following fields:

• TLB0[NV]—the next victim field within TLB0. The next victim field’s value points to a way in the 
set that should be used as the next victim if a new TLB entry is to be allocated. There is one next 
victim value for each set in TLB0. When hardware allocates a new entry (through a successful page 
table translation or during tlbwe when MAS0[HES] = 1) in TLB0, it uses this value in the set to 
determine the way of the victim and updates the NV value after allocation to point to the next entry.

• MAS0[NV]—the next victim field of MAS0

• MAS0[ESEL]—selects the way to be replaced on tlbwe

Table 6-11 describes MAS register updates on various exception conditions.

Note that the system software can load any value into MAS0[ESEL] and MAS0[NV] prior to execution of 
tlbwe, effectively overwriting this round-robin replacement algorithm. In this case, the value written by 
software into MAS0[NV] is used as the next TLB0[NV] value on a TLB miss.

Hardware also uses (and updates) NV in TLB0 when doing writes of TLB entries from PTE entries during 
a successful page table translation or during tlbwe if MAS0[HES] = 1.

Also, note that the MAS0[NV] value is indeterminate after any TLB entry invalidate operation (including 
a flash invalidate). To know its value after an invalidate operation, MAS0[NV] must be read explicitly.
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6.3.2.2.1 Round-robin replacement for TLB0

The e6500 core has an eight-way set-associative TLB0 and fully implements the round-robin scheme with 
a simple 3-bit counter that increments the 3-bit value of NV from the selected set of TLB0 entries on each 
TLB error interrupt and loads the incremented value into MAS0[NV] for use by the next tlbwe instruction. 
Set selection is performed using bits from the EA that caused the TLB miss.

Figure 6-8. Round-robin replacement for TLB0

When tlbwe executes, MAS0[ESEL] selects the way of TLB0 to be loaded. If MAS0[TLBSEL] = 0 
(selecting TLB0), TLB0[NV] is loaded with the MAS0[NV] value. When a TLB error interrupt occurs and 
MAS4[TLBSELD] = 0, the hardware automatically loads the current value of TLB0[NV] for the selected 
set into MAS0[ESEL] and the incremented value of TLB0[NV] for the selected set into MAS0[NV]. This 
sets up MAS0 such that, if those values are not overwritten, the next way is selected on the next execution 
of tlbwe.

In general, software relies on page table translations to fill entries into TLB0; however, if software does do 
tlbwe instructions to TLB0 and is using page table translations, software should always allow hardware to 
select the entry to victimize by setting MAS0[HES] = 1 when performing tlbwe.

6.3.3 Consistency between L1 and L2 TLBs

The L1 TLBs are used to improve performance because they have a faster access time than the larger L2 
TLBs. The relationship between TLBs is shown in the following figure.
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Figure 6-9. L1 MMU TLB relationships with L2 TLBs

On an L1 MMU miss, L1 MMU array entries are automatically reloaded using entries from their level 2 
array equivalent. For example, if the L1 data MMU misses but there is a hit for a virtual address in TLB1, 
the matching entry is automatically loaded into the data L1VSP array. Likewise, if the L1 data MMU 
misses, but there is a hit for the access in TLB0, the matching entry is automatically loaded into the data 
L1TLB4K array.

Valid entries in the L1TLB4K array may exist that have no matching valid entries in TLB0 if hardware 
page table translation is used or software writes to TLB0 using the hardware entry select mechanism 
(MAS0[HES] = 1). This is because back invalidations in the L1TLB4K are not performed for the 
victimized entry that is replaced due to a successful hardware page table translation or tlbwe to TLB0 with 
MAS0[HES] = 1. 

NOTE
When any L2 TLB entry is invalidated through any invalidation mechanism 
or written with MAS0[HES] = 0, MAS1[V] = 0, and MAS0[TLBSEL] = 0, 
the corresponding entries in any L1 TLB will also be invalidated. (For the 
data L1 MMU, only the thread’s private data L1 MMU will be invalidated.) 
Changing PID, LPIDR, EPLC, or EPSC or executing tlbsx may cause all 
instruction L1 entries to be invalidated and the thread’s private data L1 
MMU entries to be invalidated.
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6.3.4 TLB entry field definitions

This table summarizes the fields of the e6500 TLB entries. These fields are defined by the architecture and 
described in detail in EREF. 

6.4 LRAT concept 
In a partitioned environment, a guest operating system is not allowed to manipulate (or even be aware of) 
real page numbers. Instead, the hypervisor virtualizes the real memory and the guest operating system 
manages the virtualized memory using logical page numbers (LPNs). The hypervisor prevents the guest 
operating system from seeing real page numbers by managing a logical-to-real address translation (LRAT) 
array. The LRAT is used to translate LPNs into RPNs when tlbwe is executed by the guest operating 
system or when a page table translation occurs from a guest virtual address. This avoids trapping to the 
hypervisor when the guest operating system writes a TLB entry or performs a page table translation and 
performs the necessary logical-to-real translation from what the guest operating system believes is the 
RPN to a true RPN. The tlbwe instruction is allowed to execute in the guest operating system, and page 

Table 6-6. TLB entry bit definitions

Field Comments

V Valid bit for entry

TS Translation address space—compared with AS bit of the current access. For external PID accesses, TS is 
compared with EPLC[EAS] or EPSC[EAS].

TID[0–13] Translation ID—compared with PID. For external PID accesses, TID is compared with EPLC[EPID] or 
EPSC[EPID].

EPN[0–51] Effective page number—compared with EA[0–51] for 4 KB pages

RPN[0–27] Real page number—translated address RA[24–51] for 4 KB pages

SIZE[0–4] Encoded page size. See Table 6-4. Only present in TLB1; however, software should always set page sizes for 
TLB0 for future compatibility.

UX,SX,
UW,SW,
UR,SR

Supervisor execute, write, and read permission bits, and user execute, write, and read permission bits

WIMGE Memory/cache attributes—write-through, cache-inhibit, memory coherence required, guarded, endian

X0, X1 Extra system attribute bits

U0–U3 User attribute bits—used only by software

IPROT Invalidation protection—exists in TLB1 only

TGS Translation guest space

VF Virtualization fault. Identifies a page that always takes a data storage interrupt during data translation that is 
directed to the hypervisor, regardless of the setting of any other page attributes. Set by the hypervisor for pages 
associated with a device for which the hypervisor is providing a “virtual” device through emulation.
Also identifies a page table that is in virtualized memory when it is set in a TLB entry that is an indirect entry 
(IND=1) causing both data accesses and instruction fetch accesses that perform page table translation through 
this entry to take a data storage or instruction storage interrupt directed to the hypervisor. 

TLPID[0–5] Translation logical partition ID

IND Indirect bit—exists in TLB1 only. When set, this TLB entry is an indirect entry used to locate a page table.
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table translations can occur in the guest operating system with the true RPN written to the TLB entry using 
LRAT translation.

The hypervisor sets up translations in the LRAT providing the LPN to RPN translation by writing entries 
to the LRAT array using tlbwe and reading entries using tlbre with the ATSEL field in the MAS registers 
set to 1. If a guest operating system executes tlbwe and there is no matching LRAT translation, then an 
LRAT error interrupt occurs. If the TLB array that is being written to is ineligible for LRAT translation 
(for the e6500 core, any guest tlbwe that attempts to write TLB1 is ineligible), then an embedded 
hypervisor privilege exception occurs. In both of these cases, the hypervisor can write the appropriate 
LRAT entry or simply perform the tlbwe on behalf of the guest operating system, substituting the true RPN 
for the LPN in MAS3 and MAS7 before performing the tlbwe. The e6500 core supports LRAT translations 
for guest tlbwe execution or page table translation that writes to TLB0.

No analogous hardware translation mechanism exists for tlbre or tlbsx. If a guest operating system 
executes these instructions, an embedded hypervisor privilege interrupt occurs, and the hypervisor must 
emulate the tlbre or tlbsx and replace the resulting RPN with the guest’s LPN in the MAS3 and MAS7 
registers before returning to the guest operating system.

The e6500 core supports an eight-entry, fully associative LRAT.

6.4.1 LRAT entries

An LRAT entry consists of the fields listed in the following table.

Table 6-7. LRAT fields

Field Description

V Valid

LPID[0–5] Logical partition ID value. Identifies the logical partition ID (LPID) value for this LRAT entry. LPID is compared 
with LPIDR during translation to help select an LRAT entry. 

LPN[0–27] Logical page number. Describes the logical address of the start of the page. The number of bits that are valid 
(used in translation) depends on the size of the page. For guest execution of tlbwe, LPN is compared to the 
RPN fields specified by the MAS registers (MAS7 and MAS3) under a mask based on the LSIZE field of the 
LRAT entry. For guest page table translations, LPN is compared to PTE[ARPN] under a mask based on the 
LSIZE field of the LRAT entry. 

LSIZE[0–4] Logical page size. Describes the size of the logical page of the LRAT entry. Logical page sizes are in powers 
of two, such that the size of the page is 2LSIZE KB. Page sizes supported by the implementation are specified 
in LRATPS.

Writing an LRAT entry with a a page size not supported by the LRATPS register sets LSIZE to 2 (4 KB).

LRPN[0–27] LRAT real page number. For guest execution of tlbwe, bits 0:n-1 of LRPN are used to write the RPN field of a 
TLB entry instead of MASS3 and MAS7 (where n = 40-LSIZE). For guest page table translations, bits 0:n-1 of 
LRPN are used to write the RPN field of a TLB entry instead of PTE[ARPN] (where n = 40-LSIZE).
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6.4.2 LRAT entry page size

Each LRAT entry has a page size associated with it. This defines the how many bytes this particular LRAT 
entry supports. The possible sizes that are supported is implementation dependent and is reflected in the 
associated LRATPS register. An LRAT entry page size is established by writing an LRAT entry with 
MAS1[TSIZE] set to a value that represents an LRAT page size. LRAT page sizes are defined as powers 
of 2 KB values, such that the size of an LRAT page is 2TSIZEKB. Bits in the EPN and RPN fields associated 
with page offsets should be 0 based on LRAT page size. 

This table shows the valid page sizes supported by the e6500 core. Note that the e6500 core only 
implements the low-order 28 bits of the architected 52-bit LRPN field of the LRAT.

Table 6-8. LRAT page sizes

TSIZE
(LRATLSIZE)

Page Size
EPN and RPN Bits 

Required to be Zero 
when LRAT Written

RPN Written to TLB 
Entry on tlbwe LRAT 

hit
(LRAT[LRPN] || 

MAS[RPN])

0b00010 4 KB none LRPN0:27

0b00011 8 KB 51 LRPN0:26 || RPN51

0b00100 16 KB 50:51 LRPN0:25 || RPN50:51

0b00101 32 KB 49:51 LRPN0:24 || RPN49:51

0b00110 64 KB 48:51 LRPN0:23 || RPN48:51

0b00111 128 KB 47:51 LRPN0:22 || RPN47:51

0b01000 256 KB 46:51 LRPN0:21 || RPN46:51

0b01001 512 KB 45:51 LRPN0:20 || RPN45:51

0b01010 1 MB 44:51 LRPN0:19 || RPN44:51

0b01011 2 MB 43:51 LRPN0:18 || RPN43:51

0b01100 4 MB 42:51 LRPN0:17 || RPN42:51

0b01101 8 MB 41:51 LRPN0:16 || RPN41:51

0b01110 16 MB 40:51 LRPN0:15 || RPN40:51

0b01111 32 MB 39:51 LRPN0:14 || RPN39:51

0b10000 64 MB 38:51 LRPN0:13 || RPN38:51

0b10001 128 MB 37:51 LRPN0:12 || RPN37:51

0b10010 256 MB 36:51 LRPN0:11 || RPN36:51

0b10011 512 MB 35:51 LRPN0:10 || RPN35:51

0b10100 1 GB 34:51 LRPN0:9 || RPN34:51

0b10101 2 GB 33:51 LRPN0:8 || RPN33:51

0b10110 4 GB 32:51 LRPN0:7 || RPN32:51
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6.4.3 Reading and writing LRAT entries

LRAT entries may only be read or written in the hypervisor state (MSR[GS,PR] = 0b00). An LRAT entry 
can be read using tlbre and written using tlbwe with MAS0[ATSEL] = 1. In both cases, the LRAT entry 
is selected for reading and writing by setting the low-order 3 bits of MAS0[ESEL] to indicate the entry to 
read. Valid values for MAS0[ESEL] are from 0 to 7. 

When an LRAT entry is read with tlbre, the MAS registers are set from the selected LRAT entry as 
follows:

• MAS1[V] is set to LRAT[V].

• MAS2[EPN] is set to LRAT[LPN]0:27.

• MAS1[TSIZE] is set to LRAT[LSIZE].

• MAS3[RPN] (low order bits of the real page number) is set to LRAT[LRPN]8:27, MAS7[RPN] 
(high order bits of the real page number) is set to LRAT[LRPN]0:7.

• MAS8[TLPID] is set to LRAT[LPID].

When an LRAT entry is written with tlbwe, the selected LRAT entry is written from the MAS registers as 
follows:

• LRAT[V] is set to MAS1[V]. 

• LRAT[LPN]0:27 is set to MAS2[EPN].

• LRAT[LSIZE] is set to MAS1[TSIZE]. 

• LRAT[LRPN]8:27 is set to MAS3[RPN] (low-order bits of the real page number), LRAT[LRPN]0:7 
is set to MAS7[RPN] (high-order bits of the real page number).

• LRAT[LPID] is set to MAS8[TLPID].

0b10111 8 GB 31:51 LRPN0:6 || RPN31:51

0b11000 16 GB 30:51 LRPN0:5 || RPN30:51

0b11001 32 GB 29:51 LRPN0:4 || RPN29:51

0b11010 64 GB 28:51 LRPN0:3 || RPN28:51

0b11011 128 GB 27:51 LRPN0:2 || RPN27:51

0b11100 256 GB 26:51 LRPN0:1 || RPN26:51

0b11101 512 GB 25:51 LRPN0 || RPN25:51

0b11110 1 TB 24:51 RPN24:51

Table 6-8. LRAT page sizes (continued)

TSIZE
(LRATLSIZE)

Page Size
EPN and RPN Bits 

Required to be Zero 
when LRAT Written

RPN Written to TLB 
Entry on tlbwe LRAT 

hit
(LRAT[LRPN] || 

MAS[RPN])
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6.4.4 Invalidating LRAT entries

LRAT entries can only be invalidated by writing the LRAT entry with MAS1[V] = 0.

6.4.5 LRAT translation

LRAT translation is performed when the guest operating system writes a TLB entry by executing tlbwe or 
a page table translation occurs during the translation of a guest virtual address. The following sections 
detail how LRAT translation is performed for the two separate cases.

6.4.5.1 LRAT translation during tlbwe

During guest execution of tlbwe, the RPN fields of MAS7 and MAS3 are considered to be a logical page 
number and must be translated by the LRAT into a real page number.

The RPN fields in MAS7 and MAS3 are compared against the LPN field of the LRAT entries under mask 
based on the LRAT entry page size. When a matching entry is found, the bits of the RPN fields of MAS7 
and MAS3, based on the page size of the LRAT entry, are replaced with the corresponding bits of the 
LRPN field of the LRAT entry. Which bits are replaced are determined by the size of the matching LRAT 
entry in the same type of fashion that occurs during address translation when EA bits are replaced by bits 
in the RPN based on the matching TLB page size.

Note that the translation process does not change the RPN fields in MAS7 and MAS3. Rather, the 
translated real page number is written to the TLB entry.

The execution of tlbwe through LRAT translation is described as follows:

if MSRGS = 1 & MSRPR = 0 then // this is a guest TLB write
if MAS0TLBSEL = 1 | EPCRDGTMIthen

embedded hypervisor privilege exception (interrupt)
else

for n = 0 to LRATCFGNENTRY 
if (LRAT[n]V = 0) | (LRAT[n]LPID != LPIDR) then

next // not valid or wrong partition, check next entry
mask  ~((1 << LRAT[n]LSIZE-2) - 1)
if ((MAS7RPN || MAS3RPN) & mask) = LRAT[n]LPN then

rpn  LRAT[n]LRPN | (MAS7RPN || MAS3RPN) & ~mask)
goto lratdone

endfor
LRAT error exception (interrupt)

else
rpn  MAS7RPN || MAS3RPN// hypervisor write, no LRAT translation done

lratdone:
// value to write to TLBRPN is in rpn
// continue on with writing selected TLB entry..

It is a serious programming error for more than one LRAT translation to match any given value for the RPN 
fields in MAS7 and MAS3. The hypervisor can have such an occurrence trigger a machine check interrupt 
if HID0[EN_L2MMU_MHD] = 1.
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6.4.5.2 LRAT translation during page table translation 

LRAT translation is also performed when a guest memory access results in a page table translation. The 
abbreviated real page number bits of the ARPN field in the PTE are treated as a logical page number and 
are replaced with the LRAT real page number bits from the LRPN field of the selected LRAT entry. The 
selection process is based on a masked comparison of each LRAT entry LPN field with the ARPN field in 
the PTE. The LRAT real page number bits are concatenated with the logical page offset bits from the 
ARPN field in the PTE to form the real page number, which is written to a hardware selected TLB entry. 
Note that the page translation process does not change any fields in the PTE, but that the translated real 
page number is written to the TLB entry (entry).

The LRAT translation during page table translation is described as follows:

//
// assume a valid PTE is located.
if instruction fetch then

gs  MSRGS
lpid  LPIDR

else if external PID load then
gs  EPLCEGS
lpid  EPLCELPID

else if external PID store then
gs  EPSCEGS
lpid  EPSCELPID

else // normal load or store
gs  MSRGS
lpid  LPIDR

if gs then // this is a guest TLB tablewalk
for n = 0 to LRATCFGNENTRY 

if (LRAT[n]V = 0) | (LRAT[n]LPID != lpid) then
next // not valid or wrong partition, check next entry

mask  ~((1 << LRAT[n]LSIZE-2) - 1)
if (PTEARPN & mask) = LRAT[n]LPN then

entryrpn  LRAT[n]LRPN | (PTEARPN & ~mask)
goto lratdone

endfor
LRAT error exception (interrupt)

else
entryrpn  PTEARPN[12:39] // hypervisor tablewalk, no LRAT translation done

lratdone:
// value to write to TLBRPN is in rpn

It is a serious programming error for more than one LRAT translation to match any given value for a logical 
address to be translated. The hypervisor can have such an occurrence trigger a machine check interrupt if 
HID0[EN_L2MMU_MHD] = 1.

6.5 TLB instructions—implementation
As described in EREF, TLBs are accessed indirectly through MMU assist (MAS) registers or through PTE 
entries. Software can write and read the MAS registers with mtspr and mfspr. MAS registers contain 
information related to reading and writing a given entry within the TLBs. For example, data is read from 
the TLBs or LRAT into the MAS registers with a TLB Read Entry (tlbre) instruction, and data is written 
to the TLBs or LRAT from the MAS registers with a TLB Write Entry (tlbwe) instruction.
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The tlbre, tlbwe, tlbsx, tlbivax, tlbsync, and tlbilx instructions are summarized in this section.

6.5.1 TLB Read Entry (tlbre) instruction 

TLB entries can be read by executing tlbre instructions. When tlbre executes, MAS registers are used to 
index a specific TLB entry. Upon completion of the tlbre, the MAS registers contain the contents of the 
indexed TLB entry.

Selection of the TLB entry to read is performed by setting MAS0[ATSEL] = 0 and MAS0[TLBSEL,ESEL] 
and MAS2[EPN] to indicate the entry to read. MAS0[TLBSEL] selects which TLB the entry should be 
read from, and MAS2[EPN] selects the set of entries from which MAS0[ESEL] selects an entry. For fully 
associative TLBs, MAS2[EPN] is not required because MAS0[ESEL] fully identifies the TLB entry. 
MAS0[ATSEL] determines whether the tlbre instruction reads from the TLB or from the LRAT. See 
Section 6.4.3, “Reading and writing LRAT entries” for how LRAT reads are performed.

The selected entry is then used to update the following MAS register fields: V, IPROT, TID, TS, TSIZE, 
EPN, WIMGE, RPN, U0—U3, X0, X1, TLPID, TGS, VF, IND, and permission bits. If the TLB array 
supports NV, it is used to update the NV field in the MAS registers; otherwise, the contents of NV are 
undefined. The update of MAS registers as a result of a tlbre instruction is summarized in Table 6-11. 

tlbre can only be executed by the hypervisor. If the guest supervisor attempts a tlbre, an embedded 
hypervisor privilege interrupt occurs.

Note that architecturally, if the instruction specifies a TLB entry that is not found, the results placed in 
MAS0–MAS3, MAS5, MAS7 and MAS8 are undefined. However, for the e6500 core, the TLBSEL, ESEL 
and EPN fields always index to an existing L2 TLB entry and that indexed entry is read. Note that EPN 
bits are only used to index into TLB0. In the case of TLB1, the EPN field is unused for tlbre. See EREF 
for information at the architecture level.

For the e6500 core, MAS0[HES] is ignored when executing tlbre.

6.5.1.1 Reading TLB1 and TLB0 array entries

TLB entries are read by first writing the entry-identifying information into MAS0 (and MAS2 for TLB0), 
using mtspr and then executing the tlbre instruction. 

To read a TLB1 entry, MAS0[TLBSEL] must be = 01 and MAS0[ESEL] must point to the desired entry. 
To read a TLB0 entry, MAS0[TLBSEL] must be = 00, MAS0[ESEL] must point to the desired way, and 
EPN[45–51] in MAS2 must be loaded with the desired index.

6.5.2 TLB Write Entry (tlbwe) instruction

TLB entries can be written by executing tlbwe instructions. When tlbwe executes, MAS registers are used 
to index a specific TLB entry and contain the contents to be written to the indexed TLB entry. Upon 
completion of tlbwe, the TLB entry contents of the MAS registers are written to the indexed TLB entry.

To write a specific TLB entry, the entry to write is determined by setting MAS0[ATSEL] = 0, 
MAS0[HES] = 0, and MAS0[TLBSEL,ESEL] and MAS2[EPN] values. MAS0[TLBSEL] selects which 
TLB the entry should be written to; MAS2[EPN] selects the set of entries from which MAS0[ESEL] 
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selects an entry. For fully associative TLBs, MAS2[EPN] is not used to identify a TLB entry because the 
value in MAS0[ESEL] fully identifies the TLB entry. MAS0[ATSEL] determines whether the tlbwe 
instruction writes to the TLB or to the LRAT. See Section 6.4.3, “Reading and writing LRAT entries” for 
how LRAT writes are performed. When tlbwe is executed in the guest-supervisor state, the value of 
MAS0[ATSEL] is ignored and is always assumed to be 0.

To write an entry to TLB0 allowing the processor to select the entry using hardware entry select (HES), 
software should set MAS0[HES] = 1, MAS0[ATSEL] = 0, and MAS0[TLBSEL] and MAS2[EPN] values. 
In this case, hardware chooses the way using the stored NV value from the set selected by MAS2[EPN].

Hardware entry select is only available for TLB0 and for writes to TLB1; MAS0[HES] is ignored.

The selected entry is then written with following MAS fields: V, IPROT, TID, TS, TSIZE, EPN, WIMGE, 
U0—U3, X0, X1, TLPID, TGS, VF, IND, and permission bits. If tlbwe is executed in the hypervisor state, 
RPN from the MAS registers is used to write the TLB entry. If tlbwe is executed in the guest-supervisor 
state and EPCR[DGTMI] = 0, RPN from the MAS registers is used as a logical address and is translated 
to a real address through the LRAT. The resulting translated real address is written to the TLB entry. If the 
TLB array supports NV, it is written with the NV value if MAS0[HES] = 0. If executing in 32-bit mode, 
the written TLB entry has the upper 32 bits of the EPN field set to 0.

The effects of updating the TLB entry are not guaranteed to be visible to the programming model until the 
completion of a context synchronizing operation. Writing a TLB entry that is used by the programming 
model prior to a context synchronizing operation produces undefined behavior. If the changes to the TLB 
need to be synchronized in the other thread, the other thread must be disabled and re-enabled after the 
context synchronizing operation has been performed in the thread that executed tlbwe.

If EPCR[DGTMI] is set, MAS0[TLBSEL] = 0, and tlbwe is executed in the guest-supervisor state, an 
embedded hypervisor privilege interrupt occurs and no TLB entry is written. If EPCR[DGTMI] is not set, 
MAS0[TLBSEL] = 0, tlbwe is executed in the guest-supervisor state, and. if a matching LRAT translation 
is not found, an LRAT error interrupt occurs. See Section 6.4.5, “LRAT translation.”

Note that architecturally, if the instruction specifies a TLB entry that is not found, the results are undefined. 
However, for the e6500 core, the TLBSEL, ESEL and EPN fields always index to an existing L2 TLB 
entry, and that indexed entry is written. EPN bits are only used to index into TLB0. In the case of TLB1, 
the EPN field is unused for tlbwe. See EREF for additional architecture information.

6.5.2.1 Writing to the TLB1 array

TLB1 can be written by first writing the necessary information into MAS0–MAS3, MAS5, MAS7, and 
MAS8 using mtspr and then executing the tlbwe instruction. To write an entry into TLB1, 
MAS0[TLBSEL] must equal 1, MAS0[ATSEL] must equal 0, and MAS0[ESEL] must point to the 
desired entry. When the tlbwe instruction is executed, the TLB entry information stored in MAS0–MAS3, 
MAS5, MAS7, and MAS8 is written into the selected TLB entry in the TLB1 array.

Executing tlbwe with MAS0[TLBSEL] = 1 in the guest-supervisor state always causes an embedded 
hypervisor privilege exception. Writes to TLB1 are never translated through the LRAT.

Indirect entries can be written to the TLB1 array.
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6.5.2.2 Writing to the TLB0 array

TLB0 can be written by first writing the necessary information into MAS0–MAS3, MAS5, MAS7, and 
MAS8 using mtspr and then executing the tlbwe instruction. To write an entry into TLB0, 
MAS0[TLBSEL] must equal 0, MAS0[ATSEL] must equal 0, MAS0[ESEL] must point to the desired 
way (unless MAS0[HES] = 1), and EPN[45–51] in MAS2 must be loaded with the desired index. When 
tlbwe executes in hypervisor mode, the TLB entry information in MAS0–MAS3, MAS5, MAS7, and 
MAS8 is written into the selected entry in TLB0. When tlbwe executes in guest-supervisor mode, the TLB 
entry information in MAS3 and MAS7 is translated through the LRAT, and the other non-RPN fields of 
MAS0–MAS3, MAS5, MAS7, and MAS8 are written into the selected entry in TLB0 along with translated 
RPN.

Indirect entries cannot be written to the TLB0 array. The e6500 core always uses 0 for MAS1[IND] when 
writes to the TLB0 array are performed.

6.5.3 TLB Search (tlbsx) instruction—searching TLB1 and TLB0 arrays 

Software can search the MMU by using tlbsx, which uses GS, LPIDR, IND, AS, and PID values from 
MAS5 and MAS6 instead of from LPIDR, PID, and the MSR. This allows software to search address 
spaces that differ from the current address space defined by the GS, AS, LPID and PID registers. This is 
useful for TLB fault handling.

To search for a TLB, software loads MAS5[SGS] with a GS value, MAS5[SLPID] with an LPID value, 
MAS6[SPID] with a PID value, MAS6[SIND] with an IND value, and MAS6[SAS] with an AS value to 
search for. Software then executes tlbsx specifying the EA to search for. 

If a matching, valid TLB entry is found, the MAS registers are loaded with the information from that TLB 
entry as if the TLB entry were read from by executing tlbre. If the search is successful, MAS1[V] is set to 
1. If the search is unsuccessful, MAS1[V] is set to 0.

Executing tlbsx updates the MAS registers conditionally based on the success or failure of a TLB lookup 
in the L2 MMU. The values placed into MAS registers differ, depending on whether the search is 
successful. Section 6.10.1, “MAS register updates,” describes how MAS registers are updated.

NOTE
Note that rA = 0 is the preferred form for tlbsx and some Freescale 
implementations, including the e6500, take an illegal instruction exception 
program interrupt if rA!= 0. 

6.5.4 TLB Invalidate Local Indexed (tlbilx) instruction

Zero, one, or more TLB entries can be invalidated through the execution of a tlbilx instruction. Note that 
guest-supervisor software can execute tlbilx. The behavior depends on the T operand, as follows:

• If T = 0, all TLB entries for which entryTLPID = MAS5[SLPID] are invalidated.

• If T = 1, all TLB entries for which entryTLPID = MAS5[SLPID] and entryTID = MAS6[SPID] are 
invalidated.
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• If T = 3, all TLB entries for which entryTLPID = MAS5[SLPID], entryTID = MAS6[SPID], entryIND 
= MAS6[SIND], entryTGS = MAS5[SGS], and (entryEPN&m) = (EA0:51&m), where m is an 
appropriate mask based on page size, are invalidated.

If an entry selected for invalidation has IPROT set, that entry is not invalidated.

Unlike tlbivax, TLB entries are only invalidated on the processor that executes tlbilx. The tlbilx 
instruction invalidates TLB entries for all threads, but the results are only synchronized in the thread that 
executes tlbilx. Software should arrange to execute tlbilx on the other thread and perform appropriate 
synchronization.

EPCR[DGTMI] controls whether attempted execution of tlbilx causes an embedded hypervisor privilege 
interrupt when the processor is in the guest-supervisor state. 

NOTES 
The tlbilx instruction is the preferred way of performing TLB invalidations, 
especially for operating systems running as a guest to the hypervisor 
because the invalidations are partitioned and do not require hypervisor 
privilege.

The preferred form of tlbilx has rA = 0. Forms where rA != 0 takes an 
illegal instruction exception on some Freescale processors.

The hypervisor should always write MAS5[SLPID] = LPIDR and 
MAS5[SGS] = 1 when dispatching to a guest.

Executing tlbilx with T = 0 or T = 1 may take many cycles to perform. 
Software should only issue these operations when an LPID or a PID value 
is reused or taken out of use.

6.5.5 TLB Invalidate (tlbivax) instruction

The tlbivax instruction invalidates any TLB entry that corresponds to the virtual addresses calculated by 
the instruction. This includes entries in the executing processor and TLBs on other processors and devices 
throughout the coherence domain of the processor executing tlbivax. 

Software should provide the address of a byte within a page to be invalidated as the EA (compared with 
EPN under mask based on page size) and also write the following MAS registers to further describe the 
virtual address of the TLB entry to be invalidated:

MAS5[SLPID] the LPID value to match (compared with TLPID)

MAS5[SGS] the GS value to match (compared with TGS)

MAS6[SPID] the PID value to match (compared with TID)

MAS6[SAS] the AS value to match (compared with TS)

MAS6[SIND] the IND value to match (compared with IND)

Information about the invalidation from the tlbivax instruction and the MAS registers is encoded into a 
CoreNet transaction and is broadcast to all other processors in the coherence domain. Each processor in 
the coherence domain decodes the CoreNet transaction (including the processor that executed tlbivax) and 



Memory Management Units (MMUs)

e6500 Core Reference Manual, Rev 0

Freescale Semiconductor 6-31
 

performs the invalidation. All TLB entries that match the criteria above are invalidated, except entries for 
which IPROT is set.

Other TLB entries may be invalidated, but in no case will any TLB entries (including ones that match the 
invalidation criteria) with the IPROT attribute set be invalidated.

Because the virtual address can be much larger than the address available for the CoreNet transaction, a 
subset of the full virtual address is broadcast that fits within the space of the implemented physical 
addressing mode, which may result in a more generous invalidation.

NOTE
Note that rA = 0 is the preferred form for tlbivax and some Freescale 
implementations take an illegal instruction exception program interrupt if 
rA!= 0. 

6.5.6 TLB Synchronize (tlbsync) Instruction

The tlbsync instruction causes a TLBSYNC transaction on the CoreNet interface. This instruction 
effectively synchronizes the invalidation of TLB entries. tlbsync does not complete until all memory 
accesses caused by instructions issued before an earlier tlbivax instruction have completed.

NOTE
Software must ensure that only one tlbsync operation is active at a given 
time. A second tlbsync issued (from any core in the coherence domain) 
before the first one has completed can cause processors to hang. Software 
should make sure the tlbsync and its associated synchronization is 
contained with a mutual exclusion lock that all processors must acquire 
before executing tlbsync.

6.6 TLB entry maintenance—details
TLB entries can be loaded and maintained by the system software or can be loaded by hardware during a 
page table translation. The e6500 core provides some hardware assistance for these software tasks. Note 
that the system software cannot directly access the L1 TLBs. The L1 TLBs are completely and 
automatically maintained in hardware and are filled from the contents of the L2 TLBs during translation.

In addition to the resources described in Table 6-1, hardware assists TLB entries maintenance as follows:

• Automatic loading of MAS0–MAS2 and MAS6 based on the default values in MAS4 and other 
context when a TLB miss exceptions. This automatically generates most fields of the required TLB 
entry on a miss. Thus, software should load MAS4 with likely values to be used in the event of a 
TLB miss.

• Automatic loading of the data exception address registers (DEAR or GDEAR) with the EA of the 
load, store, or cache management instruction that caused an alignment, data TLB miss (data TLB 
error interrupt), LRAT error interrupt (on the data access), or permissions violation (DSI interrupt).

• Automatic loading into SRR0 of the EA of the instruction that causes a TLB miss interrupt, LRAT 
error interrupt, or a data storage interrupt.
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• Automatic loading of the LPER with information about the PTE during a page table translation that 
caused an LRAT error interrupt.

• Automatic loading of a TLB entry into TLB0 as the result of a successful page table translation.

• Automatic updates of the next victim (NV) field and MAS0[ESEL] fields for TLB0 entry 
replacement on TLB misses (TLB error interrupts); this occurs if TLBSELD = 0. See 
Section 6.3.2.2, “Replacement algorithms for L2 MMU entries.”

• When tlbwe executes with MAS0[HES] = 0, the information for the selected victim is read from 
the selected L2 TLB (TLB1 or TLB0). The victim’s EPN and TS are sent to both L1 MMUs to 
provide back-invalidation. Thus, if the selected victim in the L2 MMU also resides in an L1 MMU, 
it is invalidated (or victimized) in the L1 MMU. This forces inclusion in the TLB hierarchy when 
software is controlling which entries are written. Additionally, the new TLB entry contained in 
MAS0–MAS3, MAS7, and MAS8 is written into the selected TLB. 

Note that back invalidations are not performed in the L1 MMU when an L2 MMU entry is victimized by 
being written in the following cases:

• When an L2 MMU entry is written by hardware due to a page table translation that was successful

• When a TLB0 L2 MMU entry is written with tlbwe and MAS0[HES] = 1

In both cases, software does not control which entry is being victimized and, therefore, should not expect 
the victimized entry to be removed from the L1 MMU.

Note that although tlbwe loads an L2 TLB entry, it does not load an L1 TLB entry. L1 arrays are loaded 
with new entries (automatically by the hardware) only when an access misses in the L1 array, but hits in a 
corresponding L2 array.

See Section 6.10.1, “MAS register updates,” for a complete description of automatic fields loaded into the 
MAS registers on execution of TLB instructions and for various exception conditions.

EREF provides more information on some actions taken on MMU exceptions.

6.7 TLB and LRAT states after reset
During reset, all LRAT, L1, and L2 MMU TLB entries are flash invalidated. Then entry 0 of TLB1 is 
loaded with the values shown in Table 6-9. Note that only the valid bits for other TLB entries are cleared; 
other fields are not set to a known state, so software must ensure that all fields of an entry are initialized 
appropriately through the MAS registers before it is used for translation.
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NOTE
This default TLB entry translates the first instruction fetch out of reset (at 
effective address 0xFFFF_FFFC). This instruction should be a branch to the 
beginning of this page. Because this page is only 4 KB, the initial code in 
this page needs to set up more valid TLB entries (and pages) so the program 
can branch into other pages for booting the operating system. In particular, 
the interrupt vector area and the pages that contain the interrupt handlers 
should be set up so exceptions can be handled early in the booting process.

6.8 The G bit (of WIMGE)
The G bit provides protection from bus accesses due to speculative and faultable instruction execution. A 
speculative access is defined as an access caused by an instruction that is downstream from an unresolved 
branch. A faultable access is defined as an access that could be cancelled due to an exception on an 
uncompleted instruction.

On the e6500 core, if the page for this type of access is marked with G = 0 (unguarded), this type of access 
may be issued to the CoreNet interface, regardless of the completion status of other instructions. If G = 1, 
the access stalls if it misses in the cache until the access is known to be required by the program execution 
model; that is, all previous instructions complete without exception and no asynchronous interrupts occur 
between the time that the access is issued to CoreNet and the time that CoreNet transaction request 
completes. For reads, this requires that the data be returned and the instruction is retired. For writes, the 
instruction retires when the write transaction is committed to be sent to the CoreNet. 

Table 6-9. TLB1 entry 0 values after reset

Field Reset Value Comments

V 1 Entry is valid

TS 0 Address space 0

TGS 0 Hypervisor address space

TLPID 0 TLPID value for hypervisor page

TID 0 TID value for shared (global) page

EPN 0x00000000_FFFFF Address of last 4 KB page in 32-bit address space. This does not include page offset 
bits—specifies the last 4 K page of 32-bit address space —EA of 0x00000000_FFFFF000.

RPN 0x00FFFFF RPN. This does not include page offset bits —specifies the upper 28 bits of the 40-bit real 
address 0x00FFFFF000.

SIZE 0b00010 4 KB page size

SX/SR/SW 0b111 Full supervisor mode access allowed

UX/UR/UW 0b000 No user mode access allowed

WIMGE 0b01010 Caching-inhibited, noncoherent, guarded, big-endian

X0–X1 0b00 Reserved system attributes

U0–U3 0b0000 User attribute bits

IPROT 1 Page is protected from invalidation

VF 0 Page is not a virtualization page

IND 0 Page is not an indirect entry
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An access with G = 1 begun to the CoreNet interface is guaranteed to complete. That is, after the address 
tenure is acknowledged on the CoreNet, the access completes, even if an asynchronous interrupt is 
pending.

Note that G = 1 misaligned accesses are not guaranteed to be accessed only once. For example, a load 
address that crosses a page boundary where one of the parts encounters a TLB miss and the other does not, 
the non-TLB miss part may occur, and the TLB miss exception may be taken. When software loads a valid 
TLB entry for the part that missed, the instruction is returned to and re-executes performing the load 
operation again to both parts of the misaligned access.

The G bit is ignored for instruction fetches, and instructions are fetched speculatively from guarded pages. 
To prevent speculative fetches from guarded pages without instructions, the page should be designated as 
no-execute (with the UX/SX page permission bits cleared).

6.9 MMU parity detection and injection

6.9.1 TLB0 parity detection

The TLB0 array is equipped with parity detection. In general, software is notified of any parity errors that 
occur through a machine check interrupt. MCSR[TLBPERR] is set when a parity error is discovered. 
Software should log the error through the machine check handler (and clear the status in MCSR); however, 
the hardware will perform the following actions at the time the error is detected:

• If the error occurred during a tlbre or tlbsx instruction, the TLB entry read is returned as invalid 
(MAS0[V] = 0). The entire TLB0 array is invalidated. In the case of tlbsx, the MAS registers are 
set as if a tlbsx miss occurred.

• If the error occurred during a tlbwe instruction, the entry written and the rest of the TLB0 array is 
invalidated.

• If the error occurred during an invalidation (from a tlbilx or tlbivax), the entire TLB0 array is 
invalidated.

• If the error occurred during translation, the load, store, or instruction fetch takes an error report 
exception. The entire TLB0 array is invalidated.

Parity detection (and resulting invalidations) in TLB0 assume that software treats TLB0 as an array that 
can be invalidated at any time and that such invalidations do not cause errors because software reloads the 
TLB entries in the miss handler from a page table in memory. Most modern operating systems treat TLB0 
as such.

There is no parity detection for the TLB1 array.

6.9.2 TLB0 parity injection

Parity errors can be injected into the TLB0 array for the purposes of testing error detection and recovery. 
If software writes MMUCSR0[TLB_EI] = 1, then parity associated with a TLB0 entry is inverted (set to 
indicate a parity error) when the TLB0 entry is written. In this case, a parity error is not detected on the 
tlbwe operation when injection is performed. To test TLB0 parity detection, software should do the 
following:
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• Ensure the other thread is disabled by writing to TENC then polling TENSR to see that the thread 
is disabled. This prevents the other thread from accessing the MMU.

• Ensure the testing code and any data references it may make are running in addresses mapped by 
TLB1 only.

• Block any interrupts to prevent the test code from being interrupted.

• Write MMUCSR0[TLB_EI] = 1. Perform an isync.

• Perform a tlbwe operation that creates a test TLB entry for which the address mapping can be 
accessed from the current state, which is used to test the parity detection.

• Perform a sync followed by an isync.

• Execute an instruction that accesses the test TLB entry.

• A machine check should occur on the parity detection.

• After testing is completed, software should write MMUCSR0[TLB_EI] = 0 and perform an isync.

6.10 MMU registers
This table provides cross-references to sections with more detailed bit descriptions for the e6500 core 
MMU registers. EREF lists the architecture definitions for these registers.

6.10.1 MAS register updates

The following table summarizes how MAS register are updated by hardware for each stimulus. The table 
can be interpreted as follows:

• A field name refers to a MAS register field. 

• PID, MSR, EPLC, and EPSC refer to their respective registers.

Table 6-10. Registers used for MMU functions

Registers Section/Page

Process ID (PID) register 2.13.2/2-62

Logical Partition ID (LPIDR) register 2.13.1/2-62

LRAT Configuration (LRATCFG) register 2.13.8/2-67

LRAT Page Size (LRATPS) register 2.13.9/2-69

Logical Page Exception (LPER/LPERU) register 2.9.3/2-30

MMU Control and Status (MMUCSR0) register 2.13.3/2-62

MMU Configuration (MMUCFG) register 2.13.4/2-63

TLB configuration registers (TLB0CFG–TLB1CFG) 2.13.5/2-64

TLB page size registers (TLB0PS–TLB1PS) 2.13.6/2-66

Embedded Page Table Configuration (EPTCFG) register 2.13.7/2-66

MMU assist registers (MAS0–MAS8) 2.13.10/2-69

Data Exception Address (DEAR/GDEAR) register 2.9.2/2-30

External PID Load Context (EPLC) register 2.13.11.1/2-79

External PID Store Context (EPSC) register 2.13.11.2/2-80
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• EA refers to the effective address used for the memory access that caused a TLB error (miss).

• TLB0[NV] refers to the next victim value for the set selected by EA stored in TLB0.

• The TLB entry specified by TLBSEL and ESEL is referred to as TLB0 (if the value comes only 
from TLB0), TLB1 (if the value comes only from TLB1), or TLB if the value can come from the 
selected TLB array and the field is stored the same regardless of which array it is in.

Note that MAS registers are not updated when an LRAT error interrupt occurs.

Table 6-11. MMU assist register field updates

MAS Field
Inst TLB Error
Data TLB Error tlbsx Hit tlbsx Miss tlbre

MAS0

ATSEL 0 0 0 —

TLBSEL TLBSELD if TLB0 hit
0

else
1

TLBSELD —

ESEL if TLBSELD = 0
0b0000 || TLB0[NV]

else
0b000000

if TLBSEL = 0
0b0000 || (way that hit)

else
(entry that hit)

if TLBSELD = 0
0b0000 || TLB0[NV]

else
0b000000

—

HES if TLBSELD = 0
1]

else
0

0 if TLBSELD = 0
1]

else
0

—

NV if TLBSELD = 0
mod(TLB0[NV]+1,8)

else
0

if TLBSEL = 0
TLB0[NV]

else
0

if TLBSELD = 0
mod(TLB0[NV]+1,8)

else
0

On TLB read (ATSEL = 0):
if TLBSEL = 0

TLB0[NV]
else

0
On LRAT read (ATSEL = 1):
unchanged

MAS1

IPROT 0 If TLB1 hit
TLB1[IPROT]

else
0

0 On TLB read (ATSEL = 0):
If TLB1 hit

TLB1[IPROT]
else

0
On LRAT read (ATSEL = 1):
0

TID if ext PID load
EPLC[EPID]

elseif ext PID store
EPSC[EPID]

else
PID

TLB[TID] SPID On TLB read (ATSEL = 0):
TLB[TID]
On LRAT read (ATSEL = 1):
0
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TSIZE TSIZED if TLB1 hit
TLB1[TSIZE]

else
2

TSIZED On TLB read (ATSEL = 0):
if TLB1 hit

TLB1[TSIZE]
else

2
On LRAT read (ATSEL = 1):
LRAT[LSIZE]

TS if Data TLB Error
if ext PID load

EPLC[EAS]
elseif ext PID store

EPSC[EAS]
else

MSR[DS]
else

MSR[IS]

TLB[TS] SAS On TLB read (ATSEL = 0):
TLB[TS]
On LRAT read (ATSEL = 1):
0

V 1 1 0 On TLB read (ATSEL = 0):
TLB[V]
On LRAT read (ATSEL = 1):
LRAT[V]

IND INDD TLB[IND] INDD On TLB read (ATSEL = 0):
if TLB1 hit

TLB[IND]
else

0
On LRAT read (ATSEL = 1):
0

MAS2

WIMGE  WIMGED TLB[WIMGE] WIMGED On TLB read (ATSEL = 0):
TLB[WIMGE]
On LRAT read (ATSEL = 1):
0

X0, X1 X0D, X1D TLB[X0, X1] X0D, X1D On TLB read (ATSEL = 0):
TLB[X0,X1]
On LRAT read (ATSEL = 1):
0

EPN[0:31] EA[0:31] of access

Note: if MSR[CM] = 0, 
then EA[0:31] must be 
0.

if MSR[CM] = 0
unchanged

else
TLB[EPN[0:31]]

EA[0:31] of access

Note: if MSR[CM] = 0, 
then EA[0:31] must be 
0.

On TLB read (ATSEL = 0):
if MSR[CM] = 0

unchanged
else

TLB[EPN[0:31]]
On LRAT read (ATSEL = 1):
LRAT[LPN[0:31]]

Table 6-11. MMU assist register field updates (continued)

MAS Field
Inst TLB Error
Data TLB Error

tlbsx Hit tlbsx Miss tlbre
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EPN[32:51] EA[32:51] of access if TLBSEL = 0
TLB[EPN[32:44]] || EPN[45:51]

else
TLB[EPN[32:51]]

EA[32:51] of access On TLB read (ATSEL = 0):
if TLBSEL = 0

TLB[EPN[32:44]] || EPN[45:51]
else

TLB[EPN[32:51]]
On LRAT read (ATSEL = 1):
LRAT[LPN[32:51]]

MAS3

UR,SR,UW,
SW,UX,SX

Zeros if SIND = 0
TLB[UR,SR,UW,SW,UX,SX]

else
see SPSIZE below

Note: SR is always set to TLB[SR] 
regardless of whether the read 
entry is an indirect entry

Zeros On TLB read (ATSEL = 0):
f SIND = 0

TLB[UR,SR,UW,SW,UX,SX]
else

see SPSIZE below

Note: SR is always set to 
TLB[SR] regardless of whether 
the read entry is an indirect entry
On LRAT read (ATSEL = 1):
0

SPSIZE Zeros if SIND = 1
2

else
see PERMIS above

Zeros On TLB read (ATSEL = 0):
if SIND = 1

TLB[SPSIZE]
else

see PERMIS above
On LRAT read (ATSEL = 1):
0

U0–U3 Zeros TLB[U0-U3] Zeros On TLB read (ATSEL = 0):
TLB[U0-U3]
On LRAT read (ATSEL = 1):
0]

RPN[32:51] Zeros TLB[RPN[32:51]] Zeros On TLB read (ATSEL = 0):
TLB[RPN[32:51]]
On LRAT read (ATSEL = 1):
LRAT[LRPN[32:51]]

MAS4

WIMGED — — — —

WIMGED,
X0D,X1D,
TIDSELD,
TLBSELD,
TSIZED

— — — —

INDD — — — —

MAS5

SGS — — — —

SLPID — — — —

Table 6-11. MMU assist register field updates (continued)

MAS Field
Inst TLB Error
Data TLB Error

tlbsx Hit tlbsx Miss tlbre
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MAS6

SAS if Data TLB Error
if ext PID load

EPLC[EAS]
elseif ext PID store

EPSC[EAS]
else

MSR[DS]
else

MSR[IS]

— — —

SPID if ext PID load
EPLC[EPID]

elseif ext PID store
EPSC[EPID]

else
PID

— — —

SIND INDD — — —

MAS7

RPN[24:31] Zeros TLB[RPN[24:31]] Zeros On TLB read (ATSEL = 0):
TLB[RPN[24:31]]]
On LRAT read (ATSEL = 1):
LRAT[LRPN[24:31]]

MAS8

TGS — TLB[TGS] — On TLB read (ATSEL = 0):
TLB[TGS]
On LRAT read (ATSEL = 1):
0

VF — TLB[VF] — On TLB read (ATSEL = 0):
TLB[VF]
On LRAT read (ATSEL = 1):
0

TLPID — TLB[TLPID] — On TLB read (ATSEL = 0):
TLB[TLPID]
On LRAT read (ATSEL = 1):
LRAT[LPID]

Table 6-11. MMU assist register field updates (continued)

MAS Field
Inst TLB Error
Data TLB Error

tlbsx Hit tlbsx Miss tlbre
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Chapter 7  
Timer Facilities
This chapter describes specific details of the e6500 core implementation of architecture-defined timer 
facilities. These resources, which include the time base (TB), alternate time base (ATB), decrementer 
(DEC), fixed-interval timer (FIT), and watchdog timer, are described in detail in EREF. 

7.1 Timer facilities
The TB, DEC, FIT, ATB, and watchdog timer provide timing functions for the system. All of these must 
be initialized during start-up.

• The TB provides a long-period counter driven by a frequency that is implementation dependent. 
The TB is shared by all of the threads in the core.

• The DEC, a counter that is updated at the same rate as the TB, provides a means of signaling an 
exception after a specified amount of time has elapsed, unless one of the following occurs:

— DEC is altered by software in the interim.

— The TB update frequency changes.

Each thread has a private DEC that is typically used as a general-purpose software timer.

• The clock source for the TB and the DEC is driven by the integrated device and is normally 
selectable to be a ratio of some integrated device clock frequency, or driven from a clock source 
external to the integrated device (that is, customer supplied). See the reference manual of the 
integrated device for details.

• The FIT is essentially a selected bit of the TB that provides a means of signaling an exception 
whenever the selected bit transitions from 0 to 1 in a repetitive fashion. The FIT is typically used 
to trigger periodic system maintenance functions. Software may select any bit in the TB to serve 
as the FIT. Each thread has a private FIT.

• The ATB provides a 64-bit timer that cannot be written and that increments at an 
implementation-dependent frequency. For the e6500 core, the ATB frequency is the same as the 
core frequency, which makes the ATB useful for measuring elapsed time in core clocks. The ATB 
is shared by all of the threads in the core.

• The watchdog timer is also a selected bit of the TB that provides a means of signaling a critical 
class exception whenever the selected bit transitions from 0 to 1. In addition, if software does not 
respond in time to the initial exception (by clearing the associated status bits in the TSR before the 
next expiration of the watchdog timer interval), then a watchdog timer-generated processor reset 
may result, if so enabled. The watchdog timer is typically used to provide a system error recovery 
function. Software may select any bit in the TB to serve as the watchdog timer. Each thread has a 
private watchdog timer.
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The relationship of these timer facilities (except for the ATB) to each other is shown in the following figure.

Figure 7-1. Relationship of timer facilities to time base

7.2 Timer registers
This section describes registers used by the timer facilities.

• Timer Control (TCR) register—Provides control information for the timers of a thread. TCR 
controls decrementer, fixed-interval timer, and watchdog timer options. Each thread has a private 
TCR.

Section 2.8.1, “Timer Control (TCR) register,” describes TCR in detail.

• Timer Status (TSR) register—Contains status on timer events and the most recent watchdog 
timer-initiated processor reset. Section 2.8.2, “Timer Status (TSR) register,” describes TSR in 
detail. Each thread has a private TSR.

• Decrementer (DEC) register—DEC contents can be read into bits 32–63 of a GPR using mfspr, 
clearing bits 0–31. GPR contents can be written to the decrementer using mtspr. See Section 2.8.4, 
“Decrementer (DEC) register,” for more information. Each thread has a private DEC.

• Decrementer Auto-Reload (DECAR) register—Supports the auto-reload feature of the 
decrementer. The DECAR contents cannot be read. See Section 2.8.5, “Decrementer Auto-Reload 
(DECAR) register,” for more information. Each thread has a private DECAR.

7.3 Watchdog timer implementation
When the watchdog timer expires in such a manner as requiring a reset, neither the thread nor the core 
performs the reset. Instead, the core output signals corex_wrs_thrdy[0:1] to reflect the value of 
TSR[WRS]. The intention is to signal the system that a watchdog reset event has occurred. The system can 
then implement a reset strategy. In general, the default strategy will normally be to reset the thread; 
however, leaving the policy decision up to the integrated device allows for other strategies to be optionally 

Timer Clock
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implemented. See the reference manual for the integrated device for details on what occurs on a watchdog 
timer expiration that should result in reset.

7.4 Performance monitor time base event
The e6500 core provides the ability to count transitions of the TBL bit selected by PMGC0[TBSEL]. This 
count is enabled by setting PMGC0[TBEE]. For specific information, see Chapter 9, “Debug and 
Performance Monitor Facilities.”
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Chapter 8  
Power Management 
This chapter describes the power management facilities as they are implemented on the e6500 core and 
cluster. The scope of this chapter is limited to the features of the e6500 core and cluster only. Additional 
power management capabilities associated with an integrated device that contains one or more e6500 
clusters are documented in the integrated device’s reference manual.

8.1 Overview
Power management for each e6500 thread (processor) is part of a larger core-, cluster-, and 
integrated-device-based power management paradigm. An e6500 cluster includes from one to four cores, 
each with two threads, all interfacing to a shared L2 cache. Some thread-specific or core-specific power 
management functions are handled by the cluster, both because the cluster contains much of the interface 
to the rest of the integrated device, and because the cluster has a separate power domain from any of the 
cores in the cluster. This eases management of power within a thread or core because functions such as 
time-base, CoreNet interface, and processor messaging can remain active while a core is in a low power 
state. As part of the cluster, the L2 cache, which contains all the coherent modified states of the all of the 
core caches in the cluster, can maintain memory coherency regardless of the power management state of 
any thread or core.

A complete power management scheme for a system that includes an e6500 cluster requires the support of 
the integrated device. The programming model and control of power management states for a thread or 
core is provided by the integrated device. With the exception of the wait instructions and associated PW* 
power management states, all other thread and core power management states are achieved through 
registers provided by the integrated device. The e6500 cluster provides a signal interface that an integrated 
device can use to transition an e6500 core or cluster between different power management states.
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8.2 Power management signals
Table 8-1 summarizes the power management signals of the e6500 cluster. Power management signals are 
used by the integrated device and the core cluster to command a core to enter or leave specific activity 
states that affect how much power is being consumed by the core. Core Activity States (PHnn and PWnn) 
are described in Table 8-2. All threads within a core must either be disabled or signaled to transition to a 
core activity state before the entire core will enter the directed core activity state. Entry into and exiting 
from some core activity states is managed entirely within the core. Thus, some transitions and states may 
not have power management signals associated with them. How these signals are generated from the 
integrated device is defined in the integrated device reference manual.

Table 8-1. Cluster power management signals (per core)

Core Cluster Signal
(x specifies core 

number, y specifies 
thread number)

I/O Signal Description

corex_halt_thrdy I Asserted by the integrated device to initiate thread actions that cause the core to enter the PH10 
state.

Disabled threads also receive and respond to this signal.

corex_halted_thrdy O Asserted by the thread when it reaches the PH10 state.

corex_stop I Asserted by the integrated device to initiate the required actions that cause the core to go from the 
PH10 into the PH15 state (as described in Table 8-2). All threads in the core must be in the PH10 
state in order to enter the PH15 state.

Negating corex_stop returns the core to the PH10 state.

corex_stopped O Asserted by the core anytime the internal functional clocks of the core are stopped. (For example, 
after the integrated device asserts corex_stop.) 

corex_pg_sr
[core_pg_sr]

I Asserted by the integrated device to initiate the required actions that cause the core to go from the 
PH15 into the PH20 state (as described in Table 8-2). The core must be in the PH15 state prior to 
the assertion of this signal. Asserting corex_pg_sr causes the e6500 core to enter the 
power-gated state-retained state (PH20).

A core indicates that it is in the PH20 state by asserting corex_sh20. After the core asserts 
corex_sh20, the integrated device may deassert corex_pg_sr and may not deassert corex_stop 
until after corex_sh20 is deasserted.

Negating corex_pg_sr returns the core to the PH15 state.

Once asserted, corex_pg_sr must not be negated until after the core has entered the PH20 state; 
otherwise, the negation may not be recognized. For power management purposes, corex_pg_sr 
must be asserted only while the core is in the PH15 state.

corex_ph20
[core_ph20]

O Asserted by the core when it has reached the PH20 state. Indicates to the integrated device that 
the core is in a power-gated state-retained state.

corex_off
[core_off]

I Asserted by the integrated device to power off the core. The core must be in the PH20 state prior 
to asserting this signal.

corex_static_off
[core_static_off]

I Asserted by the integrated device to power off the core. The is a static signal that must be driven 
continuously to the same value and may only be changed at the start of a POR reset.
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8.3 Core power management states
Core power management states are called core activity states. This helps distinguish them from historical 
semantically overloaded terms. Core activity states determine what parts of the core are powered; thus, 
how much power is consumed by the core depends on the core activity state.

State transitions between core activity states are controlled through instruction execution and power 
management signals from the cluster and the integrated device. See Section 8.2, “Power management 
signals,” for more details. Power management signals from the cluster and the integrated device are 
generated when software writes the power management control registers in the integrated device or when 
the integrated device determines that an asynchronous interrupt is pending.

Pending asynchronous external interrupts that include:

• external input (normal interrupts from devices in the integrated device);

• critical input;

• NMI;

• machine check (from sources on the integrated device through the corex_mcp_thrdy core signal)

are sensed by the interrupt controller of the integrated device.

Pending asynchronous internal interrupts that include:

• Decrementer (when TSR[DIE] = 1);

corex_pw20
[core_pw20]

O Asserted by the core when it reached the PW20 state. Indicates to the integrated device that the 
core is in a power-gated, state-retained state.

corex_tben I Asserted by the integrated device to enable the timebase.1

corex_wake_req_thrdy O Asserted when the thread detects an internally generated asynchronous interrupt is enabled and 
pending. This prompts the integrated device to bring the thread to a PH00 activity state to service 
the interrupt. The interrupts that can cause the assertion of corex_wake_req_thrdy are: 
decrementer, fixed interval timer, watchdog timer, machine check, performance monitor, processor 
doorbell, processor doorbell critical, guest processor doorbell, guest processor doorbell critical, 
and guest processor doorbell machine check.

cluster_stop I Asserted by the integrated device to initiate the required actions that cause the cluster to go from 
PCL00 into the PCL10 state (as described in Table 8-2).

Negating cluster_stop returns the cluster to the PCL00 state if the cluster is powered up.

cluster_stopped O Asserted by the cluster anytime the internal functional clocks of the e6500 core are stopped. (For 
example, after the integrated device asserts cluster_stop.) 

1 The corex_tben pin is provided to be compatible with previous designs. It is strongly recommended that this pin always be 
asserted to guarantee software can maintain common timebase values across multiple cores and clusters (software 
requirement.).

Table 8-1. Cluster power management signals (per core) (continued)

Core Cluster Signal
(x specifies core 

number, y specifies 
thread number)

I/O Signal Description
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• Fixed interval timer (when TSR[FIE] = 1);

• Watchdog timer (when TSR[WIE] = 1);

• Performance monitor;

• Machine check (from internal sources);

• Processor doorbells (i.e., processor doorbell, processor doorbell critical, guest processor doorbell, 
guest processor doorbell critical, or guest processor doorbell machine check)

are sensed by the core or the e6500 cluster and are sent as the corex_wake_req_thrdy signal to the 
integrated device. 

Generally, a core activity state (other than PH00, which is the normal running state) is entered when 
software writes the power management control registers in the integrated device or executes a wait 
instruction. Similarly, a core activity state other than PH00 is exited, returning the core back to the normal 
running PH00 state when a pending asynchronous interrupt is present. If the present core activity state is 
the result of wait instructions in all threads (that is, PW10 or PW20), one of the following conditions 
terminates the wait and transitions the core to the normal running PH00 state:

• An enabled asynchronous interrupt is pending. Note that some power management states disable 
performance monitor event counting, which precludes the use of the performance monitor 
asynchronous interrupt as a means to terminate the wait and transition the core to the PH00 state.

• wait was executed with WC=1 (wait for reservation to clear), and the reservation held by the 
processor is cleared.

• A cache stash is received by the core.

This table describes the core activity states.
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Table 8-2. Core activity (power management) states

Core 
Activity 

State

SoC PM 
State

Architectural 
State 

Retained

Architectural 
State not 
Retained

Description

PH00
(default)

— All None Full-On with all internal units are operating at the full clock speed defined at 
power-up. Dynamic power management automatically stops clocking 
individual internal, functional units that are idle. All architectural states are 
retained.

Exited when a wait instruction executes, which causes the core to enter the 
PW10 or the PW20 state or when corex_halt_thrdy is asserted by the 
integrated device because software has commanded a new power 
management state by writing the power management registers in the 
integrated device. All threads (processors) in a core must be either waiting or 
disabled for the core to enter the PW10 or PW20 states.

PH10 doze All None Initiated by either asserting the corex_halt_thrdy inputs for all threads. The 
thread responds by stopping instruction execution. It then asserts the 
corex_halted_thrdy output to indicate that the thread is prepared for the core 
to enter the PH10 state. Core clocks continue running, and snooping 
continues to maintain cache coherency. When all enabled threads within the 
core have signaled corex_halted_thrdy, the core enters the PH10 state.
The following occur once the core is in the PH10 state:
 • Suspend instruction fetching.
 • Complete all previously fetched instructions and associated data 

transactions. The thread accomplishes this by performing the semantics of 
a sync 0 instruction after execution has stopped and then waits for the sync 
0 semantics to finish. This ensures that all storage accesses initiated by this 
processor have been completed.

Exited when corex_halt_thrdy is deasserted by the integrated device. This 
occurs when an asynchronous internal or external interrupt is pending or when 
software from some other processor changes the power management state for 
a thread in the core.

PH15 nap GPR, SPR, 
PMR, FPR, 
VR, BTB,
Time base 

related 
functions

(TB, DEC, FIT, 
Watchdog), 

L1 instruction 
cache1, L1 

data cache1, 
L1 TLB1, L2 

TLB1

Initiated when corex_stop is asserted by the integrated device to the core 
while it is in the PH10 state. All threads must be in the PH10 state in order to 
enter the PH15 state. The core responds by inhibiting clock distribution to most 
of its functional units, and then asserting the corex_stopped output.

Exited when corex_stop is deasserted by the integrated device. The core 
responds by exiting the PH15 state and entering the PH10 state. Clock 
distribution that was disabled by the PH15 state is restored.

Note that the Alternate Time Base (ATB) of a core is not incremented when the 
core is in the PH15 state because most core clocks are not running.
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PH20 pg_sr GPR, SPR, 
PMR, FPR, 
VR, BTB,
Time base 

related 
functions

(TB, DEC, FIT, 
Watchdog), 

L1 instruction 
cache1, L1 

data cache1, 
L1 TLB1, L2 

TLB1

Initiated when corex_pg_sr is asserted by the integrated device to the core 
while it is in the PH15 state. The core responds by entering a power-gated 
state-retained state.

Exited when corex_pg_sr is deasserted by the integrated device. The core 
responds by exiting the PH20 state entering the PH15 state.

PH30 off Time base All state 
except for 
Time base 

Initiated when corex_off or corex_static_off is asserted by the integrated 
device to the core while it is in the PH20 state. The core responds by turning 
off all input voltages.

Exited when corex_off or corex_static_off is deasserted by the integrated 
device. The core responds by exiting the PH30 state by performing a reset and 
entering the PH00 state.

When exiting from PH30 via reset, all states other than the Time Base are set 
to POR values. TB is not controlled by core power management states and 
continues to increment unless the e6500 cluster is powered off.

Some revisions of the e6500 core do not switch the power gating switches to 
off voltage, but instead switch them to state retention voltages (as done in 
PH20). Software should not depend on this behavior and future versions of the 
processor (as well as other future processors) are likely to switch the power 
gating switches to off voltage.

Table 8-2. Core activity (power management) states (continued)

Core 
Activity 

State

SoC PM 
State

Architectural 
State 

Retained

Architectural 
State not 
Retained

Description
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PW10 — All None Initiated when a wait instruction is executed by all active threads in the core 
and any conditions specified for the wait instructions (e.g., wait WC = 1, and 
the thread’s reservation is set). Core clocks continue running, and snooping 
continues to maintain cache coherency.

PW10 is independent of power management signaling from the integrated 
device.

Instruction fetching is suspended when the thread is in the PW10 state.

Exited when one of the following is true:
 • An enabled asserting asynchronous interrupt is ready to be taken by the 

thread.
 • If PW10 was entered with wait WC = 1 when the reservation of the thread 

is cleared. For example, a store to the reserved coherency granule is 
performed by another processor.

 • A cache stash is received by the core.
When one of these conditions occurs, the core returns to PH00. If PW10 is 
exited due to a stash, all threads of the core exit wait. However, only the thread 
(processor) targeted by the interrupt or whose reservation has been cleared 
exits wait. 

Assertion of the corex_halt_thrdy signal due to either power management 
(that is, corex_halt_thrdy pin asserted) or debug halt, causes the machine to 
transition to PH10.

Table 8-2. Core activity (power management) states (continued)

Core 
Activity 

State

SoC PM 
State

Architectural 
State 

Retained

Architectural 
State not 
Retained

Description
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PW20 — GPR, SPR, 
PMR, FPR, 
VR, L1 TLB, 
L2 TLB, BTB,

Time base 
related 

functions
(TB, DEC, FIT, 

Watchdog), 
L1 data and 
instruction 

cache locks

L1 data 
cache2, L1 
instruction 

cache3

Initiated when the all threads of a core are in the PW10 state, 
PWRMGTCR0[PW20_WAIT] = 1, and any of the following is true:
 • wait was executed with WH = 1.
 • PW20 entry timer expires as specified by PWRMGTCR0[PW20_ENT_P].

The following occur once the core is in the PW20 state:
 • A sync 0 is performed.
 • L1 data cache is invalidated. L1 instruction cache is also invalidated if 

PWRMGTCR0[PW20_INV_ICACHE] is set.
 • Core clocks turned off.

PW20 is exited and returns to PH00, PW10, or PH10 when any of the following 
occur:
 • A stash to the core’s L1 data cache. The core enters PW10, then transitions 

to PH00.
 • If PW10 or PW20 states are entered with wait WC=1 and the reservation 

of the waiting thread is cleared. The core enters PW10, then transitions to 
PH00.

 • An icbi instruction from another processor is snooped and 
PWRMGTCR0[PW20_INV_ICACHE] is not set. The core enters PW10 and 
processes the icbi.

 • A tlbivax instruction from another processor is snooped. The core enters 
PW10 and processes the tlbivax.

 • An enabled asserting asynchronous interrupt is ready to be taken by the 
core. The core enters PW10. If, in PW10, the asynchronous interrupt is both 
still asserting and is enabled, the core enters PH00. 4

 • Assertion of the corex_halt_thready signal, due to either power 
management (corex_halt_thready pin asserted) or debug halt, causes the 
machine to transition to PH10. The core will return to PW10 and then to 
PH10.

Upon exit from PW20, the following occurs:

 • Core clocks are turned on.
 • If a pending asynchronous interrupt caused the exit, the core returns first to 

PW10, and subsequently to PH00 state if the interrupt is both still asserting 
and is enabled. The core returns only to PW10 if the interrupt is no longer 
asserting or is not enabled.

 • If a pending asynchronous interrupt caused the exit and is subsequently 
taken, the core begins re-execution at the interrupt vector.

 • If the reservation clearing or a cache stash caused the exit, the waiting 
thread of the core begins re-execution at the instruction following the wait.

Note that during PW20, ATB is not incremented because most core clocks are 
not running.

Table 8-2. Core activity (power management) states (continued)

Core 
Activity 

State

SoC PM 
State

Architectural 
State 

Retained

Architectural 
State not 
Retained

Description
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— — — — Disabling the timebase facilities. Additional power reduction is achieved by 
negating the time base enable (tben) input, which stops timebase operations. 
Note that tben controls the timebase in all power management states. Timer 
operation is independent of power management except for software 
considerations required for processing timer interrupts that occur during the 
PH20 state. For example, if the timer facility is stopped, software ordinarily 
uses an external time reference to update the various timing counters upon 
restart.

1 In PH15 and PH20, the L1 instruction cache, the L1 data cache, and the TLBs are maintained but not updated with respect to 
coherency (that is, they do not respond to snoops, including icbi and tlbivax). Software is required to invalidate both caches 
and TLB entries without IPROT protection prior to entering PH15 or PH20 to avoid having stale state when PH15 or PH20 is 
exited.

2 The L1 data cache has all its data contents invalidated. The locks in the cache and the tags are retained.
3 The L1 instruction cache is invalidated only if PWRMGTCR0[PW20_INV_ICACHE] is set; otherwise, it is retained. Like the L1 

data cache, the locks and the tags are retained.
4 A performance monitor interrupt cannot be used to transition the core to PW10. Performance monitor asynchronous interrupts 

cannot be asserted in PW20 because PW20 disables all performance monitor counting.

Table 8-2. Core activity (power management) states (continued)

Core 
Activity 

State

SoC PM 
State

Architectural 
State 

Retained

Architectural 
State not 
Retained

Description
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Figure 8-1. Core activity state diagram

 

8.4 Cluster power management states
The e6500 cluster provides two different power management states: PCL00 and PCL10. PCL10 is initiated 
by altering power management registers in the integrated device. The cluster is eligible to move from 
PCL00 to PCL10 if all of its cores have reached the PH30 state. Cluster power management states are 
described in the following table and figure.

PH10

PH15

corex_halt &

corex_stop &

¬corex_haltcorex_halt

¬corex_stop
corex_stopSW &

PH00 ¬corex_halt

(Device doze state)

(Device nap or sleep state)

¬pw10_ PW10

corex_pg_sr

¬(pw10_exitPW20

pw10_ OR pw20_
pw20 enterHW

wait instruction

pw10_exit

exit

SW Software must flush and invalidate (see previous PH20 state description). 

HW Hardware invalidates the L1 data cache and L1 instruction cache if PMGTCR0[PW20_INV_ICACHE] = 1.

exit_

OR
pw20 exit)

halt

integrated device power mgtwait power mgt

 ¬corex_stop

 corex_halt

¬corex_resetPH30

corex_off corex_reset

¬corex_pg_sr

¬corex_pg_sr

corex_pg_sr &PH20
¬corex_off
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Figure 8-2. Cluster activity state diagram

 

8.5 Power management protocol
Each core within an e6500 cluster responds to signals driven by the integrated device platform that 
command the core to transition from the PH00 state to the PH10, PH15, PH20, or PH30 state by driving 
the corex_halt_thrdy, corex_stop, corex_pg_sr, and corex_off signals. When a core has entered the PH10, 
PH15 or PH20 state, it outputs the corex_halted_thrdy, corex_stopped, or corex_ph20 signals to inform 
the platform that the commanded state transition is complete. Similarly, an e6500 cluster responds to the 
cluster_stop signal driven by the platform that commands the cluster to transition from PCL00 to PCL10 
by outputting the cluster_stopped signal when the cluster has completed its entry of the PCL10 state.

This figure shows the core power management handshaking.

Table 8-3. e6500 cluster activity states

State Descriptions

PCL00 
(default)

Default. Full-On. All cluster-level units operate at the full clock speed defined at power-up. The timebase 
continues to increment and timer functions are active. Individual cores within the cluster may independently be 
in any core activity state. Dynamic power management automatically stops clocking idle individual cluster internal 
functional units.

PCL10 Initiated by the integrated device by asserting the cluster_stop input. 

The integrated device must only assert cluster_stop after transitioning all cores in the cluster to one of the PH20, 
PH30, or static_off state. When all cores in the cluster have reached one of these states, the cluster responds by 
inhibiting clock distribution to the cluster functional units (after the CoreNet interface idles), and then asserting 
the cluster_stopped output.

The L2 cache no longer continues to participate in snooping activities. Software should always flush and then 
invalidate the L2 cache prior to initiating the PCL10 state to ensure that any modified data is written out to backing 
store. 

As shown in the following figure, the only exit condition to exit PCL10 is negation of cluster_stop or, alternatively, 
assertion of cluster_hreset_b.

PCL10

¬cluster_stopcluster_stop

PCL00 ¬cluster_stop

(Cluster stopped state)
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Figure 8-3. Core power management handshaking 
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8.6 AltiVec power down and power up
Each core in the e6500 cluster implements CDCSR0 as described in Section 2.7.6, “Core Device Control 
and Status (CDCSR0) register” and in EREF. Both the AltiVec execution unit and CDCSR0 are shared by 
all threads in a core.

Each core’s AltiVec unit may be placed into a power-saving mode by turning off power to the unit. When 
the AltiVec unit is powered down, the AltiVec register file and VSCR continue to retain their architectural 
state to allow for faster power-up and software simplification. The power-down of the majority of the 
AltiVec unit allows for significant power consumption reduction either in integrated devices that do not 
make use of AltiVec or in currently executing applications that are known not to use any AltiVec 
instructions, including AltiVec loads and stores.

8.6.1 AltiVec power down—software controlled entry
1. It is recommended, but not required, for software (guest supervisor or hypervisor privilege) to clear 

(that is, write 0 to) MSR[SPV] of all threads in a core.

2. Software (hypervisor privilege) writes CDCSR0[CNTL] of the AltiVec device with Off (0b001).

3. Software (hypervisor privilege) then polls CDCSR0[STATE] of the AltiVec device until the state 
changes to 0b010 - “standby” (from 0b001 - “ready”).

4. The AltiVec unit is now in a low power state.

8.6.2 AltiVec power down—hardware triggered entry

When PWRMGTCR0[AV_IDLE_PD_EN] = 1, core hardware automatically powers down the AltiVec 
unit after no AltiVec instructions have executed for the number of cycles specified by 
PWRMGTCR0[AV_IDLE_CNT_P]. When this condition is detected, the following power-down 
sequence occurs without software control:

1. CDCSR0[STATE] of the AltiVec device changes to 0b010 - “standby” (from 0b001 - “ready”).

2. The AltiVec unit is now in a low power state.

8.6.3 AltiVec low power state retention

This table shows the state of the major portions of the AltiVec unit after either a AltiVec software 
controlled or hardware triggered power-down sequence has occurred.

Table 8-4. AltiVec unit low power state retention

State AltiVec Low Power State Entry Method: Software or 
Hardware

Core Off

VPR, VSCR State retained. Powered on with VDD_AV_SW. Powered off. No state is retained.

AltiVec Unit Powered off. Static power is reduced.



Power Management

e6500 Core Reference Manual, Rev 0

8-14 Freescale Semiconductor

8.6.4 AltiVec power up—hardware triggered 

When the AltiVec unit is powered down (CDCSR0[STATE] of the AltiVec device is not 0b001), the 
AltiVec unit will power on and go to the “ready” state (0b001) when the core attempts execution of an 
AltiVec instruction and MSR[SPV] = 1. The instruction does not begin execution until the unit is powered 
up. The effect is similar to dynamic power gating during execution except that it affects static power of the 
AltiVec unit and the unit takes longer to power-up.

There is no mechanism to explicitly turn off the automatic power-up. However, software can prevent it 
from occurring by never setting MSR[SPV].

NOTE
Pre-production parts containing Rev 1 of the e6500 core do not 
automatically power up the core upon executing an AltiVec instruction and 
attempting to execute an AltiVec instruction when the unit is powered-down 
results in an AltiVec unavailable interrupt regardless of the state of 
MSR[SPV].

8.6.5 AltiVec power up sequence—software controlled

In general, software is not required to power up the AltiVec unit because it automatically powers up when 
an AltiVec instruction is executed with MSR[SPV] = 1. However, software may turn the unit on if desired 
by performing the following sequence:

1. Software (hypervisor privilege) writes CDCSR0[CNTL] of the AltiVec device with On (0b010).

2. AltiVec power gating switches are switched to “on” voltage. 

3. Software (hypervisor privilege) then polls CDCSR0[STATE] of the AltiVec device until the state 
changes to 0b001—“ready”.

4. Software (guest supervisor or hypervisor privilege) re-enables MSR[SPV] of all threads in the core.

5. AltiVec instructions can then be executed.

8.7 e6500 cluster power management sequence
This section details the sequence on how the e6500 cluster is powered off and on.

8.7.1 Cluster state PCL10 entry sequence
1. The cluster L2 cache is flushed and invalidated by software.

2. The integrated device asserts the cluster_stop signal.

3. Cluster clocks are turned off.

4. The cluster asserts the cluster_stopped signal.

8.7.2 Cluster PCL10 exit sequence

1. The integrated device negates the cluster_stop signal.

2. The cluster clocks are turned on.
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3. The cluster negates the cluster_stopped signal.

8.8 Interrupts and power management
In the PH10, PH15, PH20, and PH30 core activity states, the threads of the core do not recognize external 
interrupt requests from the integrated device. The power management logic of the integrated device must 
monitor all external interrupt requests (as well as the e6500 corex_wake_req_thrdy outputs) to detect 
interrupt requests. Upon sensing an interrupt request, the integrated device ordinarily negates corex_stop 
and corex_halt_thrdy to restore the core to the PH00 core activity state, allowing it to service the interrupt 
request.

The control of power management state changes, including current state and previous state status, is done 
completely through the integrated device. See the user manual of the integrated device for information on 
its power management programming model.
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Chapter 9  
Debug and Performance Monitor Facilities

9.1 Overview
The e6500 core provides hardware support for the following:

• Software debug agents that run natively on the e6500 processor

• External software debuggers that run on external hardware that is attached to the e6500 processor

The architecture defines a set of debug features that can be used by a software debug agent running 
natively on the processor or an external host debugger connected to the device. The features include:

• Instruction and data address comparators for breakpoints/watchpoints

• Real-time trace

• Performance monitor counters

• Debug events, which can cause debug interrupts to occur or the processor to halt

The e6500 core provides the flexibility to allocate the architecture-defined debug mechanisms to an 
external host debugger or internal software debug agent such that both debuggers can be used 
simultaneously. Debug resources allocated to the external debugger are protected from software, and vice 
versa.

The e6500 core implements debugger notify instructions (dnh and dni). dnh can be used to cause the 
processor to halt for an external debugger. dni can be used to cause the processor to enter debug interrupt 
processing for a software debug agent.

The Nexus trace facility provides real-time trace capabilities in compliance with IEEE-ISTO 5001. The 
development features supported are:

• Program Trace

• Data Trace

• Data Acquisition messaging

• Watchpoint messaging

• Performance Profile messaging

• Timestamp Correlation messaging

• Ownership Trace

The e6500 Nexus module also supports watchpoint triggering and processor overrun control.

The performance monitor facility allows collection of metrics on events that occur in the processor. These 
event metrics can be analyzed to detect less than optimal operation in order to improve system 
performance. The performance monitor can be configured by software to cause an interrupt on a counter 
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event, such as counter overflow. Or, the performance monitor may be configured to use the Nexus trace 
facility to transmit counter values in a completely non-intrusive manner. The performance monitor 
facility is described in Section 9.12, “Performance monitor.”

9.1.1 Terminology
This chapter uses certain terminology that has the specific meanings defined in this section. This 
terminology is used elsewhere in this manual and in EREF and has the same definition. Some of this 
terminology, such as ‘debug event,’ appears in Power ISA and has a more limited scope, because Power 
ISA does not define external debug capabilities.

The term ‘debug condition’ indicates that a set of specific criteria have been met such that the 
corresponding debug event occurs in the absence of any gating or masking. The criteria for debug 
conditions are obtained from debug control registers.

The term ‘debug event’ means the setting of a bit in either the Debug Status (DBSR) register or in the 
External Debug Status 0 (EDBSR0) register upon the occurrence of the associated debug condition. 
However, a debug condition does not always result in a debug event. Conditions are prioritized with 
respect to exceptions. Exceptions that have higher priority than a debug condition prevent the debug 
condition from being recorded as a debug event. 

Internal debug mode (IDM) owned debug events cause a debug interrupt if the debug enable bit is set 
(MSR[DE] = 1). Internal debug mode is used by a software debug agent operating on the processor.

The term ‘debug interrupt’ refers to the action of saving old context (machine state register and next 
instruction address) into the debug save/restore registers (DSRR0 and DSRR1) and beginning execution 
at a predetermined interrupt handler address. For additional information, see Section 4.9.16, “Debug 
interrupt—IVOR15.”

In external debug mode (EDM) (EDBCR0[EDM] = 1), EDM owned debug events cause the processor to 
enter debug halt mode. External debug mode is used by a external host debugger, which is typically 
connected via JTAG or Aurora.

9.2 Debug resource sharing
The e6500 core provides registers to facilitate sharing of debug resources between an external host 
debugger and an internal debug agent. Both the external host debugger and internal debug agent should 
use these registers to ensure that sharing occurs smoothly.

9.2.1 Debug resource sharing between threads
Because the primary debug resources (IACs, DACs, Nexus, performance monitors, registers) are not 
shared between threads, the external host debugger and internal debug agent resource sharing 
mechanism, which is described in detail in subsequent sections, only applies within the thread.

For the e6500 core, each thread has its own private debug resources. This includes IACs, DACs, Nexus 
trace, performance monitors, and debug request/allocation/control/status registers. Each thread’s 
resources should be treated independently, with the following exceptions:
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• If one thread receives a debug halt request, both threads halt.

— The PRSR of the primary halting thread should reflect the halting debug event.

— The PRSR of the secondary halted thread should reflect it halted due to a cross-thread halt.

• The debug logic within both threads shares a debug reset.

All debug registers are replicated per thread and each reside in its own memory-mapped address space. 
See Section 9.10.3.1, “Memory-mapped access,” for details.

9.2.2 Debug resource request—software debug agent
A software debug agent should always request ownership of a debug resource via the Debug Resource 
Request 0 (DBRR0) register. After requesting the resource, DBRR0 can be read back to determine if the 
resource was granted. If the resource was granted, the software can then use that resource freely. If the 
resource was not granted to the software debug agent, that means the debug resource is being used by an 
external host debugger and, thus, attempts to use it should not be made.

9.2.3 Debug resource request—external host debugger
Similar to a software debug agent, the external host debugger should always request ownership of a debug 
resource via the External Debug Resource Request 0 (EDBRR0) register. After requesting the resource, 
EDBRR0 can be read back to determine if the resource was granted. If the resource was granted, the 
debugger must then write 0 to the corresponding bit in the External Debug Resource Allocation Control 0 
(EDBRAC0) register. Once the EDBRAC0 bit is cleared, the external host debugger can then use that 
resource freely. If the resource was not granted to the external host debugger, that means the debug 
resource is being used by an internal software debug agent and, thus, attempts to use it should not be 
made.

If, however, the requested (but not granted) resource is absolutely critical to continue an external host 
debug session, the external host debugger has the option to take away (steal) the resource from the 
software debug agent. 

NOTE
Resource stealing should only be done as a last resort.

To take away the resource, the external debugger can write 0 to the corresponding bit in the External 
Debug Resource Allocation Control 0 (EDBRAC0) register. Once the EDBRAC0 bit is cleared, the 
external host debugger can then use that resource freely.

9.2.4 Debug resource allocation—external host debugger

Care must be taken while allocating resources for external debug usage so that resources being used by an 
internal software debug monitor are not unnecessarily taken away. In other words, before writing 1 to the 
EDBRC0[EDM] bit, the external debugger should evaluate the DBRR0 register, and then ensure the 
EDBRAC0 register reflects the DBRR0 settings. Only then should it write 1 to the EDBRC0[EDM] bit.
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Once the EDBRAC0 register reflects any software debug monitor usage and the EDBRC0[EDM] bit has 
been enabled, the external host debugger should use the following guidelines for allocating resources:

1. Use EDBRR0 to request debug resources for its usage. 

2. Read back EDBRR0 to see if the resources were granted. 

3. Write to EDBRAC0 to allocate the granted debug resources. 

4. Use the debug resources that are allocated to it. 

If the external debugger requests a resource via EDBRR0, but the resource was not granted, that means 
the resource has already been granted to the internal software debugger via DBRR0. The external 
debugger has the option to override this configuration and take (that is, steal) the debug resource from the 
internal software debugger.

NOTE
Resource stealing should only be done as a last resort. 

To steal the resource(s), the external debugger can write EDBRAC0 and allocate the resource(s) it wants 
to take to the external debug host.

9.2.5 Debug resource protection
Access to debug registers (other than DBSR) is conditioned so that resources are [somewhat] protected. 

NOTE
The debug resource protections apply to software debug agent accesses via 
mtspr/mfspr, and external host debugger accesses via memory-mapped 
accesses to debug registers. These protections do not apply to software 
debug agent accesses to memory-mapped registers.

The debug registers are separated into three types:

1. Registers that are always owned by one side or the other. For example, external debug host 
registers, such as EDBCR0, EDBRAC0, EDBRR0, EDBSRMSK0, and EDBSR0, are only 
writable from the host side and not writable using the mtspr instruction. Similarly, a software 
debug agent has full access to registers, such as DBRR0 and DBSR, and the external host debugger 
cannot write these register directly.

2. Registers that can be allocated to one side or the other. Once the allocation has been made, only the 
side it’s allocated to can access it. For example, the IAC registers, if allocated to the external debug 
host, are only writable via memory-mapped accesses and not via the mtspr instruction.

3. Registers that may have some bits allocated to one side and some bits allocated to the other. 
DBCR0 is a prime example of this. Each bit can be independently owned by one side or the other. 
Writes to DBCR0 from the software debug agent (via mtspr) only update bits of debug resources 
that it owns, and bits owned by the external host debugger are unaffected. Similarly, writes from 
the external host (via memory-mapped access) only update bits owned or allocated to the external 
host, and bits owned by the internal debug agent are unaffected.

Ownership, or allocation, of a debug resource is handled by EDBRAC0 and means full access privileges 
to registers, or bits within a register that are required to configure and use that resource.
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9.2.5.1 Debug resource protection—from software debug agent’s perspective

For a software debug agent, accesses to debug registers (other than DBSR) are conditioned by the 
External Debug Mode control bit (EDBCR0[EDM]) and the settings of the Debug Resource Allocation 
Control (EDBRAC0) register, which are controlled by an external host debugger. 

If EDBCR0[EDM] is cleared, the allocations in EDBRAC0 are ignored and software has access to all 
debug resources. Regardless, software should still use DBRR0 to request resources before using them!

If EDBCR0[EDM] is set, the EDBRAC0 configuration determines if the debug resource is “owned” 
(allocated to) the external host debugger or an internal software debug agent. 

If the bit in EDBRAC0 corresponding to the resource is cleared, software is prevented from modifying 
that resource’s register values other than in DBSR, because the resource is not “owned” by software. 
Software always has ownership of DBSR. Execution of a mtspr instruction targeting a debug register or 
register field not “owned” by software does not cause modifications to occur, and no exception is 
signaled. In addition, because the external host debugger may be manipulating debug register values, the 
state of the registers or register fields not “owned” by software is not guaranteed to be consistent if 
accessed (read) by software with a mtspr instruction, other than the DBCR0[EDM] bit itself and 
EDBRAC0. 

If the bit in EDBRAC0 corresponding to the resource is set, the software can modify that resource’s 
register values freely, because the resource is “owned” by the software debug agent.

NOTE
It should be noted that, because the external debugger has ultimate control 
of EDBRAC0, it has the ability to allocate resources however it sees fit. This 
includes the ability to take away or steal resources from the software debug 
agent. Of course, it should only do this as a last resort when no other options 
exist. 

If a resource is taken away, there is no way for the software debug agent to 
be notified when this happens, and further accesses by the software debug 
agent to the stolen resource registers and control bits fail.

9.2.5.2 Debug resource protection—from external host debugger’s perspective

Similar to the software debug agent, accesses to debug registers for an external host debugger are 
conditioned by the External Debug Mode control bit (EDBCR0[EDM]) and the settings of the Debug 
Resource Allocation Control (EDBRAC0) register, which are controlled by an external host debugger. 

As mentioned in Section 9.2.4, “Debug resource allocation—external host debugger,” care must be taken 
while allocating resources for external debug usage so that resources being used by an internal software 
debug monitor are not unnecessarily taken away. Thus, before setting the EDBRC0[EDM] bit, the 
external debugger should evaluate DBRR0 and ensure EDBRAC0 reflects the DBRR0 settings. Only then 
should it set the EDBRC0[EDM] bit.

If EDBCR0[EDM] is set, the EDBRAC0 register configuration determines if the debug resource is 
“owned” (allocated to) the external host debugger or an internal software debug agent. 
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If the bit in EDBRAC0 corresponding to the resource is set, the external debugger is prevented from 
modifying that resource’s register values because the resource is not “owned” by the external host. A 
write access targeting a debug register or register field not “owned” by the external host does not cause 
modifications to occur. In addition, because the software debug agent may be manipulating debug register 
values, the state of the registers or register fields not “owned” by the host debugger is not guaranteed to be 
consistent if accessed (read) via the memory map interface, other than the DBCR0[EDM] bit itself and 
the external debugger registers (such as EDBCR0, EDBRAC0, EDBRR0, EDBSRMSK0).

If the bit in EDBRAC0 corresponding to the resource is cleared, the external debugger can modify that 
resource’s register values freely, because the resource is “owned” by the external host.

9.3 Internal debug registers
Internal debug-related registers are accessible to software running on the processor. These registers are 
intended for use by special debug tools and debug software and not by general application or operating 
system code. These registers are described in Section 2.14, “Internal debug registers.”

9.4 External debug registers
The external debug registers are used for controlling the processor and reporting status while the e6500 
external debug mode is enabled. When EDBCR0[EDM] is set, debug events that are allocated to the 
external host debugger (in EDBRAC0) and enabled (in DBCR0) cause the processor to enter debug halt 
mode if the events are not masked (in EDBSRMSK0), as opposed to generating debug interrupts.

9.4.1 External Debug Control 0 (EDBCR0) register
EDBCR0 is a control register that is accessible to an external host debugger through the memory-mapped 
interface. An external development tool can write to this register in order to enable EDM, to enable 
Debugger Notify Halt instructions (dnh), or to disable certain asynchronous interrupts.

EDBCR0 is not accessible by software running on the e6500 processor. However, the state of 
EDBCR0[EDM] is reflected as a read-only bit in DBCR0[EDM].

When EDBCR0 bits controlling asynchronous interrupt disables (EDMEO, EDCEO, EDEEO) are set, 
normal asynchronous interrupt enabling conditions are overridden. The setting of these bits does not 
modify the state of the corex_wake_req signal from the processor to SoC power management logic. Nor 
does the setting of these bits affect the execution of the wait instruction. When wait is executed and 
asynchronous interrupt disables are set, the processor waits until the interrupt disables are removed 
(through the external debugger) and an interrupt occurs before continuing execution.

If an external debugger wishes to use the EDMEO, EDCEO, or EDEEO bits to mask the taking of 
asynchronous interrupts, it should set these bits prior to changing any processor state after the processor 
has been halted to prevent the processor from committing to an interrupt. For example, if after the 
processor is halted and the debugger jams a mtmsr instruction that sets MSR[EE] and the external input 
pin is signalling an external input interrupt is present, the processor is committed to take that interrupt. 
The software takes the interrupt when the processor is taken out of the halted state, even if the processor 
writes the EDMEO, EDCEO, or EDEEO bits prior to resuming execution.
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EDBCR0, shown in the following figure, contains bits for enabling external debug features.

This table describes EDBCR0 fields. 

Offset 0xBASE_100 External debugger
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Figure 9-1. External Debug Control 0 (EDBCR0) register

Table 9-1. EDBCR0 field descriptions

Bits Name Description

32 EDM

External Debug Mode
0 The processor is not in external debug mode. Debug events do not cause the processor to halt.
1 The processor is in external debug mode. A qualified debug condition generates an external debug 

event, which updates the corresponding EDBSR0 bit and causes the processor to halt. 

33 DNH_EN
Debugger Notify Halt Enable
0 A Debugger Notify Halt instruction (dnh) results in an illegal instruction exception.
1 dnh causes the processor to halt and update PRSR[DNHM].

34 EFT

(External) Freeze Timers on debug halt
0 Time base counters continue to run during debug halted state.
1 Time base counters freeze when entering debug halted state.

Note: The EFT bit applies to all timers, including the shared TB and ATB, and each thread’s DEC, FIT, and 
watchdog timer, regardless of whether both threads halt or not.

35 EDMEO

Debugger Machine Check Interrupt Enable Override. When this bit is set, no asynchronous machine check 
interrupts occur. Exception conditions for asynchronous machine check interrupts that occur remain 
pending. This bit has no effect on error report interrupts, nor does it disable the NMI interrupt that is taken 
on the machine check level.
0 Asynchronous machine check interrupts are enabled as described by the architecture. MSR[ME] and 

MSR[GS] are used to determine if an asynchronous machine check interrupt can be taken.
1 Asynchronous machine check interrupts are disabled. MSR[ME] and MSR[GS] are not used to 

determine whether an asynchronous machine check interrupt can be taken. NMI interrupts are not 
affected by the setting of this bit.

This bit should only be set by the external debugger when the processor is in External Debug mode. 
Architecturally, the behavior of this bit is undefined when the processor is not in EDM mode. For the e6500 
core, this bit behaves the same, regardless of whether the processor is in EDM mode.
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9.4.2 External Debug Resource Request 0 (EDBRR0) register

The External Debug Resource Request Register 0 (EDBRR0), shown in Figure 9-2, allows an external 
host debugger to request debug resources. After writing this register to request debug resources, reading 
this register back indicates which resources were granted. This register does not affect the actual 
allocation of debug resources. Allocation is handled by EDBRAC0. 

36 EDCEO

Debugger Critical Interrupt Enable Override. When this bit is set, no asynchronous critical interrupts (critical 
input, processor doorbell critical, guest processor doorbell critical, guest processor doorbell machine 
check, or watchdog timer) occur. Exception conditions for critical interrupts that occur remain pending 
unless the pending condition is cleared.
0 Critical interrupts are enabled as described by the architecture. MSR[CE] and MSR[GS] are used to 

determine if an asynchronous critical interrupt can be taken.
1 Asynchronous machine check interrupts are disabled. MSR[CE] and MSR[GS] are not used to 

determine whether an asynchronous critical interrupt can be taken.

This bit should only be set by the external debugger when the processor is in External Debug mode. 
Architecturally, the behavior of this bit is undefined when the processor is not in EDM mode. For the e6500 
core, this bit behaves the same, regardless of whether the processor is in EDM mode.

37 EDEEO

Debugger External Interrupt Enable Override. When this bit is set, no asynchronous external interrupts 
(external input, decrementer, fixed interval timer, performance monitor, processor doorbell, or guest 
processor doorbell) occur. Exception conditions for external interrupts that occur remain pending unless the 
pending condition is cleared.
0 External interrupts are enabled as described by the architecture. MSR[EE] and MSR[GS] are used to 

determine if an asynchronous external interrupt can be taken.
1 Asynchronous external interrupts are disabled. MSR[EE] and MSR[GS] are not used to determine 

whether an asynchronous external interrupt can be taken.
This bit should only be set by the external debugger when the processor is in External Debug mode. 
Architecturally, the behavior of this bit is undefined when the processor is not in EDM mode. For the e6500 
core, this bit behaves the same, regardless of whether the processor is in EDM mode.
Note: EREF allows implementations to consider a delayed floating-point enabled interrupt to be 

asynchronous; however, the taking of delayed floating-point is not enabled by MSR[EE] and is 
unaffected by the setting of EDEEO.

38 — Reserved

39 DNI_CTL

dni Instruction Control
0 When the dni resource is owned by hardware, the MSR[DE] bit is cared. When MSR[DE] = 0, execution 

of dni instructions are no-oped and no entry into debug mode occurs.
1 When the dni resource is owned by hardware, the MSR[DE] bit is don’t-cared. Execution of dni 

instructions causes entry into debug mode and a debug halt occurs, regardless of the value of MSR[DE]. 
Note: This control bit is only used when the dni resource is owned by hardware via control in 

EDBRAC0[DNI], and, thus, also only when EDM = 1

40 DIS_CTH
Disable Cross Thread Halt
0 This thread halts as well when a debug halt request is received by the other thread.
1 This thread does not halt when a debug halt request is received by the other thread.

41–63 — Reserved

Table 9-1. EDBCR0 field descriptions (continued)

Bits Name Description
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This table describes the EDBRR0 fields.

Offset 0xBASE_134 Hypervisor

32 33 34 35 36 37 38 39 40 41 42 43 44 45 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
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1 Readable as an SPR and memory-mapped. Reads 0 for resources not granted to the external debug host 
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2 Writable via the memory-mapped interface only. Write 0 for resources not being requested or to release 
previously owned resources. Write 1 to request a resource be granted to the external debug host.

Reset3

3 Reset via POR (core_trst_b).

All zeros

Figure 9-2. External Debug Resource Request 0 (EDBRR0) register

Table 9-2. EDBRR0 field descriptions

Bits Name Description

32–33 — Reserved 

34 RST Reset Field Control (DBCR0[RST])

35 UDE Unconditional Debug Event

36 ICMP Instruction Complete Debug Event (DBCR0[ICMP])

37 BRT Branch Taken Debug Event (DBCR0[BRT])

38 IRPT Interrupt Taken Debug Condition Enable (DBCR0[IRPT])

39 TRAP Trap Debug Event (DBCR0[TRAP])

40 IAC1/2 Instruction Address Compare 1 and 2

41 — Reserved

42 IAC3/4 Instruction Address Compare 3 and 4

43 — Reserved

44 DAC1/2 Data Address Compare 1 and 2

45–47 — Reserved

48 RET Return Debug Event (DBCR0[RET])

49 IAC5/6 Instruction Address Compare 5 and 6

50 — Reserved

51 IAC7/8 Instruction Address Compare 7 and 8

52–53 — Reserved

54 TRACE Processor Nexus Trace

55 PM Performance Monitor

56 EVTO01 Event Out 0
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9.4.3 External Debug Status 0 (EDBSR0) register
EDBSR0, shown in Figure 9-3, is a status register that is accessible to an external debugger through 
memory-mapped access. If PRSR[DE_HALT] indicates that the processor was halted by an enabled 
debug event when DBCR0[EDM] = 1 (see Section 9.4.7, “Processor Run Status (PRSR) register”) the 
corresponding status bit is set within EDBSR0. 

Typically, only one EDBSR0 status bit is set based on the priorities defined in Table 9-27. However, if a 
non-UDE debug event is recognized as highest priority (and debug halt mode entry processing begins) 
and then a UDE debug event occurs before the processor fully halts, both the non-UDE debug event and 
the UDE debug event is set. 

Once halted, EDBSR0 indicates the debug event that caused the halt and remains static while halted. All 
EDBSR0 status bits are cleared when the core exits debug halt mode to resume execution.

57 CIRPT Critical Interrupt Taken Debug Event (DBCR0[CIRPT])

58 CRET Return From Critical Interrupt Debug Event (DBCR0[CRET])

59 DNI Debug Notify Interrupt (dni) instruction

60 EVTO12 Event Output 1

61 EVTO22 Event Output 2

62 EVTO32 Event Output 3

63 EVTO42 Event Output 4

1 Does not have a corresponding bit in the External Debug Resource Allocation Control (EDBRAC0) register and, thus, is only 
provided to identify if the resource is currently in use. No allocation of this resource is possible and, thus, internal and external 
debuggers should make every effort to not overwrite the configuration once the resource has been granted.

2 Does not have a corresponding bit in the External Debug Resource Allocation Control (EDBRAC0) register and, thus, is only 
provided to identify if the resource is currently being used. No allocation of this resource is possible and, thus, internal and 
external debuggers should make every effort to not overwrite the configuration once the resource has been granted. The 
configuration of multiple event output bits is located in one register (DC3). If these events are shared, it is recommended that 
the external debugger configure these resources only when the processor is halted. Otherwise, read-modify-write problems 
arise when both the internal and external debugger write to this register, and the results are unpredictable.

Offset 0xBASE_00C External debugger
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Figure 9-3. External Debug Status 0 (EDBSR0) register

Table 9-2. EDBRR0 field descriptions (continued)

Bits Name Description
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This table describes the EDBSR0 fields. 

Table 9-3. EDBSR0 field descriptions

Bits Name Description

32 — Reserved

33 UDE
Unconditional Debug Event
Set if an unconditional debug condition occurred, DBCR0[EDM] = 1, EDBSRMSK0[UDEM] = 0, and 
EDBRAC0[UDE] = 0.

34–35 — Reserved 

36 ICMP
Instruction Complete Debug Event
Set if an instruction complete debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[ICMP] = 0, 
and DBCR0[ICMP] = 1.

37 BRT
Branch Taken Debug Event
Set if a branch taken debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[BRT] = 0, and 
DBCR0[BRT] = 1.

38 IRPT
Interrupt Taken Debug Event
Set if an interrupt taken debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[IRPT] = 0, and 
DBCR0[IRPT] = 1.

39 TRAP
Trap Instruction Debug Event
Set if a Trap instruction debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[TRAP] = 0, and 
DBCR0[TRAP] = 1.

40 IAC1
Instruction Address Compare 1 Debug Event
Set if a IAC1 debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[IAC1] = 0, and 
DBCR0[IAC1] = 1.

41 IAC2
Instruction Address Compare 2 Debug Event
Set if a IAC2 debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[IAC2] = 0, and 
DBCR0[IAC2] = 1.

42 IAC3
Instruction Address Compare 3 Debug Event
Set if a IAC3 debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[IAC3] = 0, and 
DBCR0[IAC3] = 1.

43 IAC4
Instruction Address Compare 4 Debug Event
Set if a IAC4 debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[IAC4] = 0, and 
DBCR0[IAC4] = 1.

44 DAC1R
Data Address Compare 1 Read Debug Event
Set if a read-type DAC1 debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[DAC1] = 0, and 
DBCR0[DAC1] = 0b10 or 0b11.

45 DAC1W
Data Address Compare 1 Write Debug Event
Set if a write-type DAC1 debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[DAC1] = 0, and 
DBCR0[DAC1] = 0b01 or 0b11.

46 DAC2R
Data Address Compare 2 Read Debug Event
Set if a read-type DAC2 debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[DAC2] = 0, and 
DBCR0[DAC2] = 0b10 or 0b11.

47 DAC2W
Data Address Compare 2 Write Debug Event
Set if a write-type DAC2 debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[DAC2] = 0, and 
DBCR0[DAC2] = 0b01 or 0b11.
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9.4.4 External Debug Status Mask 0 (EDBSRMSK0) register

EDBSRMSK0, show in Figure 9-4, is used to mask debug events set in EDBSR0 from causing entry into 
debug halted mode. A “1” stored in any mask bit prevents debug HALT entry caused by the corresponding 
bit being set in EDBSR0. 

The mask has no effect on DBSR actions. EDBSRMSK0 may be used to allow debug events owned by an 
external host debugger to be configured for watchpoint generation purposes without causing entry into a 

48 RET
Return Debug Event
Set if a return debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[RET] = 0, and 
DBCR0[RET] = 1.

49 IAC5
Instruction Address Compare 5 Debug Event
Set if a IAC5 debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[IAC5] = 0, and 
DBCR0[IAC5] = 1.

50 IAC6
Instruction Address Compare 6 Debug Event
Set if a IAC6 debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[IAC6] = 0, and 
DBCR0[IAC6] = 1.

51 IAC7
Instruction Address Compare 7 Debug Event
Set if a IAC7 debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[IAC7] = 0, and 
DBCR0[IAC7] = 1.

52 IAC8
Instruction Address Compare 8 Debug Event
Set if a IAC8 debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[IAC8] = 0, and 
DBCR0[IAC8] = 1.

53–56 — Reserved 

57 CIRPT
Critical Interrupt Taken Debug Event
Set if a critical interrupt debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[CIRPT] = 0, and 
DBCR0[CIRPT] = 1.

58 CRET
Critical Return Debug Event
Set if a critical return debug condition occurred, DBCR0[EDM] = 1, EDBRAC0[CRET] = 0, and 
DBCR0[CRET] = 1.

59 DNI
Debug Notify Interrupt (dni) instruction
Set if a dni instruction condition occurred, DBCR0[EDM] = 1, EDBRAC0[DNI] = 0, 
EDBSRMSK0[UDEM] = 0, and DBCR0[DNI] = 1.

60–63 — Reserved 

Table 9-3. EDBSR0 field descriptions (continued)

Bits Name Description
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debug HALT state when the watchpoint occurs. EDBSRMSK0 is read and written via access by external 
development tools. No software access is provided.

Figure 9-4. External Debug Status Mask 0 (EDBSRMSK0) register

This table describes the EDBSRMSK0 fields.

9.4.5 External Debug Status 1 (EDBSR1) register
EDBSR1, shown in Figure 9-5, is a status register that is accessible to an external debugger through 
memory-mapped access. It provides status information related to instruction jamming errors. The 
contents of EDBSR1 are only valid after an IJAM.

If a jammed instruction causes an exception, EDBSR1 indicates the presence of the exception and which 
exception was signaled.

Jammed instructions do not take interrupts. In other words, the NIA is not altered to point to an interrupt 
handler, save/restore registers are not updated, and the MSR is not updated. Instead, EDBSR1[IJEE] is 
set, and the IVOR number for the exception is recorded in EDBSR1[IVOR].

Offset 0xBASE_01C External debugger

 32 33 34 35 58 59 60 63

R
—

U
D

E
M

D
N

H
M

—

D
N

IM —
W

Reset All zeros

Table 9-4. EDBSRMSK0 field descriptions

Bits Name Description

32 — Reserved

33 UDEM
Unconditional Debug Event Mask
Set to 1 to mask entry into debug HALT state by EDBSR0[UDE].

34 DNHM
Debugger Notify Halt Event Mask
Set to 1 to mask entry into debug HALT state by DNH.

35–58 — Reserved

59 DNIM
Debug Notify Interrupt (dni) instruction
Set to 1 to mask entry into debug HALT state by EDBSR0[DNI].

60–63 — Reserved 
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EDBSR1[IJAE] indicates that an IJAM access error occurred, and EDBSR1[IJBUSY] indicates busy 
status on the IJAM access.

This table describes the EDBSR1 fields. 

9.4.6 External Debug Exception Syndrome (EDESR) register
EDESR provides a syndrome to differentiate between the different kinds of exceptions that generate the 
same interrupt type. If an exception occurs during an instruction jamming operation, the syndrome 
information is captured in the EDESR instead of the ESR. EDESR fields are identical to those specified 

Offset 0xBASE_010 External debugger
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Figure 9-5. External Debug Status 1 (EDBSR1) register

Table 9-5. EDBSR1 field descriptions

Bits Name Description

32–36 LCMP

Length Completed (instructions completed without error)1

00000 No instructions completed without error.
00001 One instruction completed without error.
All other encodings are reserved.

1 The e6500 core only supports jamming one instruction at a time.

37–42 IVOR

Interrupt Vector Offset Register Number
If an exception occurs during an instruction jamming operation, the corresponding IVOR number is logged in 
this field. IVOR is valid only if IJEE is set. For example, if a program exception is recognized during an 
instruction jamming operation, IVOR would be set to 0x6 because program interrupts use IVOR6.

43 IJEE

Instruction Jamming Exception Error
0 No exception occurred while executing the last instruction.
1 An exception occurred while executing the last instruction. EDBSR1[LCMP] indicates how many 

instructions completed prior to the exception while the IVOR field indicates what type of exception 
occurred. Note that exceptions that occur during instruction jamming operations do not cause interrupts.

44 — Reserved

45 IJAE
Instruction Jamming Access Error2

0 Most recent IJAM access completed without error.
1 An access error occurred during the IJAM operation.

2 EDBSR1[IJAE] is also available at the SoC. Refer to the SoC reference manual for details on external polling of this bit.

46 IJBUSY
Instruction Jamming Busy Status3

0 IJAM access idle or completed (not busy).
1 IJAM access not completed (busy).

3 EDBSR1[IJBUSY] is also available at the SoC. Refer to the SoC reference manual for details on external polling of this bit.

47–63 — Reserved
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for the ESR, as described in EREF, with e6500-specific details listed in Section 2.9.7, “(Guest) Exception 
Syndrome (ESR/GESR) registers.” EDESR is read only and is accessible through memory-mapped 
access.

9.4.7 Processor Run Status (PRSR) register
PRSR, shown in Figure 9-6, provides status information for processor halt and stop. Halt requests are 
posted to PRSR as soon as they are recognized. When the processor is halted in response to a halt request, 
PRSR[HALTED] is set to indicate that the processor has reached the halted state. The latency between 
the posting of a halt request and the posting of the halted state depends on what the processor was doing 
at the time of the halt request.

The processor remains halted or stopped as long as any of the halt or stop conditions exist. The power 
management conditions are cleared, and the corresponding PRSR bits are cleared, as soon as 
corex_pm_halt and corex_stop are deasserted. All other halt and stop conditions must be explicitly 
cleared by clearing the corresponding DBSR bit. These bits are cleared by writing a 1 to the bit. As long 
as PRSR indicates that any halted or stopped condition is active, the processor remains halted or stopped.

Two events can cause the processor to resume execution from a halted state:

• corex_pm_halt or corex_stop is deasserted and no other halt or stop condition exists.

• corex_resume is asserted and no halt or stop condition exists.

The following sequence of events cause the processor to resume execution from the frozen (stopped) 
state:

1. While the processor is stopped, corex_pm_halt is asserted (by the system).

2. PRSR[STOPPED] is cleared.

3. corex_resume is asserted.
4.
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Figure 9-6. Processor Run Status (PRSR) register
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This table describes the PRSR fields. 

Table 9-6. PRSR field descriptions

Bits Name Description

32 HALTED
Halted state. Set whenever the processor is halted. Cleared whenever the processor resumes program 
execution.

33 PM_HALT
Power Management Halt. Set whenever the processor is halted in response to a power management 
request from the system. This is a non-debug halt.

34 — Reserved

35 DNH_HALT
Debugger Notify Halt event. Set whenever the processor is halted in response to the dnh instruction. 
This bit should be cleared by the debugger prior to issuing a resume command.

36 DE_HALT
Debug Event Halt. Set whenever the processor is halted due to the occurrence of an enabled debug 
condition in EDM. This bit should be cleared by the debugger prior to issuing a RESUME command.

37 EDB_HALT
External Debug Halt Request event. Set whenever the processor receives a debug halt request from 
the system. This bit should be cleared by the debugger prior to issuing a resume command.

38 — Reserved

39 CT_HALT

Cross-Thread Halt. Set whenever this thread is halted due to a  cross-thread debug halt request from 
the other thread. This bit should be cleared by the debugger prior to issuing a resume command.

Note: A cross-thread halt request includes DNH_HALT, DE_HALT, and EDB_HALT, but does not include 
PM_HALT or RUNN_HALT.

40 — Reserved

41 WAIT Processor is in a WAIT state caused by execution of a WAIT instruction.

42 STOPPED
Stopped state. Set whenever the processor is stopped. Cleared whenever the processor resumes 
program execution.

43 PM_STOP
Power Management Stop. Set whenever the processor is stopped in response to a power management 
stop request from the system. This is a non-debug stop.

44–47 — Reserved

48 PW20_STATE Processor is in power management state PW20.

49–58 — Reserved

59–63 DNHM
Debugger notify halt message contains the additional information provided by the dnh instruction. The 
information is derived from the DUI operand of the dnh instruction.



Debug and Performance Monitor Facilities

e6500 Core Reference Manual, Rev 0

Freescale Semiconductor 9-17
 

9.4.8 Extended External Debug Control 0 (EEDCR0) register
The EEDCR0, shown in the following figure, provides extended controls not normally used in external 
debug operations.

This table describes the EEDCR0 fields. 

9.4.9 Processor Debug Information (PDIR) register
The PIDR, shown in the following figure, provides configuration information about the debug facilities.

This table describes the PDIR fields. 

Offset 0xBASE_020 External debugger
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Figure 9-7. Extended External Debug Control 0 (EEDCR0) register

Table 9-7. EEDCR0 field descriptions

Bits Name Description

32–34 — Reserved

35 force_halt

Force Halt. Writing a 1 to this field forces the processor to halt (for e6500, all threads halt). When halting 
the processor using this mechanism, the processor may not be put back into a run state unless the entire 
integrated device is reset.

When read, this field always returns 0.

Forcing the processor to halt using this control should only be done when a normal halt command does 
not complete. The normal halt mechanism may fail to complete if there are problems in the CoreNet 
fabric; whereby, transactions are not completed. The processor in this case fails to halt because part of 
the protocol for halting the processor is to force all queued memory transaction to complete and wait until 
CoreNet has fully accepted those transactions. If the CoreNet fabric does not acknowledge the 
transactions, the halt sequence hangs. This control could then be used to force the processor into the 
halt state to examine the state of the processor. After a force_halt is commanded, the external debugger 
should not take any action or jam any instructions which causes the processor to attempt a transaction 
on the CoreNet interface (because doing so likely causes the processor to hang).

36–63 — Reserved

Offset 0xBASE_0fc External debugger
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Figure 9-8. Processor Debug Information Register (PDIR)
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9.4.10 Next Instruction Address (NIA) register

NIA, shown in Figure 9-9, contains the next instruction address of the processor. The register is not 
accessible through software (mtspr or mfspr). The register is provided as a means for an external 
debugger to read and write the execution address of the processor. A mtspr or mfspr to this register can 
be jammed by the external debugger while the processor is halted.

An attempt to perform a mtspr or mfspr to this register while the processor is not halted results in an 
illegal instruction exception.

NIA is essentially an alias to the current thread’s INIA register, except that NIA can read the value and 
NIA can only be accessed when the external debugger has halted the thread.

9.5 Nexus registers
The Nexus control registers provide a mechanism to enable the various tracing features that are supported 
by the e6500 Nexus module. These registers are accessible through the NSPC and NSPD registers, as 
described in Section 2.14.12, “Nexus SPR access registers.”

9.5.1 Nexus Development Control 1 (DC1) register

DC1, shown in the following figure, provides basic trace enable controls for the processor Nexus module.

Table 9-8. PDIR Field Descriptions

Bits Name Description

32–43 — Reserved

44–47 #PMCS
Reflects the number of performance monitor counters
For e6500, #PMCS = 0110 to indicate there are 6 performance monitor counters present.

48–51 — Reserved

52–55 #DACS
Reflects the number of Data Address Comparators
For e6500, #DACS = 0010 to indicate there are 2 DACs present.

56–59 — Reserved

60–63 #IACS
Reflects the number of Instruction Address Comparators
For e6500, #IACS = 1000 to indicate there are 8 IACs present.

 SPR 559 External Debugger only

0 61 62 63

R
Next instruction address

0 0

W

Reset 0x0000_0000_FFFF_FFFC

Figure 9-9. Next Instruction Address (NIA) register
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This table describes the DC1 fields. 

Offset 0xBASE_4081

1 Also accessible through NSPC/D. See Section 9.10.3.2, “Special-purpose register access (Nexus only).” 

External debugger

32 35 36 38 39 40 48 49 50 51 52 53 54 55 56 57 58 63

R
PPC

P
M

C
R

—

LP
T

E

OTS — POTD TSEN EOC EIC — TM
W

Reset All zeros

Figure 9-10. Nexus Development Control 1 (DC1) register

Table 9-9. DC1 field descriptions

Bits Name Description

32–35 PPC

Performance Profile Configuration
0000 No profile messages are sent.
xxx1 PMCC4 and PMCC5
xx1x PMCC2 and PMCC3
x1xx PMCC0 and PMCC1
1xxx PCC (NIA)

36 PMCR
Performance Monitor Counter Reset
0 Performance monitor counters are not reset on a snapshot.
1 Performance monitor counters are reset on a snapshot (results in smaller numbers for trace messages).

37 — Reserved

38 LPTE

Lite Program Trace Enable2

(Operates the same as the TM bits)
0 Full Program Trace is used.
1 Lite Program Trace is used.

39 OTS
Ownership Trace PID Select
0 PID0 data is transmitted within Ownership Trace messages.
1 Nexus PID Register (NPIDR) data is transmitted within Ownership Trace messages.

40–48 — Reserved

49 POTD
Periodic Ownership Trace Disable
0 Periodic Ownership Trace message events are enabled.
1 Periodic Ownership Trace message events are disabled.

50–51 TSEN

Timestamp Enable
00 Timestamps are disabled. (Timestamp Correlation message requests from the NPC are ignored.)
01 Timestamps are enabled and sent via Timestamp Correlation messages when requested by the NPC. 

Timestamps are not applied to other message types.
10 Timestamps are enabled and applied to all messages. Timestamp Correlation messages are also generated 

when requested by the NPC.
11 Coarse timestamps are enabled and a timestamp is periodically applied to messages. Timestamp 

Correlation messages are also generated when requested by the NPC.

52–53 EOC
Event Out Control
00 EVTO0 upon occurrence of any watchpoints selected by DC2[EWC0].
01–11 Reserved; EVTO0 behaves as disabled.
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9.5.2 Nexus Development Control 2 (DC2) register

DC2, shown in Figure 9-11, provides controls for the Event Out signal EVTO[0], which is a trigger 
output from the processor. The functions performed by EVTOn assertion are device-specific. See the 
appropriate section of the device’s reference manual for details.

54–55 EIC

Event In Control1

00 EVTI0 for synchronization (Use EVTI0 to externally trigger a hard sync condition.)
01 Reserved
10 EVTI0 is disabled for this module.
11 Reserved (should not be used to ensure future compatibility)

56–57 — Reserved

58–63 TM

Trace Mode2

000000  All trace are disabled.
xxxxx1  Ownership Trace is enabled.
xxxx1x  Data Trace is enabled.
xxx1xx  Program Trace is enabled.
xx1xxx  Watchpoint Trace is enabled.
x1xxxx  Profile Trace (in-circuit trace messages) is enabled. 
1xxxxx  Data Acquisition Trace is enabled.

1 EVTI may be used as a watchpoint condition independent of the settings of DC1[EIC]. See Table 9-57 for information on how 
events are mapped to watchpoints.

2 TM may be updated by hardware in response to watchpoint triggering. Writes to this field take precedence over hardware updates 
in the event of a collision. See Section 9.5.5, “Nexus Watchpoint Trigger Control 1 (WT1) register,” for more information on 
watchpoint triggering.

Offset 0xBASE_40C1

1 Also accessible through NSPC/D. See Section 9.10.3.2, “Special-purpose register access (Nexus only).”

External debugger

32 63

R
EWC0

W

Reset All zeros

Figure 9-11. Nexus Development Control 2 (DC2) register

Table 9-9. DC1 field descriptions (continued)

Bits Name Description
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This table describes the DC2 fields. 

9.5.3 Nexus Development Control 3 (DC3) register

DC3, shown in Figure 9-11, provides controls for the Event Out signals EVTO[1:4], which are trigger 
outputs from the processor. The functions performed by EVTOn assertion are device-specific. See the 
appropriate section of the device’s reference manual for details.

Table 9-10. DC2 field descriptions

Bits Name Description

32–63 EWC0

Event Out Watchpoint Control 01

00000000000000000000000000000000 No watchpoints trigger EVTO0
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx1  Watchpoint #1 triggers EVTO0
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx1x  Watchpoint #2 triggers EVTO0
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xx  Watchpoint #3 triggers EVTO0
xxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxx  Watchpoint #4 triggers EVTO0
xxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxx  Watchpoint #5 triggers EVTO0
xxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxx  Watchpoint #6 triggers EVTO0
xxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxx  Watchpoint #7 triggers EVTO0
xxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxx  Watchpoint #8 triggers EVTO0
xxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxx  Watchpoint #9 triggers EVTO0
xxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxx  Watchpoint #10 triggers EVTO0
xxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxx  Watchpoint #11 triggers EVTO0
xxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxx  Watchpoint #12 triggers EVTO0
xxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxx  Watchpoint #13 triggers EVTO0
xxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxx  Watchpoint #14 triggers EVTO0
xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx  Watchpoint #15 triggers EVTO0
xxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxx  Watchpoint #16 triggers EVTO0
xxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxx  Watchpoint #17 triggers EVTO0
xxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxx  Watchpoint #18 triggers EVTO0
xxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxx  Watchpoint #19 triggers EVTO0
xxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxx  Watchpoint #20 triggers EVTO0
xxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxx  Watchpoint #21 triggers EVTO0
xxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxx  Watchpoint #22 triggers EVTO0
xxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxx  Watchpoint #23 triggers EVTO0
xxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #24 triggers EVTO0
xxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #25 triggers EVTO0
xxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #26 triggers EVTO0
xxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #27 triggers EVTO0
xxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #28 triggers EVTO0
xxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #29 triggers EVTO0
xx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #30 triggers EVTO0
x1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #31 triggers EVTO0
1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #32 triggers EVTO0

Offset 0xBASE_4101 External debugger

32 33 34 39 40 41 42 47 48 49 50 55 56 57 58 63

R
— EWC4 — EWC3 — EWC2 — EWC1

W

Reset All zeros

Figure 9-12. Nexus Development Control 3 (DC3) register
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This table describes the DC3 fields. 

9.5.4 Nexus Development Control 4 (DC4) register

DC4, shown in Figure 9-13, provides additional control of Nexus debug features, Specifically, this register 
controls the masking of events that initiate Program Correlation messages (PCM), as well as trace filters 
based on MSR state.

1 Also accessible through NSPC/D. See Section 9.10.3.2, “Special-purpose register access (Nexus only).”

Table 9-11. DC3 field descriptions

Bits Name Description

32–33 — Reserved

34–39 EWC4

Event Out Watchpoint Control 4
000000 No watchpoints trigger EVTO4.
000001–100000 Watchpoint #1–#32 (respectively) triggers EVTO4.1

100001–111111 Reserved

1 See Table 9-57 for information on the events that are mapped to these watchpoints.

40–41 — Reserved

42–47 EWC3

Event Out Watchpoint Control 3
000000 No watchpoints trigger EVTO3.
000001–100000 Watchpoint #1–#32 (respectively) triggers EVTO3.1

100001–111111 Reserved

48–49 — Reserved

50–55 EWC2

Event Out Watchpoint Control 2
000000 No watchpoints trigger EVTO2.
000001–100000 Watchpoint #1–#32 (respectively) triggers EVTO2.1

100001–111111 Reserved

56–57 — Reserved

58–63 EWC1

Event Out Watchpoint Control 1
000000 No watchpoints trigger EVTO1.
000001–100000 Watchpoint #1–#32 (respectively) triggers EVTO1.1

100001–111111 Reserved

Offset 0xBASE_4141

1 Also accessible through NSPC/D. See Section 9.10.3.2, “Special-purpose register access (Nexus only).” 

External debugger

32 33 34 35 36 37 38 52 53 63

R

P
T

F
P

M
M

P
T

F
P

R

P
T

F
G

S

— EVCDMW

Reset All zeros

Figure 9-13. Nexus Development Control 4 (DC4) register
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This table describes the DC4 fields.

9.5.5 Nexus Watchpoint Trigger Control 1 (WT1) register
WT1, shown in Figure 9-14, provides controls for watchpoint triggers that can be used to start and stop 
program and data tracing, producing a temporal window of trace information. 

Whenever a start trigger is detected, the designated trace features are enabled, and the corresponding DC1 
enable bits are set. Whenever a stop trigger is detected, the designated trace features are disabled, and the 
corresponding enable DC1 bits are cleared. If the same trigger condition is used for both start and stop 
triggering, the designated trace features toggle between being enabled and disabled at each occurrence of 
the trigger condition. Similarly, if start and stop triggers for a trace feature occur simultaneously, the 

Table 9-12. DC4 field descriptions

Bits Name Description

32–33 PTFPMM1

1 All three conditions must be met for Program Trace to be enabled.

Program Trace Filtering on Performance Monitor Mark
00 Program Trace is unaffected by MSR[PMM].
01 Reserved (Program Trace is unaffected by MSR[PMM].)
10 Program Trace messages are generated only when MSR[PMM] = 0.
11 Program Trace messages are generated only when MSR[PMM] = 1.

System software can set MSR[PMM] to mark which execution contexts to enable performance monitor 
statistics to be gathered or to filter Nexus Program Trace messages from being generated. See Section 2.7.1, 
“Machine State (MSR) register.”

34–35 PTFPR1

Program Trace Filtering on Privilege 
00 Program Trace is unaffected by MSR[PR].
01 Reserved (Program Trace is unaffected by MSR[PR].)
10 Program Trace messages are generated only when MSR[PR] = 0 (supervisor mode).
11 Program Trace messages are generated only when MSR[PR] = 1 (user mode).

These bits are used to provide execution context filtering. Filtering applies to Program Trace only.

36–37 PTFGS1

Program Trace Filtering on Guest State
00 Program Trace is unaffected by MSR[GS].
01 Reserved (Program Trace is unaffected by MSR[GS].)
10 Program Trace messages are generated only when MSR[GS] = 0 (not in guest state).
11 Program Trace messages are generated only when MSR[GS] = 1 (guest state).

These bits are used to provide execution context filtering. Filtering applies to Program Trace only.

38–52 — Reserved

53–63 EVCDM

Event Code (EVCODE) Mask2

00000000000  No EVCODEs are masked for Program Correlation messages.
xxxxxxxxxx1  EVCODE #1 is masked for Program Correlation messages.
xxxxxxxxx1x  EVCODE #2 is masked for Program Correlation messages.
xxxxxxxx1xx–xxxxxxx1xxx  Reserved
xxxxxx1xxxx  EVCODE #5 is masked for Program Correlation messages.
xxxxx1xxxxx–xx1xxxxxxxx  Reserved
x1xxxxxxxxx  EVCODE #10 is masked for Program Correlation messages.
1xxxxxxxxxx  EVCODE #11 is masked for Program Correlation messages.

2 See Table 9-43 for implemented EVCODEs.
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designated trace feature toggles between enabled and disabled depending on the enable state at the time 
of the trigger events. For example, if tracing is enabled, and start and stop triggers occur simultaneously, 
tracing is disabled. Direct writes of DC1 take precedence over any trace feature enable state that is 
derived from watchpoint triggering. 

Using watchpoints that result in toggling on then off Program Trace too close together (within a few 
cycles) may result in loss of that small window of trace because it takes a few cycles for Program Trace to 
generate its first synchronization message.

This table describes the WT1 fields. 

Offset 0xBASE_42C1

1 Also accessible through NSPC/D. See Section 9.10.3.2, “Special-purpose register access (Nexus only).”

External debugger

32 33 34 39 40 41 42 47 48 49 50 55 56 57 58 63

R
— PTS — PTE — DTS — DTE

W

Reset All zeros

Figure 9-14. Nexus Watchpoint Trigger 1 register

Table 9-13. WT1 field descriptions

Bits Name Description

32–33 — Reserved

34–39 PTS

Program Trace Start
000000 Trigger is disabled.
000001–100000  Start Program Trace on Watchpoints 1–32 (see Table 9-57).
100001–111111  Reserved

40–41 — Reserved

42–47 PTE

Program Trace End
000000 Trigger is disabled.
000001–100000 = End Program Trace on Watchpoints 1–32 (see Table 9-57).
100001–111111 = Reserved

48–49 — Reserved

50–55 DTS

Data Trace Start
000000 Trigger is disabled.
000001–100000 Start Data Trace on Watchpoints 1–32 (see Table 9-57).
100001–111111 Reserved

56–57 — Reserved

58–63 DTE

Data Trace End
000000 Trigger is disabled.
000001–100000 End Data Trace on Watchpoints 1–32 (see Table 9-57).
100001–111111 Reserved
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NOTE
Using start and stop triggers for Data Trace may preclude the ability to 
correlate Data Trace and Program Trace if watchpoint messages are used 
with DACs as a means to try and correlate Data Trace messages to the 
appropriate region of code (that is, the Program Trace).

9.5.6 Nexus Watchpoint Trigger Control 2 (WT2) register
WT2, shown in Figure 9-15, provides controls for watchpoint triggers that can be used to start and stop 
in-circuit trace (performance profiling messages) and light program tracing, producing a temporal 
window of trace information. 

Whenever a start trigger is detected, the designated trace features are enabled, and the corresponding DC1 
enable bits are set. Whenever a stop trigger is detected, the designated trace features are disabled, and the 
corresponding enable DC1 bits are cleared. If the same trigger condition is used for both start and stop 
triggering, the designated trace features toggle between being enabled and disabled at each occurrence of 
the trigger condition. Similarly, if start and stop triggers for a trace feature occur simultaneously, the 
designated trace feature toggles between enabled and disabled depending on the enable state at the time 
of the trigger events. For example, if tracing is enabled, and start and stop triggers occur simultaneously, 
tracing is disabled. Direct writes of DC1 take precedence over any trace feature enable state that is 
derived from watchpoint triggering. 

This table describes the WT2 fields. 

Offset 0xBASE_4301

1 Also accessible through NSPC/D. See Section 9.10.3.2, “Special-purpose register access (Nexus only).”

External debugger

32 33 34 39 40 41 42 47 48 49 50 55 56 57 58 63

R
— ITS — ITE — LPTS — LPTE

W

Reset All zeros

Figure 9-15. Nexus Watchpoint Trigger 2 register

Table 9-14. WT2 field descriptions

Bits Name Description

32–33 — Reserved

34–39 ITS

In-Circuit Trace (Performance Profiling messages) Start
000000 Trigger is disabled.
000001–100000 Start ICT trace on Watchpoints 1–32 (see Table 9-57).
100001–111111 Reserved

40–41 — Reserved

42–47 ITE

In-Circuit Trace (Performance Profiling messages) End
000000 Trigger is disabled
000001–100000 End ICT trace on Watchpoints 1–32 (see Table 9-57).
100001–111111 Reserved
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9.5.7 Nexus Watchpoint Mask (WMSK) register

WMSK, shown in Figure 9-16, controls which watchpoint events are enabled to produce Watchpoint Trace 
messages. Note that DC1[TM] must also be programmed to generate Watchpoint Trace messages.

48–49 — Reserved

50–55 LPTS

Lite Program Trace Start
000000 Trigger is disabled.
000001–100000 Start Lite Program Trace on Watchpoints 1–32 (see Table 9-57).
100001–111111 Reserved

56–57 — Reserved

58–63 LPTE

Lite Program Trace End
000000 Trigger is disabled.
000001–100000 End Lite Program Trace on Watchpoints 1–32 (see Table 9-57).
100001–111111 Reserved

Offset 0xBASE_4581

1 Also accessible through NSPC/D. See Section 9.10.3.2, “Special-purpose register access (Nexus only).”

External debugger

32 63

R
WEM

W

Reset All zeros

Figure 9-16. Nexus Watchpoint Mask (WMSK) register

Table 9-14. WT2 field descriptions (continued)

Bits Name Description
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This table describes the WMSK fields.

9.5.8 Nexus Overrun Control (OVCR) register
OVCR, shown in Figure 9-17, controls Nexus behavior as the internal message queues fill up. Response 
behavior options include suppressing selected message types and stalling the processor’s instruction 
completion. See Section 9.11.6, “Nexus message queues,” for more information regarding the internal 
message queues.

Table 9-15. WMSK Field Descriptions

Bits Name Description

32–63 WEM

Watchpoint Enable for messaging1

00000000000000000000000000000000  No Watchpoints enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx1  Watchpoint #1 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx1x  Watchpoint #2 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xx  Watchpoint #3 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxx  Watchpoint #4 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxx  Watchpoint #5 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxx  Watchpoint #6 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxx  Watchpoint #7 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxx  Watchpoint #8 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxx  Watchpoint #9 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxx  Watchpoint #10 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxx  Watchpoint #11 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxx  Watchpoint #12 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxx  Watchpoint #13 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxx  Watchpoint #14 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx  Watchpoint #15 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxx  Watchpoint #16 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxx  Watchpoint #17 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxx  Watchpoint #18 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxx  Watchpoint #19 is enabled for Watchpoint Trace messaging
xxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxx  Watchpoint #20 is enabled for Watchpoint Trace messaging
xxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxx  Watchpoint #21 is enabled for Watchpoint Trace messaging
xxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxx  Watchpoint #22 is enabled for Watchpoint Trace messaging
xxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxx  Watchpoint #23 is enabled for Watchpoint Trace messaging
xxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #24 is enabled for Watchpoint Trace messaging
xxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #25 is enabled for Watchpoint Trace messaging
xxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #26 is enabled for Watchpoint Trace messaging
xxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #27 is enabled for Watchpoint Trace messaging
xxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #28 is enabled for Watchpoint Trace messaging
xxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #29 is enabled for Watchpoint Trace messaging
xx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #30 is enabled for Watchpoint Trace messaging
x1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #31 is enabled for Watchpoint Trace messaging
1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #32 is enabled for Watchpoint Trace messaging

1 See Table 9-57 for information on the events that are mapped to these watchpoints.



Debug and Performance Monitor Facilities

e6500 Core Reference Manual, Rev 0

9-28 Freescale Semiconductor
 

This table describes the OVCR fields.

9.5.9 Reloadable Counter Configuration (RCCR) register
RCCR, shown in Figure 9-14, provides controls for the reloadable counter. Once enabled, the reloadable 
counter starts from zero and begins counting the event selected within the RCEVENT field. When the 
reloadable counter reaches the value indicated in RCVR, a reloadable counter event asserts. Depending 
on the RCMODE field, the counter may then disable itself or reset back to zero and continue counting. 

Offset 0xBASE_45C1

1 Also accessible through NSPC/D. See Section 9.10.3.2, “Special-purpose register access (Nexus only).”

External debugger

32 33 34 35 36 41 42 47 48 49 50 51 52 62 63

R
— SPTHOLD — SPEN — STTHOLD — STEN

W

Reset All zeros

Figure 9-17. Nexus Overrun Control (OVCR) register

Table 9-16. OVCR field descriptions

Bits Name Description

32–33 — Reserved

34–35 SPTHOLD

Suppression Threshold
00 Suppression threshold is when message queues are 1/4 full.
01 Suppression threshold is when message queues are 1/2 full.
10 Suppression threshold is when message queues are 3/4 full.
11 Reserved

36–41 — Reserved

42–47 SPEN

Suppression Enable
000000 Suppression is disabled.
xxxxx1 Ownership Trace message suppression is enabled.
xxxx1x Data Trace message suppression is enabled.
xxx1xx Program Trace message suppression is enabled.
xx1xxx Watchpoint Trace message suppression is enabled.
x1xxxx Reserved
1xxxxx Data Acquisition message suppression is enabled.

48–49 — Reserved

50–51 STTHOLD

Stall Threshold
00 Stall threshold is when message queues are 1/4 full.
01 Stall threshold is when message queues are 1/2 full.
10 Stall threshold is when message queues are 3/4 full.
11 Reserved

52–62 — Reserved

63 STEN
Stall Enable
0 Processor stalling is disabled.
1 Processor stalling is enabled. 
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NOTE
The reloadable counter stops counting (freezes) when the processor enters 
debug halt mode or when the core enters a low power mode where the core 
clock is disabled. The reloadable counter resumes counting when debug halt 
mode is exited or when the clocks are turned back on as the low power mode 
is exited.

NOTE
Selecting reserved values for RCEVENT and/or RCMODE could result in 
unwanted watchpoints or unexpected behavior.

This table describes the RCCR fields. 

9.5.10 Reloadable Counter Value (RCVR) register
RCVR, shown in Figure 9-14, provides the value to be compared to the reloadable counter. Upon match 
of the count value and RCV, an event is generated, and the counter is either disabled (1-shot mode) or is 
reset and event counting continues (continuous mode) depending on the RCCR[RCMODE] setting.

Offset 0xBASE_4C01

1 Also accessible through NSPC/D. See Section 9.10.3.2, “Special-purpose register access (Nexus only).” 

External debugger

32 33 41 42 47 48 60 61 63

R

R
C

E

— RCEVENT — RCMODE
W2

2 Writes to this register reset the actual counter to 0.

Reset All zeros

Figure 9-18. Reloadable Counter Configuration (RCCR) register

Table 9-17. RCCR field descriptions

Bits Name Description

32 RCE Reloadable Counter Enable

33–41 — Reserved

42–47 RCEVENT

Reloadable Counter Event Input Select
000000 Count clock cycles
000001–100000 Count Watchpoint 1–32 (see Table 9-57)
100001–111111 Reserved

48–60 — Reserved

61–63 RCMODE

Reloadable Counter Mode
000 One Shot Counting

Reset counter, count up until reaching the Reloadable Count Value (RCV), generate an event, and 
clear the RCE bit to disable the counter.

001 Continuous mode 
Reset counter, count up until reaching the Reloadable Count Value (RCV), generate an event, and 
repeat that process.

011–111 Reserved
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This table describes the RCVR fields. 

9.5.11 Performance Monitor Snapshot Configuration (PMSCR) register

PMSCR, shown in Figure 9-20, controls which watchpoint events are enabled to generate a snapshot 
trigger to capture the performance monitor counters and PC in their capture registers.

NOTE
When Nexus performance profile messages are being used to egress the PC 
and performance monitor count values at each snapshot, care should be 
taken to ensure the snapshot event periodicity is not less than 16 clock 
cycles. Otherwise, some performance profile messages may be lost.

Offset 0xBASE_4C41

1 Also accessible through NSPC/D. See Section 9.10.3.2, “Special-purpose register access (Nexus only).”

External debugger

32 63

R
RCV

W2

2 Writes to this register to set a new RCV, reset the actual counter to 0.

Reset All zeros

Figure 9-19. Reloadable Counter Value (RCVR) register

Table 9-18. RCVR field descriptions

Bits Name Description

32–63 RCV Reloadable Count Value

Offset 0xBASE_4C81

1 Also accessible through NSPC/D. See Section 9.10.3.2, “Special-purpose register access (Nexus only).”

External debugger

32 63

R
PMSC

W

Reset All zeros

Figure 9-20. Performance Monitor Snapshot Configuration (PMSCR) register
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This table describes the PMSCR fields.

9.6 Instruction Jamming (IJAM) registers
This section discusses the following IJAM registers:

• Section 9.6.1, “IJAM Configuration (IJCFG) register”

• Section 9.6.2, “IJAM Instruction (IJIR) register”

• Section 9.6.3, “IJAM data registers 0–3 (IJDATA0, IJDATA1, IJDATA2, IJDATA3)”

Table 9-19. PMSCR Field Descriptions

Bits Name Description

32–63 PMSC

Watchpoint Enable for performance monitor snapshots1

00000000000000000000000000000000  No watchpoints enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx1  Watchpoint #1 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx1x  Watchpoint #2 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xx  Watchpoint #3 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxx  Watchpoint #4 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxx  Watchpoint #5 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxx  Watchpoint #6 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxx  Watchpoint #7 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxx  Watchpoint #8 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxx  Watchpoint #9 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxx  Watchpoint #10 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxx  Watchpoint #11 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxx  Watchpoint #12 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxx  Watchpoint #13 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxx  Watchpoint #14 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx  Watchpoint #15 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxx  Watchpoint #16 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxx  Watchpoint #17 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxx  Watchpoint #18 is enabled to generate performance monitor snapshots
xxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxx  Watchpoint #19 is enabled to generate performance monitor snapshots
xxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxx  Watchpoint #20 is enabled to generate performance monitor snapshots
xxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxx  Watchpoint #21 is enabled to generate performance monitor snapshots
xxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxx  Watchpoint #22 is enabled to generate performance monitor snapshots
xxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxx  Watchpoint #23 is enabled to generate performance monitor snapshots
xxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #24 is enabled to generate performance monitor snapshots
xxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #25 is enabled to generate performance monitor snapshots
xxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #26 is enabled to generate performance monitor snapshots
xxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #27 is enabled to generate performance monitor snapshots
xxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #28 is enabled to generate performance monitor snapshots
xxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #29 is enabled to generate performance monitor snapshots
xx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #30 is enabled to generate performance monitor snapshots
x1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #31 is enabled to generate performance monitor snapshots
1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  Watchpoint #32 is enabled to generate performance monitor snapshots

1 See Table 9-57 for information on the events that are mapped to these watchpoints.
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9.6.1 IJAM Configuration (IJCFG) register

IJCFG, shown in Figure 9-21, controls the basic settings for jamming instructions into the e6500 core. It 
includes page attributes, addressing modes, and target storage space (memory or debug) for load/store 
instructions and other controls.

Figure 9-21. IJAM Configuration (IJCFG) register 

This table describes the IJCFG fields.

Offset 0xBASE_608 External debugger

32 47 48 55 56 57 58 62 63

R
— IJRA IJER — WIMGE IJMODE

W

Reset All zeros

Table 9-20. IJCFG field descriptions

Bits Name Description

32–47 — Reserved

48–55 IJRA

Real Address (bits 24-31). If the jammed instruction is a load or store instruction and IJER = 1, these 
8 bits are prepended to the 32-bit effective address to form a 40-bit physical address. (PA[24:63] is 
equal to the concatenation of IJRA[0:7] and EA[32:63].) This field is only used when the jammed 
instruction is a load or store instruction.

56 IJER
Instruction Jamming Load/store Effective/Real Addressing Mode
0 Load/store instruction (current access) uses virtual addressing mode (MMU translation).
1 Load/store instruction (current access) uses real addressing mode (no MMU translation).

57 — Reserved

58–62 WIMGE

Page attributes for any storage access instruction (current access) when IJCFG[IJER] = 1. The 
meaning of these attributes is the same as defined when the processor is executing storage accesses 
through normal instruction execution. The definition of the WIMGE attributes can be found in EREF’s 
Cache and MMU Background sections.

63 IJMODE

Instruction Jamming Mode Control
0 Load/store instructions (current access) target memory storage space.
1 Load/store instructions (current access) target debug storage space.

Changing the value of this field (whether load/store instructions target memory storage space or debug 
storage space) requires that a sync 0 instruction be jammed and completed immediately prior to 
changing this field. This ensures that prior stores that may have been jammed are performed to the 
proper storage space.
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9.6.2 IJAM Instruction (IJIR) register

IJIR, shown in the following figure, contains the instruction that is to be jammed into the e6500 processor.

9.6.3 IJAM data registers 0–3 (IJDATA0, IJDATA1, IJDATA2, IJDATA3)

IJDATA0–IJDATA3, shown in Figure 9-23, contain data associated with load/store instructions. Data is 
written to these registers when the jammed instruction requires associated write data (for example, load 
instructions from debug space). Data is read from these registers when the jammed instruction has 
associated result data (for example, stores to debug space).

x

9.7 Performance monitor registers (PMRs)
The performance monitor provides a set of PMRs for defining, enabling, and counting conditions that 
trigger the performance interrupt. PMRs for the e6500 core are described in Section 2.16, “Performance 
monitor registers (PMRs).” 

9.8 Capture registers
Capture registers are shadow registers that are used to capture a snapshot of an another register when 
requested. The capture register can then be accessed to determine the value at the time the snapshot 
occurred.

9.8.1 Performance monitor counter capture registers (PMCC0–PMCC5)
The performance monitor counter capture registers (PMCC0–PMCC5), shown in Figure 9-24, are 32-bit 
registers that capture the PMCn counter values based on a snapshot trigger signal. (See Section 9.5.11, 
“Performance Monitor Snapshot Configuration (PMSCR) register” for configuration.) Details on the 

Offset 0xBASE_60C External debugger

32 63

R
IJAM Instruction (Table 9-34 lists instructions supported for IJAM)

W

Reset All zeros

Figure 9-22. IJAM Instruction (IJIR) register

Offset 0xBASE_600 (IJDATA0), 
Offset 0xBASE_604 (IJDATA1),
Offset 0xBASE_610 (IJDATA2),
Offset 0xBASE_614 (IJDATA3)

External debugger

32 63

R
IJAM Data

W

Reset All zeros

Figure 9-23. IJAM data registers (IJDATA0–IJDATA3)
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performance monitor capture feature can be found in Section 9.12.4.2, “Processor performance monitor 
and program counter capture function.”

This table describes the PMCC field.

9.8.1.1 Program Counter Capture (PCC) register

PCC, shown in Figure 9-25, is a 64-bit register that captures the micro-architected program counter value 
based on a snapshot trigger signal. (See Section 9.5.11, “Performance Monitor Snapshot Configuration 
(PMSCR) register” for configuration.) For the e6500 core, the program counter is accurate to within two 
instruction windows from when the signal is detected by the processor and the two instructions at the 
bottom of the completion queue. Details on the performance monitor capture feature can be found in 
Section 9.12.4.2, “Processor performance monitor and program counter capture function.”

This table describes the PCC field.

9.9 Debug events
Based on the terminology at the beginning of this chapter, debug conditions can be configured to cause 
debug events (setting of DBSR or EDBSR0), and debug events can result in debug interrupts or debug 
halt entry. In addition to configuring debug conditions to result in debug halt entry, there are several 
dedicated debug halt request events. 

Offset 0xBASE_030 - 0xBASE_03C External debugger

32 63

R Captured counter value

W

Reset All zeros

Figure 9-24. Performance monitor counter capture registers (PMCC0–PMCC5)

Table 9-21. PMCC0–PMCC5 field description

Bits Name Description

32–63 Counter Value Value of the PMCn counter upon occurrence of the snapshot trigger

Offset 0xBASE_028 External debugger

0 63

R Captured program counter value

W

Reset All zeros

Figure 9-25. Program Counter Capture (PCC) register

Table 9-22. PCC field description

Bits Name Description

0–63 Captured program counter value Value of the program counter upon occurrence of the snapshot trigger
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This chapter describes the debug conditions and how they may be configured to cause debug interrupts or 
debug halt entry. This chapter also provides details on the dedicated debug halt request events, as well as 
a prioritization scheme that is used to determine which debug events prevail in the case of simultaneous 
assertion.

9.9.1 Embedded hypervisor
In the presence of hypervisor software, debug events are modified to be suppressed when debug 
capabilities are enabled in the guest state. This prevents debug events from being recorded (and 
subsequent debug interrupts from occurring) when executing in the embedded hypervisor state when the 
guest operating system is using the debug facility.

When EPCR[DUVD] = 1 and MSR[GS] = 0, all debug events and associated exceptions do not occur, 
except for the unconditional debug event, and no debug events are posted in the DBSR. See EREF for 
more details on the embedded hypervisor.

9.9.2 Internal and external debug modes
EREF specifies how the processor behaves in internal debug mode (IDM). This is when 
DBCR0[EDM] = 0 and DBCR0[IDM] = 1.

The architecture allows implementation-dependent behavior when in external debug mode (EDM) 
(DBCR0[EDM] = 1). In EDM, the processor behaves as follows:

• An mtspr that attempts to change DBCRs, IACs, DACs, or DBSR behaves as a nop if the resource 
is not allocated to IDM. An exception is that jamming an mtspr instruction alters these registers.

• DBSR is not updated for resources owned by EDM when a debug event occurs.

• When an externally allocated debug event occurs, the processor immediately halts. The debug 
interrupt is not taken for those debug events that are allocated to EDM. DSRR0, DSRR1, MSR, 
and ESR are not updated before halting. The NIA is not redirected to the first instruction of the 
debug interrupt handler.

• Upon halting for an EDM allocated debug event, the NIA contains the value that would otherwise 
have been placed in DSRR0 if the processor was in IDM.

• PRSR[DE_HALT] is set, and EDBSR0 indicates which debug events caused the processor to halt.

Note that, in IDM, all synchronous debug events (all debug events except UDE, which is pended) are not 
recognized unless debug interrupts are enabled (MSR[DE] = 1). However, if BRT and ICMP are allocated 
to EDM and not masked in EDBSRMSK0, those events are always recognized and cause the processor to 
halt, even if MSR[DE] = 0.

9.9.3 Changing the debug facility state in internal debug mode
In general, care should be taken when changing the debug facility state. Changing that state requires 
synchronization. (See Section 3.3.3, “Synchronization requirements.”) The synchronization generally 
occurs naturally if changes are made in the debug interrupt handler when MSR[DE] = 0, and MSR[DE] 
transitions from 0 to 1 when the debug interrupt handler returns and other debug events are enabled. The 
synchronization also occurs naturally when context switch is performed and the debug facility registers 
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are loaded from the incoming state. Such context switch operations should be performed with 
MSR[DE] = 0 and transitioning to 1 when the appropriate return from interrupt instruction is executed to 
transition to the newly loaded context.

Changing the debug facility state when the state might cause debug events in the currently executing 
instructions in the pipeline may have unpredictable results for software and should be avoided. For 
example, an mtspr instruction that enables an instruction address compare (IAC) for the current 
instruction, or instructions shortly after the current instruction, but before debug facility synchronization 
is accomplished may fail to record the debug event. Similarly, an mtmsr that changes MSR[DE], which 
allows debug events to be recorded, may not take effect until the synchronization is performed.

9.9.4 IAC, DAC, ICMP, BRT, IRPT, RET, CIRPT, CRET
debug condition response table

This table lists responses for IACn, DACn, ICMP, BRT, IRPT, RET, CIRPT, and CRET conditions. 

9.9.5 Instruction address compare debug condition
The e6500 core implements IAC debug conditions as described in the architecture, with the following 
exception:

• Real Mode comparisons (DBCR1[IAC1ER] = 01 and DBCR1[IAC2ER] = 01) are not supported.

One or more instruction address compare debug conditions (IAC1-8) occur if they are enabled and 
execution of an instruction is attempted at an address that meets the criteria specified in DBCR0, DBCR5, 

Table 9-23.  Response—IACn, DACn, ICMP, BRT, IRPT, RET, CIRPT, CRET

E
D

M

ID
M

E
D

B
R

A
C

0[
x]

D
B

R
C

R
0[

x]

M
S

R
[D

E
] Actions

Set Status Bits Generate Interrupt of Halt Notes

0 0 x x x

0 1 x 0 x

0 1 x 1 0

0 1 x 1 1 DBSR[x] Debug (IVOR15) interrupt

1 0 0 0 x

1 0 0 1 x EDBSR0[x] Halt

1 0 1 x x

1 1 0 0 x

1 1 0 1 x EDBSR0[x] Halt

1 1 1 0 x

1 1 1 1 0

1 1 1 1 1 DBSR[x] Debug (IVOR15) interrupt
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IAC1 - IAC8. These debug conditions cause debug events to be recorded in DBSR if MSR[DE] = 1 and 
no higher priority exception exists. When MSR[DE] = 1, the IAC debug conditions are logged when the 
debug IAC interrupt is taken. When MSR[DE] = 0, IAC debug conditions are ignored. MSR[DE] has no 
effect on the updates to EDBSR0.

Instruction address compares may specify user/supervisor mode and instruction space (MSR[IS]), along 
with an effective address, masked effective address, or range of effective addresses for comparison. See 
Section 2.14.5, “Debug Control 1 (DBCR1) register,” for details on the controls for the various IAC event 
modes.

IAC conditions are masked from generating IAC events if DBCR2[DACLINK1/2] bits are set. The IAC 
fields of DBSR and EDBSR0 are not updated. In this case, a DAC event occurs if an instruction generates 
both a DAC condition and an IAC condition and no exceptions of higher priority are present.

In EDM, an unmasked IAC debug condition is recorded as a debug event in EDBSR0[IAC], the execution 
of the instruction causing the debug event is suppressed, the processor halts, and NIA is set to the address 
of the excepting instruction.

In IDM, an unmasked IAC debug condition is recorded as a debug event in DBSR[IAC] if MSR[DE] = 1 
and no higher priority exception exists.

If debug interrupts are enabled (MSR[DE] = 1) and the debug event is recorded, a debug interrupt is 
generated, the execution of the instruction causing the debug event is suppressed, and DSRR0 is set to the 
address of the excepting instruction.

If debug interrupts are disabled (MSR[DE] = 0), the IAC event is ignored.

9.9.6 Data address compare debug condition

The e6500 core implements DAC debug conditions as described in the architecture, with the following 
exceptions and clarifications:

• Real address comparisons (DBCR2[DAC1ER] = 01 and DBCR2[DAC2ER] = 01) are not 
supported.

• All load instructions are considered reads with respect to debug conditions, while all store 
instructions are considered writes with respect to debug conditions.

• When MSR[GS] = 0, the value of EPCR[DUVD] is used to suppress debug DAC events when 
external PID instructions are used, even if the external PID instructions target a context where 
GS = 1. See EREF for details.

One or more data address compare debug conditions (DAC1R, DAC1W, DAC2R, DAC2W) occur if they 
are enabled, execution is attempted of a data storage access instruction, and the type and address of the 
data storage access meet the criteria specified in DBCR0, DBCR2, DAC1, and DAC2. These conditions 
cause debug events to be recorded in DBSR if MSR[DE] = 1 and no higher priority exception exists. 
MSR[DE] has no effect on the updates to EDBSR0.

Data address compares may specify user/supervisor mode and data space (MSR[DS]), along with an 
effective address, masked effective address, or range of effective addresses for comparison. See 



Debug and Performance Monitor Facilities

e6500 Core Reference Manual, Rev 0

9-38 Freescale Semiconductor
 

Section 2.14.6, “Debug Control 2 (DBCR2) register,” for details on the controls for the various DAC 
event modes. 

DBCR0[DAC1] determines whether DAC1 comparisons are performed on read-type accesses, write-type 
accesses, or both. Similarly, DBCR0[DAC2] determines if DAC2 comparisons are performed on 
read-type accesses, write-type accesses, or both.

All load instructions are considered reads with respect to debug conditions, while all store instructions are 
considered writes with respect to debug conditions. In addition, the cache management instructions and 
certain special cases are handled as follows:

• dcbt[ls], dcbtst, dcbtep, dcbtstep, icbt[ls], icbi, icbiep, and icblc are all considered reads with 
respect to debug events. Note that dcbt[ep], dcbtst[ep], and icbt are treated as no-ops when they 
report data storage or data TLB miss exceptions, instead of being allowed to cause interrupts. 
However, these instructions cause debug interrupts, even when they would otherwise have been 
no-oped due to a data storage or data TLB miss exception.

• dcbz[ep], dcbi, dcbf[ep], dcba, dcbst[ep], dcbtstls, and dcblc are all considered writes with 
respect to debug events. Note that dcbf and dcbst are considered reads with respect to data storage 
exceptions, because they do not actually change the data at a given address. However, because 
execution of these instructions may result in write activity on the processor’s data bus, they are 
treated as writes with respect to debug events. See Table 4-2 for the list of exceptions for all load, 
store, and cache management instructions.

• lmw or stmw operations may partially complete if a DAC event occurs after the initial transfer has 
started. DAC events may be further qualified by requiring an IAC condition on the corresponding 
data storage access instruction by setting DBCR2[DACLINK1/2]. When DACs are linked to IACs 
in this way, a DAC event occurs only if an instruction generates both a DAC condition and an IAC 
condition. These linked events are recorded in DBSR[DACR,DACW], according to which DAC 
comparator generated the debug condition. For the e6500 core, a DACLINK1/2 event only occurs 
if the DAC condition matches the first word of an lmw or stmw instruction.

In EDM, if no higher priority debug event is associated with the instruction, a DAC debug condition is 
recorded as a debug event in EDBSR0[DACR, DACW], the execution of the instruction causing the 
debug event is suppressed, the processor halts, and NIA is set to the address of the excepting instruction.

In IDM, a DAC debug condition is recorded as a debug event in DBSR[DACR,DACW] if MSR[DE] = 1 
and no higher priority exception exists.

If debug interrupts are enabled (MSR[DE] = 1) and the debug event is recorded, a debug interrupt is 
generated, the execution of the instruction causing the debug condition is suppressed, and DSRR0 is set 
to the address of the excepting instruction.

If debug interrupts are disabled (MSR[DE] = 0), the DAC event is ignored.

9.9.7 Instruction complete debug condition
An instruction complete debug condition occurs if instruction complete debug conditions are enabled 
(DBCR0[ICMP] = 1) and execution of any instruction is completed.
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If execution of an instruction is suppressed due to the instruction causing some other exception that is 
enabled to generate an interrupt, then the attempted execution of that instruction does not cause an 
instruction complete debug condition. The sc instruction does not fall into the category of an instruction 
whose execution is suppressed because the instruction actually executes and then generates a system call 
interrupt. In this case, the instruction complete debug event is also set. If a debug interrupt does occur in 
this case, DSRR0 points to the first instruction in the system call interrupt handler. Note that, in general, 
instruction complete debug conditions do not occur for any instruction whose execution causes an 
exception whose interrupt would save the address of that instruction in the appropriate save/restore 
register 0. For example, a Trap instruction that causes a Trap exception would not create an instruction 
complete debug condition.

In EDM, an instruction complete debug condition is recorded as a debug event in EDBSR0[ICMP], the 
processor halts, and NIA is set to the address of the next instruction to be executed.

In IDM, an instruction complete debug condition records a debug event in DBSR[ICMP] if 
MSR[DE] = 1. Instruction complete debug events are not recognized if MSR[DE] = 0 at the time of 
instruction execution.

Return-from-interrupt class instructions that enable or disable instruction complete debug events through 
the side effect of a change to MSR[DE] are not applied to the return instruction itself, but take effect on 
the next instruction following the return.

When an instruction complete debug event is recorded in internal debug mode, a debug interrupt is 
generated and the address of the next instruction to be executed is recorded in DSRR0.

9.9.8 Branch taken debug condition

A branch taken debug condition occurs if branch taken debug conditions are enabled (DBCR0[BRT] = 1) 
and execution of a branch instruction that is taken is attempted (either an unconditional branch or a 
conditional branch whose branch condition is true).

In EDM, a branch taken debug condition is recorded as a debug event in EDBSR0[BRT], the execution of 
the branch instruction is suppressed, the processor halts, and NIA is set to the address of the branch 
instruction.

In IDM, a branch taken debug condition records a debug event in DBSR[BRT] if MSR[DE] = 1. Branch 
taken debug events are not recognized if MSR[DE] = 0 at the time of the branch instruction execution. A 
debug interrupt is generated, the execution of the branch instruction is suppressed, and DSRR0 is set to 
the address of the branch instruction.

9.9.9 Interrupt taken debug condition
An interrupt taken debug condition occurs if interrupt taken debug conditions are enabled 
(DBCR0[IRPT] = 1) and a non-debug, non-critical, non-machine check interrupt occurs. Only 
non-debug, non-critical, non-machine check class interrupts cause an interrupt taken debug condition. 
This condition is recorded in DBSR if MSR[DE] = 1. MSR[DE] has no effect on the updates to EDBSR0. 
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In EDM, an interrupt taken debug condition is recorded as a debug event in EDBSR0[IRPT], the 
processor halts, and NIA is set to the address of the non-critical interrupt handler. No instructions at the 
noncritical interrupt handler execute.

In IDM, an interrupt taken debug condition is recorded as a debug event in DBSR[IRPT] if 
MSR[DE] = 1. If debug interrupts are enabled (MSR[DE] = 1), a debug interrupt is generated and the 
value saved in DSRR0 is the address of the non-critical interrupt handler. No instructions at the 
non-critical interrupt handler execute.

If debug interrupts are disabled (MSR[DE] = 0), the IRPT debug event is ignored.

9.9.10 Interrupt return debug condition
A return debug condition occurs if return debug conditions are enabled (DBCR0[RET] = 1), an attempt is 
made to execute an rfi instruction, and no other higher priority exception executing the rfi occurs. This 
condition causes the corresponding debug event to be recorded in DBSR if MSR[DE] = 1. MSR[DE] has 
no effect on the updates to EDBSR0. 

In EDM, a return debug condition is recorded as a debug event in EDBSR0[RET], execution of the rfi is 
suppressed, the processor halts, and NIA is set to the address of the rfi instruction. 

In IDM, a return debug condition is recorded as a debug event in DBSR[RET] if MSR[DE] = 1 and no 
higher priority exception exists. If debug interrupts are enabled (MSR[DE] = 1), a debug interrupt occurs 
provided no higher priority exception that is enabled to cause an interrupt exists. DSRR0 is set to the 
address of the rfi instruction.

If debug interrupts are disabled (MSR[DE] = 0) at the time of rfi execution (that is, before MSR is 
updated by the rfi), the RET event is ignored.

9.9.11 Critical interrupt taken debug condition

A critical interrupt taken debug condition occurs if critical interrupt taken debug conditions are enabled 
(DBCR0[CIRPT] = 1) and a critical interrupt occurs. Only critical class interrupts cause a critical 
interrupt taken debug condition. This condition causes the corresponding debug event to be recorded in 
DBSR if MSR[DE] = 1. MSR[DE] has no effect on the updates to EDBSR0.

In EDM, a critical interrupt taken debug condition is recorded as a debug event in EDBSR0, the processor 
halts, and NIA is set to the address of the critical interrupt handler. No instructions at the critical interrupt 
handler execute.

In IDM, a critical interrupt taken debug condition is recorded as a debug event in DBSR[CIRPT] if 
MSR[DE] = 1. 

If debug interrupts are enabled (MSR[DE] = 1), a debug interrupt occurs, provided no higher priority 
exception that is enabled to cause an interrupt exists, and the value saved in DSRR0 is the address of the 
critical interrupt handler. No instructions at the critical interrupt handler execute.

If debug interrupts are disabled (MSR[DE] = 0), the CIRPT debug event is ignored.
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9.9.12 Critical return debug condition
A critical return debug condition occurs if critical return debug conditions are enabled 
(DBCR0[CRET] = 1), an attempt is made to execute an rfci instruction, and no other higher priority 
exception occurs executing the rfci. This condition causes the corresponding debug event to be recorded 
in DBSR if MSR[DE] = 1. MSR[DE] has no effect on the updates to EDBSR0.

In EDM, a critical return debug condition is recorded as a debug event in EDBSR0, execution of the rfci 
is suppressed, the processor halts, and NIA is set to the address of the rfci instruction.

In IDM, a critical return debug condition is recorded as a debug event in DBSR[CRET] if MSR[DE] = 1 
and no higher priority exception exists. If debug interrupts are enabled (MSR[DE] = 1), a debug interrupt 
occurs, provided no higher priority exception that is enabled to cause an interrupt exists. DSRR0 is set to 
the address of the rfci instruction.

If debug interrupts are disabled (MSR[DE] = 0) at the time of rfci execution (that is, before MSR is 
updated by the rfci), the CRET event is ignored.

9.9.13 Unconditional debug event condition
An unconditional debug condition occurs when the unconditional debug event (UDE) input transitions to 
the asserted state and either DBCR0[IDM] = 1 or DBCR0[EDM] = 1. The unconditional debug condition 
does not have a corresponding enable bit in DBCR0. This condition causes the corresponding debug 
event to be recorded in DBSR or EDBSR0, regardless of the setting of MSR[DE]. 

If UDE is allocated to the external debug host (EDM) and is not masked, upon the rising edge of the UDE 
input, an unconditional debug condition is recorded as a debug event in EDBSR0[UDE], the processor 
halts, and NIA is set to the address of the next instruction to be executed. 

If UDE is allocated to the internal debug agent (IDM), upon the rising edge of the UDE input, an 
unconditional debug condition is recorded as a debug event in DBSR[UDE]. If debug interrupts are 
enabled (MSR[DE] = 1), a debug interrupt occurs in response to the unconditional debug event, and 
DSRR0 is set to the address of the instruction that would be executed next (were it not for the occurrence 
of the debug interrupt).

If MSR[DE] = 0 when an unconditional debug condition occurs, the condition is recorded as an event in 
DBSR[UDE]. In the case of a delayed debug interrupt, DSRR0 contains the address of the instruction 
following the one that enabled debug interrupts.
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This table lists responses for UDE conditions. 

9.9.14 TRAP debug condition
A TRAP debug condition occurs if TRAP debug conditions are enabled, a Trap instruction (tw, twi) is 
executed, and the conditions specified by the instruction for the Trap are met. 

If a Trap is allocated to the external host debugger (EDM) and is not masked, a TRAP debug condition is 
recorded as a debug event in EDBSR0[TRAP], the execution of the Trap instruction is suppressed, the 
processor halts, and NIA is set to the address of the Trap instruction. MSR[DE] has no effect on the 
updates to EDBSR0.

If a Trap is allocated to the internal debug agent (IDM), a Trap debug condition is recorded as a debug 
event in DBSR[TRAP] if MSR[DE] = 1 and no higher priority exception exists. 

If debug interrupts are enabled (MSR[DE] = 1) and the debug event is recorded, a debug interrupt is 
generated, the execution of the Trap instruction is suppressed, and DSRR0 is set to the address of the Trap 
instruction.

In cases where the Trap instruction is not configured to cause a debug interrupt, or when debug interrupts 
are disabled, the TRAP debug event generates a program interrupt.

This table lists responses for TRAP debug conditions. 

Table 9-24.  UDE condition responses
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0 1 x x 0
DBSR[UDE] The Debug (IVOR15) interrupt is 

taken once the MSR[DE] bit is set.

0 1 x x 1 DBSR[UDE] Debug (IVOR15) interrupt

1 0 0 0 x EDBSR0[UDE] Halt
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DBSR[UDE] The Debug (IVOR15) interrupt is 

taken once the MSR[DE] bit is set.

1 1 1 x 1 DBSR[UDE] Debug (IVOR15) interrupt
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9.9.15 Debugger Notify Interrupt (DNI) debug condition
The dni instruction (see Section 3.5, “Debug instruction model”) provides a mechanism to force a debug 
interrupt. This instruction is not privileged and may be executed while the processor is at any privilege 
level. It may be compiled into code, or a debugger may substitute dni for another instruction at a location 
where a breakpoint is desired.

NOTE
Because the dni instruction executes as a NOP when IDM and EDM are 
disabled, care should be taken if dni is substituted by the debugger for 
another instruction.

Bits 11-15 of the dni instruction (DCTL) are implementation defined. For the e6500 core, bit 15 of the 
dni instruction is used to assert the DNI watchpoint event for event cross triggering. Thus, if bit 15 of the 
dni instruction is set, the DNI watchpoint asserts on execution of the instruction. However, if dni bit 15 is 
zero, the watchpoint event does not assert.

A dni debug condition occurs if the dni instruction is executed. 

This table summarizes the responses to a DNI condition.

Table 9-25.  TRAP debug condition responses
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Actions

Set Status Bits Generate Interrupt of Halt Notes

0 0 x x x Program (IVOR6) interrupt

0 1 x 0 x Program (IVOR6) interrupt

0 1 x 1 0 Program (IVOR6) interrupt

0 1 x 1 1 DBSR[TRAP] Debug (IVOR15) interrupt

1 0 0 0 x Program (IVOR6) interrupt

1 0 0 1 x EDBSR0[TRAP] HALT

1 0 1 0 x Program (IVOR6) interrupt

1 0 1 1 x Program (IVOR6) interrupt

1 1 0 0 x Program (IVOR6) interrupt

1 1 0 1 x EDBSR0[TRAP] HALT

1 1 1 0 0 Program (IVOR6) interrupt

1 1 1 0 1 Program (IVOR6) interrupt

1 1 1 1 0 Program (IVOR6) interrupt

1 1 1 1 1 DBSR[TRAP] Debug (IVOR15) interrupt
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If a dni results in a debug interrupt, DSRR0 is set to the address of the dni instruction, and instruction 
execution begins at the debug interrupt handler address. See Section 4.9.16, “Debug interrupt—IVOR15.”

If a dni results in a debug halt, a dni debug condition is recorded as a debug event in EDBSR0[dni], the 
execution of the dni instruction is suppressed, the processor halts, and NIA is set to the address of the dni 
instruction.

9.9.16 Dedicated debug halt request events

In addition to being able to configure the debug conditions to cause a debug halt (which results in 
PRSR[DE_HALT] being set), there are several dedicated debug halt request events that can be used to 

Table 9-26. DNI debug condition responses

E
D

M

ID
M

E
D

B
R

A
C

0[
D

N
I]

E
D

B
S

R
M

S
K

0[
D

N
IM

]

E
D

B
C

R
0[

D
N

I_
C

T
L

]

M
S

R
[D

E
]

Actions

Set Status Bits Generate Interrupt of Halt Notes

0 0 x x x x dni executes as a NOP

0 1 x x x 0 dni executes as a NOP

0 1 x x x 1 DBSR[DNI] Debug (IVOR15) interrupt

1 0 0 0 0 0 dni executes as a NOP

1 0 0 0 0 1 EDBSR0[DNI] Halt

1 0 0 0 1 x EDBSR0[DNI] Halt

1 0 0 1 x x dni executes as a NOP

1 0 1 x x x dni executes as a NOP

1 1 0 0 0 0 dni executes as a NOP

1 1 0 0 0 1 EDBSR0[DNI] Halt

1 1 0 0 1 x EDBSR0[DNI] Halt

1 1 0 1 0 0 dni executes as a NOP

1 1 0 1 0 1 dni executes as a NOP

1 1 0 1 1 x dni executes as a NOP

1 1 1 x x 0 dni executes as a NOP

1 1 1 x x 1 DBSR[DNI] Debug (IVOR15) interrupt
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place the processor in debug halt mode. When a debug halt request is asserted, the processor enters debug 
halt mode as a result if the request is not masked.

The dedicated debug halt requests do not affect EDBSR0 status bits but are reflected in the PRSR.

9.9.16.1 Debug Halt Request (corex_dbg_halt_thrdn) input

Assertion of the corex_dbg_halt input causes the processor to enter the debug halted state. 
PRSR[EDB_HALT] is set to indicate that corex_dbg_halt has been asserted, and PRSR[HALTED] 
indicates that the processor is in the halted state.

9.9.16.2 Debugger Notify Halt (dnh) instruction

The dnh instruction (see Section 3.5, “Debug instruction model”) provides a mechanism to halt the 
processor independent of the state of DBCR0[EDM]. This instruction is enabled by writing 
EDBCR0[DNH_EN] = 1. This instruction is not privileged and may be executed while the processor is at 
any privilege level. It may be compiled into code during debug, or an external debugger may substitute 
dnh for another instruction at a location where a breakpoint is desired.

Execution of this instruction when EDBCR0[DNH_EN] = 1 and EDBSRMSK0[DNHM] = 0 causes the 
processor to halt. NIA is set to the address of the dnh instruction, the 5-bit DUI operand is captured into 
PRSR[DNHM], and PRSR[DNH_HALT] is set. PRSR[DNHM] can provide an external debugger 
information about the breakpoint that was hit. For example, it could uniquely identify which breakpoint 
was hit.

Execution of this instruction when EDBCR0[DNH_EN] = 1 and EDBSRMSK0[DNHM] = 1 causes the 
dnh instruction to be executed as a NOP (that is, the processor does not halt), and a DNH watchpoint is 
generated (if enabled).

The 10-bit DUIS field is no longer supported in the e6500 core. Furthermore, bits 11-15 of the dnh 
instruction are now implementation defined. For the e6500 core, bit 15 is used to assert the dnh 
watchpoint event, which may be used for triggering internal resources, or routed to the event output 
(EVTO0-4) signals for event cross-triggering.

Execution of the dnh instruction when EDBCR0[DNH_EN] = 0 causes an illegal instruction exception 
(IVOR6).

Software may be instrumented to include dnh instructions in order to transfer control to an external 
development tool at designated points for interactive debugging. The dnh instruction is useful for 
debugging debug interrupt service routines (IVOR15). Without the dnh instruction, it is difficult to halt 
within the debug interrupt routines, because the machine must be in internal debug mode to enter the 
routine but must be in EDM to halt on a debug exception. Because dnh is enabled with 
EDBCR0[DNH_EN] instead of DBCR0[EDM], it provides a way to halt within the debug interrupt 
service routine.
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9.9.16.3 Cross-thread debug halt requests

By default, if one thread receives a debug halt request (DNH_HALT, DE_HALT, or EDB_HALT), both 
threads halt. The PRSR of the thread that received the original halt request indicates the original halt 
request, whereas the PRSR of the other thread indicates it halted due to a cross-thread halt (CT_HALT).

It should be noted that both threads receive the debug halt request (original debug halt request and 
cross-thread debug halt request) simultaneously and enter debug halt state as soon as the currently 
executing instructions complete. 

The cross-thread debug halt request can be masked by setting the Disable Cross-Thread Halt bit in each 
thread’s external debug control register (EDBCR0[DIS_CTH]).

9.9.17 Simultaneous debug event priorities

A priority mechanism is provided to resolve multiple debug event assertions within the same cycle. The 
priorities affect which debug event(s) are recognized between multiple event occurrences within the same 
debug event owner (either IDM/IDM or EDM/EDM) or between multiple debug event owners, such as an 
internal debug agent and an external debug host (IDM/EDM). The priorities are used to define which bits 
are set within the DBSR (IDM) or EDBSR0 (EDM), the PC value recorded to DSRR0 (IDM) or NIA 
(EDM), and whether we call a debug exception (IDM) or halt (EDM).

The following rules are used:

• In the event of simultaneous debug events (regardless of whether they are owned by EDM or IDM), 
the highest priority debug event is recognized and all lower priority debug events are ignored 
(except for UDE, which results in its DBSR bit being set).

• If there are multiple events at the same priority level (and none at a higher priority):

— EDM owned debug events are recognized over IDM debug events.

— In some cases, multiple simultaneous events can set multiple DBSR bits.

– Multiple IAC and DAC DBSR bits can be set simultaneously.

– UDE is asynchronous and its DBSR can be set at any time.

– All other simultaneous events are ignored.

— In all cases, multiple simultaneous debug halting events set multiple EDBSR0 bits.

This table shows the relative debug event priorities. It should be noted that these priorities are defined 
within Section 4.8, “Interrupt processing,” but are replicated here for this discussion.
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Pre

9.9.17.1 Simultaneous debug event handing—events within same owner

When two debug events from the same debug owner assert simultaneously, the event of the highest 
priority is recognized (its corresponding DBSR or EDBSR0 bit is set), and any lower priority events 
either update the EDBSR0 (for halting events) or are ignored (for interrupt events). The exception to this 
rule is UDE, which, even when lower priority, sets the DBSR for later interrupt processing.

As an example, if an IAC and DNI are owned by an internal debug agent (IDM) and assert within the 
same cycle, only the IAC debug event is recognized, and the DNI event is ignored. Thus, the respective 
IAC bit is set in the DBSR when the debug exception is entered. Once the IAC event condition has been 
handled and a return is made to normal code execution, the dni instruction has a chance to re-execute.

Similarly, if both events are owned by an external debug host (EDM) and occurr in the same cycle, the 
processor enters debug halt mode with the respective IAC bit set in EDBSR0.

However, if the two debug events of the same priority from the same debug owner assert simultaneously, 
then each is recognized (corresponding DBSR or EDBSR0 bits set for each debug event of the highest 
priority).

Table 9-27. Debug event priorities

Priority Level
(same as exceptions)

Debug Event Pre or Post Completion1

1 PC value copied into DSRR0 (exception), or NIA (halt) is current (Pre) or next (Post) instruction.
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N/A Debug Halt Request2

2 Debug Halt Request - From corex_dbg_halt, dnh instruction, or cross-thread halt.

N/A3

3 N/A - Not Applicable (i.e. Effectively asynchronous with regards to instruction execution).

2

CIRPT4

4 Asynchronous exceptions cannot be sampled during the post completion of the instruction for 
which instruction complete (ICMP) is set. This is because the ICMP cannot be separated from the 
completion of the instruction. Thus, ICMP can appear as a higher priority than this asynchronous 
interrupt.

N/A3

IRPT4 N/A3

UDE4 N/A3

8 IAC Pre

12
DNI Pre

TRAP Pre

18

RET Pre

CRET Pre

BRT Pre

19 DAC Pre

21 ICMP Post



Debug and Performance Monitor Facilities

e6500 Core Reference Manual, Rev 0

9-48 Freescale Semiconductor
 

As an example of this, if TRAP and DNI are owned by an internal debug agent (IDM) and assert within 
the same cycle, both TRAP and DNI debug events are recognized and their respective bits are set in the 
DBSR when the debug exception is entered.

UDE is an exception to this and is recorded in DBSR, regardless if a higher priority event occurs 
simultaneously or not. 

9.9.17.2 Simultaneous debug event handing—events of different owners

Because it is possible that an external debugger (EDM) owned resource can produce a debug event in 
conjunction with a software debug agent (IDM) owned resource producing a different debug event 
simultaneously, a simple priority ordering mechanism is implemented between the two owners.

When simultaneous events are of a different priority level and from different owners (EDM and IDM), the 
highest priority debug event is recognized and the lower priority debug event is ignored.

When simultaneous events are of the same priority level but from different owners (EDM and IDM), the 
EDM debug event is recognized and the IDM debug event is ignored.

9.10 External debug interface
External debug support is supplied through a memory-mapped interface, which allows access to internal 
processor registers, arrays, and other system state while the processor is halted. EDM provides the ability 
to enter the halt state when a debug event occurs. This capability can be used to perform single-step 
operations from the external debug tool.

9.10.1 Processor run states

This section discusses the following processor run states:

• Section 9.10.1.1, “Halt”

• Section 9.10.1.2, “Stop (freeze)”

• Section 9.10.1.3, “Wait”

• Section 9.10.1.4, “Thread disabled”

• Section 9.10.1.5, “Entering/exiting processor run states”

9.10.1.1 Halt

When the e6500 core is in the debug halted state, the clocks are still running, but the processor is not 
fetching or executing instructions. While in this state, an external debugger can jam instructions into the 
pipeline, and they are executed. The processor also continues to receive snoops and maintains cache 
coherency.

Assertion of corex_pm_halt causes the processor to enter the halted state. PRSR[PM_HALT] is asserted 
to indicate that corex_pm_halt has been asserted, and PRSR[HALTED] indicates that the processor is in 
the halted state. When corex_pm_halt is deasserted, PRSR[PM_HALT] transitions to zero and, if the 
processor has not also been halted for a halt condition in the debug class, the processor resumes 
immediately.
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There are several mechanisms that halt the processor. These are described in the following table.

Most external debug operations can only be performed when the processor is halted. Note that if the 
processor is halted only because corex_pm_halt is asserted (that is, no other halt requests are active in 
PRSR), it resumes immediately if corex_pm_halt is deasserted. Therefore, the processor should always 
be halted with some other debug mechanism (for example, setting a system debug event halt) before 
accessing the contents of the processor.

The Processor Run Status (PRSR) register indicates whether or not the processor is halted for debug.

9.10.1.1.1 Watchdog timer during debug halted state

On the e6500 core, when the core is in debug halt mode, the watchdog timer continues to run. However, 
the watchdog interrupt and watchdog reset are blocked from occurring by holding the TSR[WIS] and 
TSR[ENW] bits in reset (TSR state 00) while the core is in debug halt mode. When the core exits debug 
halt mode (to continue software execution), those bits are no longer held in reset, thus, allowing 
subsequent time-outs to transition the state machine as normal.

9.10.1.2 Stop (freeze)

When the e6500 core is in the stopped state, the clocks are stopped. The caches are not snooped. If the 
clocks are stopped while the caches contain modified data, coherency may be lost because other 
processors (or other bus masters) do not see the modified data. Coherency may also be lost if the clocks 
are stopped while the caches contain shared or exclusive data then restarted. In this case, other processors 
may have changed the data, but the stopped processor retains the stale data, which may be used when the 
processor is restarted.

Assertion of corex_stop causes the processor to enter the stopped state. PRSR[PM_STOP] is asserted to 
indicate that corex_stop has been asserted, and PRSR[STOPPED] indicates that the processor is in the 
stopped state. When corex_stop is deasserted, PRSR[PM_STOP] transitions to zero, and, if the processor 
has not also been stopped for a stop condition in the debug class, the processor transitions immediately to 
the appropriate halted or running state. 

There are several mechanisms that can stop the processor. These are described in the following table.

Table 9-28. Methods for halting the processor

Halt Condition Classification Enable Documentation

Assertion of 
corex_pm_halt

Power 
Management

Always enabled —

Assertion of 
corex_dbg_halt

Debug Always enabled
—

DNH Debug EDBCR0[DNH_EN] Section 9.9.16.2, “Debugger Notify Halt (dnh) instruction”

DE Debug EDBCR0[EDM] Section 9.9.2, “Internal and external debug modes”
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9.10.1.3 Wait

When the processor executes the wait instruction, it discontinues fetching and executing instructions and 
waits for an asynchronous interrupt or the reservation to be cleared. This is the program wait state. This 
state does not have any effect on the processor while it is in the debug halted state, but affects resuming 
from the halted state. If the processor is in the program wait state when the corex_resume signal is 
asserted to exit the halted state, the processor does not fetch or execute any instructions until an 
asynchronous interrupt occurs. Otherwise, it begins fetching and executing instructions immediately.

If the processor is in the program wait state when the debug halted state is entered, the processor remains 
in the program wait state. Jamming an mtspr to the NIA causes the processor to exit the program wait 
state. Jamming a wait instruction causes the processor to enter the program wait state.

The debugger can examine PRSR[WAIT] to determine whether or not the processor is in the program 
wait state.

9.10.1.4 Thread disabled

Upon receiving a debug halt request, the thread that receives the debug halt request enters the debug 
halted state, regardless of whether the thread is enable or disabled. During the debug halted state, IJAM 
operations work as normal on halted threads. On exiting the debug halted state, a thread, which was 
disabled prior to debug halt mode entry, resumes to the thread disabled state.

During debug halt mode, the external debugger can IJAM instructions to enable or disable a thread. 
Thread disabled or enabled status can be determined by reading TENSR (see Section 2.15.1.5, “Thread 
Enable Status (TENSR) register).”

9.10.1.5 Entering/exiting processor run states

The e6500 core classifies halt and stop conditions into two categories: power management and debug. 
These categories are distinguished by the steps that are required to exit the halted or stopped state. This is 
done to avoid undesired interactions that could occur when corex_pm_halt or corex_stop is toggled while 
the processor is under control of a debugger.

Debug operations should not be performed while the processor is halted/stopped only due to power 
management. If the processor has been halted or stopped only for power management, the debugger 
should assert corex_dbg_halt before executing debug operations.

When the processor is running, the SoC should use the following sequence to enter the power 
management stopped state:

1. Assert corex_pm_halt.

Table 9-29. Methods for stopping the processor

Stop Condition Classification Enable Documentation

Assertion of 
corex_stop

Power 
Management

Always enabled Section 8.2, “Power management signals”
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2. Wait for corex_halted to be asserted by the processor.

3. Assert corex_stop.

This ensures that the processor is left in a recoverable state when the clocks are stopped. For the e6500 
core, when corex_pm_halt and corex_stop are asserted simultaneously, the processor first halts and then 
stops.

The processor can transition directly from any of the three possible states (running, halted, or stopped) to 
any of the other three states.

Assume that the processor has been halted by one of the halt conditions in the debug class. To resume 
from this state, the debugger must:

1. Clear all of the bits in PRSR that correspond to halt requests in the debug class.

2. Assert corex_resume.

Similarly, assume that the processor has been stopped by one of the stop conditions in the debug class. To 
resume from this state, the debugger must:

1. Clear all of the bits in PRSR that correspond to stop requests in the debug class,

2. Assert corex_resume.

Normally, when the processor has been halted for power management by asserting corex_pm_halt, the 
processor resumes execution when corex_pm_halt is deasserted. Similarly, the processor normally exits 
the power management stopped state whenever corex_stop is deasserted. However, if the processor has 
been halted or stopped for a halt or stop condition in the debug class, deassertion of corex_pm_halt or 
corex_stop does not cause the processor to resume until corex_resume is asserted.

If corex_resume is asserted while corex_pm_halt or corex_stop is asserted, the processor remains in the 
halted or stopped for power management state.

If any of the debug related halt status bits are set in PRSR indicating whether or not the processor has 
been halted or stopped for a debug condition, corex_resume must be asserted before the processor 
resumes execution.

If the processor has been halted or stopped only by assertion of corex_pm_halt or corex_stop, simply 
releasing corex_pm_halt or corex_stop allows the processor to resume execution.

If the processor is in the stopped state, and some halt requests are active in PRSR, then an attempt to 
resume causes the processor to go directly from the stopped to the halted state. If no halt requests are 
active, the processor goes directly from the stopped to the running state.

In order to be able to resume from a stopped state, special steps must be taken when stopping the core. 
These steps are:

1. Flush the caches so that they do not contain any modified data. This prevents coherency problems.

2. Discontinue any snoop traffic.

3. Halt the processor.

4. Stop the processor.
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9.10.2 Single-step
An external development tool can single-step through code using the instruction complete (ICMP), 
interrupt taken (IRPT), and critical interrupt taken (CIRPT) debug events in EDM. If a resume command 
is issued while the ICMP, IRPT, and CIRPT events are enabled in EDM, the processor does one of the 
following:

• Executes and completes one instruction, then halts before executing the next instruction.

• Executes one instruction and takes a synchronous interrupt, then halts before executing the first 
instruction of the interrupt handler.

• Immediately takes an asynchronous interrupt and halts on the first instruction of the interrupt 
handler.

Therefore, to single-step:

1. Set ICMP, IRPT, and CIRPT. 

2. Set EDM. 

3. Clear PRSR.

4. Resume. 

Note that PRSR must be cleared prior to each resume command.

9.10.3 Resource access
Memory-mapped access is provided for debug resources. In addition, a subset of these resources (Nexus 
Trace) is accessible via software SPRs (using mtspr/mfspr instructions):

• Instruction jamming (memory-mapped)

— Access to architecture-defined registers, including GPRs, SPRs, and PMRs

— Access to memory-mapped resources with and without MMU translations

• Storage access through memory-mapped interface

— Direct access to a few architecture-defined registers

— Implementation-dependent access to arrays within the processor

— Direct access to memory

9.10.3.1 Memory-mapped access

Addressing the debug/expert resources through the memory-mapped interface entails driving a base 
address for the e6500 processor (BASE), a Thread Select (TS), a Functional Group Select (GID), and a 
register index for a specific register. The TS routes the access to the selected thread’s registers within the 
core. The GID determines what class of resource is to be accessed, while the register index determines 
which resource within the group to access. 

See the SoC reference manual for specifics on accessing the internal memory-mapped resources.
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This figure shows the address bit fields used in accessing debug resources.

The TS bit field is defined as follows.

Table 9-31 summarizes the debug resource memory map and is replicated for each thread.

The “Access Restrictions” column in Table 9-31 can be interpreted as follows:

• If there are no restrictions listed, then software and the external debugger can access the 
corresponding resource through the memory-mapped interface.

• E = External debugger only (not accessible to software as an SPR). Software can read this register 
via memory-mapped accesses but should not write it.

• H = Access allowed when processor is halted only. Writes to this register while the core is running 
are ignored and reads are unpredictable.

• O = The register is allocated as a whole within the EDBRAC0 register (when EDM is enabled) to 
either an internal debug agent (accessible as an SPR) or an external debug host (memory-mapped 
accessible). The owner of the register has read/write access. Non-owners have read only access and 
their writes are ignored.

• N= The external debugger always has read and write access to the register. An internal debug agent 
always has read access, but only has write access when the resource is allocated to the internal 
debug agent as a whole within the EDBRAC0 register (or when EDM is disabled).

• S = The register is shared between the internal and external debugger and each bit is assigned on a 
bit-by-bit basis according to the allocations in the EDBRAC0 register (when EDM is enabled). The 
bit’s owner has read/write access to that bit. Non-owners have read only access of that bit. Writes 
to non-owned bits are ignored.

• T0 = Accessible in Thread 0’s map only.

• BT= The register is shared by both threads and accessible by both threads.

23 14 13 12 11 8 7 0

ips_addr[23:0] BASE TS GID Register Index

Figure 9-26. Debug resource access

Table 9-30. Thread Select (TS)

TS Thread

2’b00 0

2’b01 1

2’b10 Reserved

2’b11 Reserved
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Table 9-31. Debug resource address map

Functional 
Group ID

ips_addr[11:8]

Register 
Index

ips_addr[7:0]
Resource Access

Type

Access
Restrict

ions

Service
Data

Width

Reset 
Source

0x0

Debug Status

0x00 Processor Run Status (PRSR) register R/W1 E 32 POR

0x04 Skyblue Status (SBSR1) register R T0 32 HRESET

0x08 Machine State (MSR) register R/W E, H 32 HRESET

0x0c External Debug Status (EDBSR0) register R E 32 HRESET

0x10 External Debug Status (EDBSR1) register R E 32 HRESET

0x14 External Debug Exception Syndrome (EDESR) 
register

R E 32 HRESET

0x18 Processor Version (PVR) register R 32 N/A

0x1c External Debug Status Mask 0 (EDBSRMSK0) 
register

R/W E 32 POR

0x20 - 0x24 Reserved

0x28 Program Counter Capture (PCC) register - 
Upper 32-bits

R E 32 POR

0x2c Program Counter Capture (PCC) register - 
Lower 32-bits

R E 32 POR

0x30 Perfmon Capture Count 0 (PMCC0) register R E 32 POR

0x34 Perfmon Capture Count 1 (PMCC1) register R E 32 POR

0x38 Perfmon Capture Count 2 (PMCC2) register R E 32 POR

0x3c Perfmon Capture Count 3 (PMCC3) register R E 32 POR

0x40 Perfmon Capture Count 4 (PMCC4) register R E 32 POR

0x44 Perfmon Capture Count 5 (PMCC5) register R E 32 POR

0x48-0xfc Reserved

0xfc Processor Debug Information (PDIR) register R E 32 POR

0x1

Debug Control

0x00 External Debug Control 0 (EDBCR0) register R/W E 32 POR

0x04 - 0x1c Reserved

0x20 Extended External Debug Control 0 (EEDCR0) 
register

R/W E, T0 32 POR

0x24 - 0x2c Reserved

0x30 External Debug Resource Allocation Control 0 
(EDBRAC0) register

R/W E 32 POR
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0x1

Debug Control

0x34 External Debug Resource Request 0 (EDBRR0) 
register

R/W E 32 POR

0x38 Debug Resource Request 0 (DBRR0) register R 32 HRESET

0x3c Reserved

0x40 Debug Control 0 (DBCR0) register R/W S 32 HRESET

0x44-0x4c Reserved

0x50 Perfmon Counter 0 (PMC0) register R/W O 32 HRESET

0x54 Perfmon Counter 1 (PMC1) register R/W O 32 HRESET

0x58 Perfmon Counter 2 (PMC2) register R/W O 32 HRESET

0x5c Perfmon Counter 3 (PMC3) register R/W O 32 HRESET

0x60 Perfmon Counter 4 (PMC4) register R/W O 32 HRESET

0x64 Perfmon Counter 5 (PMC5) register R/W O 32 HRESET

0x68-0x6c Reserved

0x70 Perfmon Local Control a0 (PMLCa0) register R/W O 32 HRESET

0x74 Perfmon Local Control a1 (PMLCa1) register R/W O 32 HRESET

0x78 Perfmon Local Control a2 (PMLCa2) register R/W O 32 HRESET

0x7c Perfmon Local Control a3 (PMLCa3) register R/W O 32 HRESET

0x80 Perfmon Local Control a4 (PMLCa4) register R/W O 32 HRESET

0x84 Perfmon Local Control a5 (PMLCa5) register R/W O 32 HRESET

0x88-0x8c Reserved

0x90 Perfmon Local Control b0 (PMLCb0) register R/W O 32 HRESET

0x94 Perfmon Local Control b1 (PMLCb1) register R/W O 32 HRESET

0x98 Perfmon Local Control b2 (PMLCb2) register R/W O 32 HRESET

0x9c Perfmon Local Control b3 (PMLCb3) register R/W O 32 HRESET

0xa0 Perfmon Local Control b4 (PMLCb4) register R/W O 32 HRESET

0xa4 Perfmon Local Control b5 (PMLCb5) register R/W O 32 HRESET

0xa8-0xac Reserved

0xb0 Perfmon Global Control 0 (PMGC0) register R/W O 32 HRESET

0xb4-0xfc Reserved

0x3

Clock 
Control/Status

0x00 - 0xfc Reserved

Table 9-31. Debug resource address map (continued)
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0x4

Nexus

0x00 - 0x04 Reserved

0x08 Nexus Development Control 1 (DC1) register R/W N 32 POR

0x0c Nexus Development Control 2 (DC2) register R/W N 32 POR

0x10 Nexus Development Control 3 (DC3) register R/W N 32 POR

0x14 Nexus Development Control 4 (DC4) register R/W N 32 POR

0x18 - 0x28 Reserved

0x2c Watchpoint Trigger 1 (WT1) register R/W N 32 POR

0x30 Watchpoint Trigger 2 (WT2) register R/W N 32 POR

0x34 - 0x54 Reserved

0x58 Watchpoint Mask (WMSK) register R/W N 32 POR

0x5c Nexus Overrun Control (OVCR) register R/W N 32 POR

0x60 - 0xbc Reserved

0xc0 Reload Counter Configuration (RCCR) register R/W N 32 POR

0xc4 Reload Counter Value (RCVR) register R/W N 32 POR

0xc8 Perf Mon Snapshot Configuration (PMSCR) register R/W N 32 POR

0xcc - 0xfc Reserved

Table 9-31. Debug resource address map (continued)
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0x5

IAC / DAC

0x00 Debug Control 1 (DBCR1) register R/W S 32 HRESET

0x04 Debug Control 2 (DBCR2) register R/W O 32 HRESET

0x08 Reserved

0x0c Debug Control 4 (DBCR4) register R/W O 32 HRESET

0x10 Debug Control 5 (DBCR5) register R/W S 32 HRESET

0x14 - 0x4c Reserved

0x50 Instruction Address Compare 1 (IAC1) register - upper R/W O 32 HRESET

0x54 Instruction Address Compare 1 (IAC1) register - lower R/W O 32 HRESET

0x58 Instruction Address Compare 2 (IAC2) register - upper R/W O 32 HRESET

0x5C Instruction Address Compare 2 (IAC2) register - lower R/W O 32 HRESET

0x60 Instruction Address Compare 3 (IAC3) register - upper R/W O 32 HRESET

0x64 Instruction Address Compare 3 (IAC3) register - lower R/W O 32 HRESET

0x68 Instruction Address Compare 4 (IAC4) register - upper R/W O 32 HRESET

0x6C Instruction Address Compare 4 (IAC4) register - lower R/W O 32 HRESET

0x70 Instruction Address Compare 5 (IAC5) register - upper R/W O 32 HRESET

0x74 Instruction Address Compare 5 (IAC5) register - lower R/W O 32 HRESET

0x78 Instruction Address Compare 6 (IAC6) register - upper R/W O 32 HRESET

0x7C Instruction Address Compare 6 (IAC6) register - lower R/W O 32 HRESET

0x80 Instruction Address Compare 7 (IAC7) register - upper R/W O 32 HRESET

0x84 Instruction Address Compare 7 (IAC7) register - lower R/W O 32 HRESET

0x88 Instruction Address Compare 8 (IAC8) register - upper R/W O 32 HRESET

0x8C Instruction Address Compare (IAC8) register - lower R/W O 32 HRESET

0x90 Data Address Compare 1 (DAC1) register - upper R/W O 32 HRESET

0x94 Data Address Compare 1 (DAC1) register - lower R/W O 32 HRESET

0x98 Data Address Compare 2 (DAC2) register - upper R/W O 32 HRESET

0x9C Data Address Compare 2 (DAC2) register - lower R/W O 32 HRESET

0xa0 - 0xfc Reserved

Table 9-31. Debug resource address map (continued)
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9.10.3.2 Special-purpose register access (Nexus only)

Nexus trace resources can also be accessed through e6500 SPRs—specifically, the Nexus SPR Access 
Configuration (NSPC) register and the Nexus SPR Access Data (NSPD) register. 

NOTE
NSPC and NSPD SPR’s are only accessible by the software when EDM is 
not enabled or when EDM is enabled and EDBRAC0[TRACE] = 1.

Both read and write accesses are initiated by writing to NSPC via an mtspr instruction with the 
appropriate settings for the desired register index. The register index is identical to that used in accessing 
the resources through the memory map. For information about access, see Section 2.14.12, “Nexus SPR 
access registers.”

Once the specific Nexus resource has been selected, software can then access NSPD by executing an 
mtspr instruction (for register writes) or an mfspr (for register reads).

9.10.4 Instruction jamming
Instruction jamming provides a generalized mechanism to perform debug operations using the existing 
facilities of the processor. When the processor is in a halted state, a development tool can jam instructions 
into the execution pipeline for the processor to execute.

Instruction jamming is useful for observing and altering the state of the machine whenever the processor 
is halted. Typical instruction jams include:

• mfspr—Observe the value of an SPR.

• mtspr—Alter the value in an SPR.

0x6

Instruction 
Jamming

0x00 Instruction Jamming Data 0 (IJDATA0) register R/W E, H 32 HRESET

0x04 Instruction Jamming Data 1 (IJDATA1) register R/W E, H 32 HRESET

0x08 Instruction Jamming Configuration (IJCFG) register R/W E, H 32 POR

0x0c Instruction Jamming Instruction (IJIR) register R/W E, H 32 HRESET

0x10 Instruction Jamming Data 2 (IJDATA2) register R/W E, H 32 HRESET

0x14 Instruction Jamming Data 3 (IJDATA3) register R/W E, H 32 HRESET

0x18 - 0xfc Reserved

0x7 - 0x9 Reserved Reserved

0xc - 0xd Reserved Reserved

0xe - 0xf Reserved Reserved for LBIST (not currently implemented)

1 Portions of PRSR support write-1-to-clear. All other fields are read-only.

Table 9-31. Debug resource address map (continued)
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• load—Observe the value of a memory location.

• store—Alter the value of a memory location.

• Load or store from debug space—Alter or observe the value of a GPR. See Section 9.10.4.1, 
“Debug storage space (IJCFG[IJMODE] = 1).”

Jammed instructions have no instruction address. Therefore, they do not require translation of an 
instruction address, and there is no way to have an ITLB miss or ISI. Furthermore, a jammed instruction 
does not increment the NIA.

Jammed instructions can have undesired effects, particularly if the jammed instruction causes an 
exception. The processor provides some facilities that reduce the number of architectural registers that are 
affected by a jammed instruction that causes an exception. See Section 9.10.4.5, “Exception conditions 
and affected architectural registers,” for details.

NOTE
Instruction jamming operations require the processor to be halted. 
Instruction jamming may change architecture-defined processor state. It is 
the responsibility of the external debug facility to save and restore any 
critical state.

9.10.4.1 Debug storage space (IJCFG[IJMODE] = 1)

Debug storage space is the conduit through which data is passed between an external debugger and the 
processor. From an external debugger’s point of view, debug storage space is just part of the IJAM input 
or IJAM output, which are accessible through memory-mapped access. From the processor’s point of 
view, debug storage space is an alternate space that can be used as the source for loads or the destination 
for stores.

Debug storage space is accessed by load/store instructions when the IJMODE bit within the IJCFG 
register is 1. See Section 9.10.4.2, “Instruction jamming input,” for a description of the IJAM input.

A debugger wishing to alter the value of a GPR jams a load instruction. The debugger places the desired 
load data in the IJAM IR register, and it writes IJCFG[IJMODE] = 1 to specify that the load data should 
come from debug storage space (that is, from the IJAM input data in the IJDATA0/1 registers).

A debugger wishing to observe the value in a GPR jams a store instruction. The debugger writes 
IJCFG[IJMODE] = 1 to specify that the store instruction should place its data into debug storage space 
(that is, send the IJAM output to the IJDATA0/1 registers). The debugger then reads the IJDATA0/1 
registers to obtain the stored data.

Debug storage space is not part of the processor’s memory address space. Although an effective address 
is calculated from the load or store instruction’s operands, the address is not translated. Therefore, there is 
no way to have a DTLB miss or DSI when jamming loads or stores to debug space. However, supplying 
operands that yield a nonzero effective address result in unpredictable results. Therefore, the preferred 
form of loads and stores to debug space is the immediate form with RA = 0 and a displacement of 0x0.
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The load/store instructions in the following table are supported when IJMODE = 1.

Table 9-32. Load/store IJAM transfers (when IJMODE = 1)

processor 
Registers

Action Instruction
IJAM Transfer

From To

Floating Point 
Register (FPR)

Read stfd frS, 0(0) frS[0–31] IJDATA0[0–31]

frS[32–63] IJDATA1[0–31]

32’01 IJDATA2[0–31]

32’01 IJDATA3[0–31]

Write lfd frD, 0(0) IJDATA0[0–31] frD[0–31]

IJDATA1[0–31] frD[32–63]

Read stfs frS, 0(0) 32’01 IJDATA0[0–31]

frS[32–63] IJDATA1[0–31]

32’01 IJDATA2[0–31]

32’01 IJDATA3[0–31]

Write lfs frD, 0(0) IJDATA1[0–31] frD[32–63]
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9.10.4.2 Instruction jamming input

Instructions to be jammed into the processor pipeline are transferred into the processor through accesses 
to memory-mapped resources. 

For all jammed instructions, the instruction jamming IR (IJIR) is required. This register contains the 
32-bit Power instruction to be executed. When jamming load, store, or cache management (for example, 
dcbf) instructions, the IJCFG register is also required. This register drives the attributes of the load/store 

General Purpose 
Register (GPR)

Read std rS,0(0) rS[0–31] IJDATA0[0–31]

rS[32–63] IJDATA1[0–31]

32’01 IJDATA2[0–31]

32’01 IJDATA3[0–31]

stw rS,0(0) 32’01 IJDATA0[0–31]

rS[32–63] IJDATA1[0–31]

32’01 IJDATA2[0–31]

32’01 IJDATA3[0–31]

Write ld rD,0(0) IJDATA0[0–31] rD[0–31]

IJDATA1[0–31] rD[32–63]

lwz rD,0(0) IJDATA1[0–31] rD[32–63]

lhz rD,0(0) IJDATA1[16–31] rD[48–63]

16’b0 rD[32–47]

lbz rD,0(0) IJDATA1[24–31] rD[56–63]

24’b0 rD[32–55] 

Vector Register 
(VR)

Read stvx vS, 0,0 vS[0–31] IJDATA0[0–31]

vS[32–63] IJDATA1[0–31]

vS[64–95] IJDATA2[0–31]

vS[96–127] IJDATA3[0–31]

Write lvx vD, 0,0 IJDATA0[0–31] vD[0–31]

IJDATA1[0–31] vD[32–63]

IJDATA2[0–31] vD[64–95]

IJDATA3[0–31] vD[96–127]

1 Note that stores to IJDATA result in updates to all IJDATA registers regardless of the size of the access. IJDATA 
registers, which are not receiving data directly from a GPR or FPR, is set to 0, clearing any stale data previously 
written to IJDATA.

Table 9-32. Load/store IJAM transfers (when IJMODE = 1) (continued)

processor 
Registers

Action Instruction
IJAM Transfer

From To
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operation. When jamming load instructions, and IJCFG[IJMODE] indicates that the load data should be 
supplied from debug space, the IJDATA0/1 register(s) are required. They supply the data to be loaded.

These registers can be accessed through a memory-mapped access individually or through a block 
transfer. On the e6500 core, incorrect register settings result in unpredictable results. IJAM register 
descriptions can be found in Section 9.6, “Instruction Jamming (IJAM) registers.” 

The IJCFG register includes controls for jammed load and store instructions. 

IJCFG[IJMODE] indicates whether jammed load/store instructions access memory or a special debug 
storage space. When IJMODE = 1, a jammed load instruction gets its data from IJDATAn registers, and a 
jammed store instruction writes its data to IJDATA0/1. When IJMODE = 0, load/store instructions access 
the processors memory address space as usual.

The effective/real bit, IJCFG[IJER], indicates whether load/store target addresses should be translated or 
not. Because debug storage space is not addressable, IJER is meaningful only when IJMODE = 0.

When IJCFG[IJER] = 1, load/store instructions do not have their effective addresses translated by the 
core’s MMU. This means that the MMU does not supply a 40-bit physical address or page attributes 
(WIMGE bits) for the load/store instruction. When the processor is operating in 32-bit mode, 8 more 
address bits are needed to form a 40-bit physical address. These additional 8 bits are supplied by the IJRA 
field of IJCFG. The 40-bit address is formed by prepending the 8-bit IJRA field to the effective address 
calculated by the jammed load/store instruction (PA[24:63] = IJRA[0:7] || EA[32:63]). When the 
processor is operating in 64-bit mode, only the lower 40-bits of the effective address are used to generate 
the physical address. The upper 24 bits are always 0.

Because the WIMGE bits are not supplied by the MMU, they are supplied by the IJCFG[WIMGE] bits 
when IJER = 1. Care must be taken to specify the correct page attributes for a given real address so that 
cache paradoxes do not occur (that is, specifying a page attribute of cache-inhibited for a real address that 
has been previously accessed as cacheable may result in the load or store not accessing memory 
coherently with previous accesses or other processors or agents in the system).

When IJCFG[IJER] = 0, a data TLB miss error occurs if the MMU does not contain an entry that matches 
the virtual address. However, in real addressing mode, MMU translation is not performed, and TLB miss 
errors do not occur.

9.10.4.3 Supported instruction jamming instructions

Table 9-34 lists instructions that are supported for instruction jamming when the processor is in halt state. 
These instructions are executed in the same manner as if the processor were not halted when 
IJCFG = 32’b0. 

Table 9-33. Instruction jamming addressing modes

IJCFG[IJMODE] IJCFG[IJER] Page Attributes (LWIMGE)

0 0 Attributes taken from MMU

0 1 Attributes taken from IJCFG[WIMGE]

1 x Don’t care. WIMGE attributes have no meaning when IJMODE=1
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This table also includes all instructions that are capable of using options in IJCFG. All other instructions 
are not supported and have unpredictable (UNPR) results if jammed. In addition, any instruction 
jammed with nonzero values in IJCFG, other than those explicitly listed as supporting them, result in 
unpredictable outcomes.

Table 9-34. Implemented IJAM instructions when the processor is halted (with IJMODE=0)

Mnemonic Description

dcbf Data Cache Block Flush

dcbi Data Cache Block Invalidate

dcblc Data Cache Block Lock Clear

dcbst Data Cache Block Store

dcbtls Data Cache Block Touch and Lock Set

dcbtstls Data Cache Block Touch for Store and Lock Set

dcbz Data Cache Block Set to Zero

dcbzl Data Cache Block Set to Zero 

icbi Instruction Cache Block Invalidate

icblc Instruction Cache Block Lock Clear

icbtls Instruction Cache Block Touch and Lock Set

lbz Load Byte and Zero

ld Load Doubleword

ldbrx Load Doubleword Byte-Reversed Indexed

lfd Load Floating-Point Double

lfs Load Floating-Point Single

lha Load Halfword Algebraic

lhbrx Load Halfword Byte-Reversed Indexed

lhz Load Halfword and Zero

lvx Load Vector Indexed

lwbrx Load Word Byte-Reversed Indexed

lwz Load Word and Zero

mfcr Move from Condition Register

mffs[.] Move from FPSCR

mfmsr Move from Machine State Register

mfpmr Move from PMR

mfspr Move from SPR

mftmr Move from TMR

mfvscr Move from VSCR
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9.10.4.4 Instructions supported only during instruction jamming

The following table lists instructions that are only supported when the processor is halted. These 
instructions produce an illegal instruction exception if attempted when the processor is not halted.

mtcrf Move to Condition Register Fields

mtfsf[.] Move to FPSCR Fields

mtfsfi[.] Move to FPSCR Field Immediate

mtmsr Move to Machine State Register

mtpmr Move to PMR

mtspr Move to SPR

mttmr Move to TMR

mtvscr Move to VSCR

stb Store Byte

std Store Doubleword

stdbrx Store Doubleword Byte-Reversed Indexed

stfd Store Floating-Point Double

stfs Store Floating-Point Single

sth Store Halfword

sthbrx Store Halfword Byte-Reversed Indexed

stvx Store Vector Indexed

stw Store Word

stwbrx Store Word Byte-Reverse

sync Sync. (Only the form with sync L=0 is supported)

tlbre TLB Read Entry

tlbsx TLB Search Indexed. (Only the form with rA=0 is supported)

tlbwe TLB Write Entry

wait Wait

Table 9-35. Instructions supported only when the processor is halted

Mnemonic SPRN
Behavior when Not Halted
(Regardless of MSR[PR])

Behavior when Halted
(Regardless of MSR[PR])

Comment

mfspr NIA
559

Illegal instruction exception Executed Move from SPR, NIA

mtspr NIA Illegal instruction exception Executed Move to SPR, NIA

Table 9-34. Implemented IJAM instructions when the processor is halted (with IJMODE=0) (continued)

Mnemonic Description
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9.10.4.5 Exception conditions and affected architectural registers

Generally, jammed instructions are allowed to modify any architecture-defined register (such as GPRs, 
SPRs, MSR, FPRs, and VRs) in the processor. However, jamming an instruction that causes an exception 
condition can have undesired side effects. The processor has provided several special facilities to reduce 
these side effects. This reduces the debugger’s burden to save and restore architectural state just in case an 
unanticipated exception occurs.

As previously mentioned, the NIA is not incremented when jammed instructions are executed. 
Furthermore, it is not updated to point to an interrupt vector if a jammed instruction causes an exception. 
Therefore, the debugger does not have to save the state of the NIA when jamming instructions.

When in normal execution mode (that is, when not jamming), there are several cases when privileges 
must be observed or features must be enabled in order to avoid exception conditions. But, when jamming 
instructions, the debugger is given full privileges so that it can avoid setting up architectural state 
necessary to execute a jammed instruction. In particular:

• MSR[PR] is effectively set to 0, giving the debugger access to all privileged instructions. 
Therefore, program interrupt for privileged exceptions do not occur for jammed instructions.

• Read/Write privileges are enabled for all load/store instructions. Therefore, data storage interrupts 
for read/write access control exceptions do not occur for jammed instructions. This is particularly 
useful when the debugger wishes to alter an instruction on a page and the translation attributes for 
that page do not include write access.

• DBCR0[IDM] is effectively cleared, preventing debug events from being recognized while 
jamming. Therefore, DBSR is not updated and debug interrupts do not occur for jammed 
instructions.

In normal execution mode (that is, when not jamming), interrupts update save/restore registers and other 
various machine state. When jamming instructions, many of these registers are not updated if an exception 
occurs. 

This table lists some interesting architectural registers and indicates whether or not they are affected by an 
exception on a jammed instruction.

Table 9-36. Effect of exceptions on machine state

Register Affected by Interrupt Note

NIA No EDBSR1 indicates the IVOR number of the exception.

SRR0, SRR1 No —

CSRR0, CSRR1 No —

DSRR0, DSRR1 No —

MCSRR0, MCSRR1 No —

ESR No EDESR contains the information usually captured in ESR.

MSR No —

MCSR Yes —
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As Table 9-36 shows, the NIA is not updated when an exception occurs on a jammed instruction. Instead, 
EDBSR1 indicates the IVOR number of the exception that occurred. Similarly, the ESR is not updated, 
but the EDESR contains the information that would have been in the ESR if the exception had occurred in 
functional mode.

Data TLB misses are the most likely exceptions to occur on jammed instructions. They happen if no 
translation is available for a jammed load or store instruction. As can be seen in Table 9-36, the MAS 
registers and DEAR are not updated by a DTLB miss. Real mode is selected by IJCFG[IJER].

Asynchronous interrupts are always disabled when the processor is halted. Therefore, asynchronous 
interrupts do not occur around the time that the processor is executing a jammed instruction.

9.10.4.6 Instruction jamming status

The status of instruction jamming operations is captured in the DS register. In the event of an exception 
during instruction jamming, the instruction sequence is aborted. 

The number of instructions that completed prior to the exception is recorded in EDBSR1[LCMP] (this is 
zero on the e6500 core). No interrupt is taken, but the IVOR number associated with the interrupt that is 
normally taken is recorded in the EDBSR1[IVOR], and exception status is captured in External Debug 
Exception Syndrome Register (EDESR). EDESR is identical to its non-debug counterpart (ESR) in terms 
of bit field definitions and provides information about the type of exception that occurred during 
instruction jamming.

Debug conditions are masked during instruction jamming and are not recorded. Effectively, 
DBCR0[IDM] = 0, so the DBSR does not log debug events.

The processor should be halted for debug before jamming instructions. If an IJAM is performed while the 
processor is not halted for debug, an internal bus error is generated. The IJAM may be performed, and the 
results are undefined.

If an access error occurs while jamming instructions, EDBSR1[IJAE]. 

9.10.4.7 Special note on jamming store instructions

Under some conditions (for example, when the data cache is disabled), the effects of jamming a store 
instruction may not immediately become visible in the architectural state of the machine. For example, 
one might jam a store instruction then examine memory, expecting to find the stored data. However, the 
data may remain in non-architecture-defined registers within the processor, and not yet be visible in 

MCAR Yes —

DEAR No —

MAS registers No —

DBSR No —

Table 9-36. Effect of exceptions on machine state (continued)

Register Affected by Interrupt Note
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memory. In these cases, jamming a sync 0 instruction forces the data from the non-architecture-defined 
registers into some architecturally visible memory space.

Also note that jamming a sync 0 instruction is required immediately prior to changing whether 
loads/stores are performed to memory storage space or to debug space. Because stores may take some 
time after completion to be performed, the sync 0 ensures that the stores are initiated to the appropriate 
storage space prior to the sync 0 instruction completing.

9.10.4.8 Instruction jamming output

Results from instructions that have been jammed into the processor pipeline are retrieved from the 
IJDATA0/1 registers (and IJDATA2/3 for Altivec registers):

• Store word instructions store their data into IJDATA1. 

• Store double instructions store the upper word (bits 0–31) into IJDATA0 and the lower word (bits 
32–63) into IJDATA1. 

• Store quad-word instructions (Altivec) store the first [upper] word (bits 0–31) into IJDATA0, the 
second word (bits 32–63) into IJDATA1, the third word (bits 64–95) into IJDATA2, and the fourth 
[lower] word (bits 96–127) into IJDATA3. 

The debugger can then perform register accesses to retrieve the data—it must access all four 
IJDATA0/1/2/3 registers in the 128-bit data case, IJDATA0/1 registers in the 64-bit data case, and only 
needs to access one of the data registers (IJDATA1) in the 32-bit case. It is expected that the development 
tool knows how much result data to expect from an instruction.

9.10.4.9 IJAM procedure 

This section provides a summary of the steps to perform various instruction jamming operations.

9.10.4.9.1 IJAM of instructions with input data

The following procedure is used for instructions with associated data (input):

1. Confirm that the processor is halted. If not halted, issue a HALT command and wait until the 
processor is halted.

2. Write IJDATA0 with most significant word (if 64-bit data).

3. Write IJDATA1 with least significant word, half-word, or byte. 

— Write IJDATA2 and 3, as well, when storing to Altivec registers.

4. Write IJCFG to configure load/store operation.

5. Write IJIR to load instruction and run.

6. Check for IJAM completion status (one of two options):

— Scan the SoC-level JTAG IR and capture the status that is shifted out in the process. If the status 
is IJAM not done, repeat this step.

— Read EDBSR1[IJBUSY] to determine status.

7. On error, check EDBSR1 and EDESR.
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NOTE
For 8-bit (byte) and 16-bit (half-word) writes, data should always be written 
to IJDATA1 right-justified (least significant) independent of the specific 
address accessed.

9.10.4.9.2 IJAM of instructions with output data

The following procedure is used for instructions with associated data (output):

1. Confirm that the processor is halted. If not halted, issue a HALT command and wait until the 
processor is halted.

2. Write IJCFG to configure load/store operation.

3. Write IJIR to load instruction and run.

4. Check for IJAM completion status (one of two options):

— Scan the SoC-level JTAG IR and capture the status that is shifted out in the process. If the status 
is IJAM not done, repeat this step.

— Read EDBSR1[IJBUSY] to determine status.

5. On error, check EDBSR1 and EDESR.

6. If no error, read IJDATA0—most significant word (if 64-bit data).

7. If no error, read IJDATA1—least significant word, half-word, or byte.

— Continue reading IJDATA2 and 3 when reading AltiVec registers.

NOTE
For 8-bit (byte) and 16-bit (half-word) reads, data is always read from 
IJDATA1 right-justified (least significant) independent of the specific 
address accessed.

9.10.4.9.3 IJAM of instructions with no associated data

For instructions with no associated data, use the following procedure:

1. Confirm that the processor is halted. If not halted, issue a HALT command and wait until the 
processor is halted.

2. Write IJIR to load instruction and run.

3. Check for IJAM completion status (one of two options):

— Scan the SoC-level JTAG IR and capture the status that is shifted out in the process. If the status 
is IJAM not done, repeat this step.

— Read EDBSR1[IJBUSY] to determine status.

4. On error, check EDBSR1 and EDESR.

9.10.4.9.4 IJAM of instructions to read or write SPRs, PMRs, CR, FPSCR, and MSR

To read or write architecture-defined registers, such as SPRs, PMRs, CR, FPSCR, and MSR, use the 
following procedures:
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Writes:

1. Follow the procedure outlined in Section 9.10.4.9.1, “IJAM of instructions with input data,” to 
copy the data from the IJDATA registers into a GPR.

— The write data goes into IJDATA0/1.

— The appropriate load instruction (ld, lwz, lhz, lbz) goes into IJIR.

2. Follow the procedure outlined in Section 9.10.4.9.3, “IJAM of instructions with no associated 
data,” to copy the data from the GPR register into the destination SPR, PMR, CR, FPSCR, or MSR.

— The appropriate “move to” instruction (mtspr, mtpmr, mtcrf, mtfsf, mtmsr) goes into IJIR.

Reads:

1. Follow the procedure outlined in Section 9.10.4.9.3, “IJAM of instructions with no associated 
data,” to copy the data from a source SPR, PMR, CR, FPSCR, or MSR register to a GPR register.

— The appropriate “move from” instruction (mfspr, mfpmr, mfcr, mffs, mfmsr) goes into IJIR.

2. Follow the procedure outlined in Section 9.10.4.9.2, “IJAM of instructions with output data,” to 
copy the data from the GPR into the IJDATA registers.

— The appropriate store instruction (std, stw) goes into IJIR.

— The read data can be read from IJDATA0/1.

9.10.4.10 Instruction jamming error conditions

If a jammed instruction produces an exception, the instruction does not complete and no interrupt is 
taken. The exception status information is recorded in debug accessible registers for analysis. Exceptions 
on a jammed instruction produce the following side effects:

• EDBSR1[LCMP] = 0

• EDBSR1[IJEE] = 1

• EDBSR1[IVOR] = IVOR register number corresponding to the type of exception that occurred

• EDESR = effective value of the ESR if the exception had been processed

• EDBSR1[IJAE] = 1

9.11 Nexus trace
This specification defines the auxiliary port functions, transfer protocols, and standard development 
features of the processor Nexus module in compliance with IEEE-ISTO 5001. The development features 
supported are:

• Program Trace

• Data Trace

• Data Acquisition messaging

• Watchpoint messaging

• Performance Profile messaging

• Timestamp Correlation messaging
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• Ownership Trace

The e6500 Nexus module supports two Class 4 features: watchpoint triggering and processor overrun 
control.

A portion of the pin interface is also compliant with the IEEE 1149.1 JTAG standard. The IEEE-ISTO 
5001 standard defines an extensible auxiliary port, which is used in conjunction with the JTAG port.

9.11.1 Nexus features
The e6500 Nexus module is compliant with the IEEE-ISTO 5001 standard. The following features are 
implemented:

• Program Trace via Branch Trace messaging (BTM). BTM displays program flow discontinuities 
(direct and indirect branches, exceptions, and so on), allowing the development tool to interpolate 
what transpires between the discontinuities. Thus, static code may be traced.

• Data Trace via Data Write messaging (DWM). DWM provides the capability for the development 
tool to trace writes to (selected) internal memory-mapped resources.

• Ownership Trace via Ownership Trace messaging (OTM). OTM facilitates Ownership Trace by 
providing visibility of which process ID or operating system task is activated. An OTM is 
transmitted when a new process/task is activated, allowing the development tool to trace ownership 
flow. 

• Watchpoint messaging for the following conditions:

— IAC and DAC events

— Taken interrupts

— Completion of return from interrupt class instructions

— Externally supplied events

— Performance monitor events

• Data Acquisition messaging (DQM) allows code to be instrumented to export customized 
information to the Nexus Auxiliary Output Port.

• Performance counter trace via Performance Profile messages

• Timestamp correlation via Timestamp Correlation messages

• Watchpoint Trigger enable of Program Trace messaging

• Filtering of Program Trace messaging based on: 

— Process (indicated by MSR[PMM])

— Privilege (indicated by MSR[PR])

— Guest state (indicated by MSR[GS])

• Auxiliary interface for higher data input/output. This interface may be coupled to a high speed 
serial port on the device in order to push the information to a development tool.

— Thirty MDO (Message Data Out) signals.

— Two MSEO (Message Start/End Out) signals.

— Five EVTO (Watchpoint Event) signals
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— Two EVTI (Event In) signals

• Registers for Program Trace, Data Trace, Ownership Trace, Data Acquisition, Watchpoint 
messaging, and Watchpoint Trigger

• All features controllable and configurable via a memory-mapped interface, which is accessible by 
development tools 

• All features controllable and configurable via SPRs, which is accessible by embedded software

• Timestamp capability on all message types

9.11.2 Enabling Nexus operations on the processor 
By default, clocks for Nexus-related circuitry are inactive. These clocks must be enabled in order to use 
any of the Nexus features related to the processor.

Once the processor Nexus clocks are active, the various features of the Nexus module can be enabled by 
programming the Nexus registers via the service access.

If the Nexus module is disabled, no trace output is provided, and the Nexus registers are not accessible.

9.11.3 Modes of operation 
Nexus modes are described as follows:

• Reset

The processor Nexus block is placed in reset whenever the core reset input is asserted. While in 
reset, the following actions occur:

— The auxiliary output port signals are deasserted.

— Registers default back to their reset values and are not accessible until reset negates.

• Disabled

For a graceful shutdown of Nexus functionality, all trace modes should be disabled first by clearing 
DC1. The message queues should also be allowed to drain prior to disabling the clocks. 
Alternatively, a reset can be applied to the processor which also resets the Nexus state and disables 
clocks to the debug circuitry. Failure to shutdown the Nexus block gracefully may produce 
unpredictable results if the Nexus block is later enabled.

While disabled, none of the Nexus features are accessible.

• Enabled

When Nexus is enabled, the various Nexus features may be activated by programming the Nexus 
control registers, which are accessible via memory-mapped access.

9.11.4 Supported TCODEs
The Nexus auxiliary port allows for flexible transfer operations via public messages. A TCODE defines 
the transfer format, the number and/or size of the packets to be transferred, and the purpose of each 
packet. The IEEE-ISTO 5001 standard defines a set of public messages and allocates additional TCODEs 
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for vendor-specific features outside the scope of the public messages. The Nexus block currently supports 
the public and vendor defined TCODEs shown in the following table.

Table 9-37. Supported TCODEs

Message 
Name

Field Size (bits)1
Field
Name

Field
Type

Field Description
Minimum Maximum

Debug 
Status

6 6 TCODE fixed TCODE number = 0

6 6 SRC fixed Source processor identifier

16 16 STATUS fixed Debug Status information (from PRSR[32:47])

0 28 TSTAMP variable Timestamp (optional)

Ownership 
Trace

Message

6 6 TCODE fixed TCODE number = 2

6 6 SRC fixed Source processor identifier

1 44 PROCESS variable
Task/Process ID (See Table 9-56 for more information about 
this field.)

0 28 TSTAMP variable Timestamp (optional)

Data 
Acquisition 

Message

6 6 TCODE fixed TCODE number = 7

6 6 SRC fixed Source processor identifier

8 8 IDTAG fixed Identification tag (DEVENT[32:39])

1 32 DQDATA variable Exported data taken from DDAM[32:63]

0 28 TSTAMP variable Timestamp (optional)

Error 
Message

6 6 TCODE fixed TCODE number = 8

6 6 SRC fixed Source processor identifier

4 4 ETYPE fixed Error type (See Table 9-40.)

82 82 ECODE fixed Error code (See Table 9-39.)

0 28 TSTAMP variable Timestamp (optional)

Program 
Trace - 

Synchroniza
tion 

Message

6 6 TCODE fixed TCODE number = 9

6 6 SRC fixed Source processor identifier

1 1 MAP fixed Instruction address space identifier (IS)

1 1 I-CNT variable For e6500 implementations, this field is set to “0”.

1 64 PC variable Full current instruction address3

0 28 TSTAMP variable Timestamp (optional)
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Data Trace -
Data Write 
Message
w/ Sync

6 6 TCODE fixed TCODE number = 13

6 6 SRC fixed Source processor identifier

4 4 DSZ fixed Data size (See Table 9-38.)

1 13 F-ADDR variable Full data write address (leading zeros truncated)

1 64 DATA variable Write data value

0 28 TSTAMP variable Timestamp (optional)

Watchpoint 
Message

6 6 TCODE fixed TCODE number = 15

6 6 SRC fixed Source processor identifier

1 32 WPHIT variable Watchpoint source indicators

0 28 TSTAMP variable Timestamp (optional)

Resource 
Full Message

6 6 TCODE fixed TCODE number = 27

6 6 SRC fixed Source processor identifier

4 4 RCODE fixed Resource code identifying the full resource (See Table 9-41.)

1 30 RDATA variable Resource data (See Table 9-41.)

0 28 TSTAMP variable Timestamp (optional)

Program 
Trace -
Indirect 
Branch 
History 

Message

6 6 TCODE fixed TCODE number = 28

6 6 SRC fixed Source processor identifier

2 2 BTYPE fixed Branch type (See Table 9-42.)

1 8 I-CNT variable
Number of sequential instructions completed since the last 
predicate instruction, transmitted instruction count, or taken 
change of flow

1 64 U-ADDR variable Unique portion of the indirect change of flow target address

1 30 HIST variable Direct branch / predicate instruction history information

0 28 TSTAMP variable Timestamp (optional)

Program 
Trace -
Indirect 
Branch 
History 

Message
w/ Sync

6 6 TCODE fixed TCODE number = 29

6 6 SRC fixed Source processor identifier

2 2 BTYPE fixed Branch type (See Table 9-42.)

1 8 I-CNT variable
Number of sequential instructions completed since the last 
predicate instruction, transmitted instruction count, or taken 
change of flow.

1 64 F-ADDR variable Full indirect change of flow target address

1 30 HIST variable Direct branch / predicate instruction history information

0 28 TSTAMP variable Timestamp (optional)

Table 9-37. Supported TCODEs (continued)

Message 
Name

Field Size (bits)1
Field
Name

Field
Type

Field Description
Minimum Maximum
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Program 
Trace -

Program 
Correlation 

Message

6 6 TCODE fixed TCODE number = 33

6 6 SRC fixed Source processor identifier

4 4 EVCODE fixed
Event code identifying the event to correlate with program 
flow (See Table 9-43.)

1 8 I-CNT variable
Number os sequential instructions completed since last 
predicate instruction, transmitted instruction count, or taken 
change of flow

1 30 CDATA variable Correlation data (branch history information)

0 28 TSTAMP variable Timestamp (optional)

Performance 
Profile 

Message

(In-Circuit 
Trace Msg 

Format)

6 6 TCODE fixed TCODE number = 35 (uses In-Circuit Trace msg format)

6 6 SRC fixed Source processor identifier

3 3 CKSRC fixed
Used as an index into the list of possible data to be 
transmitted. Indicates the first item in the list included in 
CKDATA (See Table 9-45.)

2 2 SYNC fixed Indicates the reason for the sync condition (See Table 9-47.)

2 2 CKDF fixed
Indicates the number of items included in the message (i.e. 
number of CKDATA fields). See Table 9-46 for the encodings 
used.

1 32 CKDATA1 variable

Contains the data being transmitted in uncompressed 
format.

The list of items delivered in CKDATA fields is indicated by the 
CKSRC table (See Table 9-45.).

0 32 CKDATA2 variable

Contains additional CKDATA fields when CKDF > 1.

The list of items delivered in CKDATA fields is indicated by the 
CKSRC table. (See Table 9-45.)

0 28 TSTAMP variable Timestamp (optional)

Timestamp
Correlation 

Message

6 6 TCODE fixed TCODE number = 56

6 6 SRC fixed Source processor identifier

4 4 TCORR fixed
Indicates the timestamp correlation value. Use to correlate 
timestamps from multiple clients

6 6 T-TYPE fixed
Indicates the type of timestamp correlation request (See 
Table 9-44.)

1 28 TSTAMP variable Timestamp (NOT OPTIONAL)

1 The number shown in this column indicates the minimum logical number of bits required in the field after any applicable 
compression is employed. The actual minimum number of bits transferred by the implementation may be larger due to 
constraints of the auxiliary output port width (Nexus packets must be zero-padded out to a port boundary in accordance with 
IEEE-ISTO 5001).

Table 9-37. Supported TCODEs (continued)

Message 
Name

Field Size (bits)1
Field
Name

Field
Type

Field Description
Minimum Maximum
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2 Note: e6500 uses only 8-bit ECODE encodings, whereas other Nexus clients on the integrated device may use 12-bit ECODE 
encodings. Software decoding Nexus messages should account for this difference.

3 There are micro-architected (implementation-specific) amounts of “skid” in terms of the specific instruction address that is 
transmitted relative to the sync condition. Subsequent Program Trace message fields (I-CNT / HIST) are based from this 
messaged PC value maintaining a coherent trace flow.

Table 9-38. Data Trace Size (DSZ) encodings (TCODE = 13)

DSZ Encoding Transfer Size Description

0000 0 bytes1

1 Implied data instructions and cache management instructions utilize these 
encodings. See Section 9.11.15.3, “Data Trace Size (DSZ) field.”

0-bit

0001 1 byte 8-bit

0010 2 bytes 16-bit/halfword

0011 3 bytes 24-bit /string

0100 4 bytes 32-bit /word

0101 5 bytes

Misaligned 
access

0110 6 bytes

0111 7 bytes

1000 8 bytes 64-bit/double

1001 16 bytes 128-bit

1010 32 bytes1 256-bit

1011 64 bytes1 512-bit

1100-1111 Reserved

Table 9-39. Error Code (ECODE) encodings (TCODE = 8)

Error Code1

1 Note: e6500 uses only 8-bit ECODE encodings, whereas other Nexus clients on the integrated device may use 12-bit ECODE 
encodings. Software decoding Nexus messages should account for this difference.

Description

xxxxxxx1 Watchpoint Trace message(s) lost. Applies only to Error Type 0 (ETYPE = 0000).

xxxxxx1x Data Trace message(s) lost. Applies only to Error Type 0 (ETYPE = 0000).

xxxxx1xx Program Trace message(s) lost.

xxxx1xxx Ownership Trace message(s) lost. Applies only to Error Type 0 (ETYPE = 0000).

xxx1xxxx Status message(s) lost (Debug Status). Applies only to Error Type 0 (ETYPE = 0000).

xx1xxxxx Data Acquisition message(s) lost.

x1xxxxxx Performance Profile message (In-Circuit Trace). Applies only to Error Type 0 (ETYPE = 0000).

1xxxxxxx Reserved
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Table 9-40. Error Type (ETYPE) encodings (TCODE = 8)

Error Type Description

0000 Message queue overrun causes one or more messages to be lost.

0001 Contention with higher priority messages causes one or more messages to be lost.

0010–1111 Reserved

Table 9-41. Resource Code (RCODE) encodings (TCODE = 27)

Resource Code Description RDATA

0000 Instruction counter Maximum instruction count (0xFD or 0xFE)1

1 The e6500 can complete up to two (2) instructions per cycle. The RDATA value transmitted with the value of 
0xFD or 0xFE to accurately indicate the maximum instruction count when the RFM is transmitted.

0001 Branch history buffer Branch/predicate history buffer contents

0010–0111 Reserved N/A

1000 Timestamp counter Maximum timestamp count (0xFF_FFFF)

1001–1111 Reserved N/A

Table 9-42. Branch Type (B-TYPE) encodings (TCODE = 28, 29)

Branch Type Code Description

00 Branch instruction

01 Interrupt

1x Reserved

Table 9-43. Event Code (EVCODE) encodings (TCODE = 33)

Event Code Mnemonic Description

0000 EVCODE #1 Entry into halted state for debug

0001 EVCODE #2 Entry into halted or stopped state for power management

0010–0011 — Reserved

0100 EVCODE #5 Program Trace disabled

0101–1000 — Reserved

1001
EVCODE #10 Begin masking of Program Trace due to MSR[PMM], MSR[PR], or MSR[GS]. This 

event applies when DC4 filter settings have been configured.

1010 EVCODE #11 Branch and link occurrence (direct branch function call)

1011–1111 — Reserved
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Table 9-44. Timestamp Correlation Type (T-TYPE) encodings (TCODE = 56)

TCORR Type Code Description

000000 Periodic

000001 Halt mode exit

000010 Low power mode exit

000011 External Event

000100 Reserved

000101 Reserved

000110 Reserved

000111 Reserved

001000 CLK1

001001 CLK1 / 2

001010 CLK1 / 4

001011 CLK2

001100 CLK2 / 2

001101 CLK2 / 4

001110 CLK3

001111 CLK3 / 2

010000 CLK3 / 4

010001-111110 Reserved

111111 Unknown

Table 9-45. CKSRC encodings (TCODE = 35)

CKSRC Description

000
Program Counter Capture register (CKDATA1 = PCC[32:63] and CKDATA2 = 
PCC[0:31])

001
Performance Monitor Counter 0 Capture register (CKDATA1 = PMCC0[32:63]) 
Performance Monitor Counter 1 Capture register (CKDATA2 = PMCC1[32:63])

010
Performance Monitor Counter 2 Capture register (CKDATA1 = PMCC2[32:63])
Performance Monitor Counter 3 Capture register (CKDATA2 = PMCC3[32:63])

011
Performance Monitor Counter 4 Capture register (CKDATA1 = PMCC4[32:63])
Performance Monitor Counter 5 Capture register (CKDATA2 = PMCC5[32:63])

100 Reserved

101 Reserved

110 Reserved

111 Reserved
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9.11.5 Nexus message fields
Nexus messages are comprised of fields. Each field is a distinct piece of information within a message, 
and a message may contain multiple fields. Messages are transferred in packets over the Auxiliary Output 
protocol. 

A packet is a collection of fields. A packet may contain any number of fixed length fields but may 
contain, at most, one variable length field. The variable length field must be the last field in a packet. This 
section provides information on some of the fields that comprise the supported messages.

9.11.5.1 TCODE field

The TCODE field is a 6-bit fixed length field that identifies the type of message and its format. The field 
encodings are assigned by IEEE-ISTO 5001.

9.11.5.2 Source ID field (SRC)

Each Nexus module in a device is identified by a unique client source identification number. The 
processor implements a 6-bit fixed length source ID consisting of fields to indicate that it is a core client, 
a unique cluster identifier, a unique core identifier, and a thread identifier.

Table 9-46. CKDF encodings (TCODE = 35)

CKDF Description

00 1 CKDATA field included

01 2 CKDATA fields included

10 3 CKDATA fields included

11 4 CKDATA fields included

Table 9-47. SYNC encodings (TCODE = 35)

SYNC Description

00 Previous message successful

01 Previous message not sent due to message contention

10
Previous snapshot not completed (due to another 
snapshot occurrence)

11 Reserved

Bit 0 1 2 3 4 5

Figure 9-27. Source ID field structure
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9.11.5.3 Relative Address field (U-ADDR)

The non-sync forms of the Program Trace messages include addresses that are relative to the address that 
was transmitted in the previous Program Trace message. The relative address format is compliant with 
IEEE-ISTO 5001 and is designed to reduce the number of bits transmitted for address fields.

The relative address is generated by XORing the new address with the previous and then using only the 
results up to the most significant 1. To recreate the original address, the relative address is XORed with 
the previously decoded address.

The relative address of a Program Trace message is calculated with respect to the previous Program Trace 
message, regardless of any address information that may have been sent in any other trace messages in 
the interim between the two Program Trace messages.

9.11.5.4 Full Address field (F-ADDR)

Program Trace synchronization messages provide the full address associated with the trace event (leading 
zeros may be truncated) with the intent of providing a reference point for development tools to operate 
from when reconstructing relative addresses. Synchronization messages are generated at significant mode 
switches and are also generated periodically to ensure that development tools are guaranteed to have a 
reference address given a sufficiently large sample of trace messages.

9.11.5.5 Timestamp field (TSTAMP)

The timestamp field is enabled by programming DC1[TSEN]. There are two supported timestamp modes: 
fine and coarse. When fine timestamping is enabled, the timestamp field is appended to all messages from 
the Nexus client and provides a time reference for the trace event. When coarse timestamping is enabled, 
the timestamp field is appended periodically, once every 32 messages.

The timestamp value is recorded at the time that the message enters the internal message queues. The 
timestamp value is constructed from a 24-bit counter operating at the processor frequency plus a 4-bit 
correction counter.

Subfield
Usage

Thread Core Cluster
Core/SoC

Client Indicator

Thread 
Client 

Specific
0 = Thread 0
1 = Thread 1

(Driven by the client 
to indicate thread)

00=Core 0
01=Core 1
10=Core 2
11=Core 3

(Driven by the client to 
indicate core) co

re
x_

ex
t_

sr
c_

id
[0

]

co
re

x_
ex

t_
sr

c_
id

[1
]

Always 0 

(Driven by the 
client to indicate 

a core client)

Figure 9-27. Source ID field structure (continued)
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When a message pends due to contention with other message types, a 4-bit counter is used to keep track 
of how long the message pends until it actually enters the message queues. This 4-bit correction value is 
concatenated with the 24-bit timestamp and can be used to correct the timestamp value for that pending 
latency by subtracting the correction value from the 24-bit timestamp value. If a message pends for 15 or 
more cycles, the timestamp correction indicates a value of 0xF. A timestamp correction value of 0xF 
should be taken to mean that the timestamp value for that message is unreliable. 

Whenever the 24-bit timestamp counter overflows, a Resource Full message (RFM) is generated with a 
resource code of 0x8 and an RDATA field of 0xFF_FFFF. The Resource Full messages caused by a 
timestamp do not pend. Clearing DC1[TSEN] disables the timestamp counter, preventing Resource Full 
messages from being generated due to timestamp overflow.

NOTE
The timestamp counter stops counting (freezes) when the processor enters 
debug halt mode or when the core enters a low power mode where the core 
clock is disabled. The timestamp counter resumes counting when debug halt 
mode is exited or when the clocks are turned back on as the low power mode 
is exited.

9.11.6 Nexus message queues
The e6500 Nexus block implements internal message queues capable of storing two messages per cycle. 
messages that enter the queue are transmitted in the order in which they are received.

If more than two messages attempt to enter the queue in the same cycle, the two highest priority messages 
are stored and the remaining messages may pend and retry transmission to the queues on subsequent 
cycles. See Section 9.11.7, “Nexus message priority,” for more information on message priorities.

The Overrun Control (OVCR) register controls the Nexus behavior as the message queue fills. The Nexus 
block may be programmed to do the following:

• Allow the queue to overflow, drain the contents, queue an overrun error message, and resume 
tracing.

• Stall the processor instruction completion when the queue utilization reaches the selected 
threshold.

• Suppress selected message types when the queue utilization reaches the selected threshold.

The Nexus message queues may fill due to processor behaviors, which, in general, are not detailed here. 
An overrun can also occur if the Extended EA Nexus buffer is full. The Extended EA Nexus buffer 
contains four entries used to store the upper 32 bits of the effective address when a Program Trace 
message causes a change in the upper 32 bits (that is, a 4 GB page change). The entries remain allocated 

MSB LSB

Correction count
(4 bits)

Time stamp count
(24 bits)

Figure 9-28. Timestamp field components
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until the associated Program Trace message is sent. If all four entries are allocated and a new Program 
Trace message needs to allocate an entry due to a 4 GB page change, an overrun occurs.

9.11.6.1 Message queue overrun

In this mode, the message queue stops accepting messages when an overrun condition is detected. The 
contents of the queues is allowed to drain until empty. Incoming messages are discarded until the queue is 
emptied. At that point, an overrun error message is enqueued, which contains information about the types 
of messages that were discarded due to the overrun condition.

9.11.6.2 CPU stall

In CPU stall mode, instruction completion is stalled whenever the queue utilization reaches the selected 
threshold. PRSR[STALL_ST] is set whenever the trigger condition is reached and remains set until the 
stall condition is negated. The instruction completion is stalled long enough to drop one threshold level 
below the level that triggered the stall. For example, if stalling the processor is triggered at 1/4 full, the 
stall stays in effect until the queue utilization drops to empty. 

There may be significant skid from the time that the stall request is made until the processor is able to 
stop completing instructions. This skid should be taken into consideration when programming the 
threshold. See Section 9.5.8, “Nexus Overrun Control (OVCR) register,” for programming options.

9.11.6.3 Message suppression

In this mode, the message queue disables selected message types whenever the queue utilization reaches 
the selected threshold. This allows lower bandwidth tracing to continue and possibly avoid an overrun 
condition. If an overrun condition occurs despite this message suppression, the queue responds according 
to the behavior described in Section 9.11.6.1, “Message queue overrun.” As soon as it is triggered, 
message suppression remains in effect until queue utilization drops the threshold below the level selected 
to trigger the suppression.

9.11.7 Nexus message priority

Nexus messages may be lost due to contention with other message types under the following 
circumstances:

• A new message is generated for a type that is already pending a message for retry due to contention 
with other types in the previous cycle. The pending message is kept and continues to arbitrate for 
entry into the message queues. The new message is discarded. See Table 9-48 for a listing of 
various message types and their relative priority.

• More than two messages within the Program Trace message type are generated in the same cycle.

Table 9-48 lists the various message types and their relative priority from highest to lowest. Note that 
Program Trace is allocated two ports into the message buffer so that two messages can be generated in 
one cycle. 

Up to two message requests can be queued into the message buffer in a given cycle. If more than two 
message requests exist in a given cycle, the two highest priority message classes are queued into the 
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message buffer. Any remaining messages that did not successfully queue into the message buffer in that 
cycle generate subsequent responses, as described in the following table.

9.11.7.1 Data Acquisition Message priority loss response and retry

If a Data Acquisition message (DQM) loses arbitration due to contention with higher priority messages, 
the DQM pends and retries on the subsequent cycle. If a new data acquisition event occurs while a DQM 
is pending, the new event is discarded. An error message is generated to indicate that a DQM has been 
lost due to contention.

9.11.7.2 Ownership Trace message priority loss response and retry

If an Ownership Trace message (OTM) loses arbitration due to contention with higher priority messages, 
the OTM pends and retries on the subsequent cycle. If a new Ownership Trace event occurs while an 
OTM is pending, then the new event generates a replacement message. Even if the pending OTM is a 
periodic update, software updates of the process ID information are more important than periodic 
refreshes of the process ID state, and the new message is transmitted.

Table 9-48.  Message type priority and message dropped responses

Priority Message Type Message
Pend and Retry on 
Arbitration Loss?

Message Dropped 
Response

0 (highest) Error Error N/A N/A

1 Watchpoint Trace Watchpoint message (WPM) Y None

2
Data Acquisition Data Acquisition message (DQM) Y DQM error message

Ownership Trace Ownership Trace message (OTM) Y None

3

Program Trace
(port 1)

Indirect Branch with History (IHM) Y BTM error message
sync upgrade next IHM

Resource Full message (RFM) for 
instruction counter and history buffer

Y

4

Program Trace
(port 2)

Program Correlation message (PCM)
Y

BTM error message
sync upgrade next IHM

Debug Status message (DS) Y Sync upgrade next IHM

5
Timestamp 
Correlation

Timestamp Correlation message (TCM)
Y

None

6

Performance Profile Performance Profile message (PPM)

Y

Sync encoding in next 
message indicates 
reason for message 
drop (except in case of 
queue overrun or 
message contention)

7 (lowest) Data Trace Data Trace Write message (DTM) Y None
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9.11.7.3 Program Trace Message priority loss response and retry

If a Program Trace message (PTM) loses arbitration due to contention with higher priority messages, the 
PTM pends and retries on the subsequent cycle. If a new Program Trace event occurs while a PTM is 
pending, the new event is discarded. If the discarded PTM is a Program Correlation message, a Resource 
Full message for instruction count or history buffer, or an Indirect Branch with History message, then an 
Error message is generated to indicate that branch trace information has been lost. 

Once the pending PTM is enqueued, if another PTM was discarded during the retry phase, then the next 
Indirect Branch with History message is upgraded to a sync-type message.

9.11.8 Timestamp Correlation Message priority loss response and retry
If a Timestamp Correlation message (TCM) loses arbitration due to contention with higher priority 
messages, the TCM pends and retries on the subsequent cycle. If a new timestamp correlation request 
occurs while a TCM is pending, the current TCM is discarded and a new TCM is created. This means that 
even a TCM generated due to a frequency change could be lost.

9.11.9 Performance Profile Message priority loss response and retry
If a Performance Profile message (PPM) loses arbitration due to contention with higher priority 
messages, the PPM pends and retries on the subsequent cycle.

If a new performance monitor snapshot event occurs while a PPM is pending, the current PPM is 
discarded and PPMs are created for the new snapshot.

9.11.10 Data Trace Message priority loss response and retry
If a Data Trace message (DTM) loses arbitration due to contention with higher priority messages, the 
DTM pends and retries on the subsequent cycle. If a new Data Trace event occurs while a DTM is 
pending, the new event is discarded.

9.11.11 Debug Status messages
Debug Status messages are enabled whenever any Nexus trace modes are enabled (DC1[TM] is nonzero). 
A debug status message is generated whenever the processor state changes. Any transition between 
normal, wait, halted, and stopped states constitutes a processor state change for the purpose of generating 
debug status messages.

9.11.12 Error messages
Error messages are enabled whenever the debug logic is enabled. There are two conditions that produce 
an error message, each receiving a separate error type designation:

• A message is discarded due to contention with other (higher priority) message types. Error 
messages that are generated if any other messages are discarded due to contention have the highest 
priority. Such errors have an Error Type value of 4’b0001.
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• The message queue overruns. After the queue is drained, an error message is enqueued with an 
error code that indicates the types of messages discarded during that time. Such errors have an 
Error Type value of 4’b0000.

9.11.13 Resource full messages
Certain trace resources, such as counters and history buffers, have hardware limitations to their size. To 
avoid losing information when these resources become full, the e6500 core is capable of generating 
Resource Full messages. The information from these messages is added or concatenated with information 
from subsequent messages to interpret the full picture of what has transpired. For the e6500 core, 
Resource Full messages are generated upon overflow of any one of three resources: 

• Instruction counter 

• History buffer

• Timestamp counter

The instruction counter is capable of counting up to 255 sequential instructions before overflowing. If the 
instruction counter overflows, a Resource Full message is generated. Development tools can use this 
information to properly reconstruct program flow. Disabling Program Trace disables the instruction 
counter, preventing Resource Full messages from being generated due to this resource.

The branch/predicate history buffer is capable of storing up to 30 bits (29 history events plus the stop bit). 
The history buffer is reset whenever the branch/predicate history information is transmitted in a message. 
If the history buffer becomes full, a Resource Full message is generated to transmit the contents of the 
history buffer. Development tools can concatenate this history information with history fields from other 
Program Trace messages to obtain the complete branch/predicate history. Disabling Program Trace 
disables logging branch/predicate information in the history buffer, preventing Resource Full messages 
from being generated due to this resource.

The timestamp counter is a 24-bit resource that counts cycles at the e6500 processor frequency. When 
enabled, the value from this counter (along with a 4-bit correction value) is appended to trace messages as 
they enter the internal message queues. If the timestamp counter overflows, a Resource Full message is 
generated to transmit the maximum timestamp value (0xFF_FFFF). Development tools can append this 
value to the timestamp value transmitted within the next trace message to reconstruct the true timestamp 
value. Disabling the timestamp feature by clearing DC1[TSEN] disables the timestamp counter, 
preventing Resource Full messages from being generated due to this resource.

The specific resource that has become full is indicated by the resource code (RCODE) within the 
Resource Full message. The data associated with the specific resource is captured in the resource data 
field (RDATA). These fields and their values are outlined in Table 9-41, "Resource Code (RCODE) 
encodings (TCODE = 27).”

9.11.14 Program Trace
This section details the Program Trace mechanisms supported by the Nexus module included in the 
processor. Program Trace is implemented using Branch Trace messaging (BTM) in accordance with 
IEEE-ISTO 5001 definitions.
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Branch Trace messaging facilitates Program Trace by providing the following types of information:

• The number of sequential instructions that have completed because the last predicate instruction, 
transmitted instruction count, or taken change of flow.

• Branch/predicate history indicating whether direct branches in the program flow were taken or not, 
as well as indicating whether or not predicate instructions were executed.

• In the case of indirect changes of flow (including interrupts), the target address of the change of 
flow is provided.

9.11.14.1 Program Trace—enable and disable 

Program Trace can be enabled in one of two ways:

• Setting the DC1[TM] Program Trace enable bit (DC1[61]).

• Programming WT1[PTS] to enable Program Trace on the occurrence of a watchpoint condition.

NOTE
For a disabled thread, Program Trace remains disabled until the thread is 
enabled. 

Once Program Trace is enabled, Lite Program Trace mode can be turned on in one of two ways:

• Setting the DC1[LPTE] Lite Program Trace enable bit (DC1[38]).

• Programming WT2[LPTS] to enable Program Trace on the occurrence of a watchpoint condition.

Lite Program Trace mode may be turned off in one of two ways:

• Clearing the DC1[LPTE] Lite Program Trace enable bit (DC1[38]).

• Programming WT2[LPTE] to disable Lite Program Trace mode on the occurrence of a watchpoint 
condition.

Program Trace may be disabled by the following:

• Clearing the DC1[TM] Program Trace enable bit (DC1[61]). Note that resetting the Nexus module 
clears all Nexus registers, disabling Program Trace as a side effect.

• Disabling the thread effectively disables Program Trace:

— Forces a flush of the history buffer when the thread is disabled (PCM w/EVCODE = #5).

— Does not disable Program Trace entirely and re-starts when the thread is re-enabled.

• Programming WT1[PTE] to disable Program Trace on the occurrence of a watchpoint condition.

• Program Trace can be filtered out (effectively disabled):

— For performance monitor mark (MSR[PMM]) by programming DC4[PTFPMM].

— For privilege level (MSR[PR]) by programming DC4[PTFPR].

— For guest state (MSR[GS]) by programming DC4[PTFGS].

Program Trace is effectively suppressed whenever the processor is in the debug halted or debug stopped 
state. Instruction jamming operations do not produce any Program Trace messages. Whenever the 
processor leaves the debug halted state, Program Trace enable state reverts to the status of DC1[61].
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9.11.14.2 Lite Program Trace mode

To reduce the number of Indirect Branch History messages and help alleviate bandwidth issues, Lite 
Program Trace mode may be used. It is designed to reduce the number of IBHM's when code is well 
behaved by using a return stack, or Nexus Link Stack, that is maintained both in hardware and the 
Program Trace reconstruction tool. The e6500 core currently implements three entries in the Nexus Link 
Stack. 

Well-behaved code in this context is defined as code that calls functions using branch and link class 
instructions with returns from those instructions being branch to link class instructions. Normally, a 
branch to link register instruction would cause an IBHM message to be generated. However, by saving off 
the expected return target address when the function is called, it is possible to predict that return address. 
If the prediction is correct, it eliminates the need for that IBHM and converts this indirect branch taken to 
a direct branch taken.

9.11.14.2.1 Lite Program Trace mode—enabling 

Program Trace must be enabled (in DC1[TM]) in order to use Lite Program Trace mode. Once Program 
Trace is enabled, Lite Program Trace mode may be turned on (or off) by setting (or clearing) the Lite 
Program Trace Enable bit (DC1[LPTE]). Alternatively, Lite Program Trace mode can be turned on and 
off via watchpoint triggers configured in WT2 (LPTS/LPTE).

9.11.14.2.2 Lite Program Trace mode—how it works

When enabled, Program Trace checks the target of the taken branch to the link register branch and 
compares it against the top of the Nexus Link Stack. If the top entry of the link stack matches the target 
address of the branch to link register branch, it is considered as a taken direct branch and a history bit is 
added to the history buffer rather than causing an IBHM to be sent.

The Nexus Link Stack is the key to the operation of Lite Program Trace. It keeps track of return addresses 
when function calls are made using a branch and link instruction. Thus, when Lite Program Trace is 
enabled, the link stack pushes a return address for every branch and link that is taken. The Program Trace 
decoder software must mirror this operation when reconstructing the program. 

When a branch to link register taken is seen, an entry is popped from the link stack and compared against 
the target of that branch. If they match, the branch to link register taken is treated as a direct branch 
because the target can be implied by the Nexus Link Stack tracked by the Program Trace decoder. 
However, if they do not match, all entries of the link stack are invalidated and the normal IBHM is sent.



Debug and Performance Monitor Facilities

e6500 Core Reference Manual, Rev 0

Freescale Semiconductor 9-87
 

This table describes the Nexus Link Stack operations.

In order for Lite Program Trace to work, the Program Trace reconstruction tool must maintain its own 
link stack, as well as use the rules in the following table.

Table 9-49. Nexus Link Stack operations

Scenario Action

Branch and link taken

Push branch and link instruction’s address plus 4 onto the Nexus Link 
Stack. 
Note: If the Nexus Link Stack is full, the oldest entry is overwritten. If 
that is the case, the overwritten entry are lost and the Nexus Link 
Stack optimization for that entry are not realized.

Branch to link taken

Pop Nexus Link Stack and compare this address to the target address 
of the branch to link taken instruction. One of the following then occurs.
1.) If there is a match and Lite Program Trace is enabled, convert this 
branch from a branch indirect taken to a direct branch taken. This 
causes this entry to be entered into the branch history buffer and no 
IBHM is sent out. 
2.) If the entry does not match the branch to link target address, then 
the entire Nexus Link Stack is invalidated and the IBHM is sent out. 
3.) If the entry does match, but Lite Program Trace is not enabled, the 
stack is not invalidated, but the IBHM is still sent out.

Program Trace 
Synchronization message 
(Hard Sync / Soft Sync)

Resets the Nexus Link Stack.

Table 9-50. Trace reconstructor link stack operation

Scenario Seen in Program Trace Stream Action

Branch history buffer from decoded IBHM (or 
PCM) contains a branch and link instruction 

taken

Push branch and link instruction’s address plus 4 onto 
the Trace Reconstructor Link Stack

Branch history buffer from decoded IBHM (or 
PCM) hits a branch to link instruction taken

This indicates that the Nexus Link successfully 
predicted the target address of the branch to link 
register. In Program Trace reconstruction, the tool 
should then use the top entry of the Trace 
Reconstructor Link Stack it maintains as the target 
address.

After decoding the branch history using the 
preceding rules, it is found that the IBHM is 
sent out due to a branch to link instruction 

taken.

This indicates that the Nexus Link did not successfully 
predict a branch to link target address. The Nexus Link 
Stack was invalidated and now the Trace 
Reconstructor Link Stack should also be invalidated.

Program Trace Synchronization message 
(Hard Sync) decoded

Resets the Reconstructor Link Stack 
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9.11.14.2.3 Lite Program Trace mode—example

Consider the following program segments:

Figure 9-29. Lite Program Trace mode example

Referring to the above code segments, each function return generates an Indirect Branch History message 
(IBHM) when Lite Program Trace mode is turned off: 

• Program Trace messages generated with Lite Program Trace mode turned off
Program Trace Synchronization Message
Indirect Branch History Message (return from melt)
Indirect Branch History Message (return from hot)
Indirect Branch History Message (return from melt)
Indirect Branch History Message (return from hot)
Indirect Branch History Message (return from melt)
Indirect Branch History Message (return from hot)
Indirect Branch History Message (return from melt)
Indirect Branch History Message (return from hot)
Indirect Branch History Message (return from melt)
Indirect Branch History Message (return from hot)
Program Correlation Message (end of main, contains history since return of hot)

However, if a program is well behaved (meaning it does not alter the return address on the stack), these 
function returns that generate IBHMs can be predicted and logged as a direct branch in the history buffer 
instead. 

In order to consider these function returns as direct branches, the target address must be known. In other 
words, as long as the return address is not altered after it is pushed on the stack, we can record the return 
as a direct branch. To do this, the Nexus module builds a link stack for tracking return addresses. When a 
function call is executed, the corresponding return address is pushed onto the Nexus Link Stack. Upon 
reaching a function return, the top entry of the Nexus Link Stack is popped off the stack and compared to 
the actual return address. If they match, instead of generating a IBHM as normal, the function return is 
added to the branch history buffer as a taken branch. If they do not match, the IBHM is generated and the 
Nexus Link Stack is invalidated.

Thus, returning to the same code segment with Lite Program Trace mode turned on:

• Program Trace messages generated with Lite Program Trace mode turned on
Program Trace Synchronization Message
Program Correlation Message (end of main, contains history of entire program)

main()

{
for(i=0; i<5; i++)

hot();
}

hot()

{
melt();

}

melt()

{
return;

}
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9.11.14.3 Sequential instruction count field

Most of the Program Trace messages include an instruction count field. This instruction count indicates 
the number of sequential instructions that have completed since the last predicate instruction, transmitted 
instruction count, or taken change of flow. Taken indirect branch instructions are included in this count. 
Instructions that produce branch/predicate history information are not included in this count. Taken direct 
branches (BL/BCL) that generate PCMs are also not included in this count. The instruction counter is 
reset every time the instruction count is transmitted in a message or whenever there is a branch/predicate 
history event. 

9.11.14.4 Branch/predicate history events

The branch/predicate history buffer stores information about branch and predicate instruction execution. 
The buffer is implemented as a left-shifting register. The buffer is preloaded with a one (1), which acts as 
a stop bit (the most significant 1 in the history field is a termination bit for the field). 

A value of one (1) is shifted into the history buffer for each taken direct branch (program counter relative 
branch, or taken indirect branches when the target address matches the address being tracked on the link 
stack) or predicate instruction whose condition evaluates to true. A value of zero (0) is shifted into the 
history buffer for each not-taken branch (including indirect branch instructions) or predicate instruction 
whose condition evaluates to false. The e6500 core implements a 30-bit history buffer (29 history bits 
plus 1 stop bit).

This history buffer information is transmitted as part of an Indirect Branch with History message, as part 
of a Program Correlation message, or as part of a Resource Full message if the history buffer becomes 
full.

This table describes the branch and predicate history events.

Table 9-51. Branch/predicate history events

Branch/Predicate History Event History Bit Relevant Instructions Notes

Not taken register indirect branches 0 bcctr, bcctrl, bclr, bclrl —

Not taken direct branches 0 b, ba, bc, bca, bla, bcla, bl, bcl —

Taken direct branches

1

b, ba, bc, bca, bla, bcla, bl, bcl If the EVCODE for direct branch function 
calls is not masked in DC4, taken bl and 
bcl instructions generate Program 
Correlation messages and are not logged 
in the history buffer.

Taken indirect branches 

1

bclr, bclrl When Lite Program Trace mode is turned 
on, taken bclr, bclrl instructions that are 
well behaved (see Section 9.11.14.2, “Lite 
Program Trace mode”), are logged in the 
history buffer. When the source code is 
not well behaved, or when Lite Program 
Trace is disabled, these instructions are 
not logged in the history buffer but 
generate an IBHM instead.

Predicated instructions 1 isel, fsel —
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9.11.14.5 Indirect Branch message events

An Indirect Branch event is a change of flow in which a branch target cannot be inferred from the source 
code. This includes register indirect branch instructions and interrupts. When an indirect branch event 
occurs and Program Trace is enabled, an Indirect Branch with History message (TCODE 28) is 
generated. 

The address field of this message is the target address of the change of flow. For interrupts, this is the 
interrupt vector.

This table describes the Indirect Branch message events.

9.11.14.6 Resource Full events

Program Trace can produce two types of Resource Full messages (TCODE 27): instruction counter and 
history buffer.

The instruction counter is capable of counting up to 255 sequential instructions before overflowing. If the 
instruction counter overflows, a Resource Full message is generated. Development tools can use this 
information to properly reconstruct program flow.

The branch/predicate history buffer is capable of storing up to 30 bits (29 history events plus the stop bit). 
The history buffer is reset whenever the branch/predicate history information is transmitted in a message. 
If the history buffer becomes full, a Resource Full message is generated to transmit the contents of the 
history buffer. Development tools can concatenate this history information with history fields from other 
Program Trace messages to obtain the complete branch/predicate history.

9.11.14.7 Program Correlation events

Program Correlation messages (TCODE 33) are used to correlate processor events to instructions in the 
program flow. Program Correlation messages provide branch/predicate history and sequential instruction 
count information at the time the event is detected. This information can be used by development tools to 
correlate the event to an instruction in the program flow. Each event can be independently masked by 
setting a bit in Nexus Development Control 4 (DC4) register.

Table 9-52. Indirect Branch message events

Indirect Branch Message Event BTYPE Relevant Instructions

Taken register indirect branches 00 bcctr, bcctrl, bclr1, bclrl

1 When Lite Program Trace is enabled, taken bclr instructions that are well behaved (see Section 9.11.14.2, “Lite Program Trace 
mode”), are logged in the history buffer. When bclr instructions are not well behaved, or when Lite Program Trace is disabled, 
these instructions are not logged in the history buffer but generate a IBHM instead.

Return from Interrupt 00 rfi, rfci, rfdi, rfmci

Interrupt taken
01

N/A
Interrupts caused by sc, tw, and twi are messaged in the same way as any other 
taken interrupt event.

Reserved 11 N/A
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The e6500 Nexus module generates Program Correlation messages for the following events when 
Program Trace is enabled and the event is not masked in DC4:

• The processor is halted for debug. 

• The processor is halted for power management. 

• Program Trace becomes disabled (excluding disable by reset).

• Program Trace becomes masked due to MSR[PMM] filter configured by DC4[PTFPMM].

• Program Trace becomes masked due to MSR[PR] filter configured by DC4[PTFPR].

• Program Trace becomes masked due to MSR[GS] filter configured by DC4[PTFGS].

• Branch and Link instructions (direct branch function call, bl/bcl).

9.11.14.8 Synchronization conditions

By default, Program Trace messages perform XOR compression on the branch target address to produce 
the address field for the message. This compression is consistent with the specification in IEEE-ISTO 
5001.

Under some conditions, an uncompressed address is sent to provide development tools with a baseline 
reference address. The nature of these conditions determines the type of message transmitted. In cases 
where there is a discontinuity in program flow, a synchronization message is transmitted indicating a 
“hard” sync has occurred (TCODE 9). Subsequent Program Trace messages bases their sequential 
instruction count (I-CNT) and branch history (HIST) values starting from the program counter (PC) value 
transmitted within these messages.

This table outlines hard sync cases.

Table 9-53. Hard synchronization conditions

Hard SYNC
Condition

Description

EVTI0 Assertion
The e6500 EVTI0 pin is asserted (high to low transition) and DC1[EIC] determines that EVTI0 
generates trace synchronization messages.

Exit from System Reset
The embedded processor has successfully exited system reset.
For Program Trace messages, this is required to allow the number of instruction units executed 
packet in a subsequent BTM to be correctly interpreted by the tool.

Exit from Debug The embedded processor has exited from the debug HALT state.

Program Trace Enable

Program Trace is enabled during normal execution of the embedded processor. 

This includes when Program Trace is re-enabled due to filtering (masking) because 
MSR[PMM|PR|GS] filters can disable Program Trace temporarily.
NOTE: The hard sync message is suppressed in the case where Program Trace is being 
re-enabled (via filtering) at the same time as Program Trace is being disabled (via a stop trigger).

FIFO Overrun

An overrun condition had previously occurred in which one or more trace occurrences were 
discarded by the debug logic. To inform the tool that an overrun condition occurred, the target 
outputs an Error message (TCODE = 8) prior to a sync message. The error message contains 
an ECODE value indicating the type(s) of messages lost due to the overrun condition.
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Conditions that do not create a discontinuity are considered “soft” sync cases. These conditions cause the 
next branch trace message to use an uncompressed target address (TCODE 29). 

This table outlines soft sync cases.

9.11.15 Data Trace

The e6500 core supports limited Data Trace. The features of Data Trace are as follows:

• Only stores are traced.

• The Data Trace message is uncorrelated (meaning there is no corresponding Program Correlation 
message (PCM)).

• Each address compare is limited to a maximum of 4 KB on exact match. (See Section 2.14.7, 
“Debug Control 4 (DBCR4) register,” for detail on programming extended DAC ranges.)

• Misaligned stores are not combined, meaning that each half that has an associated DAC set is sent 
as an independent Data Trace message.

• Store multiple word instructions (stmw) produce a separate Data Trace message for each word 
stored that meets the trace criteria.

9.11.15.1 Data Trace—enable and disable

The Data Trace features rely on the data address compare (DAC) resources in order to compress address 
information by implying upper order address bits from the DAC attribute. Consequently, Data Trace 
functionality requires DAC settings to be enabled in addition to enabling messaging.

Message Contention

One or more messages is lost due to contention with a higher priority message. 
To inform the tool that this condition occurred, the target outputs an Error message (TCODE = 
8) prior to a sync message. The error message contains an ECODE value indicating the type of 
message lost due to the contention. See Section 9.11.7, “Nexus message priority.” 

Exit from Power-down
The processor has exited from a power management state.
For Program Trace messages, this is required to allow the number of instruction units executed 
packet in a subsequent BTM to be correctly interpreted by the tool.

Table 9-54. Soft synchronization conditions

Soft SYNC
Condition

Description

EVTI1 
Assertion

The e6500 EVTI1 pin is asserted (high to low transition).

Periodic 
Message 
Counter

The periodic trace message counter has expired indicating that there have been 255 Program Trace messages 
without an uncompressed address. This ensures that, with a sufficiently large sample of trace information, 
there is guaranteed to be a reference address that can be used to meaningfully interpret the remainder of the 
Program Trace.

Table 9-53. Hard synchronization conditions (continued)

Hard SYNC
Condition

Description
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To enable DACs for use by Data Trace, the following conditions are required:

• DBCR0[IDM] and DBCR0[EDM] are don’t cares. They do not have to be set for the DACs to be 
used to trace data. 

• EDBRAC0[DAC1, DAC2] and EDBRAC0[TRACE] should be allocated to the same owner for 
data tracing. (Note: This is not absolutely necessary for Data Trace to work).

• DAC1 and DAC2 should be programmed with the desired addresses for data tracing.

• DBCR0[DAC1, DAC2] should be programmed to disable the DAC debug conditions. If 
DBCR0[DAC1, DAC2] are enabled, a DAC condition may prevent the store operation from 
completing by causing entry into debug halted state or generating a debug interrupt.

• If DBCR0[DAC1, DAC2] are programmed to disable the DAC conditions, DBCR4[DAC1CFG, 
DAC2CFG] should be programmed to enable the DAC to occur on store-type data storage accesses.

• DBCR4[DAC1XM] and DBCR4[DAC2XM] should be programmed to construct Data Trace 
address regions which do not exceed 4 Kbytes. If a DAC match region exceeds 4 Kbytes, the 
resulting Data Trace may be ambiguous as a result of address aliasing.

• Additional filtering of Data Trace according to privilege and/or address space may be applied by 
programming DBCR2[DAC1U, DAC1ER, DAC2US, DAC2ER].

Data Trace messaging can be enabled in one of two ways:

• Set the appropriate DC1[TM] bit (DC1[62]).

• Program WT1[DTS] to enable Data Trace on the occurrence of a watchpoint condition.

Similarly, Data Trace may be disabled by one of the following:

• Disable the DAC conditions for store-type accesses.

• Clear the appropriate DC1[TM] bit (DC1[62]). Note that resetting the Nexus module clears all 
Nexus registers, disabling Data Trace as a side effect.

• Program WT1[DTE] to disable Data Trace on the occurrence of a watchpoint condition.

NOTE
The latter two mechanisms defined above disable additional stores from 
entering the e6500 store queue, but accesses that have already entered the 
queue (that is, accesses in flight) messaged out before the DTMs are actually 
disabled. 

Data Trace is effectively suppressed whenever the processor is in the debug halted or debug stopped state. 
Instruction jamming operations do not produce any Data Trace messages. Whenever the processor leaves 
the debug halted state, Data Trace enable state reverts to the status of DC1[62].

9.11.15.2 Data Trace range control

The Data Trace address range is limited to two 4 KB ranges. These ranges are controlled by setting the 
effective addresses in DAC1 and DAC2 and the DAC configuration in DBCR4, as follows: 

• DBCR4[DAC1CFG] and DBCR4[DAC2CFG] must be enabled for store-type data storage 
accesses. 
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• DBCR4[DAC1XM] and DBCR4[DAC2XM] must be set to modes that ensure that the address 
range of each DAC does not exceed 4 KB. 

9.11.15.3 Data Trace Size (DSZ) field

For normal data transfers, DSZ indicates the size (in bytes) of the store that is being traced, but there are 
two special cases that use unique DSZ values to indicate specific types of data transfers. 

Certain cache management instructions (dcba, dcbz, dcbal, dcbzl) are treated as store-type data storage 
accesses and always have a data value of zero. For the dcbz and dcba instructions, a mode bit 
(L1CSR0[DCBZ32]) determines whether or not 32-bytes or 64-bytes are zeroed out. This is indicated 
with the respective DSZ value within the Data Trace message. Data Trace messages for dcbzl and dcbal 
instructions always include a DSZ value indicating 64-bytes (4’b1011). See Section 3.4.11.1, “User-level 
cache instructions,” for more detail on cache management instructions.

The e6500 core supports an additional instruction form, called decorated storage notify (dsn), which 
provides the ability to send an address along with a decoration, but does not include any data. This 
implied zero Data Trace message transmitted with a DSZ value of zero (4’b0000) indicates a zero byte 
data transfer. See the integrated device reference manual for more details on the dsn instruction.

9.11.15.4 Data Trace address field

The Data Trace address field consists of a 12-bit address offset and a 1-bit DAC tag identifier, as follows:

A value of 0 for the DAC tag indicates that this store matched only the DAC1 conditions or matched both 
the DAC1 and DAC2 conditions. A value of 1 for the DAC tag indicates that this store matched only the 
DAC2 conditions. The full effective address can be reconstructed by concatenating the DAC information 
with the Data Trace address field information, as follows:

The upper address information should be selected from DAC1 or DAC2 according to the DAC tag bit in 
the Data Trace address field and the DAC settings. Note that setting the DAC conditions to include 
regions in excess of 4 KB results in address aliasing, which makes precise reconstruction of the full 
effective address impossible (without other implied restrictions or information that can remove the 
ambiguity).

MSB LSB

DAC tag ADDR[52:63]

Figure 9-30. Data Trace address field components

DAC1[0:51] or DAC2[0:51] ADDR[52:63]

Figure 9-31. Data Trace full address reconstruction
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9.11.15.5 Data Trace data field

The Data Trace data field contains the data that was written by a store operation that met the requirements 
for being traced. Leading zeros are truncated to an auxiliary output port boundary and not transferred in 
the message.

9.11.15.6 Data Trace message events

A Data Trace event is a store-type data storage access that is executed by the load/store unit and which 
meets the criteria for a DAC condition. Additional filtering and triggering may be applied to control when 
Data Trace events are observed. When a qualified Data Trace event occurs and Data Trace is enabled, a 
Data Trace Write with Sync message (TCODE 13) is generated. 

9.11.16 Ownership Trace
Ownership Trace facilitates tracking the active operating system task by providing visibility to special 
purpose registers designated for use by the OS for process ID. All operating system process ID changes 
that are reflected in the Nexus Process ID (NPIDR) register or the PID register generate Ownership Trace 
messages (OTMs). Changes in the Logical Partition ID (LPIDR) register also generate OTMs.

9.11.16.1 Ownership Trace—enable and disable

Ownership Trace can be enabled by setting the appropriate DC1[TM] bit (DC1[63]).

Table 9-55. Data Trace message events

Data Trace Message Event Source Relevant Instructions

Cache management instructions that are 
treated as store-type data storage accesses1

1 These instructions are treated like data storage writes with write data value of zero.

dcba, dcbal, dcbz, dcbzep, dcbzl, dcbzlep

External PID store instructions that produce 
data storage write accesses

stbepx, stfdepx, sthepx, stvepx[l]2, stwepx, stdepx

Integer store instructions that produce data 
storage write accesses

stb[u][x], std[u][x], sth[u][x], stw[u][x], 
stdbrx, sthbrx, stwbrx, 
stmw2

2 A separate Data Trace message is generated for each word stored that meets the trace criteria.

Floating-point store instructions that produce 
data storage write accesses

stfiwx, stfd[u][x], stfdepx, stfs[u][x]

Altivec store instructions that produce data 
storage write accesses

stvebx, stve[x]hx, stve[x]wx, stve[x]bx, stvflx[l]2, stvfrx[l]2, stvswx[l]2, 
stvx[l]2

Decorated store instructions that produce 
data storage write accesses

stbdx, sthdx, stwdx, stddx, stfddx, dsn

Conditional store instructions3

3 These instructions only generate Data Trace messages if the associated store is successful (that is, the condition evaluates to 
true).

stwcx., stdcx.
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Similarly, Ownership Trace may be disabled by one of the following:

• Clearing the appropriate DC1[TM] bit (DC1[63]). Note that resetting the Nexus module clears all 
Nexus registers, disabling Program Trace as a side effect.

• Periodic Ownership Trace message events can be disabled by setting DC1[POTD]. Ownership 
Trace message events due to mtspr instruction execution are unaffected by this control.

Ownership Trace is effectively suppressed whenever the processor is in the debug halted or debug 
stopped state. Instruction jamming operations do not produce any OTMs. Whenever the processor leaves 
the debug halted state, Ownership Trace enable state reverts to the status of DC1[63].

9.11.16.2 Ownership Trace Process field

The process field of an Ownership Trace message (OTM) provides the contents of several pieces of 
process ID information. The PID value that is transmitted as part of the message is based on the type of 
Ownership Trace event, as well as the value of DC1[OTS]. The process field also consists of an index to 
identify which process ID values are being reported for a particular message. See Section 9.11.16.3, 
“Standard Ownership Trace message events,” and Section 9.11.16.4, ““Sync” Ownership Trace message 
events,” for detail on Ownership Trace events.

9.11.16.3 Standard Ownership Trace message events

The following two events generate standard Ownership Trace messages when Ownership Trace is 
enabled:

• As programmed by DC1[OTS], a write to either (1) the NPIDR register or (2) the PID register is 
performed by executing an mtspr with the selected register as the target. The Process field of the 
resulting Ownership Trace message indicates that the processID changed with a PID index of 0000 
and that the new value written to the selected register is conveyed in the PID value subfield.

• When the hypervisor changes LPIDR, an OTM message indicates that the logical partition ID 
changed with a PID index of 0001 and the new LPIDR is conveyed in the PID value subfield.

Table 9-56. OTM Process field components

Configuration
DC1[OTS]

Process Field
Total 

PROCESS
Field
Width

PID Value PID Index

Description Size Encoding Description

0 PID0[50:63] 14-bits
0000 OS PID

18-bits

1 NPIDR[32:63] 32-bits 36-bits

x LPIDR[58:63] (Logical Partition ID) 6-bits 0001  Hypervisor PID 10-bits

0 {LPIDR[58:63], MSR[GS], PID0[50:63], MSR[PR]} 22-bits
0010 “Sync” PID

26-bits

1 {LPIDR[58:63], MSR[GS], NPIDR[32:63], MSR[PR]} 40-bits 44-bits

x
N/A

0-bits
0011–
1111

Reserved 0-bits
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9.11.16.4 “Sync” Ownership Trace message events

The following events generate “sync” OTMs when Ownership Trace is enabled:

• Upon OTM enable (DC1[TM]), an OTM is generated with the same information as in the “sync” 
OTM case (PID index = 0010).

• Upon assertion of EVTI0 (when DC1[EIC] is programmed to initiate synchronization), all of the 
most recent process ID information is messaged out with a PID index of 0010. This effectively 
creates a “sync” OTM and the Process field for this message reflects the current value in the NPIDR 
register (or PID0), the current privilege level (MSR[PR]), the current logical partition ID (LPID), 
as well as the current guest OS state (MSR[GS]).

• Upon a change in privilege level (MSR[PR]) or a change in guest state (MSR[GS]), an OTM is 
generated with the same information as in the “sync” OTM case (PID index = 0010).

• Upon a change in instruction address space (MSR[IS]), an OTM is generated with the same 
information as in the “sync” OTM case (PID index = 0010).

• Periodically—once every 256 messages—an OTM is also generated with the same information as 
in the “sync” OTM case (PID index = 0010). These periodic Ownership Trace message events can 
be disabled by writing DC1[POTD] = 1.

• After flush of the Nexus buffers due to a FIFO Overrun Error, an OTM “sync” message is 
generated. If ownership changes during the flush of the Nexus queues, this message, along with the 
Hard Sync message, synchronizes the trace tool again to the current program flow.

9.11.17 Data Acquisition Trace
This section details the data acquisition mechanisms supported by the Nexus module included in a 
processor. Data Acquisition Trace is implemented using Data Acquisition Trace messages in accordance 
with IEEE-ISTO 5001 definitions. The control mechanism to export the data is different from the 
recommendations of the standard, however.

Data Acquisition Trace provides a convenient and flexible mechanism for the debugger to observe the 
architectural state of the machine through software instrumentation in either IDM or EDM mode. 

9.11.17.1 Data Acquisition Trace—enable and disable

Enabling and disabling Data Acquisition Trace messaging is done as follows:

• Enable by setting the appropriate DC1[TM] bit (DC1[58]).

• Disable by clearing the appropriate DC1[TM] bit (DC1[58]). 

Note that resetting the Nexus module clears all Nexus registers, which disables Data Acquisition Trace as 
a side effect.

Data Acquisition Trace is effectively suppressed whenever the processor is in the debug halted or debug 
stopped state. Instruction jamming operations do not produce any Data Acquisition Trace messages. 
Whenever the processor leaves the debug halted state, the Data Acquisition Trace enable state reverts to 
the status of DC1[58].
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9.11.17.2 Data Acquisition ID Tag field

The Data Acquisition ID Tag field (IDTAG) is an 8-bit value specifying the complementary control or 
attribute information for the data included in the Data Acquisition message. IDTAG is configured by 
accessing the DQM resources through the DEVENT and DDAM SPR registers. 

IDTAG is sampled from DEVENT[32:39] when a write to DDAM is performed via mtspr operations. 

The usage of the IDTAG is left to the discretion of the development tool to be used in whatever manner is 
deemed appropriate for the application.

9.11.17.3 Data Acquisition Data field

The Data Acquisition Data field (DQDATA) is the data captured from the DDAM write operation via 
mtspr operations. DQDATA is sampled from DDAM[32:63].

9.11.17.4 Data Acquisition Trace event

For DQM, a dedicated SPR is allocated (DDAM). It is expected that the general use case is to instrument 
the software and use mtspr operations to generate Data Acquisition messages.

There is no explicit error response for failed accesses as a result of contention between an internal and 
external debugger. See Section 9.9.2, “Internal and external debug modes,” for more information 
regarding internal/external debugger contention of debug resources. Reads from the data acquisition 
channel do not generate a data acquisition event and return zeros for the read data.

9.11.18 Watchpoint Trace
This section details the Watchpoint Trace mechanisms supported by the Nexus module included in the 
processor. Watchpoint Trace is implemented using Watchpoint Trace messaging in accordance with 
IEEE-ISTO 5001 definitions.

Watchpoint Trace facilitates monitoring program execution for specific event occurrences.

9.11.18.1 Watchpoint events

Table 9-57 lists all of the watchpoint events supported by the e6500 core. These watchpoint events may 
be used for one or more of the following functions:

• Triggers for enabling/disabling Program Trace according to the settings programmed in the WT1 
register.

• Assert the debug event out signals (EVTO[4:0]) according to the settings in DC1[EOC] and DC2.

• Generate a Watchpoint Trace message according to the settings programmed in DC1 and WMSK 
registers.
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Table 9-57. Processor debug watchpoint mappings

 Processor 
Watchpoints

Type Event Description

Watchpoint #1 IAC1 Instruction Address Compare 1 debug event watchpoint—Asserted whenever an IAC1 

compare occurs, regardless of being enabled to set the DBSR status.

Watchpoint #2 IAC2
Instruction Address Compare 2 debug event watchpoint—Asserted whenever an IAC2 
compare occurs, regardless of being enabled to set the DBSR status.

Watchpoint #3 IAC3
Instruction Address Compare 3 debug event watchpoint—Asserted whenever an IAC3 
compare occurs, regardless of being enabled to set the DBSR status.

Watchpoint #4 IAC4
Instruction Address Compare 4 debug event watchpoint—Asserted whenever an IAC4 
compare occurs, regardless of being enabled to set the DBSR status.

Watchpoint #5 DAC1
Data Address Compare 1 debug event watchpoint—Asserted whenever an DAC1 
compare occurs, regardless of being enabled to set the DBSR status.

Watchpoint #6 DAC2
Data Address Compare 2 debug event watchpoint—Asserted whenever an DAC2 
compare occurs, regardless of being enabled to set the DBSR status.

Watchpoint #7 DEVNT4 Data Acquisition Event 4 (DEVNT4)

Watchpoint #8 DEVNT5 Data Acquisition Event 5 (DEVNT5)

Watchpoint #9 IAC5
Instruction Address Compare 5 debug event watchpoint—Asserted whenever an IAC5 
compare occurs, regardless of being enabled to set the DBSR status.

Watchpoint #10 IAC6
Instruction Address Compare 6 debug event watchpoint—Asserted whenever an IAC6 
compare occurs, regardless of being enabled to set the DBSR status.

Watchpoint #11 EVTI01 Event In 0 (EVTI0)

Watchpoint #12 EVTI1 Event In 1 (EVTI1)

Watchpoint #13 DEVNT0 Data Acquisition Event 0 (DEVNT0)

Watchpoint #14 DEVNT1 Data Acquisition Event 1 (DEVNT1)

Watchpoint #15 IAC7 Instruction Address Compare 7 debug event watchpoint

Watchpoint #16 IAC8 Instruction Address Compare 8 debug event watchpoint

Watchpoint #17 PMW02 Performance Monitor Watchpoint 0 (PMW0)

Watchpoint #18 PMW12 Performance Monitor Watchpoint 1 (PMW1)

Watchpoint #19 PMW22 Performance Monitor Watchpoint 2 (PMW2)

Watchpoint #20 PMW32 Performance Monitor Watchpoint 3 (PMW3)

Watchpoint #21 DEVNT2 Data Acquisition Event 2 (DEVNT2)

Watchpoint #22 DEVNT3 Data Acquisition Event 3 (DEVNT3)

Watchpoint #23 PMW42 Performance Monitor Watchpoint 4 (PMW4)

Watchpoint #24 PMW52 Performance Monitor Watchpoint 5 (PMW5)

Watchpoint #25 PMEVENT Performance Monitor Event

Watchpoint #26 PID
Process ID Update (PID)
(Generated on updates to both PID and LPIDR registers)
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When the debug resource is allocated to the external debugger (EDM), IACs, DACs, return from 
interrupt, and return from critical interrupt, debug conditions cause bits to be set in EDBSR0 (if not 
masked within EDBSRMSK0) and the processor to halt instead of taking a debug interrupt. In this case, 
the watchpoint for these respective event triggers on the update to EDBSR0.

9.11.18.2 Watchpoint Trace—enable and disable

Watchpoint Trace messaging can be enabled by setting the appropriate DC1[TM] bit (DC1[60]) and 
enabling selected watchpoint events to produce a Watchpoint Trace message by programming WMSK. 
Note that, except for interrupt taken, return from interrupt, and EVTI events, additional configuration is 
required to set up the individual watchpoint conditions. These additional configuration controls are 
specific to the event type. 

Similarly, Watchpoint Trace may be disabled by the following:

• Clear the appropriate DC1[TM] bit (DC1[60]). Note that resetting the Nexus module clears all 
Nexus registers, which disables Program Trace as a side effect.

• Clear the WMSK register such that no watchpoint events are enabled to produce a Watchpoint 
Trace message.

Watchpoint Trace is effectively suppressed whenever the processor is in the debug halted or debug 
stopped state. Instruction jamming operations do not produce any Watchpoint Trace messages. Whenever 
the processor leaves the debug halted state, the Watchpoint Trace enable state reverts to the status of 
DC1[60].

9.11.18.3 Watchpoint Hit field

The Watchpoint Hit field consists of 32 bits with one bit per watchpoint event. Whenever a Watchpoint 
Trace message is generated, the Watchpoint Hit field of the message includes a one (1) for each 

Watchpoint #27
RELOAD 

CNTR
Reloadable Counter Event

Watchpoint #28 IRPT Interrupt Taken debug event watchpoint

Watchpoint #29 RET Interrupt Return debug event watchpoint

Watchpoint #30 DNI
Debug Notify Interrupt instruction debug event—Generated when the dni instruction 
executes and bit 15 of the instruction is set.

Watchpoint #31 TRAP
TRAP instruction debug event—Generated for both debug (IVOR15) and program 
(IVOR6) TRAP exceptions.

Watchpoint #32 DNH
Debug Notify Halt instruction debug event—Generated when the dnh instruction 
executes and bit 15 of the instruction is set.

1 Assertion of EVTI0 produces a watchpoint independent of the settings of DC1[EIC]. That is, an EVTI0 assertion produces a 
watchpoint in addition to any functionality that is enabled in DC1[EIC].
2 Configuration is controlled by PMLCbs. See Section 2.16.3, “Local control b registers 
(PMLCb0–PMLCb5/UPMLCb0–UPMLCb5).”

Table 9-57. Processor debug watchpoint mappings (continued)

 Processor 
Watchpoints

Type Event Description
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watchpoint event that occurred at that time and a zero (0) for each event that did not occur. Only 
watchpoints that are enabled in WMSK may set a bit in the Watchpoint Hit field.

9.11.18.4 Watchpoint Trace message events

A Watchpoint Trace message is generated whenever Watchpoint Trace is enabled (DC1[60] = 1) and a 
watchpoint event that is enabled to produce a Watchpoint Trace message occurs (the corresponding 
WMSK bit is set). If more than one enabled watchpoint occurs in a single cycle, only one Watchpoint 
Trace message is generated and multiple bits of the Watchpoint Hit field is set.

9.11.19 Timestamp Correlation messages
Timestamp Correlation messages are used by an external trace tool to correlate timestamps from multiple 
Nexus clients. Timestamp Correlation messages are enabled whenever any Nexus trace modes are 
enabled and timestamps are enabled (both DC1[TM] and DC1[TSEN] are non-zero). A timestamp 
correlation message is generated in response to a system-level request to correlate timestamps. The 
request may be periodic or may be due to an event where a client’s timestamp clock was briefly halted 
and needs to be re-correlated.

9.11.20 Performance Profile messages
Performance Profile messages are used to transmit snapshots of the NIA and performance monitor 
counters (PMC0-5) to an external tool for performance profiling analysis. 

Performance Profile messages use the In-Circuit Trace (ICT) TCODE and format.

9.11.20.1 Performance Profile messages—enable and disable

Performance Profile messages can be enabled in one of two ways:

• Set the DC1[TM] profile message enable bit (DC1[59]).

• Program WT2[ITS] to enable profile messages on the occurrence of a watchpoint condition.

Performance Profile messages can be disabled in one of two ways:

• Clear the DC1[TM] profile message enable bit (DC1[59]). Note that resetting the Nexus module 
clears all Nexus registers, disabling Profile messages as a side effect.

• Program WT2[ITE] to disable profile messages on the occurrence of a watchpoint condition.
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9.11.20.2 Performance Profile message events

When enabled, Performance Profile messages are generated when a snapshot event occurs. Snapshot 
events are configured within the Reloadable Counter Configuration (RCCR) register. 

9.11.20.3 Performance Profile message configuration

The profiling message uses the In-Circuit Trace (TCODE 35) format, which allows for flexible 
messaging. 

The Performance Profile Configuration bits (DC1[PPC]) configure the data transmitted at each snapshot 
event. The data is transmitted using the order defined by the PPC bits. If a bit is unselected, the 
corresponding data is not transmitted but is skipped. Each bit selected in PPC corresponds to a separate 
message that is generated. In other words, a single snapshot event can result in multiple messages being 
created.

The timestamp value is captured when a snapshot event occurs and is included in the first message sent. 
No timestamp is transmitted on additional messages generated by a snapshot event.

Example 1: If DC1, PPC = 4’b1111, the following messages are sent:

TCODE=35,SRC,CKSRC=4’b0000,SYNC=2’b00,CKDF=2’b01,CKDATA1=PCC[0:29],CKDATA2=PCC[30:61],TSTAMP 
TCODE=35,SRC,CKSRC=4’b0001,SYNC=2’b00,CKDF=2’b01,CKDATA1=PMCC0,CKDATA2=PMCC1
TCODE=35,SRC,CKSRC=4’b0011,SYNC=2’b00,CKDF=2’b01,CKDATA1=PMCC2,CKDATA2=PMCC3
TCODE=35,SRC,CKSRC=4’b0101,SYNC=2’b00,CKDF=2’b01,CKDATA1=PMCC4,CKDATA2=PMCC5

Example 2: If DC1, PPC = 4’b0101, the following messages are sent:

TCODE=35,SRC,CKSRC=4’b0001,SYNC=2’b00,CKDF=2’b01,CKDATA1=PMCC0,CKDATA2=PMCC1,TSTAMP
TCODE=35,SRC,CKSRC=4’b0101,SYNC=2’b00,CKDF=2’b01,CKDATA1=PMCC4,CKDATA2=PMCC5

9.11.20.4 Performance Profile Sync field

Performance Profile messages do not use compression on the CKDATA fields. However, the Sync field is 
used within the Performance Profile message to indicate the success or failure of previous message 
submission to the FIFO, and also when another snapshot is taken before the current snapshot was 
completed. See Table 9-47 for Sync field encodings.

9.12 Performance monitor 

This section describes the performance monitor, which is defined by the architecture and described in 
EREF. The primary function of the performance monitor is to count events pertaining to the performance 
of the processor (for example, load/store and memory interface activity, cache activity, instructions 
fetched or executed, branches taken or not taken). Some features are defined by the implementation, in 
particular, the events that can be counted.
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9.12.1 Overview
The performance monitor provides the ability to count predefined events and processor clocks associated 
with particular operations, for example cache misses, mispredicted branches, or the number of cycles an 
execution unit stalls. The count of such events can be used to trigger the performance monitor interrupt.

The performance monitor can be used to do the following:

• Improve system performance by monitoring software execution and then recoding algorithms for 
more efficiency. For example, memory hierarchy behavior can be monitored and analyzed to 
optimize task scheduling or data distribution algorithms. 

• Characterize processors in environments not easily characterized by benchmarking.

• Help system developers bring up and debug their systems.

The performance monitor uses the following resources: 

• The performance monitor mark bit, MSR[PMM], can be used to turn the counters on/off for 
marked processes.

• Privilege level filtering can be applied so the counters only increment during the privilege level of 
interest.

• The move to/from performance monitor (PMR) register instructions, mtpmr and mfpmr, can be 
used to access performance monitor configuration and counter registers.

• The external input, pm_event can be used to allow events external to the e6500 core to be counted.

• The watchpoints can be used as a trigger for counter snapshots. 

• The reloadable counter can be used to generate snapshots periodically.

• The performance monitor counter values can be automatically sent externally via Nexus messages 
at each snapshot.
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This figure shows a detailed view of one of the PMC counters available within the processor performance 
monitor. The sections in blue are special triggering controls that are available for the e6500 core.

• PMRs:

— The performance monitor counter registers (PMC0–PMC5) are 32-bit counters used to count 
software-selectable events. Each counter counts up to 512 events. UPMC0–UPMC5 provide 

Figure 9-33. Detailed view: processor performance monitor counters 0 through 3
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user-level read access to these registers. Reference events are those that should be applicable to 
most microprocessor microarchitectures and be of general value. They are identified in 
Table 9-61.

— The Performance Monitor Global Control (PMGC0) register controls the counting of 
performance monitor events. It takes priority over all other performance monitor control 
registers. UPMGC0 provides user-level read access to PMGC0.

— The performance monitor local control registers (PMLCa0–PMLCa5 and PMLCb0–PMLCb5) 
control each individual performance monitor counter. Each counter has a corresponding 
PMLCa and PMLCb register. UPMLCa0–UPMLCa5 and UPMLCb0–UPMLCb5 provide 
user-level read access to PMLCa0–PMLCa5, PMLCb0–PMLCb5).

The performance monitor interrupt follows the architecture-defined interrupt model and is briefly 
described in Section 4.9.19, “Performance monitor interrupt—IVOR35/GIVOR35.”

Software communication with the performance monitor is achieved through PMRs rather than SPRs. The 
PMRs are used for enabling conditions that can trigger a performance monitor interrupt. 

Performance monitor activity is suspended in PH15, PH20, PH30, and PW20 Power Management 
activity states. See Section 8.3, “Core power management states,” for more details on Power Management 
activity states. The performance monitor interrupt is not an exit condition from the PW20 Power 
Management activity state.

9.12.2 Performance monitor instructions
Instructions for reading and writing the PMRs are shown in the following table. These are described in 
detail in EREF.

9.12.3 Performance monitor interrupt
The performance monitor interrupt is triggered by an enabled condition or event. The only enabled 
condition or event defined for the e6500 core is the following:

• A PMCn overflow condition occurs when both of the following are true:

— The counter’s overflow condition is enabled; PMLCan[CE] = 1.

— The counter indicates an overflow; PMCn[OV] = 1.

If PMGC0[PMIE] = 1, an enabled condition or event triggers the signaling of a performance monitor 
exception. If PMGC0[FCECE] = 1, an enabled condition or event also triggers all performance monitor 
counters to freeze.

Table 9-58. Performance monitor instructions

Name Mnemonic Syntax

Move from performance monitor register mfpmr rD,PMRN

Move to performance monitor register mtpmr PMRN,rS
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Even if the performance monitor exception condition occurs, the performance monitor interrupt does not 
occur unless the interrupt is enabled. The performance monitor interrupt is enabled if one of the following 
is true:

• The interrupt is directed to the guest state, base class interrupts are enabled, and the processor is in 
the guest state (EPCR[PMGS] = 1, MSR[EE] = 1, and MSR[GS] = 1).

• The interrupt is directed to the hypervisor state, base class interrupts are enabled, or the processor 
is in the guest state ((EPCR[PMGS] = 0) and (MSR[EE] = 1 | MSR[GS] = 1)). 

Although the performance monitor exception condition could occur when the interrupt is not enabled, the 
interrupt cannot be taken until the enabling conditions are met. If PMCn overflows, signals an exception 
(PMLCan[CE] and PMGC0[PMIE] = 1) while the interrupt is not enabled, and freezing of the counters is 
not enabled (PMGC0[FCECE] = 0), PMCn can wrap around to all zeros again without the performance 
monitor interrupt being taken.

9.12.4 Event counting
This section describes configurability and specific unconditional counting modes. 

9.12.4.1 Processor context configurability

Counting can be enabled if conditions in the processor state match a software-specified condition. 
Because a software task scheduler may switch a processor’s execution among multiple processes and 
because statistics on only a particular process may be of interest, a facility is provided to mark a process. 
The performance monitor mark bit, MSR[PMM], is used for this purpose. System software may set this 
bit when a marked process is running. This enables statistics to be gathered only during the execution of 
the marked process. The states of MSR[PR,PMM] together define a state that the processor (supervisor or 
user) and the process (marked or unmarked) may be in at any time. If this state matches an individual 
state specified by PMLCan[FCS,FCU,FCM1,FCM0], the state for which monitoring is enabled, counting 
is enabled for PMCn.

This table describes the processor states and the settings of the FCS, FCU, FCM1, FCM0, FCGS0, and 
FCGS1 fields in PMLCan necessary to enable monitoring of each processor state.

Table 9-59. Processor states and PMLCan bit settings

FCS FCU FCM1 FCM0 FCGS0 FCGS1 Processor State

0 0 0 1 0 0 Marked

0 0 1 0 0 0 Not marked

0 1 0 0 0 0 Supervisor

1 0 0 0 0 0 User

0 1 0 0 1 0 Guest Supervisor

0 1 0 0 0 1 Hypervisor

0 1 0 1 0 0 Marked and supervisor
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Two unconditional counting modes may be specified:

• Counting is unconditionally enabled regardless of the states of MSR[PMM] and MSR[PR]. This 
can be accomplished by clearing PMLCan[FCS], PMLCan[FCU], PMLCan[FCM1], and 
PMLCan[FCM0] for each counter control.

• Counting is unconditionally disabled regardless of the states of MSR[PMM] and MSR[PR]. This 
can be accomplished by setting PMGC0[FAC] or by setting PMLCan[FC] for each counter control. 
Alternatively, this can be accomplished by setting PMLCan[FCM1] and PMLCan[FCM0] for each 
counter control or by setting PMLCan[FCS] and PMLCan[FCU] for each counter control.

9.12.4.2 Processor performance monitor and program counter capture function

For real-time debug, a capture function is available for the processor performance counters, 
PMC0–PMC5, as well as the micro-architected program counter (PC). Whenever the snapshot trigger 
signal is asserted, the PMC values of each counter and the current PC are captured in registers. The 
capture registers are readable through the e6500 memory-mapped interface. They can also be used to 
generate Nexus performance profile messages automatically at each snapshot.

The snapshot trigger is configured in the Performance Monitor Snapshot Configuration register. Any 
combination of all 32 watchpoints can be used to generate the snapshot trigger. See Section 9.5.11, 
“Performance Monitor Snapshot Configuration (PMSCR) register,” for details on how to configure the 
snapshot trigger. The following are some examples of e6500 watchpoint sources:

• Reloadable counter

• EVTI0 signal, providing a device trigger from the EPU through RCPM

• EVTI1 signal, providing a device trigger from the EPU through RCPM

• IAC match

• DAC match

• Other watchpoint sources

This allows for capture either on an external device event through the EVTI signals or on an event internal 
to the e6500 core.

1 0 0 1 0 0 Marked and user

0 1 1 0 0 0 Not marked and supervisor

1 0 1 0 0 0 Not mark and user

0 0 0 0 0 0 All

X X 1 1 1 1 None

1 1 X X X X None

Table 9-59. Processor states and PMLCan bit settings (continued)

FCS FCU FCM1 FCM0 FCGS0 FCGS1 Processor State
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A high-level block diagram of the capture functionality is shown in Figure 9-34. The capture registers are 
written only from the PMCs on the snapshot trigger signal and are readable only through the e6500 
memory-mapped interface. The location of these registers in the memory map are outlined in Table 9-31.

NOTE
The EVTI signal, provided from the SoC, can be used to capture not only 
PMC counter and PC values from a single processor, but from all processors 
(or a subset of processors) on the SoC, as well as the SoC-level performance 
counters located in the event processing unit (EPU). 

9.12.5 Examples 
The following sections provide examples of how to use the performance monitor facility.

9.12.5.1 Chaining counters

The counter chaining feature can be used to decrease the processing pollution caused by performance 
monitor interrupts (such as cache contamination and pipeline effects) by allowing a higher event count 
than is possible with a single counter. Chaining two counters together effectively adds 32 bits to a counter 
register, where the first counter’s overflow event acts like a carry out feeding the second counter. By 
defining the event of interest to be another PMC’s overflow generation, the chained counter increments 
each time the first counter rolls over to zero. Multiple counters may be chained together. 

Figure 9-34. Processor performance monitor capture capability

Memory

Snapshot Trigger

PerfMon Counters

PCC
64

Capture Reg

PMC0
32

Capture Reg

PMC1
32

Capture Reg

PMSCR

watchpt

EVTI0
EVTI1

IAC Matches
DAC Matches
Other
Other EVTO[0:4]

DCSR

1

& Program Counter

Mapped
Interface

control

PMC5 Capture Reg
32

. .
 .

. .
 .Reloadable

Counter

EVTO[0:4]

(SkyBlue I/F)

Nexus

. .
 .

. .
 .



Debug and Performance Monitor Facilities

e6500 Core Reference Manual, Rev 0

Freescale Semiconductor 9-109
 

Because the entire chained value cannot be read in a single instruction, an overflow may occur between 
counter reads, which produces an inaccurate value. A sequence similar to the following sequence is 
necessary to read the complete chained value when it spans multiple counters and the counters are not 
frozen. The example shown is for a two-counter case.

loop: mfpmr  Rx,pmctr1 #load from upper counter
mfpmr Ry,pmctr0 #load from lower counter
mfpmr Rz,pmctr1 #load from upper counter
cmp cr0,0,Rz,Rx #see if ‘old’ = ‘new’
bc 4,2,loop #loop if carry occurred between reads

The comparison and loop are necessary to ensure that a consistent set of values has been obtained. The 
above sequence is not necessary if the counters are frozen.

9.12.6 Event selection
Event selection is specified through the PMLCan registers described in Section 2.16.2, “Local control A 
registers (PMLCa0–PMLCa5/UPMLCa0–UPMLCa5).” The event-select fields in PMLCan[EVENT] are 
described in Table 9-61, which lists encodings for the selectable events to be monitored. Table 9-61 
establishes a correlation between each counter, events to be traced, and the pattern required for the 
desired selection. 

For the purposes of event descriptions, the following definitions of micro-ops apply:

• A micro-op is defined to be:

— 2 for load and store instructions that use an update form (such as lwzu)

— 1 to 32 for load and store multiple instructions (lmw, stmw) depending on the number of 
registers processed

— 1 for all other instructions

• A store micro-op is defined to be:

— 1 to 32 for store multiple instructions (stmw) depending on the number of registers processed

— 2 for any misaligned store that crosses a double-word boundary

— 1 for all other store instructions including store with update forms

— 1 for all other instructions that are treated as a store or are processed as an entry in the store 
queue by the implementation:

– dcba*, dcbf*, dcbst*, dcbz*

– dcbt (CT=1), dcbtst (CT=1)

– icbi*
– icbt (CT=1)

– dcbtls, dcbtstls, dcblc, icbtls, icblc
– msgsnd, mbar, sync, tlbivax, tlbilx

— dcbt* instructions that are processed as a no-op are not counted

• A load micro-op is defined to be:

— 1 to 32 for load multiple instructions (lmw) depending on the number of registers processed
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— 2 for any misaligned load that crosses a double-word boundary

— 1 for all other load instructions including load with update forms

— 1 for all other instructions that are treated as a load by the implementation:

– dcbt (CT=0), dcbtst (CT=0)

— dcbt* instructions that are processed as a no-op are not counted

• A cacheable store micro-op is defined to be a store micro-op to an address that is marked with 
WIMGE = 0b00xxx (not write-through and not cacheing inhibited).

• A cacheable load micro-op is defined to be a load micro-op to an address that is marked with 
WIMGE = 0bx0xxx (not cacheing inhibited).

The Spec/Nonspec column in Table 9-61 indicates whether the event count includes any occurrences due 
to processing that was not architecturally required by the Power ISA sequential execution model 
(speculative processing): 

• Speculative counts include speculative instructions that are later flushed.

• Nonspeculative counts do not include speculative operations, which are flushed. Table 9-60 
describes how event types are indicated in Table 9-61.

This table lists performance monitor events arranged by category.

Table 9-60. Event types

Event Type Label Description

Reference Ref:# Shared across counters PMC0—PMC5. Applicable to most microprocessors.

Common Com:# Shared across counters PMC0–PMC5. Fairly specific to e500 microarchitectures.

Counter-specific
C[0–5]:#

Counted only on one or more specific counters. The notation indicates the counter to which 
an event is assigned. For example, an event assigned to counter PMC2 is shown as C2:#.

Table 9-61. Performance monitor event selection (by category)

Number Event Spec/
Nonspec

Count Description

General Events

Ref:0 Nothing Nonspec Register counter holds current value

Ref:1 Processor cycles Nonspec Every processor cycle

Ref:2
Instructions completed

Nonspec
Completed instructions
Counts 0, 1, or 2 per cycle

Com:3 Micro-ops completed Nonspec Completed micro-ops

Com:5 Micro-ops decoded Spec Micro-ops decoded

Com:6 PM_EVENT transitions Spec 0 to 1 transitions on the pm_event input

Com:7 PM_EVENT cycles Spec Processor cycles that occur when the pm_event input is asserted

Instruction Types Completed
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Com:8 Branch instructions completed Nonspec Completed branch instructions

Com:67 Branches taken Nonspec Completed branch instructions that were taken

Com:68 blr taken Nonspec Completed blr instructions that were taken

Com:11
Number of CQ redirects

Nonspec
Fetch redirects initiated from the completion unit (for example, 
resulting from sc, rfi, rfci, rfdi, rfmci, isync, and interrupts)

Com:9 Load micro-ops completed Nonspec Completed load micro-ops

Com:10 Store micro-ops completed Nonspec Completed store micro-ops

Com:181

LSU micro-ops completed

Nonspec

Completed Load Store Unit micro-ops—every micro-op that goes 
down the LSU pipe, which includes:
 • GPR loads / GPR stores
 • FPR loads / FPR stores
 • VR loads / VR stores
 • Cache ops
 • Memory barriers
 • Other LSU ops (dsn, msgsnd, mvidsplt, mviwsplt, tlbilx, 

tlbivax, tlbsync)

Com:182

GPR loads completed

Nonspec

GPR load micro-ops completed. This event only counts once for 
misaligns. Note that lmw that causes a fault may end up 
double-counting micro-ops—once for first pass, once for second 
pass.

Com:183

GPR stores completed

Nonspec

GPR store micro-ops completed. This event only counts once for 
misaligns. Note that stmw that causes a fault may end up 
double-counting micro-ops—once for first pass, once for second 
pass.

Com:184

Cache ops completed

Nonspec

Cache ops completed, which includes:
 • dcba / dcbal
 • dcbf / dcbfep
 • dcbi
 • dcblc / dcblq.
 • dcbst / dcbstep
 • dcbt / dcbtep / dcbtls
 • dcbtst / dcbtstep / dcbtstls
 • dcbz / dcbzep / dcbzl / dcbzlep
 • icbi / icbiep
 • icblc / icblq.
 • icbt / icbtls

Com:185

Memory barriers completed

Nonspec

Memory barriers completed, which includes:
 • msync (sync, lwsync, elemental barriers)
 • mbar (eieio)
 • miso

Com:186 SFX micro-ops completed Nonspec SFX micro-ops completed

Com:187
SFX single-cycle micro-ops 
completed

Nonspec
SFX single-cycle micro-ops completed

Table 9-61. Performance monitor event selection (by category) (continued)

Number Event
Spec/

Nonspec
Count Description
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Com:188
SFX double-cycle micro-ops 
completed

Nonspec
SFX double-cycle micro-ops completed

Com:190 CFX instructions completed Nonspec CFX instructions completed

Com:191 SFX or CFX instructions completed Nonspec SFX or CFX instructions completed

Com:192 FPU instructions completed Nonspec FPU instructions completed (non-LSU)

Com:193 FPR loads completed Nonspec FPR load micro-ops completed

Com:194 FPR stores completed Nonspec FPR store micro-ops completed

Com:195 FPR loads and stores completed Nonspec FPR load and store micro-ops completed

Com:196
FPR single-precision loads and 
stores completed

Nonspec
FPR single-precision load and store micro-ops completed

Com:197
FPR double-precision loads and 
stores completed

Nonspec
FPR double-precision load and store micro-ops completed

Com:198 AltiVec instructions completed Nonspec AltiVec instructions completed (non-LSU)

Com:199
AltiVec VSFX instructions 
completed

Nonspec
AltiVec VSFX instructions completed

Com:200
AltiVec VCFX instructions 
completed

Nonspec
AltiVec VCFX instructions completed

Com:201
AltiVec VPU instructions 
completed

Nonspec
AltiVec VPU instructions completed

Com:202
AltiVec VFPU instructions 
completed

Nonspec
AltiVec VFPU instructions completed

Com:203 VR loads completed Nonspec VR load micro-ops completed

Com:204 VR stores completed Nonspec VR store micro-ops completed

Com:205 VSCR[SAT] set Nonspec Number of times the saturate bit flips from 0 to 1

Branch Prediction and Execution Events

Com:12 Branches finished Spec Includes all branch instructions

Com:13 Taken branches finished Spec Includes all taken branch instructions

Com:14
Finished unconditional branches 
that miss the BTB

Spec
Includes all taken branch instructions not allocated in the BTB

Com:15

Branches mispredicted (for any 
reason)

Spec

Counts branch instructions mispredicted due to direction, target (for 
example if the CTR contents change), or IAB prediction. Does not 
count instructions that the branch predictor incorrectly predicted to 
be branches. 

Com:16
Branches in the BTB mispredicted 
due to direction prediction.

Spec
Counts branch instructions mispredicted due to direction prediction

Com:69 Target mispredict (BTB) Spec Number of target mispredicts (BTB)

Com:70 Target blr mispredict (link stack) Spec Number of link stack mispredicts (LS)

Table 9-61. Performance monitor event selection (by category) (continued)

Number Event
Spec/

Nonspec
Count Description
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Com:71
BTB miss, but taken (BTB 
allocates)

Spec
Number of BTB misses, but taken (BTB allocates)

Com:72 BTB hit with phantom branch Spec Number of BTB hits with phantom branch

Com:17
BTB hits and pseudo-hits

Spec
Branch instructions that hit in the BTB or miss in the BTB and are 
not-taken (a pseudo-hit). Characterizes upper bound on prediction 
rate.

Pipeline Stalls

Com:18 Cycles decode stalled Spec Cycles the IQ is not empty but 0 instructions decoded

Com:19 Cycles SFX/CFX issue stalled
Spec

Cycles the SFX/CFX issue queue is not empty but 0 instructions 
issued

Com:110 Cycles LSU issue stalled Spec Cycles the LSU issue queue is not empty but 0 instructions issued

Com:20 Cycles Branch issue stalled
Spec

Cycles the Branch issue queue is not empty but 0 instructions 
issued

Com:111 Cycles FPU issue stalled Spec Cycles the FPU issue queue is not empty but 0 instructions issued

Com:112 Cycles AltiVec issue stalled
Spec

Cycles the AltiVec issue queue is not empty but 0 instructions 
issued

Com:21 Cycles SFX0 schedule stalled Spec Cycles SFX0 is not empty but 0 instructions scheduled

Com:22 Cycles SFX1 schedule stalled Spec Cycles SFX1 is not empty but 0 instructions scheduled

Com:23 Cycles CFX schedule stalled Spec Cycles CFX is not empty but 0 instructions scheduled

Com:24 Cycles LSU schedule stalled Spec Cycles LSU is not empty but 0 instructions scheduled

Com:25 Cycles BU schedule stalled Spec Cycles BU is not empty but 0 instructions scheduled

Com:113 Cycles FPU schedule stalled Spec Cycles FPU is not empty but 0 instructions scheduled

Com:114 Cycles VPERM schedule stalled Spec Cycles VPERM is not empty but 0 instructions scheduled

Com:115 Cycles VGEN schedule stalled Spec Cycles VGEN is not empty but 0 instructions scheduled

Com:116 Cycles VPU instruction waits for 
operands

Spec
Cycles VPU instruction waits for operands

Com:117 Cycles VFPU instruction waits for 
operands

Spec
Cycles VFPU instruction waits for operands

Com:118 Cycles VSFX instruction waits for 
operands

Spec
Cycles VSFX instruction waits for operands

Com:119 Cycles VCFX instruction waits for 
operands

Spec
Cycles VCFX instruction waits for operands

Com:122 Cycles IB empty Spec Number of cycles the Instruction Buffer is empty

Com:123 Cycles IB full or close to full
Spec

Number of cycles the Instruction Buffer is full enough such that fetch 
stops fetching

Com:124 Cycles CB empty Spec Number of cycles the Completion Buffer is empty

Table 9-61. Performance monitor event selection (by category) (continued)

Number Event
Spec/

Nonspec
Count Description
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Com:125 Cycles CB full or close to full
Spec

Number of cycles the Completion Buffer is full enough such that 
decode stops

Com:127 Cycles 0 instructions completed Spec Increments if 0 instructions (micro-ops) completed

Com:128 Cycles 1 instruction completed Spec Increments if 1 instruction (micro-op) completed

Com:129 Cycles 2 instructions completed Spec Increments if 2 instructions (micro-ops) completed

Execution Unit Idle Events

Com:210 Cycles SFX0 idle Spec Cycles Simple Fixed Point Unit 0 is idle

Com:211 Cycles SFX1 idle Spec Cycles Simple Fixed Point Unit 1 is idle

Com:212 Cycles CFX idle Spec Cycles Complex Fixed Point Unit is idle

Com:213 Cycles LSU idle Spec Cycles Load Store Unit is idle

Com:214 Cycles BU idle Spec Cycles Branch Unit is idle

Com:215 Cycles FPU idle Spec Cycles Floating Point Unit is idle

Com:216 Cycles VPU idle Spec Cycles AltiVec Permute Unit is idle

Com:217 Cycles VFPU idle Spec Cycles AltiVec Floating Point Unit is idle

Com:218 Cycles VSFX idle Spec Cycles AltiVec Simple Fixed Point Unit is idle

Com:219 Cycles VCFX idle Spec Cycles AltiVec Complex Fixed Point Unit is idle

Load/Store and Data Cache Events

Com:26 Total translated
Spec

Total LSU micro-ops that reach the second stage of the LSU.1 
Note: If instruction is replayed or misaligned, it is still counted just 
once.

Com:27 Loads translated Spec Cacheable load micro-ops translated1 (does not include WT.)

Com:28 Stores translated Spec Cacheable store micro-ops translated1 (does not include WT.)

Com:29

Touches translated

Spec

Cacheable touch instructions translated, which includes:
 • dcbt / dcbtep
 • dcbtst / dcbtstep
 • icbt ct=2
(Does not include touches that are converted to no-ops.)
(Does not include dcbtls / dcbtstls / icbtls.)

Com:30

Cache ops translated

Spec

Cache op instructions translated, which includes:
 • dcba / dcbal
 • dcbf / dcbfep
 • dcbi
 • dcbst / dcbstep
 • dcbz / dcbzep / dcbzl / dcbzlep

Com:31
Cache-inhibited accesses 
translated

Spec
Cache inhibited load and store accesses translated

Com:32 Guarded loads translated Spec Guarded loads and decorated CI loads translated

Table 9-61. Performance monitor event selection (by category) (continued)

Number Event
Spec/

Nonspec
Count Description



Debug and Performance Monitor Facilities

e6500 Core Reference Manual, Rev 0

Freescale Semiconductor 9-115
 

Com:33 Write-through stores translated Spec Write-through stores translated

Com:34
Misaligned load or store accesses 
translated

Spec
Misaligned load or store accesses translated

Com:221 Data L1 cache misses Spec Data L1 cache misses (includes load, store, cache ops)

Com:222 Data L1 cache load misses Spec Data L1 cache load misses

Com:223 Data L1 cache store misses Spec Data L1 cache store misses

Com:41 Data L1 cache reloads
Spec

Counts cache reloads for any reason. Typically used to determine 
data cache miss rate (along with loads/stores completed).

Com:224
Loads that allocate into LMQ

Spec
Loads that allocate into Load Miss Queue. (Data L1 cache misses, 
but may not be to different cache lines).

Com:225
Load thread miss collision

Spec
Number of times that this thread’s load hits a line that is valid for the 
other thread but not this thread

Com:226 Inter-thread status array collision Spec Number of times that two threads collide on status array access

Com:227 SGB allocates Spec Number of Store Gather Buffer allocates

Com:228 SGB gathers Spec Number of Store Gather Buffer gathers

Com:229
SGB overflows

Spec
Number of Store Gather Buffer overflows. (Causes SGB full 
condition when additional store request is made)

Com:230 SGB promotions Spec Number of Store Gather Buffer promotions

Com:231
SGB in-order promotions

Spec
Number of Store Gather Buffer in-order promotions (also includes 
oldest-entry timeout condition)

Com:232 SGB out-of-order promotions Spec Number of Store Gather Buffer out-of-order promotions

Com:233
SGB high-priority promotions

Spec
Number of Store Gather Buffer high-priority promotions (load hits on 
pending store)

Com:234 SGB miso promotions Spec Number of Store Gather Buffer miso promotions

Com:235 SGB watermark promotions Spec Number of Store Gather Buffer watermark promotions

Com:236 SGB overflow promotions Spec Number of Store Gather Buffer overflow promotions

Com:237 DLAQ full cycles Spec Number of cycles the DLink Age Queue is full

Com:238 DLAQ full times Spec Number of times the DLink Age Queue is full

Com:239 LRSAQ full cycles Spec Number of cycles the Load Reservation Set Age Queue is full

Com:240 LRSAQ full times Spec Number of times the Load Reservation Set Age Queue is full

Com:241 FWDAQ full cycles Spec Number of cycles the Forward Age Queue is full

Com:242 FWDAQ full times Spec Number of times the Forward Age Queue is full

Table 9-61. Performance monitor event selection (by category) (continued)

Number Event
Spec/

Nonspec
Count Description
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Com:44

Load miss with load queue full

Spec

Counts number of stalls; Com:52 counts cycles stalled. which 
includes:
 • cacheable loads
 • CI loads
 • loadec
 • load and reserve
 • touches
 • memory barriers

Com:45

Load guarded miss when the load 
is not yet at the bottom of the CB

Spec

Counts number of stalls; Com:53 counts cycles stalled, which 
includes:
 • guarded loads
 • decorated CI loads

Com:46
Translate a store when the store 
queue is full.

Spec
Counts number of stalls; Com:54 counts cycles stalled.

Com:47 Address collision (load on store) Spec Counts number of stalls; Com:55 counts cycles stalled.

Com:243

STQ collision forwardable (times)

Spec

Number of times a Store Queue collision is forwardable
The following cases are not forwardable:
 • store address + size does not contain the load
 • cache-inhibited store
 • denormalized floating point store
 • store conditional.
 • guarded load

Com:244
STQ collision forwardable (times 
data ready)

Spec
Number of times a Store Queue collision is forwardable and is ready 
with data to forward

Com:245
STQ collision forwardable (times 
data not ready)

Spec
Number of times a Store Queue collision is forwardable but is not 
ready with data to forward

Com:246
STQ collision not-forwardable 
(times not forwardable)

Spec
Number of times a Store Queue collision is not forwardable and 
must wait until the store leaves the Store Queue

Com:247
STQ collision forwardable (cycles)

Spec
Number of cycles a Store Queue collision is forwardable 
(Number of cycles from the detection of a forwardable Store Queue 
entry until the load is replayed in stg1)

Com:248

STQ collision forwardable (cycles 
data ready)

Spec

Number of cycles a Store Queue collision is forwardable and is 
ready with data to forward 
(Number of cycles from the detection of a forwardable Store Queue 
entry with valid data until the load is replayed in stg1)

Com:249

STQ collision forwardable (cycles 
data not ready)

Spec

Number of cycles a Store Queue collision is forwardable but is not 
ready with data to forward
(Number of cycles from the detection of a forwardable Store Queue 
entry without valid data until the load is replayed in stg1)

Com:250

STQ collision non-forwardable 
(cycles not forwardable)

Spec

Number of cycles a Store Queue collision is not forwardable and 
has to wait until the store leaves the Store Queue 
(Number of cycles from the detection of a non-forwardable Store 
Queue entry until the load is replayed in stg1)

Table 9-61. Performance monitor event selection (by category) (continued)

Number Event
Spec/

Nonspec
Count Description
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Com:251
False EA (load-on store) collisions 
(times) Spec

Number of times the lower 12-bits of EA matched but the upper bits 
did not, leading to a false load-on-store replay. Cycle penalty is 4x 
the number of times.

Com:48 DTLB miss times Spec Counts number of stalls; Com:56 counts cycles stalled.

Com:49 DTLB busy times Spec Counts number of stalls; Com:57 counts cycles stalled.

Com:50
Second part of misaligned access 
when first part missed in cache

Spec
Counts number of stalls; Com:58 counts cycles stalled.

Com:52

Load miss with load queue full

Spec

Counts cycles stalled; Com:44 counts number of stalls, which 
includes:
 • cacheable loads
 • CI loads
 • loadec
 • load and reserve
 • touches
 • memory barriers

Com:53

Load guarded miss when the load 
is not yet at the bottom of the CB

Spec

Counts cycles stalled; Com:45 counts number of stalls which 
includes:
 • guarded loads
 • decorated CI loads

Com:252
LS0 result bus collisions

Spec
Number of LS0 result bus collisions. Cycle penalty is 3x this 
measurement.

Com:253
Inter-thread doubleword bank 
collisions Spec

Number of inter-thread double-word bank collisions. Measures 
when both threads attempt to access the same double-word bank. 
Cycle penalty is 3x this measurement.

Com:54
Translate a store when the store 
queue is full cycles.

Spec
Counts cycles stalled; Com:46 counts number of stalls.

Com:55
Address collision cycles (load on 
store)

Spec
Counts cycles stalled; Com:47 counts number of stalls.

Com:56 DTLB miss cycles Spec Counts cycles stalled; Com:48 counts number of stalls.

Com:57 DTLB busy cycles Spec Counts cycles stalled; Com:49 counts number of stalls.

Com:58
Second part of misaligned access 
when first part missed in cache

Spec
Counts cycles stalled; Com:50 counts number of stalls.

Fetch and Instruction Cache Events

Com:254 Instruction L1 cache misses
Spec

Instruction L1 cache demand fetch misses. Includes icbtls. Does 
not include prefetch.

Com:60
Instruction L1 cache reloads from 
fetch Spec

Instruction L1 cache reloads due to demand fetch. Includes icbtls. 
Does not include prefetch. Typically used to determine instruction 
cache miss rate along with instructions completed.

Com:61
Number of fetches

Spec
Counts fetches that write at least one instruction to the Instruction 
Buffer

Table 9-61. Performance monitor event selection (by category) (continued)
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Com:35
Fetch 2x4 hits

Spec
Each fetch retrieves up to 8 instructions, but only the first 4 are 
required. This event increments if at least one instruction of the 
second 4 are actually used.

Com:36 Fetch hits on prefetches Spec Fetch hits on instruction prefetch when the data is still in the ILFB

Com:37 Fetch prefetches generated Spec Number of prefetches generated

Instruction MMU, Data MMU and L2 MMU Events

Com:62
IMMU TLB-4K reloads

Spec
Counts reloads in the level 1 Instruction MMU TLB-4K.þ A reload in 
the level 2 MMU TLB-4K is not counted.

Com:63
IMMU VSP reloads

Spec
Counts reloads in the level 1 Instruction MMU VSP.þ A reload in the 
level 2 MMU VSP is not counted.

Com:256 IMMU misses Spec Counts misses in the level 1 Instruction MMU

Com:257 IMMU TLB-4K hits Spec Counts hits in the level 1 Instruction MMU TLB-4K

Com:258 IMMU VSP hits Spec Counts hits in the level 1 Instruction MMU VSP

Com:259
IMMU cycles spent in hardware 
tablewalk Spec

Counts IMMU cycles spent in hardware tablewalk. This represents 
the cycles from the point where the L2 MMU miss occurs to when 
the page table walk completes with a valid translation or exception.

Com:64
DMMU TLB-4K reloads

Spec
Counts reloads in the level 1 Data MMU TLB-4K. þA reload in the 
level 2 MMU TLB-4K is not counted.

Com:65
DMMU VSP reloads

Spec
Counts reloads in the level 1 Data MMU VSP. A reload in the level 2 
MMU VSP is not counted.

Com:260
DMMU misses

Spec
Counts misses in the level 1 Data MMU. (Does not count replayed 
operations).

Com:261
DMMU TLB-4K hits

Spec
Counts hits in the level 1 Data MMU TLB-4K. (Does not count 
replayed operations).

Com:262
DMMU VSP hits

Spec
Counts hits in the level 1 Data MMU VSP. (Does not count replayed 
operations).

Com:263
DMMU cycles spent in hardware 
tablewalk Spec

Counts DMMU cycles spent in hardware tablewalk. This represents 
the cycles from the point where the L2 MMU miss occurs to when 
the page table walk completes with a valid translation or exception.

Com:264

L2MMU misses

Spec

Counts level 2 MMU misses. (Does not count misses that occur due 
to dcbt / dcbtst / dcba / dcbal instructions that fail translation and 
are no-oped. Does not count misses in L2MMU-VSP when looking 
up an indirect entry).

Com:265 L2MMU hits in L2MMU-4K Spec Counts level 2 MMU hits in L2MMU-4K.

Com:266
L2MMU hits in L2MMU-VSP

Spec
Counts level 2 MMU hits in L2MMU-VSP. (Does not count indirect 
lookups)

Com:66
L2MMU error misses

Nonspec
Counts instruction TLB / data TLB error interrupts. This represents 
L2MMU misses that occur during translation.

Table 9-61. Performance monitor event selection (by category) (continued)
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Com:267
L2MMU indirect misses

Spec
Counts level 2 MMU indirect misses. This represents indirect entry 
lookups that do not have a matching indirect entry.

Com:268
L2MMU indirect valid misses

Spec
Counts level 2 MMU indirect valid misses. This occurs when the 
indirect entry is valid, but the corresponding PTE[V] = 0 or the 
permissions in the PTE are not sufficient for the requested access.

Com:269
LRAT misses

Spec
Counts Logical to Real Address Translation misses. This includes 
LRAT misses from tlbwe instructions or from page table translations.

Chaining Events2

Com:82 PMC0 overflow N/A PMC0[32] transitions from 1 to 0.

Com:83 PMC1 overflow N/A PMC1[32] transitions from 1 to 0.

Com:84 PMC2 overflow N/A PMC2[32] transitions from 1 to 0.

Com:85 PMC3 overflow N/A PMC3[32] transitioned from 1 to 0.

Com:91 PMC4 overflow N/A PMC4[32] transitioned from 1 to 0.

Com:92 PMC5 overflow N/A PMC5[32] transitioned from 1 to 0.

Interrupt Events

Com:86 Interrupts taken Nonspec —

Com:87 External input interrupts taken Nonspec —

Com:88 Critical input interrupts taken Nonspec —

Com:89 System call and trap interrupts Nonspec —

Misc Events

Com:90
Transitions of TBL bit selected by 
PMGC0[TBSEL].

Nonspec
Counts transitions of the TBL bit selected by PMGC0[TBSEL] 

L1 Stashing Events

Com:97 Stash hit to L1 Data Cache N/A Stash hits in L1 Data Cache

Com:99 Stash requests to L1 Data Cache N/A Stash requests to L1 Data Cache

Thread Events

Com:100
Number of times LSU thread 
priority switched N/A

Number of times the Load Store Unit thread priority switched based 
on resource collisions (doubleword bank, DL1 status array, and so 
on).

Com:101
Number of cycles both threads had 
FPU requests and one was denied

N/A
Number of cycles both threads had Floating Point Unit requests and 
one was denied

Com:102
Number of cycles both threads had 
VPERM requests and one was 
denied

N/A
Number of cycles both threads had Altivec Permute requests and 
one was denied

Com:103
Number of cycles both threads had 
VGEN requests and one was 
denied

N/A
Number of cycles both threads had Altivec General requests and 
one was denied

Table 9-61. Performance monitor event selection (by category) (continued)
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Com:104
Number of cycles both threads had 
CFX requests and one was denied

N/A
Number of cycles both threads had Complex Fixed-Point Unit 
requests and one was denied

Com:105
Number of cycles both threads had 
Fetch requests and one was 
denied

N/A
Number of cycles both threads both threads made a Fetch request 
to the L1 Instruction Cache and one thread wins arbitration

IAC and DAC Events

Com:140 IAC1s detected Nonspec Every valid IAC1 detection

Com:141 IAC2s detected Nonspec Every valid IAC2 detection

Com:142 IAC3s detected Nonspec Every valid IAC3 detection

Com:143 IAC4s detected Nonspec Every valid IAC4 detection

Com:136 IAC5s detected Nonspec Every valid IAC5 detection

Com:137 IAC6s detected Nonspec Every valid IAC6 detection

Com:138 IAC7s detected Nonspec Every valid IAC7 detection

Com:139 IAC8s detected Nonspec Every valid IAC8 detection

Com:144 DAC1s detected Nonspec Every valid DAC1 detection

Com:145 DAC2s detected Nonspec Every valid DAC2 detection

DVT Events

Com:148 DVT0 detected Nonspec Detection of a write to DEVENT SPR with DVT0 set

Com:149 DVT1 detected Nonspec Detection of a write to DEVENT SPR with DVT1 set

Com:150 DVT2 detected Nonspec Detection of a write to DEVENT SPR with DVT2 set

Com:151 DVT3 detected Nonspec Detection of a write to DEVENT SPR with DVT3 set

Com:152 DVT4 detected Nonspec Detection of a write to DEVENT SPR with DVT4 set

Com:153 DVT5 detected Nonspec Detection of a write to DEVENT SPR with DVT5 set

Com:154 DVT6 detected Nonspec Detection of a write to DEVENT SPR with DVT6 set

Com:155 DVT7 detected Nonspec Detection of a write to DEVENT SPR with DVT7 set

Com:156 Cycles completion stalled (Nexus) Spec Number of completion cycles stalled due to Nexus FIFO full

FPU Events

Com:161 FPU finish Spec FPU finish.

Com:162 FPU divide cycles Spec Counts once for every cycle of divide execution. (fdivs and fdiv)

Com:163

FPU denorm input

Spec

Counts extra cycles delay due to denormalized inputs. If there is 
one, this is incremented 4 times, Two operands increments it 5 
times. This shows the real penalty due to denorms, not just how 
often they occur.

Com:164 FPU denorm output Spec FPU denorm output

Table 9-61. Performance monitor event selection (by category) (continued)
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Com:165 FPU FPSCR full stall Spec FPU FPSCR stall

Com:166

FPU pipe sync stall

Spec

Synchronization-op stalls: count once for each cycle that a 
“break-before” FPU is in the RS/issue stage but cannot issue. Also 
count once for each cycle that an FPU op is in the RS/issue stage 
but cannot issue due to “break-after”: of an FPU op currently in 
progress.

Com:167
FPU input data stall

Spec
FPU data-ready stall: cycles in which there is an op in the RS/issue 
stage that cannot issue because one or more of its operands is not 
yet available.

Com:168 FPU instruction generates flags Spec FPU instruction sets FPSCR[FEX].

Power Management Events

Com:172
PW20 count

N/A
Number of times the core enters the PW20 power management 
state

Extended Load Store Events

Com:176 Decorated loads Nonspec Number of decorated loads to cache inhibited memory performed

Com:177 Decorated stores Nonspec Number of decorated stores to cache inhibited memory performed

Com:179
stbcx., sthcx., stwcx., or stdcx. 
successful

Nonspec
Number of successful stbcx., sthcx., stwcx., or stdcx. instructions

Com:180
stbcx., sthcx., stwcx., or stdcx. 
unsuccessful

Nonspec
Number of unsuccessful stbcx., sthcx., stwcx., or stdcx. 
instructions

Com:272
Cycles LMQ loses DLINK 
arbitration due to SGB

Spec
Cycles the Load Miss Queue loses DLINK arbitration due to the 
Store Gather Buffer

Com:273
Cycles SGB loses DLINK 
arbitration due to LMQ

Spec
Cycles the Store Gather Buffer loses DLINK arbitration due to the 
Load Miss Queue

Com:274
Cycles thread loses DLINK 
arbitration due to other thread

Spec
Cycles thread loses DLINK arbitration due to other thread

eLink Events

Com:443 DLINK request N/A Number of DLINK requests made from core to Shared L2

Com:444
ILINK request

N/A
Number of ILINK requests made from core to Shared L2. (Includes 
instruction fetches and L2MMU hardware tablewalk requests)

Com:445
RLINK request

N/A
Number of RLINK requests made from Shared L2 to core. (reload 
data)

Com:446
BLINK request

N/A
Number of BLINK requests made from Shared L2 to core. (back 
invalidates, stashes, barriers)

Com:447
CLINK request

N/A
Number of CLINK requests made from Shared L2 to core. (CoreNet 
data forwarding)

Shared L2 Events

Com:456
L2 hits

N/A
Number of L2 Cache hits
Counts 0, 1, 2, 3, or 4 per cycle

Table 9-61. Performance monitor event selection (by category) (continued)
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Com:457
L2 misses

N/A
Number of L2 Cache misses
Counts 0, 1, 2, 3, or 4 per cycle

Com:458
L2 demand accesses

N/A
Number of L2 Cache demand accesses
Counts 0, 1, 2, 3, or 4 per cycle

Com:459
L2 accesses

N/A
Number of L2 Cache accesses from all sources (demand, reload, 
snoop, and so on)
Counts 0, 1, 2, 3, or 4 per cycle

Com:460
L2 store allocates

N/A
Number of L2 Cache store allocates
Counts 0, 1, 2, 3, or 4 per cycle

Com:461
L2 instruction accesses

N/A
Number of L2 Cache instruction accesses
Counts 0, 1, 2, 3, or 4 per cycle

Com:462
L2 data accesses

N/A
Number of L2 Cache data accesses
Counts 0, 1, 2, 3, or 4 per cycle

Com:463
L2 instruction misses

N/A
Number of L2 Cache instruction misses
Counts 0, 1, 2, 3, or 4 per cycle

Com:464
L2 data misses

N/A
Number of L2 Cache data misses
Counts 0, 1, 2, 3, or 4 per cycle

Com:465
L2 hits per thread

N/A
Number of times this core/thread hits in the L2 Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:466
L2 misses per thread

N/A
Number of times this core/thread misses in the L2 Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:467
L2 demand accesses per thread

N/A
Number of times this core/thread makes a demand access to the L2 
Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:468
L2 store allocates per thread

N/A
Number of times a store from this core/thread allocates in the L2 
Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:469
L2 instruction accesses per thread

N/A
Number of times an instruction from this core/thread accesses the 
L2 Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:470
L2 data accesses per thread

N/A
Number of times a data operation from this core/thread accesses 
the L2 Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:471
L2 instruction misses per thread

N/A
Number of times an instruction from this core/thread misses in the 
L2 Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:472
L2 data misses per thread

N/A
Number of times a data operation from this core/thread misses in 
the L2 Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:473
L2 reloads from CoreNet

N/A
Number of L2 Cache reloads from CoreNet
Counts 0, 1, 2, 3, or 4 per cycle
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Com:474
L2 stash requests

N/A
Number of incoming L2 Cache stash requests
Counts 0, 1, 2, 3, or 4 per cycle

Com:475
L2 stash requests downgraded to 
snoops N/A

Number of incoming L2 Cache stash requests downgraded to 
snoops
Counts 0, 1, 2, 3, or 4 per cycle

Com:476
L2 snoop hits

N/A
Number of L2 Cache snoop hits
Counts 0, 1, 2, 3, or 4 per cycle

Com:477 L2 snoops causing MINT N/A Number of L2 Cache snoops causing MINT

Com:478 L2 snoops causing SINT N/A Number of L2 Cache snoops causing SINT

Com:479 L2 snoop pushes N/A Number of L2 Cache snoop pushes

Com:480
Stall for BIB cycles

N/A
Stall for Back Invalidate Buffer entry (cycles)
Counts 0, 1, 2, 3, or 4 per cycle

Com:482
Stall for RLT cycles

N/A
Stall for Reload Table entry (cycles)
Counts 0, 1, 2, 3, or 4 per cycle

Com:484
Stall for RLFQ cycles

N/A
Stall for Reload Fold Queue entry (cycles)
Counts 0, 1, 2, 3, or 4 per cycle

Com:486
Stall for DTQ cycles

N/A
Stall for Data Transaction Queue entry (cycles)
Counts 0, 1, 2, 3, or 4 per cycle

Com:488
Stall for COB cycles

N/A
Stall for Castout Buffer entry (cycles)
Counts 0, 1, 2, 3, or 4 per cycle

Com:490
Stall for WDB cycles

N/A
Stall for Write Data Buffer entry (cycles)
Counts 0, 1, 2, 3, or 4 per cycle

Com:492
Stall for RLDB cycles

N/A
Stall for Reload Data Buffer entry (cycles)
Counts 0, 1, 2, 3, or 4 per cycle

Com:494 Stall for SNPQ cycles N/A Stall for Snoop Queue entry (cycles)

BIU Events

Com:506 BIU master requests N/A Master transaction starts. (Number of AOut sent to CoreNet)

Com:507
BIU master global requests

N/A
Master transaction starts that are global. (Number of AOut with M=1 
sent to CoreNet)

Com:508
BIU master data-side requests

N/A
Master data-side transaction starts. (Number of D-side AOut sent to 
CoreNet)

Com:509
BIU master instruction-side 
requests

N/A
Master instruction-side transaction starts. (Number of I-side AOut 
sent to CoreNet)

Com:510 Stash requests N/A Stash request on AIn matches stash IDs for core or L2

Com:511
Snoop requests

N/A
Externally generated snoop requests. (Number of AIn from CoreNet 
not from self)

1 For load/store events, a micro-op is described as translated when the micro-op has successfully translated and is in the second 
stage of the load/store translate pipeline.

Table 9-61. Performance monitor event selection (by category) (continued)
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2 For chaining events, if a counter is configured to count its own overflow bit, that counter does not increment. For example, if 
PMC2 is selected to count PMC2 overflow events, PMC2 does not increment.

This table lists performance monitor events arranged by number.

Table 9-62. Performance monitor event selection (by number)

Number Event
Spec/

Nonspec
Count Description

General Events

Ref:0 Nothing Nonspec Register counter holds current value

Ref:1 Processor cycles Nonspec Every processor cycle

Ref:2
Instructions completed

Nonspec
Completed instructions
Counts 0, 1, or 2 per cycle

Com:3 Micro-ops completed Nonspec Completed micro-ops

Com:5 Micro-ops decoded Spec Micro-ops decoded

Com:6 PM_EVENT transitions Spec 0 to 1 transitions on the pm_event input

Com:7 PM_EVENT cycles Spec Processor cycles that occur when the pm_event input is asserted

Com:8 Branch instructions completed Nonspec Completed branch instructions

Com:9 Load micro-ops completed Nonspec Completed load micro-ops

Com:10 Store micro-ops completed Nonspec Completed store micro-ops

Com:11
Number of CQ redirects

Nonspec
Fetch redirects initiated from the completion unit (for example, 
resulting from sc, rfi, rfgi, rfci, rfdi, rfmci, isync, and interrupts)

Com:12 Branches finished Spec Includes all branch instructions

Com:13 Taken branches finished Spec Includes all taken branch instructions

Com:14
Finished unconditional branches 
that miss the BTB

Spec
Includes all taken branch instructions not allocated in the BTB

Com:15

Branches mispredicted (for any 
reason)

Spec

Counts branch instructions mispredicted due to direction, target (for 
example if the CTR contents change), or IAB prediction. Does not 
count instructions that the branch predictor incorrectly predicted to 
be branches. 

Com:16
Branches in the BTB mispredicted 
due to direction prediction.

Spec
Counts branch instructions mispredicted due to direction prediction

Com:17
BTB hits and pseudo-hits

Spec
Branch instructions that hit in the BTB or miss in the BTB and are 
not-taken (a pseudo-hit). Characterizes upper bound on prediction 
rate.

Com:18 Cycles decode stalled Spec Cycles the IQ is not empty but 0 instructions decoded

Com:19 Cycles SFX/CFX issue stalled
Spec

Cycles the SFX/CFX issue queue is not empty but 0 instructions 
issued

Com:20 Cycles Branch issue stalled
Spec

Cycles the Branch issue queue is not empty but 0 instructions 
issued
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Com:21 Cycles SFX0 schedule stalled Spec Cycles SFX0 is not empty but 0 instructions scheduled

Com:22 Cycles SFX1 schedule stalled Spec Cycles SFX1 is not empty but 0 instructions scheduled

Com:23 Cycles CFX schedule stalled Spec Cycles CFX is not empty but 0 instructions scheduled

Com:24 Cycles LSU schedule stalled Spec Cycles LSU is not empty but 0 instructions scheduled

Com:25 Cycles BU schedule stalled Spec Cycles BU is not empty but 0 instructions scheduled

Com:26 Total translated
Spec

Total LSU micro-ops that reach the second stage of the LSU1

Note: If instruction is replayed or misaligned, it is still counted just 
once.

Com:27 Loads translated Spec Cacheable load micro-ops translated1 (does not include WT)

Com:28 Stores translated Spec Cacheable store micro-ops translated1 (does not include WT)

Com:29

Touches translated

Spec

Cacheable touch instructions translated, which includes:
 • dcbt / dcbtep
 • dcbtst / dcbtstep
 • icbt ct=2
(Does not include touches that are converted to no-ops)
(Does not include dcbtls / dcbtstls / icbtls)

Com:30

Cache ops translated

Spec

Cache op instructions translated, which includes:
 • dcba / dcbal
 • dcbf / dcbfep
 • dcbi
 • dcbst / dcbstep
 • dcbz / dcbzep / dcbzl / dcbzlep

Com:31
Cache-inhibited accesses 
translated

Spec
Cache inhibited load and store accesses translated

Com:32 Guarded loads translated Spec Guarded loads and decorated CI loads translated

Com:33 Write-through stores translated Spec Write-through stores translated

Com:34
Misaligned load or store accesses 
translated

Spec
Misaligned load or store accesses translated

Com:35
Fetch 2x4 hits

Spec
Each fetch retrieves up to 8 instructions, but only the first 4 are 
required. This event increments if at least one instruction of the 
second 4 are actually used.

Com:36 Fetch hits on prefetches Spec Fetch hits on instruction prefetch when the data is still in the ILFB

Com:37 Fetch prefetches generated Spec Number of prefetches generated

Com:41 Data L1 cache reloads
Spec

Counts cache reloads for any reason. Typically used to determine 
data cache miss rate (along with loads/stores completed). 

Table 9-62. Performance monitor event selection (by number) (continued)
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Com:44

Load miss with load queue full

Spec

Counts number of stalls; Com:52 counts cycles stalled, which 
ncludes:
 • cacheable loads
 • CI loads
 • loadec
 • load and reserve
 • touches
 • memory barriers

Com:45

Load guarded miss when the load 
is not yet at the bottom of the CB

Spec

Counts number of stalls; Com:53 counts cycles stalled, which 
includes:
 • guarded loads
 • decorated CI loads

Com:46
Translate a store when the store 
queue is full.

Spec
Counts number of stalls; Com:54 counts cycles stalled.

Com:47 Address collision (load on store) Spec Counts number of stalls; Com:55 counts cycles stalled.

Com:48 DTLB miss times Spec Counts number of stalls; Com:56 counts cycles stalled.

Com:49 DTLB busy times Spec Counts number of stalls; Com:57 counts cycles stalled.

Com:50
Second part of misaligned access 
when first part missed in cache

Spec
Counts number of stalls; Com:58 counts cycles stalled.

Com:52

Load miss with load queue full

Spec

Counts cycles stalled; Com:44 counts number of stalls, which 
includes:
 • cacheable loads
 • CI loads
 • loadec
 • load and reserve
 • touches
 • memory barriers

Com:53

Load guarded miss when the load 
is not yet at the bottom of the CB

Spec

Counts cycles stalled; Com:45 counts number of stalls, which 
includes:
 • guarded loads
 • decorated CI loads

Com:54
Translate a store when the store 
queue is full cycles.

Spec
Counts cycles stalled; Com:46 counts number of stalls.

Com:55
Address collision cycles (load on 
store)

Spec
Counts cycles stalled; Com:47 counts number of stalls.

Com:56 DTLB miss cycles Spec Counts cycles stalled; Com:48 counts number of stalls.

Com:57 DTLB busy cycles Spec Counts cycles stalled; Com:49 counts number of stalls.

Com:58
Second part of misaligned access 
when first part missed in cache

Spec
Counts cycles stalled; Com:50 counts number of stalls.

Com:60
Instruction L1 cache reloads from 
fetch Spec

Instruction L1 cache reloads due to demand fetch. (Includes icbtls. 
Does not include prefetch.) Typically used to determine instruction 
cache miss rate along with instructions completed.

Table 9-62. Performance monitor event selection (by number) (continued)
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Com:61
Number of fetches

Spec
Counts fetches that write at least one instruction to the Instruction 
Buffer

Com:62
IMMU TLB-4K reloads

Spec
Counts reloads in the level 1 Instruction MMU TLB-4K.þ A reload in 
the level 2 MMU TLB-4Kis not counted

Com:63
IMMU VSP reloads

Spec
Counts reloads in the level 1 Instruction MMU VSP.þ A reload in the 
level 2 MMU VSP is not counted

Com:64
DMMU TLB-4K reloads

Spec
Counts reloads in the level 1 Data MMU TLB-4K. þA reload in the 
level 2 MMU TLB-4K is not counted

Com:65
DMMU VSP reloads

Spec
Counts reloads in the level 1 Data MMU VSP. A reload in the level 2 
MMU VSP is not counted

Com:66
L2MMU error misses

Nonspec
Counts instruction TLB / data TLB error interrupts. This represents 
L2MMU misses that occur during translation

Com:67 Branches taken Nonspec Completed branch instructions that were taken

Com:68 blr taken Nonspec Completed blr instructions that were taken

Com:69 Target mispredict (BTB) Spec Number of target mispredicts (BTB)

Com:70 Target blr mispredict (link stack) Spec Number of link stack mispredicts (LS)

Com:71
BTB miss, but taken (BTB 
allocates)

Spec
Number of BTB misses, but taken (BTB allocates)

Com:72 BTB hit with phantom branch Spec Number of BTB hits with phantom branch

Com:82 PMC0 overflow N/A PMC0[32] transitions from 1 to 0.2

Com:83 PMC1 overflow N/A PMC1[32] transitions from 1 to 0.2 

Com:84 PMC2 overflow N/A PMC2[32] transitions from 1 to 0.2 

Com:85 PMC3 overflow N/A PMC3[32] transitioned from 1 to 0.2 

Com:86 Interrupts taken Nonspec —

Com:87 External input interrupts taken Nonspec —

Com:88 Critical input interrupts taken Nonspec —

Com:89 System call and trap interrupts Nonspec —

Com:90
Transitions of TBL bit selected by 
PMGC0[TBSEL].

Nonspec
Counts transitions of the TBL bit selected by PMGC0[TBSEL]

Com:91 PMC4 overflow N/A PMC4[32] transitions from 1 to 0.

Com:92 PMC5 overflow N/A PMC5[32] transitions from 1 to 0.

Com:97 Stash hit to L1 Data Cache N/A Stash hits in L1 Data Cache

Com:99 Stash requests to L1 Data Cache N/A Stash requests to L1 Data Cache

Com:100
Number of times LSU thread 
priority switched N/A

Number of times the Load Store Unit thread priority switched based 
on resource collisions (doubleword bank, DL1 status array, and so 
on).
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Com:101
Number of cycles both threads had 
FPU requests and one was denied

N/A
Number of cycles both threads had Floating Point Unit requests and 
one was denied.

Com:102
Number of cycles both threads had 
VPERM requests and one was 
denied

N/A
Number of cycles both threads had Altivec Permute requests and 
one was denied.

Com:103
Number of cycles both threads had 
VGEN requests and one was 
denied

N/A
Number of cycles both threads had Altivec General requests and 
one was denied.

Com:104
Number of cycles both threads had 
CFX requests and one was denied

N/A
Number of cycles both threads had Complex Fixed-Point Unit 
requests and one was denied.

Com:105
Number of cycles both threads had 
Fetch requests and one was 
denied

N/A
Number of cycles both threads both threads made a Fetch request 
to the L1 Instruction Cache and one thread wins arbitration.

Com:110 Cycles LSU issue stalled Spec Cycles the LSU issue queue is not empty but 0 instructions issued

Com:111 Cycles FPU issue stalled Spec Cycles the FPU issue queue is not empty but 0 instructions issued

Com:112 Cycles AltiVec issue stalled
Spec

Cycles the AltiVec issue queue is not empty but 0 instructions 
issued

Com:113 Cycles FPU schedule stalled Spec Cycles FPU is not empty but 0 instructions scheduled

Com:114 Cycles VPERM schedule stalled Spec Cycles VPERM is not empty but 0 instructions scheduled

Com:115 Cycles VGEN schedule stalled Spec Cycles VGEN is not empty but 0 instructions scheduled

Com:116 Cycles VPU instruction waits for 
operands

Spec
Cycles VPU instruction waits for operands

Com:117 Cycles VFPU instruction waits for 
operands

Spec
Cycles VFPU instruction waits for operands

Com:118 Cycles VSFX instruction waits for 
operands

Spec
Cycles VSFX instruction waits for operands

Com:119 Cycles VCFX instruction waits for 
operands

Spec
Cycles VCFX instruction waits for operands

Com:122 Cycles IB empty Spec Number of cycles the Instruction Buffer is empty

Com:123 Cycles IB full or close to full
Spec

Number of cycles the Instruction Buffer is full enough such that fetch 
stops fetching

Com:124 Cycles CB empty Spec Number of cycles the Completion Buffer is empty

Com:125 Cycles CB full or close to full
Spec

Number of cycles the Completion Buffer is full enough such that 
decode stops

Com:126 Cycles a pre-sync serialized 
instruction holds in IB

Spec
Number of cycles a pre-sync serialized instruction holds in the 
Instruction Buffer and is not decoded

Com:127 Cycles 0 instructions completed Spec Increments if 0 instructions (micro-ops) completed

Com:128 Cycles 1 instruction completed Spec Increments if 1 instruction (micro-op) completed
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Com:129 Cycles 2 instructions completed Spec Increments if 2 instructions (micro-ops) completed

Com:136 IAC5s detected Nonspec Every valid IAC5 detection

Com:137 IAC6s detected Nonspec Every valid IAC6 detection

Com:138 IAC7s detected Nonspec Every valid IAC7 detection

Com:139 IAC8s detected Nonspec Every valid IAC8 detection

Com:140 IAC1s detected Nonspec Every valid IAC1 detection

Com:141 IAC2s detected Nonspec Every valid IAC2 detection

Com:142 IAC3s detected Nonspec Every valid IAC3 detection

Com:143 IAC4s detected Nonspec Every valid IAC4 detection

Com:144 DAC1s detected Nonspec Every valid DAC1 detection

Com:145 DAC2s detected Nonspec Every valid DAC2 detection

Com:148 DVT0 detected Nonspec Detection of a write to DEVENT SPR with DVT0 set

Com:149 DVT1 detected Nonspec Detection of a write to DEVENT SPR with DVT1 set

Com:150 DVT2 detected Nonspec Detection of a write to DEVENT SPR with DVT2 set

Com:151 DVT3 detected Nonspec Detection of a write to DEVENT SPR with DVT3 set

Com:152 DVT4 detected Nonspec Detection of a write to DEVENT SPR with DVT4 set

Com:153 DVT5 detected Nonspec Detection of a write to DEVENT SPR with DVT5 set

Com:154 DVT6 detected Nonspec Detection of a write to DEVENT SPR with DVT6 set

Com:155 DVT7 detected Nonspec Detection of a write to DEVENT SPR with DVT7 set

Com:156 Cycles completion stalled (Nexus) Spec Number of completion cycles stalled due to Nexus FIFO full

Com:161 FPU finish Spec FPU finish.

Com:162 FPU divide cycles Spec Counts once for every cycle of divide execution. (fdivs and fdiv)

Com:163

FPU denorm input

Spec

Counts extra cycles delay due to denormalized inputs. If there is 
one, this is incremented 4 times, Two operands increments it 5 
times. This shows the real penalty due to denorms, not just how 
often they occur.

Com:164 FPU denorm output Spec FPU denorm output

Com:165 FPU FPSCR full stall Spec FPU FPSCR stall

Com:166

FPU pipe sync stall

Spec

Synchronization-op stalls: count once for each cycle that a 
“break-before” FPU is in the RS/issue stage but cannot issue. Also 
count once for each cycle that an FPU op is in the RS/issue stage 
but cannot issue due to “break-after”: of an FPU op currently in 
progress.

Com:167
FPU input data stall

Spec
FPU data-ready stall: cycles in which there is an op in the RS/issue 
stage that cannot issue because one or more of its operands is not 
yet available.
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Com:168 FPU instruction generates flags Spec FPU instruction sets FPSCR[FEX].

Com:172
PW20 count

N/A
Number of times the core enters the PW20 power management 
state

Com:176 Decorated loads Nonspec Number of decorated loads to cache inhibited memory performed

Com:177 Decorated stores Nonspec Number of decorated stores to cache inhibited memory performed

Com:179
stbcx., sthcx., stwcx., or stdcx. 
successful

Nonspec
Number of successful stbcx., sthcx., stwcx., or stdcx. instructions

Com:180
stbcx., sthcx., stwcx., or stdcx. 
unsuccessful

Nonspec
Number of unsuccessful stbcx., sthcx., stwcx., or stdcx. 
instructions

Com:181

LSU micro-ops completed

Nonspec

Completed Load Store Unit micro-ops. Every micro-op that goes 
down the LSU pipe, which includes:
 • GPR loads / GPR stores
 • FPR loads / FPR stores
 • VR loads / VR stores
 • Cache ops
 • Memory barriers
Other LSU ops (dsn, msgsnd, mvidsplt, mviwsplt, tlbilx, tlbivax, 
tlbsync)

Com:182

GPR loads completed

Nonspec

GPR load micro-ops completed. This event only counts once for 
misaligns. Note that lmw that causes a fault may end up 
double-counting micro-ops -- once for first pass, once for second 
pass.

Com:183

GPR stores completed

Nonspec

GPR store micro-ops completed. This event only counts once for 
misaligns. Note that stmw that causes a fault may end up 
double-counting micro-ops -- once for first pass, once for second 
pass.

Com:184

Cache ops completed

Nonspec

Cache ops completed, which ncludes:
 • dcba / dcbal
 • dcbf / dcbfep
 • dcbi
 • dcblc / dcblq.
 • dcbst / dcbstep
 • dcbt / dcbtep / dcbtls
 • dcbtst / dcbtstep / dcbtstls
 • dcbz / dcbzep / dcbzl / dcbzlep
 • icbi / icbiep
 • icblc / icblq.
 • icbt / icbtls

Com:185

Memory barriers completed

Nonspec

Memory barriers completed, which includes:
 • msync (sync, lwsync, elemental barriers)
 • mbar (eieio)
 • miso

Com:186 SFX micro-ops completed Nonspec SFX micro-ops completed

Com:187
SFX single-cycle micro-ops 
completed

Nonspec
SFX single-cycle micro-ops completed
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Com:188
SFX double-cycle micro-ops 
completed

Nonspec
SFX double-cycle micro-ops completed

Com:190 CFX instructions completed Nonspec CFX instructions completed

Com:191 SFX or CFX instructions completed Nonspec SFX or CFX instructions completed

Com:192 FPU instructions completed Nonspec FPU instructions completed (non-LSU)

Com:193 FPR loads completed Nonspec FPR load micro-ops completed

Com:194 FPR stores completed Nonspec FPR store micro-ops completed

Com:195 FPR loads and stores completed Nonspec FPR load and store micro-ops completed

Com:196
FPR single-precision loads and 
stores completed

Nonspec
FPR single-precision load and store micro-ops completed

Com:197
FPR double-precision loads and 
stores completed

Nonspec
FPR double-precision load and store micro-ops completed

Com:198 AltiVec instructions completed Nonspec AltiVec instructions completed (non-LSU)

Com:199
AltiVec VSFX instructions 
completed

Nonspec
AltiVec VSFX instructions completed

Com:200
AltiVec VCFX instructions 
completed

Nonspec
AltiVec VCFX instructions completed

Com:201
AltiVec VPU instructions 
completed

Nonspec
AltiVec VPU instructions completed

Com:202
AltiVec VFPU instructions 
completed

Nonspec
AltiVec VFPU instructions completed

Com:203 VR loads completed Nonspec VR load micro-ops completed

Com:204 VR stores completed Nonspec VR store micro-ops completed

Com:205 VSCR[SAT] set Nonspec Number of times the saturate bit flips from 0 to 1

Com:210 Cycles SFX0 idle Spec Cycles Simple Fixed Point Unit 0 is idle

Com:211 Cycles SFX1 idle Spec Cycles Simple Fixed Point Unit 1 is idle

Com:212 Cycles CFX idle Spec Cycles Complex Fixed Point Unit is idle

Com:213 Cycles LSU idle Spec Cycles Load Store Unit is idle

Com:214 Cycles BU idle Spec Cycles Branch Unit is idle

Com:215 Cycles FPU idle Spec Cycles Floating Point Unit is idle

Com:216 Cycles VPU idle Spec Cycles AltiVec Permute Unit is idle

Com:217 Cycles VFPU idle Spec Cycles AltiVec Floating Point Unit is idle

Com:218 Cycles VSFX idle Spec Cycles AltiVec Simple Fixed Point Unit is idle

Com:219 Cycles VCFX idle Spec Cycles AltiVec Complex Fixed Point Unit is idle

Com:221 Data L1 cache misses Spec Data L1 cache misses. (Includes load, store, cache ops)
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Com:222 Data L1 cache load misses Spec Data L1 cache load misses

Com:223 Data L1 cache store misses Spec Data L1 cache store misses

Com:224
Loads that allocate into LMQ

Spec
Loads that allocate into Load Miss Queue (data L1 cache misses, 
but may not be to different cache lines)

Com:225
Load thread miss collision

Spec
Number of times that this thread’s load hits a line that is valid for the 
other thread but not this thread

Com:226 inter-thread status array collision Spec Number of times that two threads collide on status array access

Com:227 SGB allocates Spec Number of Store Gather Buffer allocates

Com:228 SGB gathers Spec Number of Store Gather Buffer gathers

Com:229
SGB overflows

Spec
Number of Store Gather Buffer overflows (causes SGB full condition 
when additional store request is made)

Com:230 SGB promotions Spec Number of Store Gather Buffer promotions

Com:231
SGB in-order promotions

Spec
Number of Store Gather Buffer in-order promotions (also includes 
oldest-entry timeout condition)

Com:232 SGB out-of-order promotions Spec Number of Store Gather Buffer out-of-order promotions

Com:233
SGB high-priority promotions

Spec
Number of Store Gather Buffer high-priority promotions (load hits on 
pending store)

Com:234 SGB miso promotions Spec Number of Store Gather Buffer miso promotions

Com:235 SGB watermark promotions Spec Number of Store Gather Buffer watermark promotions

Com:236 SGB overflow promotions Spec Number of Store Gather Buffer overflow promotions

Com:237 DLAQ full cycles Spec Number of cycles the DLink Age Queue is full

Com:238 DLAQ full times Spec Number of times the DLink Age Queue is full

Com:239 LRSAQ full cycles Spec Number of cycles the Load Reservation Set Age Queue is full

Com:240 LRSAQ full times Spec Number of times the Load Reservation Set Age Queue is full

Com:241 FWDAQ full cycles Spec Number of cycles the Forward Age Queue is full

Com:242 FWDAQ full times Spec Number of times the Forward Age Queue is full

Com:243

STQ collision forwardable (times)

Spec

Number of times a Store Queue collision is forwardable
The following cases are not forwardable:
 • store address + size does not contain the load
 • cache-inhibited store
 • denormalized floating point store
 • store conditional
 • guarded load

Com:244
STQ collision forwardable (times 
data ready)

Spec
Number of times a Store Queue collision is forwardable and is ready 
with data to forward

Com:245
STQ collision forwardable (times 
data not ready)

Spec
Number of times a Store Queue collision is forwardable but is not 
ready with data to forward
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Com:246
STQ collision not-forwardable 
(times not forwardable)

Spec
Number of times a Store Queue collision is not forwardable and 
must wait until the store leaves the Store Queue

Com:247
STQ collision forwardable (cycles)

Spec
Number of cycles a Store Queue collision is forwardable 
(Number of cycles from the detection of a forwardable Store Queue 
entry until the load is replayed in stg1)

Com:248

STQ collision forwardable (cycles 
data ready)

Spec

Number of cycles a Store Queue collision is forwardable and is 
ready with data to forward
(Number of cycles from the detection of a forwardable Store Queue 
entry with valid data until the load is replayed in stg1)

Com:249

STQ collision forwardable (cycles 
data not ready)

Spec

Number of cycles a Store Queue collision is forwardable but is not 
ready with data to forward
(Number of cycles from the detection of a forwardable Store Queue 
entry without valid data until the load is replayed in stg1)

Com:250

STQ collision non-forwardable 
(cycles not forwardable)

Spec

Number of cycles a Store Queue collision is not forwardable and 
has to wait until the store leaves the Store Queue 
(Number of cycles from the detection of a non-forwardable Store 
Queue entry until the load is replayed in stg1)

Com:251
False EA (load-on store) collisions 
(times) Spec

Number of times the lower 12-bits of EA matched but the upper bits 
did not, leading to a false load-on-store replay. Cycle penalty is 4x 
the number of times.

Com:252
LS0 result bus collisions

Spec
Number of LS0 result bus collisions. Cycle penalty is 3x this 
measurement.

Com:253
Inter-thread doubleword bank 
collisions Spec

Number of inter-thread double-word bank collisions. Measures 
when both threads attempt to access the same double-word bank. 
Cycle penalty is 3x this measurement.

Com:254 Instruction L1 cache misses
Spec

Instruction L1 cache demand fetch misses (includes icbtls. Does 
not include prefetch)

Com:256 IMMU misses Spec Counts misses in the level 1 Instruction MMU

Com:257 IMMU TLB-4K hits Spec Counts hits in the level 1 Instruction MMU TLB-4K

Com:258 IMMU VSP hits Spec Counts hits in the level 1 Instruction MMU VSP

Com:259
IMMU cycles spent in hardware 
tablewalk Spec

Counts IMMU cycles spent in hardware tablewalk. This represents 
the cycles from the point where the L2 MMU miss occurs to when 
the page table walk completes with a valid translation or exception.

Com:260
DMMU misses

Spec
Counts misses in the level 1 Data MMU (does not count replayed 
operations)

Com:261
DMMU TLB-4K hits

Spec
Counts hits in the level 1 Data MMU TLB-4K (does not count 
replayed operations)

Com:262
DMMU VSP hits

Spec
Counts hits in the level 1 Data MMU VSP (does not count replayed 
operations)

Com:263
DMMU cycles spent in hardware 
tablewalk Spec

Counts DMMU cycles spent in hardware tablewalk. This represents 
the cycles from the point where the L2 MMU miss occurs to when 
the page table walk completes with a valid translation or exception.
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Com:264

L2MMU misses

Spec

Counts level 2 MMU misses. (Does not count misses that occur due 
to dcbt / dcbtst / dcba / dcbal instructions that fail translation and 
are no-oped. Does not count misses in L2MMU-VSP when looking 
up an indirect entry).

Com:265 L2MMU hits in L2MMU-4K Spec Counts level 2 MMU hits in L2MMU-4K

Com:266
L2MMU hits in L2MMU-VSP

Spec
Counts level 2 MMU hits in L2MMU-VSP (does not count indirect 
lookups)

Com:267
L2MMU indirect misses

Spec
Counts level 2 MMU indirect misses. This represents indirect entry 
lookups that do not have a matching indirect entry.

Com:268
L2MMU indirect valid misses

Spec
Counts level 2 MMU indirect valid misses. This occurs when the 
indirect entry is valid, but the corresponding PTE[V] = 0 or the 
permissions in the PTE are not sufficient for the requested access.

Com:269
LRAT misses

Spec
Counts Logical to Real Address Translation misses. This includes 
LRAT misses from tlbwe instructions or from page table translations.

Com:272
Cycles LMQ loses DLINK 
arbitration due to SGB

Spec
Cycles the Load Miss Queue loses DLINK arbitration due to the 
Store Gather Buffer

Com:273
Cycles SGB loses DLINK 
arbitration due to LMQ

Spec
Cycles the Store Gather Buffer loses DLINK arbitration due to the 
Load Miss Queue

Com:274
Cycles thread loses DLINK 
arbitration due to other thread

Spec
Cycles thread loses DLINK arbitration due to other thread

Com:278
Decode mask/value event

Nonspec
One mask/value pair that allows instructions to be counted in 
Decode

Com:443 DLINK request N/A Number of DLINK requests made from core to Shared L2

Com:444
ILINK request

N/A
Number of ILINK requests made from core to Shared L2 (includes 
instruction fetches and L2MMU hardware tablewalk requests)

Com:445
RLINK request

N/A
Number of RLINK requests made from Shared L2 to core (reload 
data)

Com:446
BLINK request

N/A
Number of BLINK requests made from Shared L2 to core (back 
invalidates, stashes, barriers)

Com:447
CLINK request

N/A
Number of CLINK requests made from Shared L2 to core (CoreNet 
data forwarding)

Com:456
L2 hits

N/A
Number of L2 Cache hits
Counts 0, 1, 2, 3, or 4 per cycle

Com:457
L2 misses

N/A
Number of L2 Cache misses
Counts 0, 1, 2, 3, or 4 per cycle

Com:458
L2 demand accesses

N/A
Number of L2 Cache demand accesses
Counts 0, 1, 2, 3, or 4 per cycle

Com:459
L2 accesses

N/A
Number of L2 Cache accesses from all sources (demand, reload, 
snoop, and so on)
Counts 0, 1, 2, 3, or 4 per cycle
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Com:460
L2 store allocates

N/A
Number of L2 Cache store allocates
Counts 0, 1, 2, 3, or 4 per cycle

Com:461
L2 instruction accesses

N/A
Number of L2 Cache instruction accesses
Counts 0, 1, 2, 3, or 4 per cycle

Com:462
L2 data accesses

N/A
Number of L2 Cache data accesses
Counts 0, 1, 2, 3, or 4 per cycle

Com:463
L2 instruction misses

N/A
Number of L2 Cache instruction misses
Counts 0, 1, 2, 3, or 4 per cycle

Com:464
L2 data misses

N/A
Number of L2 Cache data misses.
Counts 0, 1, 2, 3, or 4 per cycle

Com:465
L2 hits per thread

N/A
Number of times this core/thread hits in the L2 Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:466
L2 misses per thread

N/A
Number of times this core/thread misses in the L2 Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:467
L2 demand accesses per thread

N/A
Number of times this core/thread makes a demand access to the L2 
Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:468
L2 store allocates per thread

N/A
Number of times a store from this core/thread allocates in the L2 
Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:469
L2 instruction accesses per thread

N/A
Number of times an instruction from this core/thread accesses the 
L2 Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:470
L2 data accesses per thread

N/A
Number of times a data operation from this core/thread accesses 
the L2 Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:471
L2 instruction misses per thread

N/A
Number of times an instruction from this core/thread misses in the 
L2 Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:472
L2 data misses per thread

N/A
Number of times a data operation from this core/thread misses in 
the L2 Cache
Counts 0, 1, 2, 3, or 4 per cycle

Com:473
L2 reloads from CoreNet

N/A
Number of L2 Cache reloads from CoreNet
Counts 0, 1, 2, 3, or 4 per cycle

Com:474
L2 stash requests

N/A
Number of incoming L2 Cache stash requests
Counts 0, 1, 2, 3, or 4 per cycle

Com:475
L2 stash requests downgraded to 
snoops N/A

Number of incoming L2 Cache stash requests downgraded to 
snoops
Counts 0, 1, 2, 3, or 4 per cycle

Com:476
L2 snoop hits

N/A
Number of L2 Cache snoop hits
Counts 0, 1, 2, 3, or 4 per cycle
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Com:477 L2 snoops causing MINT N/A Number of L2 Cache snoops causing MINT

Com:478 L2 snoops causing SINT N/A Number of L2 Cache snoops causing SINT

Com:479 L2 snoop pushes N/A Number of L2 Cache snoop pushes.

Com:480
Stall for BIB cycles

N/A
Stall for Back Invalidate Buffer entry (cycles)
Counts 0, 1, 2, 3, or 4 per cycle

Com:482
Stall for RLT cycles

N/A
Stall for Reload Table entry (cycles)
Counts 0, 1, 2, 3, or 4 per cycle

Com:484
Stall for RLFQ cycles

N/A
Stall for Reload Fold Queue entry (cycles)
Counts 0, 1, 2, 3, or 4 per cycle

Com:486
Stall for DTQ cycles

N/A
Stall for Data Transaction Queue entry (cycles)
Counts 0, 1, 2, 3, or 4 per cycle

Com:488
Stall for COB cycles

N/A
Stall for Castout Buffer entry (cycles)
Counts 0, 1, 2, 3, or 4 per cycle

Com:490
Stall for WDB cycles

N/A
Stall for Write Data Buffer entry (cycles)
Counts 0, 1, 2, 3, or 4 per cycle

Com:492
Stall for RLDB cycles

N/A
Stall for Reload Data Buffer entry (cycles)
Counts 0, 1, 2, 3, or 4 per cycle

Com:494 Stall for SNPQ cycles N/A Stall for Snoop Queue entry (cycles)

Com:506 BIU master requests N/A Master transaction starts (number of AOut sent to CoreNet)

Com:507
BIU master global requests

N/A
Master transaction starts that are global (number of AOut with M=1 
sent to CoreNet)

Com:508
BIU master data-side requests

N/A
Master data-side transaction starts (number of D-side AOut sent to 
CoreNet)

Com:509
BIU master instruction-side 
requests

N/A
Master instruction-side transaction starts (number of I-side AOut 
sent to CoreNet)

Com:510 Stash requests N/A Stash request on AIn matches stash IDs for core or L2

Com:511
Snoop requests

N/A
Externally generated snoop requests (number of AIn from CoreNet 
not from self)

1 For load/store events, a micro-op is described as translated when the micro-op has successfully translated and is in the second 
stage of the load/store translate pipeline.

2 For chaining events, if a counter is configured to count its own overflow bit, that counter does not increment. For example, if 
PMC2 is selected to count PMC2 overflow events, PMC2 does not increment.
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Chapter 10  
Execution Timing
This chapter provides an overview of how the e6500 core performs operations defined by instructions and 
how it reports the results of instruction execution. It provides a high-level description about how the core 
execution units work and how these units interact with other parts of the processor, such as the instruction 
fetching mechanism, cache register files, and other architected registers. It includes tables that identify the 
unit that executes each instruction implemented on the core, the latency for each instruction, and other 
information useful to assembly language programmers.

10.1 Terminology and conventions
This section provides an alphabetical glossary of terms used in this chapter. These definitions offer a 
review of commonly used terms and point out specific ways these terms are used in this chapter. 

NOTE
Please read this glossary carefully. Some definitions differ slightly from 
those used to describe previous processors, in particular with respect to 
dispatch, issue, finishing, retirement, and write back. 

• Branch prediction—the process of predicting the direction and target of a branch. Branch direction 
prediction involves guessing whether a branch will be taken. Branch target prediction involves 
guessing the target address of a branch. The e6500 core does not use the architecture-defined hint 
bits in the BO operand for static prediction. Writing BUCSR[BPEN] = 0 disables dynamic branch 
prediction; in this case, the e6500 core predicts every branch as not taken. 

• Branch resolution—the determination of whether a branch prediction is correct. If a prediction is 
correct, instructions following the predicted branch that may have been speculatively executed can 
complete (see Complete). If it is incorrect, the processor redirects fetching to the proper path and 
marks instructions on the mispredicted path (and any of their results) for purging when the 
mispredicted branch completes.

• Complete—An instruction is eligible to complete after it finishes executing and makes its results 
available for subsequent instructions. Instructions must complete in order from the bottom two 
entries of the completion queue (CQ). The completion unit coordinates how instructions (which 
may have executed out of order) affect architected registers to ensure the appearance of serial 
execution. This guarantees that the completed instruction and all previous instructions can cause 
no exceptions. An instruction completes when it is retired, that is, deleted from the CQ. 

• Decode—determines the issue queue to which each instruction is dispatched (see Dispatch) and 
determines whether the required space is available in both that issue queue and the completion 
queue. If space is available, it decodes instructions supplied by the instruction queue, renames any 
source/target operands, and dispatches them to the appropriate issue queues. 
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• Dispatch—the event at the end of the decode stage during which instructions are passed to the issue 
queues and tracking of program order is passed to the completion queue.

• Fetch—the process of bringing instructions from memory (such as a cache or system memory) into 
the instruction queue. 

• Finish—An executed instruction finishes by signaling the completion queue that execution has 
concluded. An instruction is said to be finished (but not complete) when the execution results have 
been saved in rename registers and made available to subsequent instructions, but the completion 
unit has not yet updated the architected registers. 

• Issue—the stage responsible for reading source operands from rename registers and register files. 
This stage also assigns instructions to the proper execution unit.

• Latency— the number of clock cycles necessary to execute an instruction and make the results of 
that execution available to subsequent instructions.

• Pipeline—In the context of instruction timing, this term refers to interconnected stages. The events 
necessary to process an instruction are broken into several cycle-length tasks to allow work to be 
performed on several instructions simultaneously—analogous to an assembly line. As an 
instruction is processed, it passes from one stage to the next. When work at one stage is done and 
the instruction passes to the next stage, another instruction can begin work in the vacated stage. 

Although an individual instruction may have multiple-cycle latency, pipelining makes it possible 
to overlap processing so the number of instructions processed per clock cycle (throughput) is 
greater than if pipelining were not implemented.

• Program order—the order of instructions in an executing program. More specifically, this term is 
used to refer to the original order in which program instructions are fetched into the instruction 
queue from the cache. 

• Rename registers—temporary buffers for holding results of instructions that have finished 
execution but have not completed. The ability to forward results to rename registers allows 
subsequent instructions to access the new values before they have been written back to the 
architectural registers. 

• Reservation station—a buffer between the issue and execute stages that allows instructions to be 
issued even though resources necessary for execution or results of other instructions on which the 
issued instruction may depend are not yet available. 

• Retirement—removal of a completed instruction from the completion queue at the end of the 
completion stage. (In other documents, this is often called deallocation.)

• Speculative instruction—any instruction that is currently behind an older branch instruction that 
has not been resolved.

• Stage—used in two different senses, depending on whether the pipeline is being discussed as a 
physical entity or a sequence of events. As a physical entity, a stage can be viewed as the hardware 
that handles operations on an instruction in that part of the pipeline. When viewing the pipeline as 
a sequence of events, a stage is an element in the pipeline during which certain actions are 
performed, such as decoding the instruction, performing an arithmetic operation, or writing back 
the results. Typically, the latency of a stage is one processor clock cycle. Some events, such as 
dispatch, write-back, and completion, happen instantaneously and may be thought to occur at the 
end of a stage. 
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An instruction can spend multiple cycles in one stage. For example, a divide takes multiple cycles 
in the execute stage. 

An instruction can also be represented in more than one stage simultaneously, especially in the 
sense that a stage can be seen as a physical resource. For example, when instructions are 
dispatched, they are assigned a place in the CQ at the same time they are passed to the issue queues. 

• Stall—an occurrence when an instruction cannot proceed to the next stage. Such a delay is initiated 
to resolve a data or resource hazard, that is, a situation in which a planned instruction cannot 
execute in the proper clock cycle because data or resources needed to process the instruction are 
not yet available.

• Superscalar—A superscalar processor is one that can issue multiple instructions concurrently from 
a conventional linear instruction stream. In a superscalar implementation, multiple instructions can 
execute in parallel at the same time.

• Thread—depending on the context, denotes either a software thread of execution or one of several 
virtual processors within a single processor core. The e6500 core has two virtual processors that 
share certain resources and can simultaneously execute two software threads.

• Throughput—the number of instructions processed per cycle. In particular, throughput describes 
the performance of a multiple-stage pipeline where a sequence of instructions may pass through 
with a throughput that is much faster than the latency of an individual instruction.

• Write-back—(in the context of instruction handling) occurs when a result is written into the 
architecture-defined registers (typically the GPRs). On the e6500 core, write-back occurs in the 
clock cycle after the completion stage. Results in the write-back buffer cannot be flushed. If an 
exception occurs, results from previous instructions must write back before the exception is taken. 

10.2 Instruction timing overview
The e6500 design minimizes the number of clock cycles it takes to fetch, decode, dispatch, issue, and 
execute instructions and to make the results available for a subsequent instruction. To improve throughput, 
the e6500 core implements pipelining, superscalar instruction issue, multiple execution units that operate 
independently and in parallel, and two simultaneously operating thread processors.

Some instructions, such as loads and stores, access memory and require additional clock cycles between 
the execute and write-back phases. Latencies may be greater if the access is to non-cacheable memory, 
causes a TLB miss, misses in the L1 cache, generates a write-back to memory, causes a snoop hit from 
another device that generates additional activity, or encounters other conditions that affect memory 
accesses.

Some instructions (including integer multiplies and divides, all floating-point and AltiVec, and loads and 
stores) may experience greater latencies if both threads are enabled because the resources that execute 
these instructions are shared by the threads and, therefore, may be a source of contention between the 
threads. Unlike some simultaneous multi-threading processors, the execution timing of many instructions 
is not affected by the simultaneous execution of two threads because each thread of the e6500 core has 
dedicated branch and ALU execution and completion resources.

Each thread of the e6500 core can complete as many as two instructions on each clock cycle. 

The instruction pipeline stages of a thread processor in the e6500 core are described as follows:



Execution Timing

e6500 Core Reference Manual, Rev 0

10-4 Freescale Semiconductor
 

• Instruction fetch—includes the clock cycles necessary to request an instruction and the time the 
memory system takes to respond to the request. Fetched instructions are latched into the instruction 
queue (IQ) of the thread for consideration by the decoder and dispatcher. 

The fetcher tries to initiate a fetch for all of the enabled threads in every cycle in which it is 
guaranteed that the IQ of each enabled thread has room for fetched instructions. Instructions are 
typically fetched from the L1 instruction cache; if caching is disabled or the fetch misses in the 
cache, instructions are fetched from the instruction line fill buffer (ILFB). Likewise, on a cache 
miss, as many as four instructions can be forwarded to the fetch unit from the ILFB as the cache 
line is passed to the instruction cache.

Fetch timing is affected by many things, such as whether an instruction is in the instruction cache 
or an L2 cache. Those factors increase when it is necessary to fetch instructions from an L3 cache 
or system memory and include the processor-to-bus clock ratio, the amount of bus traffic, and 
whether any cache coherency operations are required. 

Fetch timing is also affected by whether effective address translation is available in a TLB, as 
described in Section 10.3.2.1, “L1 and L2 TLB access times.” 

• Decode/dispatch stage—fully decodes each instruction. Most instructions are dispatched to the 
issue queues, but isync, rfi, rfgi, rfci, rfdi, rfmci, sc, ehpriv, dnh, dni, wait, and nops are not. 
Every dispatched instruction is assigned a GPR rename register, an FPR rename register, and a CR 
field rename register, even if they do not specify a GPR, FPR, or CR operand. There is a set of 
GPR/FPR/CRF rename registers for each CQ entry of each thread.

Each thread has five issue queues, BIQ, GIQ, LSIQ, VIQ, and FIQ. The BIQ can accept one 
instruction per cycle. The other issue queues can accept up to two instructions in a cycle. 
Instruction dispatch requires the following:

— Instructions dispatch only from IQ0 and IQ1. 

— As many as two instructions can be dispatched per clock cycle.

— Space must be available in both the CQ and the target issue queue for an instruction to decode 
and dispatch.

In this chapter, dispatch is treated as an event at the end of the decode stage. 

• Issue stage—reads source operands from rename registers and register files and determines when 
instructions are latched into reservation stations. 

The general behavior of the issue queues is described as follows:

— The GIQ accepts as many as two instructions from the decode and dispatch unit per cycle. 
SFX0, SFX1, and CFX instructions of a thread are dispatched to and issued from the GIQ of 
the thread, as shown in the following figure.

Figure 10-1. GPR Issue Queue (GIQ) (per thread)

GIQ1

GIQ3

GIQ0

GIQ2

To SFX0, SFX1, CFX

From IQ0/IQ1 

To SFX0, SFX1, CFX
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The GIQ of each thread can hold up to four instructions.

Instructions can be issued out-of-order from GIQ1–GIQ0 to either SFX0, SFX1, and CFX.

SFX1 executes a subset of the instructions that can be executed in SFX0. The ability to identify 
and dispatch instructions to SFX1 increases the availability of SFX0 to execute more 
computationally intensive instructions.

An instruction in GIQ1 destined for either SFX need not wait for an CFX instruction in GIQ0 
that is stalled behind some long-latency CFX operation.

— The LSIQ of each thread accepts as many as two instructions from the dispatch unit per cycle. 
LSU instructions are dispatched to the LSIQ.

Each LSIQ can hold up to four instructions.

Instructions are issued in-order from the LSIQ to the LSU and can issue at a rate of one per 
thread per cycle.

— The FIQ of each thread accepts as many as two instructions from the dispatch unit per cycle. 
FPU instructions are dispatched to the FIQ.

Each FIQ can hold up to four instructions.

Instructions are issued in-order from the FIQ to the FPU and can issue at a rate of one per thread 
per cycle.

— The VIQ of each thread accepts as many as two instructions from the dispatch unit per cycle. 
AltiVec instructions are dispatched to the VIQ.

Each VIQ can hold up to four instructions.

Instructions can be issued out-of-order from the VIQ to the vector units from slots VIQ0 and 
VIQ1. Only one instruction for the units VSFX, VCFX, and VFPU can be issued per thread per 
cycle because these units share a reservation station. Only one instruction for the VPERM unit 
and its reservation station can issue per thread per cycle. 

— The BIQ of each thread accepts as many as one instruction from the dispatch unit per cycle. BU 
instructions are dispatched to the BIQ.

Each BIQ can hold up to three instructions.

Instructions are issued in-order from the BIQ to the BU and can issue at a rate of one per thread 
per cycle.

• Execute stage—comprised of individual non-blocking execution units implemented in parallel. 
The CFX, floating-point, and AltiVec execution units are shared by all threads. Each execution unit 
has a reservation station per thread that must be available for an instruction issue for that thread to 
occur. Instructions are issued to the appropriate reservation station to receive their operands. If the 
execution unit is shared between threads, instructions in the per-thread reservation stations of that 
execution unit that are ready to execute arbitrate for execution.

The e6500 core has the following execution units:

— Branch unit (BU)—executes branches and CR logical operations. There is one independent BU 
per thread.

— Two simple units (SFX0 and SFX1)—execute logical instructions and all integer 
computational instructions except multiply and divide instructions. Each thread has its own 
independent SFX0 and SFX1.
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– SFX0 executes all integer simple unit instructions (that is, all that can be dispatched to 
simple units) and a few common move to/from special purpose register (SPR) instructions.

– SFX1 executes most, but not all, of the instructions that can be executed in SFX0. 

Most SFX instructions execute in one cycle. However, some instructions can take longer than 
one cycle.

— Complex unit (CFX)—executes integer multiplication and division instructions, as well as 
most move to/from special purpose register (SPR) and all move to/from thread management 
register (TMR) instructions. A single CFX is shared by all threads.

— Floating-point unit (FPU)—executes FPR-based floating point computational instructions. 
Floating-point load and store instructions execute in the LSU. A single FPU is shared by all 
threads.

— Load/store unit (LSU)—executes loads from and stores to memory, as well as some MMU 
control, cache control, and cache locking instructions. This includes byte, halfword, word, and 
doubleword instructions. 

— Vector unit, consisting of 4 sub-units (VSFX, VCFX, VFPU, and VPERM)—executes AltiVec 
instructions. VPERM executes permute instructions; VFPU executes floating-point 
instructions; VCFX executes multiply instructions; VSFX executes other integer arithmetic and 
logical instructions. A single vector unit is shared by all threads.

An execution unit executes the instruction (perhaps over multiple cycles), writes results on its result 
bus, and notifies the CQ when the instruction finishes. The execution unit reports any exceptions 
to the completion stage. Instruction-generated exceptions are not taken until the excepting 
instruction is next to retire.

Most integer instructions have a one-cycle latency, so results of these instructions are available 
one clock cycle after an instruction enters the execution unit. SFX0, LSU, FPU, VSFX, VCFX, 
VFPU, VPERM and CFX are fully pipelined for continuous multi-cycle execution.

• Complete and Write-Back stages—maintain the correct architectural machine state and commit 
results to the architecture-defined registers in the proper order for each thread. If completion logic 
detects an instruction containing an exception status or a mispredicted branch, all following 
instructions of that thread are cancelled, their execution results in rename registers are discarded, 
and the correct instruction stream for the thread is fetched.

The Complete stage ends when the instruction is retired. If no dependencies or exceptions exist, as 
many as two instructions per thread are retired in program order per clock cycle. The Write-Back 
stage occurs in the clock cycle after the instruction is retired and updates the architectural state.

10.3 General timing considerations
As many as four instructions can be fetched to the IQ of one thread during each clock cycle. These 
instructions are known as a fetch group. The starting quadword-bounded address of this fetch group is the 
fetch group address (FGA). Two instructions per thread per clock cycle can be dispatched to the issue 
queues. Two instructions from the GIQ and one instruction from the BIQ can issue per thread per clock 
cycle to the appropriate execution units. One instruction from the LSIQs of both threads can issue to the 
LSU per cycle. One instruction from one thread’s FIQ can issue to the FPU per clock cycle. A total of two 
instructions from the VIQs of either thread can issue to the AltiVec execution units per cycle. Thus, the 
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total two-thread maximum issue width per clock cycle of the e6500 core is eleven instructions. Two 
instructions can retire and two can write back per thread per cycle.

The e6500 core executes multiple instructions in parallel, using hardware to handle dependencies. When 
an instruction is issued, source data is provided to the appropriate reservation station from either the 
architected register (GPR, FPR, VR, or CRF) or from a rename register.

Branch prediction is performed in parallel with the fetch stages using the branch prediction unit (BPU), 
which incorporates the branch history table (BHT) and the branch target buffer (BTB). Predictions are 
resolved in the branch unit (BU). Incorrect predictions of branch direction or target address are handled as 
follows:

1. Fetch is redirected to the correct path, and instructions on the mispredicted path are purged.

2. The mispredicted branch is marked as such in the CQ.

3. Eventually, the branch is retired and the CQ, issue queue, and execution units are flushed. If the 
correct-path instructions reach the IQ before the back half of the pipeline is flushed, they stall in 
the IQ until the flush occurs.

4. The branch predictor is updated as appropriate.

After an instruction executes, results are made available to subsequent instructions in the appropriate 
rename registers. If a later instruction needs the result as a source operand, the result is simultaneously 
made available to the appropriate execution unit, which allows a data-dependent instruction to be decoded 
and dispatched without waiting to read the data from the architected register file. Results are then stored 
into the correct architected GPR, FPR, or VR during the write-back stage. Branch instructions that update 
either the LR or CTR write back their results in a similar fashion. 

Section 10.3.1, “General instruction flow,” describes this process. 

10.3.1 General instruction flow

The e6500 core ignores static branch prediction hints: a and t bits in the BO field in branch encodings are 
ignored. 

Dynamic branch prediction for a thread is enabled by writing 1 to BUCSR[BPEN]. Writing 0 to a thread’s 
BUCSR[BPEN] disables dynamic branch prediction for that thread only, in which case the e6500 core 
predicts every branch as not taken for that thread.

To resolve branch instructions and improve the accuracy of branch predictions, each thread of the e6500 
implements a dynamic branch prediction mechanism using a 512-entry BTB, a four-way set associative 
cache of branch target effective addresses. A BTB entry is allocated whenever a branch resolves as 
taken—unallocated branches are always predicted as not taken. Each BTB entry also holds a 2-bit branch 
local history whose value depends on whether the branch was taken or not in its two most recent 
occurrences. The local history bits from the BTB are used to select among four 2-bit global history 
saturating counters obtained from a 512-entry pattern history table (PHT) that is indexed by an XOR of a 
global taken/not-taken history and the previous fetch address. The PHT bits can take four values: 

• Strongly taken

• Weakly taken
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• Weakly not taken

• Strongly not taken. 

This prediction mechanism is described in Section 10.4.1.2, “Branch prediction and resolution.”

Each thread of the e6500 core also predicts the upper 32 bits of the branch address using a Segment Target 
Address Cache (STAC) and a Segment Target Index Cache (STIC). These are used in concert with the BTB 
to construct 64-bit branch targets and predict long branches (branches that cross 4 GB segments). The 
prediction of long branches is enabled by setting BUCSR[STAC_EN]. The STAC and STIC structures are 
more fully described in Section 10.4.1.2.3, “Segment Target Address Cache (STAC), Segment Target 
Index Cache (STIC), and link stack.”

Branch instructions are treated like any other instruction and are assigned CQ entries to ensure that the 
CTR and LR are updated sequentially.

The dispatch rate is affected by the serializing behavior of some instructions and the availability of issue 
queues and CQ entries. Instructions are dispatched in program order; an instruction in IQ1 cannot be 
dispatched ahead of an instruction in IQ0.

10.3.2 Instruction fetch timing considerations

Instruction fetch latency depends on the following factors:

• Whether the page translation for the effective address of an instruction fetch is in a TLB. This is 
described in Section 10.3.2.1, “L1 and L2 TLB access times.”

• If a page translation is not in a TLB, the hardware may perform a tablewalk operation to obtain the 
correct page table entry or an instruction TLB miss interrupt may be taken. Section 10.3.2.2, 
“Interrupts associated with instruction fetching,” describes other conditions that cause an 
instruction fetch to take an interrupt.

• If an L1 instruction cache miss occurs, an L2 cache transaction is performed in which fetch latency 
is affected by traffic from other e6500 cores that share the same L2 cache and other system traffic. 
If an L2 cache miss occurs, a memory transaction is required in which fetch latency is affected by 
bus traffic and bus clock speed. These issues are discussed further in Section 10.3.2.3, 
“Cache-related latency.”

10.3.2.1 L1 and L2 TLB access times

The L1 TLB arrays are checked for a translation hit in parallel with the on-chip L1 cache lookups and incur 
no penalty on an L1 TLB hit. If the L1 TLB arrays miss, the access proceeds to the L2 TLB arrays. For L1 
instruction address translation misses, the L2 TLB latency is at least six clocks; for L1 data address 
translation misses, the L2 TLB latency is at least six clocks. These access times may be longer, depending 
on arbitration between L2 TLB accesses for simultaneous instruction L1 TLB misses and/or data L1 TLB 
misses from either thread, the execution of TLB instructions or a hardware tablewalk operation by either 
thread, and TLB snoop operations (snooping of TLB invalidate operations from tlbivax instructions on 
CoreNet).
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If the page translation is in neither TLB, a hardware tablewalk is initiated to obtain the appropriate page 
table entry. If the hardware tablewalk fails, an instruction TLB error interrupt occurs, as described in 
Section 4.9.15, “Instruction TLB error interrupt—IVOR14/GIVOR14.”

The L2 TLB is shared by all threads in the e6500 core. If one thread misses in both its L1 TLB and the 
shared L2 TLB, the other threads can continue to access both their own L1 TLBs and the shared L2 TLB. 
Handling of L2 TLB misses from multiple threads via the hardware tablewalk mechanism are not 
pipelined.

When a TLB invalidate operation is detected, the L2 MMU becomes inaccessible due to the snooping 
activity caused by the invalidate.

If the MMU is busy due to a higher priority operation, such as a tlbivax or tlbilx, instructions cannot be 
fetched until that operation completes. 

TLBs are described in detail in Chapter 6, “Memory Management Units (MMUs).” 

10.3.2.2 Interrupts associated with instruction fetching 

An instruction fetch can generate the following interrupts:

• An instruction TLB error interrupt occurs when both the effective address translation for a fetch is 
not found in the TLBs and the hardware table walk to obtain the translation fails for any reason. 
This interrupt is described in detail in Section 4.9.15, “Instruction TLB error 
interrupt—IVOR14/GIVOR14.”

• An instruction storage interrupt is caused when one of the following occurs during an attempt to 
fetch instructions:

— An execute access control exception is caused when one of the following conditions exist:

– In user mode, an instruction fetch attempts to access a memory location that is not user mode 
execute enabled (page access control bit UX = 0). This condition is detected solely on the 
basis of MSR[PR] and occurs regardless of whether the thread is in guest state.

– In supervisor mode, an instruction fetch attempts to access a memory location that is not 
supervisor mode execute enabled (page access control bit SX = 0). This condition is detected 
solely on the basis of MSR[PR] and occurs regardless of whether the thread is in guest state.

When an instruction storage interrupt occurs, the thread suppresses execution of the instruction 
causing the exception. For more information, see Section 4.9.5, “Instruction storage interrupt 
(ISI)—IVOR3/GIVOR3.”

10.3.2.3 Cache-related latency

Instruction fetch latencies depend on various instruction cache related factors:

• If the fetch hits in the instruction cache or the Instruction Line Fill Buffer (ILFB) or the thread fetch 
buffer, as many as four instructions will be added to the IQ of the thread two clock cycles after the 
cache request is made.

• The instruction cache is not blocked to internal accesses during a cache reload (hits under misses). 
The cache allows a hit under one miss and is only blocked by a cache line reload for the cycle 
during the cache write. If a cache miss is discarded by a misprediction and a subsequent fetch hits, 
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the cache provides instructions to the IQ of the requesting thread. As many as four instructions can 
be fetched by all threads every cycle from their private fetch buffers, from the the ILFB, or from 
the instruction cache.

• If the cache is busy due to a higher priority operation, such as an icbi or a cache line reload, 
instructions cannot be fetched until that operation completes. For example, if a thread cannot fetch 
from either its fetch buffer or the ILFB, but a cache reload is being performed in the same cycle it 
would otherwise be granted access to the instruction cache, the fetch of that thread will be blocked 
for 1 cycle.

• If an instruction fetch misses in the instruction cache, it is requested from the shared L2 cache. If 
it misses in the shared backside L2 cache, the L2 cache initiates a CoreNet transaction and allocates 
the line when it is returned from the off-core memory system.

The architecture defines WIM (of WIMGE) bits that define caching characteristics for the corresponding 
memory page. Fetching an instruction as caching-inhibited (I = 1) produce the following actions:

• The ILFB may hit, and the instructions returned from the ILFB are used, even if the ILFB entry 
was established by an earlier cacheable access.

• The instruction cache performs an access and may hit, and, if a hit occurs, the instructions are used.

• The L2 cache does not attempt to perform an access if the access is caching-inhibited.

• If the ILFB and instruction cache do not hit, the fetch is performed by performing bus transactions 
to memory, and the fetch returns and uses the entire fetch group that was requested. Therefore, 
fetching with caching-inhibited accesses does not produce a bus transaction for each instruction; it 
produces one bus transaction for each fetch group or cache line.

Software should not alias caching and caching-inhibited real addresses without first invalidating the caches 
and performing an isync prior to fetching to those same caching-inhibited addresses.

10.3.3 Dispatch, issue, and completion considerations

All threads can simultaneously dispatch as many as two instructions per cycle, depending on the mix of 
instructions and on the availability of issue queues and CQ entries. As many as two instructions per thread 
can be dispatched in parallel, but an instruction in IQ1 cannot be dispatched ahead of an instruction in IQ0 
of one thread. 

Instructions can issue out-of-order from GIQ0 and GIQ1 to either the SFX0 or SFX1 associated with each 
thread or the CFX that is shared by all threads. If an instruction stalls in GIQ0 (reservation station busy), 
an instruction in GIQ1 can issue if the reservation station of its target execution unit is available.

Instructions can simultaneously issue in-order from the LSIQ of every thread.

One instruction can issue in-order from the FIQ of one selected thread per cycle.

Instructions can issue out-of-order from the VIQ of each thread. The VIQ of each thread can issue to any 
of the VSFX, VCFX, or VFPU at one per cycle and can also issue to VPERM at one per cycle.

Issue queues and reservation stations allow e6500 threads to dispatch instructions even if their private or 
shared execution units are busy. The issue logic reads operands from register files and rename registers and 
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routes instructions to the proper execution unit. Execution begins when all operands are available, the 
instruction is in the reservation station, and any execution serialization requirements are met.

Instructions pass through a single-entry reservation station associated with each execution unit. If a data 
dependency keeps an instruction from starting execution, that instruction is held in a reservation station. 
Execution begins during the same clock cycle that the rename register is updated with the data on which 
the instruction is dependent. 

The CQ of each thread maintains program order after instructions are dispatched, guaranteeing per-thread 
in-order completion and a precise exception model. Thread instruction state and other information required 
for completion are kept in this 16-entry FIFO. All instructions in a thread complete in order; none can retire 
ahead of a previous instruction. In-order completion ensures the correct architectural state when an e6500 
thread must recover from a mispredicted branch or exception. 

Each thread can simultaneously retire as many as two instructions, never out of order. Note the following:

• Instructions must be non-speculative in order to complete.

• As many as two rename registers per thread can be updated per clock cycle. Because load and store 
with update instructions require two rename registers, they are broken into two instructions at 
dispatch (lwzu is broken into lwz and addi). These two instructions are assigned two CQ entries, 
and each instruction is assigned CR and GPR renames at dispatch. 

• Some instructions have retirement restrictions, such as retiring only out of CQ0. See 
Section 10.3.3.1, “Instruction serialization.”

Program-related exceptions are signaled when the instruction causing the exception reaches CQ0. Previous 
instructions in the thread are allowed to complete before the exception is taken, which ensures that any 
exceptions those instructions may cause are taken. One thread taking an exception generally does not affect 
instruction processing by other threads.

10.3.3.1 Instruction serialization

Although each e6500 thread can dispatch and complete two instructions per cycle, some serializing 
instructions limit dispatch and completion to one per thread per cycle. There are seven basic types of 
instruction serialization:

• Presync serialization—Presync-serialized instructions are held in the instruction queue of the 
thread until all prior instructions of the thread have completed before they are allowed to be 
decoded and executed. For example, an mfspr instruction that reads a non-renamed status register 
is marked as presync-serialized.

• Postsync serialization—Postsync-serialized instructions, such as mtspr[XER], prevent subsequent 
instructions in a thread from decoding until the serialized instruction completes. For example, 
instructions that modify the thread state in a way that affects the handling of future instruction 
execution by the thread are marked with postsync-serialization. These instructions are identified in 
the latency tables in Section 10.5, “Instruction latency summary.”

• Move-from serialization—Move-from serialization is a weaker synchronization than presync 
serialization. A move-from serialized instruction can decode but stalls in an execution unit’s 
reservation station until all prior instructions of the thread have completed. If the instruction is 
currently in the reservation station and is the oldest instruction in the thread, it can begin execution 
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in the next cycle. Note that subsequent instructions can decode and execute while a move-from 
serialized instruction is pending. Only a few instructions are move-from serialized, so that they do 
not examine thread architectural state until all older instructions that could affect the architectural 
state of the thread have completed.

• Move-to serialization—A move-to serialized instruction cannot execute until the cycle after it is in 
CQ0, that is, the cycle after it becomes the oldest instruction in the thread. This serialization is 
weaker than move-from serialization in that the instruction need not spend an extra cycle in the 
reservation station. Move-to serializing instructions include tlbre, tlbsx, tlbwe, mtmsr, wrtee, 
wrteei, and all mtspr instructions. 

• Refetch serialization—Refetch-serialized instructions force refetching of subsequent instructions 
in a thread after the completion of the instruction. Refetch serialization is used when an instruction 
has changed or may change a particular context needed by subsequent instructions in the thread. 
Examples include isync, sc, rfi, rfci, rfmci, rfdi, rfgi, wait, and any instruction that causes the 
summary-overflow (SO) bit to change state.

• Store serialization (applicable to stores and some LSU instructions that access the data 
cache)—Store-serialized instructions are dispatched and held in the finished store queue of the 
thread. They are not committed to memory until all prior instructions have completed. Although a 
store-serialized instruction waits in the finished store queue, other load/store instructions can be 
freely executed. Some store-serialized instructions are further restricted to complete only from 
CQ0. Only one store-serialized instruction can complete per thread per cycle, although 
nonserialized instructions can complete in the same cycle as a store-serialized instruction. In 
general, all stores and cache operation instructions are store serialized.

• Unit serialization—Unit serialization instructions proceed down the execution pipeline in a normal 
manner but block the reservation station for the associated execution unit. This prevents other 
instructions from issuing to the reservation station while the unit-serialized instruction executes. 
Normally, such instructions modify the architectural state of a renamed register, and the 
serialization ensures that no other instruction in the thread accesses the renamed register when the 
unit-serialized instruction executes.

10.3.4 Memory synchronization timing considerations

This section describes the behavior of the sync and mbar instructions as they are implemented on the 
e6500 core.

10.3.4.1 sync instruction timing considerations

The sync instruction provides a memory barrier throughout the memory hierarchy, for example, to ensure 
that a control bit has been written to its destination control register in the system before the next instruction 
begins execution (such as to clear a pending interrupt). By its nature, sync also provides an ordering 
boundary for pre- and post-sync storage transactions.

On the e6500 core, sync waits for all preceding data memory accesses of the thread to reach the point of 
coherency (that is, visible to the entire memory hierarchy), then it is broadcast on the CoreNet interface. 
A sync does not finish execution until all storage transactions caused by prior instructions in its thread 
complete entirely in cache memories and externally on the bus (address and data complete on the bus, 
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excluding instruction fetches). No subsequent instructions and associated storage transactions are initiated 
by the thread until such completion.

Execution of sync by a thread also generates a SYNC command on the CoreNet interface, after which the 
sync instruction may be allowed to complete. Subsequent instructions can execute out of order, but they 
can complete only after sync completes.

It is the responsibility of the system to guarantee the intention of the SYNC command on the CoreNet 
interface—usually by ensuring that any transactions received before the SYNC command from the e6500 
core complete in their queues or at their destinations before completing the SYNC command on the 
CoreNet interface.

10.3.4.2  mbar instruction timing considerations

The mbar instruction provides an ordering boundary for storage operations within a thread. Its 
architectural intent is to guarantee that storage operations resulting from previous instructions of the thread 
occur before any subsequent storage operations occur, thereby, ensuring an order between pre- and 
post-mbar memory operations. The mbar instruction may be used, for example, to ensure that reads and 
writes to an I/O device or between I/O devices occur in program order or to ensure that memory updates 
occur before a semaphore is released.

The architecture allows an implementation to support several classes of storage ordering, selected by the 
MO field of the mbar instruction. The e6500 core supports two classes for system flexibility. 

The e6500 threads implement the following two variations of mbar:

• When MO = 0, mbar behaves as defined by the Power ISA, which, on the e6500 core (for all 
practical purposes), produces the same memory barrier as sync. 

• When MO = 1, mbar is a weaker, faster memory barrier; the e6500 core executes it as a pipelined 
or flowing ordering barrier for potentially higher performance. This ordering barrier flows along 
with pre- and post-mbar memory transactions through the memory hierarchy (L1 cache, L2 cache, 
and CoreNet interface). On the CoreNet interface, this ordering barrier is issued as an EIEIO 
command. Note that mbar MO = 1 only orders a certain subset of memory transactions depending 
on the type of transaction and the WIMGE settings (see Section 5.5.5.3, “Memory access 
ordering“).

mbar MO = 1 ensures that all data accesses (for the ordered subsets) caused by previous 
instructions of a thread complete before any data accesses caused by subsequent instructions of the 
same thread. This order is seen by all mechanisms. However, unlike sync and mbar with MO = 0, 
subsequent instructions can complete without waiting for mbar to perform its CoreNet transaction. 
This provides a faster way to order data accesses.

10.4 Execution 
The following sections describe instruction execution behavior within each of the respective execution 
units on the e6500 core. 
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10.4.1 Branch execution unit 

When branch or trap instructions change the program flow of a thread, its IQ must be reloaded with the 
target instruction stream. Previously issued instructions of the thread continue executing while the new 
instruction stream makes its way into the IQ. Depending on whether target instructions are cached, 
opportunities may be missed to execute instructions. The e6500 core minimizes the penalties associated 
with flow control operations by employing dynamic alloyed global and local history-based branch 
prediction, speculative link and counter registers, and non-blocking caches.

10.4.1.1 Branch instructions and completion

Branch instructions are not folded on an e6500 thread. All branch instructions receive a CQ entry (and CRF 
and GPR renames) at dispatch and must write back in program order.

Branch instructions are dispatched to the BIQ of the thread and are assigned a slot in the CQ of the thread, 
as shown in the following figure.

In this example, the bc depends on cmp and is predicted as not taken. At the end of clock 1, cmp and bc 
are dispatched to the GIQ and BIQ of the thread, respectively, and are issued to SFX0 and the BU at the 
end of clock 2. 
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CQ6
CQ5
CQ4
CQ3 add2 add2 (SFX1) add3 (SFX0)
CQ2 add1 add1 (SFX0) add2√
CQ1 bc bc (BU) bc (BU) add1√
CQ0 cmp cmp (SFX0) cmp√ bc √

√ indicates that the instruction has finished execution. 

Figure 10-2. Branch completion (LR/CTR write-back) for one thread
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In clock 3, the cmp executes in SFX0, but the bc cannot resolve and complete until the cmp results are 
available; add1 and add2 are dispatched to the GIQ. 

In clock 4, the bc resolves as correctly predicted; add1 and add2 are issued to the SFX0 and SFX1 and are 
marked as nonspeculative, and add3 is dispatched to the GIQ. The cmp is retired from the CQ at the end 
of clock 4. 

In clock 5, bc, add1, and add2 finish execution, and bc and add1 retire.

10.4.1.2 Branch prediction and resolution 

Each e6500 thread has an independent dynamic branch prediction mechanism that monitors and records 
branch instruction behavior within the thread, from which the outcome of the next occurrence of a branch 
instruction is predicted. If branch prediction for a thread is disabled, all branches for that thread are 
predicted as not taken. The e6500 core does not support static branch prediction—the BO static prediction 
field in branch instructions is ignored. The branch prediction mechanism for each thread includes a branch 
target buffer (BTB), pattern history table (PHT), segment target address cache (STAC), segment target 
index cache (STIC), and a link stack.

The e6500 branch prediction mechanism uses the current fetch group address to detect whether the fetch 
group includes any branches in the BTB. If a branch is in the BTB, the branch outcome and target fetch 
group address are predicted. Local history or an unconditional flag in the BTB entry for the branch is 
combined with global history from the PHT to generate the taken or not taken prediction. If the branch is 
predicted as taken, information in the BTB selects a target address from that in the BTB entry or on the top 
of the link stack. If the link stack is empty, the target address is always taken from the BTB entry. If 
indicated by the BTB entry, the upper 32 bits of the target address are generated by the STIC and STAC. 
Also, if indicated by the BTB entry, the address of the instruction after the branch is pushed onto the link 
stack.

When a branch instruction first enters the instruction pipeline, it is not allocated in the BTB. By default, 
the branch instruction is predicted as not taken. If the branch is resolved as not taken, nothing is allocated 
in the BTB. If the branch is resolved as taken, the misprediction allocates both a BTB entry for this branch 
with an initial local history of taken/taken and sets the taken/taken field of the appropriate PHT entry to 
strongly-taken. Note that unconditional branches are allocated in the BTB the first time they are 
encountered.

Instructions after an unresolved branch within a thread can execute speculatively, but per thread in-order 
completion ensures that mispredicted speculative instructions do not complete. If either the outcome or 
target address of a branch are incorrectly predicted, instructions in a thread dispatched after a mispredicted 
branch instruction are flushed from the thread CQ, and any speculative results are flushed from the rename 
registers. Instructions in the thread that preceded the predicted branch are not flushed and proceed 
normally through the pipeline. After a misprediction, instruction fetching is redirected to the correct path, 
and the branch predictor contents are revised by either invalidating a phantom branch entry or updating the 
PHT, local history and overwriting an incorrect target address of the existing branch predictor entry.

The number of speculative branches that have not yet been allocated (and are predicted as not taken) is 
limited only by the space available in the thread pipeline (the branch execute unit, the BIQ, and the IQ). The 
presence of speculative branches allocated in the BTB slightly reduces speculation depth. 
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10.4.1.2.1 Branch predictor structure and operation

The BTB for each thread is a 512 entry, four-way associative structure that contains the types, local 
taken/not-taken histories, and target addresses of previously taken branch instructions. Each BTB entry 
also has a valid bit that is set to zero (invalid) upon reset of the core. A valid BTB entry is selected based 
on the low-order 32 bits of the current fetch group address. The BTB is indexed by bits 53-59 from the 
fetch group address, and the tag is compared against bits 32-52 concatenated with bits 60-61 of the current 
fetch group address.

The BTB allocates an entry when both a branch has been resolved as taken and no BTB entry already exists 
for the fetch group address in which the branch instruction was encountered. Note that it is possible for the 
same branch instruction to have multiple entries in the BTB if the branch is encountered by different fetch 
group addresses. When a new entry is allocated, the following information is stored in a BTB entry to 
describe the branch:

• target—30 bits, set to bits 32:61 of the target address to where the branch goes.

• history—2 bits, set to 0b11 to indicate taken/taken, used to select among PHT entries.

• iab—3 bits, set to indicate where in the fetch group the instruction following the branch is located 
(that is, the instruction to be executed if the branch is not taken). 

• long—1 bit, set if the branch is a ‘long’ branch (see Section 10.4.1.2.3, “Segment Target Address 
Cache (STAC), Segment Target Index Cache (STIC), and link stack“) Note: this bit was used as a 
lock bit for e500v1 and e500v2.

• ls_push—1 bit, set to indicate the current contents of the LR should be pushed onto the link stack.

• ls_pop—1 bit, set to indicate the branch target address should be taken from the top of the link 
stack.

• valid—1 bit, set to 1 to indicate that the entry is valid.

• always—1 bit, set to 1 to indicate an unconditional branch.

When allocating an entry in the BTB, a 6-bit LRU value (lru) keeps a relative use between the ways 
encoded. The meaning of the lru bits is as follows:

• lru[0]—If set, indicates that way 0 is more recently used than way 1.

• lru[1]—If set, indicates that way 0 is more recently used than way 2.

• lru[2]—If set, indicates that way 0 is more recently used than way 3.

• lru[3]—If set, indicates that way 1 is more recently used than way 2.

• lru[4]—If set, indicates that way 1 is more recently used than way 3.

• lru[5]—If set, indicates that way 2 is more recently used than way 3.

In addition to the BTB entry, the STIC and STAC structures are updated if the newly allocated branch is a 
‘long’ branch:

• A fully associative search is performed on the STAC to determine if the upper 32 bits of the branch 
target address is already present. If found, the STIC is updated to point to the STAC entry that was 
found. If no matching entry in the STAC is found: 

— A STAC entry is replaced using a FIFO method to select an entry for replacement.

— The STAC entry is set to the upper 32 bits of the target address.
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— The STIC is updated to point to the STAC entry.

• The updated STIC entry is indexed by bits 53-59 of the fetch group address.

The allocation of a function call or return branch causes the link stack to be updated. A branch is 
considered a function call if it sets the LR of the thread as a result of the branch but is neither a bclrl, which 
is treated as a return, nor a specific branch form that is used to get the current instruction address for 
position independent code (for example, bcl 20,31,$+4). A branch is considered a function return if it 
branches to the contents of the LR.

A function call branch causes a link stack entry to be “pushed”. The following occurs:

• ls_push is set in the BTB entry to indicate that this branch is a function call.

• The address of the branch instruction + 4 (that is, where the function call will return to) is pushed 
onto the top of the link stack. If the link stack overflows, its oldest entry is discarded.

When the branch is a function return, the link stack has an entry “popped”. The following occurs:

• ls_pop is set in the BTB entry to indicate that this branch is a function call return.

• If the link stack is not empty, the top of the link stack is “popped” (that is, removed from the link 
stack), and that address is used as bits 0-61 of the branch target. (Bits 62-63 of any instruction 
address are always 0.)

10.4.1.2.2 Global History (GHR) register and Pattern History Table (PHT) 

The direction (taken or not-taken) of the nine most recent branches is stored in the GHR. In the GHR, a 
taken branch is represented as binary 1. The GHR shifts from the right or least significant bit positions to 
the left so that the direction (taken or not-taken) of the most recent branch is indicated by the rightmost or 
least significant bit.

The PHT is indexed by the GHR XORed with bits 53-61 of current FGA to select one of 512 entries. Each 
entry contains four local-history two-bit saturating counters, one each for the four possible local history 
values contained in the selected BTB entry. The most significant bit of each counter indicates whether the 
branch should be taken or not. The least significant bit of the counter indicates the strength of this 
prediction. A counter is incremented when the branch is resolved as taken or decremented if the branch is 
resolved as not-taken. To speed branch predictor learning, upon invalidation of the PHT, the default values 
of the counters in all entries are: 

— Local not-taken/not-taken: weakly not-taken

— Local not-taken/taken: weakly taken

— Local taken/not-taken: weakly taken

— Local taken/taken: strongly taken

10.4.1.2.3 Segment Target Address Cache (STAC), Segment Target Index
Cache (STIC), and link stack

The BTB contains a bit for each entry that indicates whether the branch is a ‘long’ branch or not. A long 
branch is a branch that occurs to an address for which the upper 32 bits of the branch target differ from the 
upper 32 bits of the address of the branch instruction. The STAC and STIC structures are used to predict 
the upper 32 bits of the target address.
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The STAC structure is an eight-entry array in which each entry contains the upper 32 bits of the target 
address. Entries are allocated in a FIFO manner, but a new entry is only allocated if the unique 32-bit value 
does not already exist in the array. When a branch is taken and considered long, a fully associative lookup 
of the STAC structure is performed to determine if the upper 32 bit target already exists. If it does, the STIC 
entry associated with the branch is updated to point to the found STAC entry.

The STIC is a 128-entry array for which each 3-bit entry points to a STAC entry. The STIC entry is indexed 
by bits 55-61 of the fetch group address.

There are no valid bits for either the STIC or STAC.

The link stack is used to predict function call and function call return branches. The link stack is an 
eight-entry structure that contains the entire 62-bit branch target address (bits 0-61). Note that bits 62-63 
are always zero because branch targets on the e6500 core are always word aligned. In addition, the ls_push 
and ls_pop bits in the BTB entry are used to denote whether the target of the branch was due to a function 
call (ls_push) or a function return (ls_pop). 

On a taken branch for which ls_push is set, NIA+4 (the instruction sequentially after the taken branch) is 
pushed onto the link stack (this will be the target of the function return). On a taken branch for which 
ls_pop is set and the link stack is not empty, the top of the linked stack is popped, and that address is used 
as the predicted target address. 

On a taken branch for which ls_pop is set and the link stack is empty, the target address is taken from the 
BTB entry, essentially providing an additional link stack entry and handling deeply recursive function call 
paths.

10.4.1.2.4 Branch predictor operations controlled by BUCSR

The following branch predictor operations are controlled through BUCSR:

• Branch prediction disabling—BUCSR[BPEN] is used to enable or disable the branch predictor of 
a thread. The branch predictor is enabled when the bit is set and disabled when it is cleared.When 
it is disabled, the branch predictor is not used to predict branch outcomes or targets, and the branch 
predictor is not updated as a result of executing branch. All branch prediction is disabled, including 
predictions of the upper 32 bits of the targets address and any function calls and returns.

• BTB and PHT invalidation—Flash invalidation of the BTB and PHT for a thread are accomplished 
by writing BUCSR[BBFI] with a 0 and then a 1 using the mtspr instructions. Invalidation of the 
PHT causes the default values of the counters in all entries to be set as follows: 

— Local not-taken/not-taken: weakly not-taken

— Local not-taken/taken: weakly taken

— Local taken/not-taken: weakly taken

— Local taken/taken: strongly taken

• Prediction of upper 32 bits of branch target—If BUCSR[STAC_EN] of a thread is set, then the 
upper 32 bits of the branch target address are predicted. STIC and STAC structures are used to 
predict the upper 32 bits of the target address. If BUCSR[BPEN] is not 1, then BUCSR[STAC_EN] 
is ignored and all branch prediction is disabled.
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• Function call and return branches—If BUCSR[LS_EN] of a thread is set, then function call and 
return branches are predicted using the link stack. If BUCSR[BPEN] is not 1, then 
BUCSR[LS_EN] is ignored and all branch prediction is disabled.

10.4.1.2.5 Branch prediction special cases: multiple matches and phantom branches

The e6500 branch prediction hardware for each thread prevents multiple matches for the same fetch 
address by ensuring that an entry is unique when it is allocated. 

Because the BTB and link stack hold effective addresses (not real or physical addresses) associated with 
branch instructions, a phantom branch can occur when a process context switch brings an MMU 
translation that maps a non-branch instruction in the current context to the same effective address as a 
branch instruction for which the BTB has a valid entry. If the phantom branch is predicted taken, 
instruction fetching is redirected to the predicted target address. Later, during execution of the instruction, 
the hardware detects the prediction error and invalidates the BTB entry.

10.4.1.3 Changing LR and CTR in branch instructions

When a branch instruction that sets the LR and decrements the CTR (for example, bdnzl) is executed, the 
instruction is processed as two micro-ops. One micro-op writes the LR, and one micro-op decrements and 
writes the CTR. The micro-op that decrements the CTR is sent to either of the SFX units, and the rest of 
the branch execution and LR update is executed by the branch unit.

10.4.2 Complex and simple unit execution 

The e6500 core has one complex unit (CFX) shared by all threads, and each thread has two simple units 
(SFX0, SFX1). 

The CFX executes multiplies, divides, and move to and from special registers (including PMRs and TMRs) 
other than LR and CTR.

SFX0 and SFX1 execute most logical and integer computational instructions except multiplies and divides. 
SFX0 also executes certain integer computational instructions (such as, popcntx, bpermd, cntlzx) and 
executes move to and from special registers LR and CTR. 
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10.4.2.1 CFX divide execution

Divide latency depends upon the operand data and the size (32- or 64-bit) of the divide and ranges from 4 
to 26 cycles, as shown in the following table.

10.4.2.2 CFX multiply execution

Multiply latency depends on the operand values being multiplied and the type of operation (word or 
doubleword). The minimum latency for a multiply is four cycles and the maximum latency is seven cycles.

Any multiply instruction that uses 32-bit operands, such as mullwx and mulhwx, is fully pipelined and has 
a four-cycle latency with a repeat rate of one. These instructions execute with this latency and repeat rate, 
regardless of the operand values.

Table 10-1. The effect of operands on divide latency

Instruction Condition Latency

divwx,
divwux

rA or rB is 0, or rA < rB 4

For all other cases, the latency is a function of the number of 
predicted significant result bits. The number of predicted 
significant result bits (PBITS) is computed using the number of 
significant dividend bits (NUMBITS) and the number of significant 
divisor bits (DENOMBITS). The number of significant bits is the 
operand size minus a count of the leading zero bits of the 
absolute value of the operand.

Let LZB32(x) = number of leading zero bits of x starting at bit 32;
ABS(x) = absolute value of register x contents

NUMBITS = 32 - LZB32(ABS(rA))
DENOMBITS = 32 - LZB32(ABS(rB))
PBITS = NUMBITS - DENOMBITS + 1

5 + ((PBITS + 1) / 3)

Example:
rA is 0x0f000 (16 significant bits),

rB is 0x07 (3 significant bits),
PBITS = 16 - 3 + 1 = 14

cycles = 5 + ((14 + 1) / 3) = 10

Thus:
0x0f000 divided by 0x07 takes 10 cycles

Max latency:
rA has 32 significant bits (unsigned divide),

rB has 1 significant bit,
PBITS = 32 -1 + 1 = 32

cycles = 5 + ((32 + 1) / 3) = 16

divdx,
divdux

rA or rB is 0, or rA < rB 4

For all other cases, the latency is a function of the number of 
predicted significant result bits. The number of predicted 
significant result bits (PBITS) is computed using the number of 
significant dividend bits (NUMBITS) and the number of significant 
divisor bits (DENOMBITS). The number of significant bits is the 
operand size minus a count of the leading zero bits of the 
absolute value of the operand.

Let LZB(x) = number of leading zero bits of x starting at bit 0;
ABS(x) = absolute value of register x contents

NUMBITS = 64 - LZB(ABS(rA))
DENOMBITS = 64 - LZB(ABS(rB))
PBITS = NUMBITS - DENOMBITS + 1

5 + ((PBITS + 1) / 3)

Example:
rA is 0x0FF_0000_F000 (38 significant bits),

rB is 0x07 (3 significant bits),
PBITS = 38 - 3 + 1 = 36

cycles = 5 + ((36 + 1) / 3) = 17

Thus:
0x0FF_0000_F000 divided by 0x07 takes 17 

cycles

Max latency:
rA has 64 significant bits (unsigned divide),

rB has 1 significant bit,
PBITS = 64 -1 + 1 = 64

cycles = 5 + ((64 + 1) / 3) = 26
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Multiply instructions that use 64-bit operands, such as mulldx, mulli, and mulhdx, depend on the operand 
values to determine latency and repeat rate.

This table shows the latency and repeat rate for multiply instructions.

10.4.2.3 CFX bypass path

The CFX provides a bypass path for divides so the iterative portion of divide execution is performed 
outside of the CFX pipeline, allowing subsequent instructions (except other divides) to execute in the main 

Table 10-2. The effect of operands on multiply latency

Instruction Condition Latency

mullwx,
mulhwx

For all multiply instruction that use 32-bit operands, 
the latency is not a function of the values of the 
operands.

4 cycles, repeat rate of 1

mulli For multiply instructions that use at least one 64-bit 
operand, the latency is a function of whether the 
operand has 31 or less significant bits and the sign of 
the operand. The number of significant bits of an 
operand is the operand size minus a count of the 
leading zero bits of the absolute value of the operand.

Let LZB(x) = number of leading zero bits of x starting 
at bit 0;

A_POS_32 = LZB(rA) > 32 (rA is a positive value with 
31 or less significant bits);
A_NEG_32 = LZB(~rA) > 32 (rA is a negative value 
with 31 or less significant bits);
A_64 = ~A_POS_32 & ~A_NEG_32

When rA is larger than 31 significant digits 
(A_64 = 1):

5 cycles, repeat rate of 2

When rA is 31 significant digits or less and rA 
is positive (A_POS_32 = 1):

4 cycles, repeat rate of 2

When rA is 31 significant digits or less and rA 
is negative (A_NEG_32 = 1):

5 cycles, repeat rate of 2

mulldx,
mulhdx

For multiply instructions that use 64-bit operands, the 
latency is a function of whether the operand has 31 or 
less significant bits and the sign of the operand. The 
number of significant bits of an operand is the 
operand size minus a count of the leading zero bits of 
the absolute value of the operand.

Let LZB(x) = number of leading zero bits of x starting 
at bit 0;

A_POS_32 = LZB(rA) > 32 (rA is a positive value with 
31 or less significant bits);
A_NEG_32 = LZB(~rA) > 32 (rA is a negative value 
with 31 or less significant bits);
A_64 = ~A_POS_32 & ~A_NEG_32

B_POS_32 = LZB(rB) > 32 (rB is a positive value with 
31 or less significant bits);
B_NEG_32 = LZB(~rB) > 32 (rB is a negative value 
with 31 or less significant bits);
B_64 = ~B_POS_32 & ~B_NEG_32

When rB is larger than 31 significant digits 
(B_64 = 1):

7 cycles, repeat rate of 4

When rA is larger than 31 significant digits 
(A_64 = 1) and rB is 31 significant digits or 

less (B_64 = 0):
5 cycles, repeat rate of 2

When rA is larger than 31 significant digits 
(A_64 = 1) and rB is 31 significant digits or 

less (B_64 = 0):
5 cycles, repeat rate of 2

When rA is 31 significant digits or less and rA 
is positive (A_POS_32 = 1) and rB is 31 

significant digits or less (B_64 = 0):
4 cycles, repeat rate of 2

When rA is 31 significant digits or less and rA 
is negative (A_NEG_32 = 1) and rB is 31 

significant digits or less (B_64 = 0):
5 cycles, repeat rate of 2
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CFX pipeline. In general, the bypass path for the divide executes simultaneously with the execution of 
other instructions in the CFX (such as multiply instructions). However, both the normal path and the 
bypass path cannot produce a result on the same cycle. Therefore, if both a multiply and a divide are 
scheduled to produce a result on the same cycle, a bubble is created in the CFX pipeline, effectively stalling 
the CFX pipeline (multiply instructions) from finishing execution in order to create a slot for the divide 
finish execution and write its result on the result bus. The result of the divide instruction is stalled until 
there is a slot available in the CFX pipeline.

A new multiply (or divide) instruction cannot start execution if another multiply is executing and is three 
cycles or less from finishing execution. This affects the repeat rate of multiply instructions that use 
doubleword operands. This is because the currently executing multiply instruction is using the reservation 
station operands until it is 3 cycles or less from finishing execution.

A new divide instruction cannot start execution if another divide is executing.

A new multiply may be stalled for one cycle from starting execution if a divide is executing and the divide 
is within the window of when the divide result and the multiply result could possibly arrive at the same 
cycle. This scheduling helps avoid the condition where the results of both a multiply and divide are 
available in the same cycle, in which case the divide is stalled.

For the e6500 core, the CFX is also used to execute other instructions. These instructions are prevented 
from beginning execution if a multiply or divide instruction requires the result bus on the same cycle as 
the other instruction to write its results. These instructions are the set of all other instructions that are 
executed by CFX, except for multiply and divide instructions. These instructions include move to/from 
SPRs, tlbre, tlbwe, tlbsx, mtpmr, mfpmr, mtmsr, mfmsr, and others. 

10.4.3 AltiVec (vector) execution

AltiVec execution units are shared by all threads and operate on inputs from vector registers (VRs) and 
produce VR outputs. Four execution units comprise the AltiVec execution complex, each unit performing 
different classes of vector execution. The units are:

• VSFX—used for performing simple, one-cycle operations, mostly involving integer vector 
arithmetic or logical operations. CR results for record form of compare instructions (“.” forms) take 
two cycles of latency for the CR results to be visible at the branch unit of the respective thread.

• VFPU—used for performing vector single-precision floating-point operations, usually in six 
cycles fully pipelined.

• VCFX—used for performing more complex integer vector operations involving datapaths that span 
vector element data paths (such as “sum-across” type operations). These generally execute in four 
cycles.

• VPERM—used for performing vector permute, merge, pack, and unpack operations, which also 
span vector element datapaths. These generally execute in two cycles.

AltiVec instructions in each thread are dispatched to a Vector Issue Queue (VIQ), up to two per cycle. 
Instructions can be issued out of order from the bottom two slots of each thread VIQ to one of two 
reservation stations for AltiVec instructions. The corresponding reservation stations of all threads arbitrate 
for their respective execution units. For a given thread the VSFX, VFPU, and VCFX units share a 
reservation station, and the VPERM unit has its own reservation station. Thus, AltiVec instructions can 
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issue an instruction from VIQ slot 0 to either VPERM reservation station or VSFX, VFPU, VCFX 
reservation station and from VIQ slot 1 to the other reservation station (not issued from slot 0).

10.4.4 Load/store execution

Each thread has an LSU that executes instructions that move data between one of the register files (for 
example, GPR, FPR, VPR) and the memory unit of the core composed of the L1 data cache, which is 
shared by all threads and the interfaces to the L2 cache and bus interface units, which are shared by 
multiple cores.

The execution of most load instructions is pipelined in the three LSU stages, during which the effective 
address is calculated, MMU translations are performed, the data cache array and tags are read, and cache 
way selection and data alignment are performed. Cacheable loads, when free of data dependencies and 
bank collisions between threads in the L1 cache, execute in a speculative manner with a maximum 
throughput of one instruction per thread per cycle with a three-cycle latency. Data returned from the cache 
is held in a rename register until the completion logic of the thread commits the value to the thread state. 

If operands are misaligned, additional latency may be incurred either for an alignment exception or for 
additional cache or bus accesses. Table 10-4 gives load and store instruction execution latencies.

AltiVec and floating-point load instructions take a fourth cycle for data reordering.

Stores cannot be executed speculatively and must be held in the store queue until they are known to be 
non-speculative and can be committed, at which point the data cache array is updated. 

10.4.4.1 Effect of operand placement on performance

The location and alignment of operands in memory may affect performance of memory accesses, in some 
cases significantly, as shown in Table 10-3. 

Alignment of memory operands on natural boundaries guarantees the best performance. For the best 
performance across the widest range of implementations, the programmer should assume the performance 
model described in EREF. AltiVec loads and stores are always naturally aligned when accessing the 
memory subsystem.

The effect of alignment on memory operation performance is the same for big- and little-endian addressing 
modes, including load-multiple and store-multiple operations.

Table 10-3. Performance effects of operand placement in memory

Operand  Boundary Crossing1

Size Byte Alignment  None  Cache Line Protection Boundary

8 byte 8
<4

Optimal
Good

—
Good

—
Good

4 byte 4
<4

Optimal
Good

—
Good

—
Good

2 byte 2
<2

Optimal
Good

—
Good

—
Good
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10.5 Instruction latency summary
Instruction latencies are shown in Table 10-4. The execution unit responsible for executing the instruction 
(where it is dispatched) is listed. Instructions that are dispatched to SFX0, SFX1 can go to either execution 
unit. COMP means the instruction is not dispatched to a unit and its execution is directly handled by the 
completion unit.

All latencies assume fairly normal conditions. In general, these are also the best case conditions. Some 
instructions may incur additional stalls based on core and SoC conditions. For example, load and store 
instructions may miss in the L1 cache or attempt to load Guarded Cache Inhibited memory, which may 
incur significant delay because the operation requires the core to retrieve the data from other parts of the 
system connected to the CoreNet interface. Incoming snoops received by the core can also make the cache 
or even the TLB unavailable for instruction use during any given cycle. Such interactions are not described 
here and are beyond the scope of this manual.

Information contained in Table 10-4 does not address all effects of the core pipeline, but is intended as a 
guide for instruction scheduling. Please note the following:

• The latency is execution latency from the point of when the instruction begins execution in an 
execution unit until the execution unit has produced the intended result (that is, when it finishes 
execution).

• Other results of the instruction, such as flags (for example, XER[OV] or the CR result of a “.” 
instruction), may take one extra cycle after execution is finished to be available as inputs to other 
instructions.

• Other cycles taken for things such as instruction fetch, decode, dispatch, and completion are not 
represented in this table.

• The repeat rate specifies how many cycles it takes before another instruction that is dispatched to 
the unit can begin execution. For example, an instruction with a latency of three and a repeat rate 
of one means that, even though it takes three cycles to produce the result, several of these 
instructions back-to-back can produce a result every cycle. This indicates how the particular 
execution unit is pipelined.

• The type of serialization performed on instructions is described in Section 10.3.3.1, “Instruction 
serialization”.

1 byte 1 Optimal — —

lmw, stmw 4
<4

Good
Poor

Good
Poor

Good
Poor

1 “Optimal” means that one effective address (EA) calculation occurs during the memory operation.

“Good” means that multiple EA calculations occur during the operation, which may cause additional cache or 
bus activities with multiple transfers.

“Poor” means that an alignment interrupt is generated by the memory operation.

Table 10-3. Performance effects of operand placement in memory (continued)

Operand  Boundary Crossing1
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Table 10-4. e6500 instruction latencies

Mnemonic
Execution 

Unit(s) Serialization
Repeat Rate 

(cycles)
Latency 
(cycles) Notes

add SFX0, SFX1 — 1 1

add. SFX0, SFX1 — 1 1

addc SFX0, SFX1 — 1 1

addc. SFX0, SFX1 — 1 1

addco SFX0, SFX1 — 2 2

addco. SFX0, SFX1 — 2 2

adde SFX0, SFX1 — 1 1

adde. SFX0, SFX1 — 1 1

addeo SFX0, SFX1 — 2 2

addeo. SFX0, SFX1 — 2 2

addi SFX0, SFX1 — 1 1

addic SFX0, SFX1 — 1 1

addic. SFX0, SFX1 — 1 1

addis SFX0, SFX1 — 1 1

addme SFX0, SFX1 — 1 1

addme. SFX0, SFX1 — 1 1

addmeo SFX0, SFX1 — 2 2

addmeo. SFX0, SFX1 — 2 2

addo SFX0, SFX1 — 2 2

addo. SFX0, SFX1 — 2 2

addze SFX0, SFX1 — 1 1

addze. SFX0, SFX1 — 1 1

addzeo SFX0, SFX1 — 2 2

addzeo. SFX0, SFX1 — 2 2

and SFX0, SFX1 — 1 1

and. SFX0, SFX1 — 1 1

andc SFX0, SFX1 — 1 1

andc. SFX0, SFX1 — 1 1

andi. SFX0, SFX1 — 1 1

andis. SFX0, SFX1 — 1 1

b BU — 1 1

ba BU — 1 1
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bc BU — 1 1

bca BU — 1 1

bcctr BU — 1 1

bcctrl BU — 1 1

bcl BU — 1 1

bcla BU — 1 1

bclr BU — 1 1

bclrl BU — 1 1

bl BU — 1 1

bla BU — 1 1

bpermd SFX0 — 1 1

cmp SFX0, SFX1 — 1 1 or 2 EQ bit is 1 cycle to branch unit; other results are 
2 cycles.

cmpb SFX0, SFX1 — 1 1

cmpi SFX0, SFX1 — 1 1 or 2 EQ bit is 1 cycle to branch unit; other results are 
2 cycles.

cmpl SFX0, SFX1 — 1 1 or 2 EQ bit is 1 cycle; other results are 2 cycles.

cmpli SFX0, SFX1 — 1 1 or 2 EQ bit is 1 cycle; other results are 2 cycles.

cntlzd SFX0 — 1 1

cntlzd. SFX0 — 1 1

cntlzw SFX0 — 1 1

cntlzw. SFX0 — 1 1

crand BU — 1 1

crandc BU — 1 1

creqv BU — 1 1

crnand BU — 1 1

crnor BU — 1 1

cror BU — 1 1

crorc BU — 1 1

crxor BU — 1 1

dcba LSU Store 1 3

dcbal LSU Store 1 3

dcbf LSU Store 1 3

Table 10-4. e6500 instruction latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes
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dcbfep LSU Store 1 3

dcbi LSU Store 1 3

dcblc LSU Store 1 3

dcblq. LSU Store 1 3

dcbst LSU Store 1 3

dcbstep LSU Store 1 3

dcbt LSU — 1 3

dcbtep LSU — 1 3

dcbtls LSU Store 1 3

dcbtst LSU — 1 3

dcbtstep LSU — 1 3

dcbtstls LSU Store 1 3

dcbz LSU Store 1 3

dcbzep LSU Store 1 3

dcbzl LSU Store 1 3

dcbzlep LSU Store 1 3

divd CFX — 4 to 26 4 to 26 See Section 10.4.2.1, “CFX divide execution.”

divd. CFX — 4 to 26 4 to 26 See Section 10.4.2.1, “CFX divide execution.”

divdo CFX — 4 to 26 4 to 26 See Section 10.4.2.1, “CFX divide execution.”

divdo. CFX — 4 to 26 4 to 26 See Section 10.4.2.1, “CFX divide execution.”

divdu CFX — 4 to 26 4 to 26 See Section 10.4.2.1, “CFX divide execution.”

divdu. CFX — 4 to 26 4 to 26 See Section 10.4.2.1, “CFX divide execution.”

divduo CFX — 4 to 26 4 to 26 See Section 10.4.2.1, “CFX divide execution.”

divduo. CFX — 4 to 26 4 to 26 See Section 10.4.2.1, “CFX divide execution.”

divw CFX — 4 to 16 4 to 16 See Section 10.4.2.1, “CFX divide execution.”

divw. CFX — 4 to 16 4 to 16 See Section 10.4.2.1, “CFX divide execution.”

divwo CFX — 4 to 16 4 to 16 See Section 10.4.2.1, “CFX divide execution.”

divwo. CFX — 4 to 16 4 to 16 See Section 10.4.2.1, “CFX divide execution.”

divwu CFX — 4 to 16 4 to 16 See Section 10.4.2.1, “CFX divide execution.”

divwu. CFX — 4 to 16 4 to 16 See Section 10.4.2.1, “CFX divide execution.”

divwuo CFX — 4 to 16 4 to 16 See Section 10.4.2.1, “CFX divide execution.”

divwuo. CFX — 4 to 16 4 to 16 See Section 10.4.2.1, “CFX divide execution.”

Table 10-4. e6500 instruction latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes
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dnh COMP Refetch — — The dnh instruction executes during completion 
and is not dispatched to an execution unit.

dni COMP Refetch — — The dni instruction executes during completion 
and is not dispatched to an execution unit.

dsn LSU Store 1 3

dss — — — — This instruction is treated as a no-op.

dssall — — — — This instruction is treated as a no-op.

dst — — — — This instruction is treated as a no-op.

dstst — — — — This instruction is treated as a no-op.

dststt — — — — This instruction is treated as a no-op.

dstt — — — — This instruction is treated as a no-op.

ehpriv COMP Refetch — — The ehpriv instruction executes during 
completion and is not dispatched to an execution 
unit.

eqv SFX0, SFX1 — 1 1

eqv. SFX0, SFX1 — 1 1

extsb SFX0, SFX1 — 1 1

extsb. SFX0, SFX1 — 1 1

extsh SFX0, SFX1 — 1 1

extsh. SFX0, SFX1 — 1 1

extsw SFX0, SFX1 — 1 1

extsw. SFX0, SFX1 — 1 1

fabs FPU — 1 7

fabs. FPU — 1 7

fadd FPU — 1 7

fadd. FPU — 1 7

fadds FPU — 1 7

fadds. FPU — 1 7

fcfid FPU — 1 7

fcfid. FPU — 1 7

fcmpo FPU — 1 7

fcmpu FPU — 1 7

fctid FPU — 1 7

fctid. FPU — 1 7

Table 10-4. e6500 instruction latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes
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fctidz FPU — 1 7

fctidz. FPU — 1 7

fctiw FPU — 1 7

fctiw. FPU — 1 7

fctiwz FPU — 1 7

fctiwz. FPU — 1 7

fdiv FPU — 2 or 31 7 or 35 Lower repeat rate and latency when dividend is 
0, divisor is 0 or either is a NaN or Infinity.

fdiv. FPU — 2 or 31 7 or 35 Lower repeat rate and latency when dividend is 
0, divisor is 0 or either is a NaN or Infinity.

fdivs FPU — 2 or 16 7 or 20 Lower repeat rate and latency when dividend is 
0, divisor is 0 or either is a NaN or Infinity.

fdivs. FPU — 2 or 16 7 or 20 Lower repeat rate and latency when dividend is 
0, divisor is 0 or either is a NaN or Infinity.

fmadd FPU — 1 7

fmadd. FPU — 1 7

fmadds FPU — 1 7

fmadds. FPU — 1 7

fmr FPU — 1 7

fmr. FPU — 1 7

fmsub FPU — 1 7

fmsub. FPU — 1 7

fmsubs FPU — 1 7

fmsubs. FPU — 1 7

fmul FPU — 1 7

fmul. FPU — 1 7

fmuls FPU — 1 7

fmuls. FPU — 1 7

fnabs FPU — 1 7

fnabs. FPU — 1 7

fneg FPU — 1 7

fneg. FPU — 1 7

fnmadd FPU — 1 7

fnmadd. FPU — 1 7

Table 10-4. e6500 instruction latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes
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fnmadds FPU — 1 7

fnmadds. FPU — 1 7

fnmsub FPU — 1 7

fnmsub. FPU — 1 7

fnmsubs FPU — 1 7

fnmsubs. FPU — 1 7

fres FPU — 2 8

fres. FPU — 2 8

frsp FPU — 1 7

frsp. FPU — 1 7

frsqrte FPU — 2 8

frsqrte. FPU — 2 8

fsel FPU — 1 7

fsel. FPU — 1 7

fsub FPU — 1 7

fsub. FPU — 1 7

fsubs FPU — 1 7

fsubs. FPU — 1 7

icbi LSU Store 1 3

icbiep LSU Store 1 3

icblc LSU Store 1 3

icblq. LSU Store 1 3

icbt LSU — 1 3 Note icbt with CT = 0, is treated as a no-op.

icbtls LSU Presync, postsync 1 3 Actual latency and repeat rate are likely much 
larger.

isel SFX0, SFX1 — 1 1

isync COMP Refetch 1 1

lbarx LSU Presync 3 3

lbdx LSU — — — Decorated loads are normally performed as 
Guarded and CI so latency/repeat rate is system 
driven.

lbepx LSU — 1 3

lbz LSU — 1 3

Table 10-4. e6500 instruction latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes
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lbzu LSU — 1 3

lbzux LSU — 1 3

lbzx LSU — 1 3

ld LSU — 1 3

ldarx LSU Presync 3 3

ldbrx LSU — 1 3

lddx LSU — — —

ldepx LSU — 1 3

ldu LSU — 1 3

ldux LSU — 1 3

ldx LSU — 1 3

lfd LSU — 1 4

lfddx LSU — — — Decorated loads are normally performed as 
Guarded and CI so latency/repeat rate is system 
driven.

lfdepx LSU — 1 4

lfdu LSU — 1 4

lfdux LSU — 1 4

lfdx LSU — 1 4

lfs LSU — 1 4

lfsu LSU — 1 4

lfsux LSU — 1 4

lfsx LSU — 1 4

lha LSU — 1 3

lharx LSU Presync 3 3

lhau LSU — 1 3

lhaux LSU — 1 3

lhax LSU — 1 3

lhbrx LSU — 1 3

lhdx LSU — — — Decorated loads are normally performed as 
Guarded and CI so latency/repeat rate is system 
driven.

lhepx LSU — 1 3

lhz LSU — 1 3

Table 10-4. e6500 instruction latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)
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(cycles)

Notes
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lhzu LSU — 1 3

lhzux LSU — 1 3

lhzx LSU — 1 3

lmw LSU — r + 3 r + 3 r indicates the number of register loaded. lmw 
actually stalls in decode while completion queue 
entries are allocated for it each cycle.

lvebx LSU — 1 4

lvehx LSU — 1 4

lvewx LSU — 1 4

lvexbx LSU — 1 4

lvexhx LSU — 1 4

lvexwx LSU — 1 4

lvtlx LSU — 1 4

lvtlxl LSU — 1 4

lvtrx LSU — 1 4

lvtrxl LSU — 1 4

lvsl LSU — 1 4

lvsm LSU — 1 4

lvsr LSU — 1 4

lvswx LSU — 1 4

lvswxl LSU — 1 4

lvx LSU — 1 4

lvxl LSU — 1 4

lwa LSU — 1 3

lwarx LSU Presync 3 3

lwaux LSU — 1 3

lwax LSU — 1 3

lwbrx LSU — 1 3

lwdx LSU — — — Decorated loads are normally performed as 
Guarded and CI so latency/repeat rate is system 
driven.

lwepx LSU — 1 3

lwz LSU — 1 3

lwzu LSU — 1 3

Table 10-4. e6500 instruction latencies (continued)

Mnemonic
Execution 

Unit(s)
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lwzux LSU — 1 3

lwzx LSU — 1 3

mbar LSU Store 1 3 In general, mbar takes several more cycles to 
perform the ordering.

mcrf BU — 1 1

mcrfs FPU — 1 7

mcrxr BU Presync, postsync 1 1

mfcr CFX Move-from 5 5

mffs FPU — 1 7

mffs. FPU — 1 7

mfmsr CFX — 4 4

mfocrf SFX0, SFX1 1 1

mfpmr CFX — 4 4

mfspr
(CTR)

SFX0, SFX1 — 1 1 CTR is fully renamed.

mfspr
(DBSR)

CFX Presync, postsync 4 4

mfspr
(LR)

SFX0, SFX1 — 1 1 LR is fully renamed.

mfspr
(other)

CFX — 4 4

mfspr
(XER)

CFX Move-from 5 5

mftmr CFX Move-from 5 5

mftb CFX — 4 4

mfvscr VFPU Unit 5 2

miso LSU — 1 3

msgclr CFX Move-to 1 1

msgsnd LSU Store 1 3

mtcrf CFX Presync, postsync, 
move-to

4 2 If only single field is moved, latency and repeat 
rate is same as mtocrf, and there is no 
serialization.

mtfsb0 FPU Unit 7 7

mtfsb0. FPU Unit 7 7

mtfsb1 FPU Unit 7 7

Table 10-4. e6500 instruction latencies (continued)
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Unit(s)
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mtfsb1. FPU Unit 7 7

mtfsf FPU Unit 7 7

mtfsf. FPU Unit 7 7

mtfsfi FPU Unit 7 7

mtfsfi. FPU Unit 7 7

mtmsr CFX Presync, postsync, 
move-to

4 2

mtocrf CFX — 1 1

mtpmr CFX Move-to 1 1

mtspr
(CTR)

SFX0, SFX1 — 1 1 CTR is fully renamed.

mtspr
(DBCR0,
DBSR, or
DBSRWR)

CFX Presync, postsync, 
move-to

4 2

mtspr
(LR)

SFX0, SFX1 — 1 1 LR is fully renamed.

mtspr
(NPIDR)

CFX Postsync, move-to 4 2

mtspr
(other)

CFX Move-to 1 1

mtspr
(PID)

CFX Presync, postsync, 
move-to

4 2

mtspr
(XER)

CFX Postsync, move-to 4 2

mttmr CFX Postsync, move-to 4 2

mtvscr VFPU Unit 5 2

mulhd CFX — 2 to 4 4 to 7 See Section 10.4.2.2, “CFX multiply execution.”

mulhd. CFX — 2 to 4 4 to 7 See Section 10.4.2.2, “CFX multiply execution.”

mulhdu CFX — 2 to 4 4 to 7 See Section 10.4.2.2, “CFX multiply execution.”

mulhdu. CFX — 2 to 4 4 to 7 See Section 10.4.2.2, “CFX multiply execution.”

mulhw CFX — 1 4 See Section 10.4.2.2, “CFX multiply execution.”

mulhw. CFX — 1 4 See Section 10.4.2.2, “CFX multiply execution.”

mulhwu CFX — 1 4 See Section 10.4.2.2, “CFX multiply execution.”

mulhwu. CFX — 1 4 See Section 10.4.2.2, “CFX multiply execution.”

mulld CFX — 2 to 4 4 to 7 See Section 10.4.2.2, “CFX multiply execution.”

Table 10-4. e6500 instruction latencies (continued)
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mulld. CFX — 2 to 4 4 to 7 See Section 10.4.2.2, “CFX multiply execution.”

mulldo CFX — 2 to 4 4 to 7 See Section 10.4.2.2, “CFX multiply execution.”

mulldo. CFX — 2 to 4 4 to 7 See Section 10.4.2.2, “CFX multiply execution.”

mulli CFX — 2 4 or 5 See Section 10.4.2.2, “CFX multiply execution.”

mullw CFX — 1 4 See Section 10.4.2.2, “CFX multiply execution.”

mullw. CFX — 1 4 See Section 10.4.2.2, “CFX multiply execution.”

mullwo CFX — 1 4 See Section 10.4.2.2, “CFX multiply execution.”

mullwo. CFX — 1 4 See Section 10.4.2.2, “CFX multiply execution.”

mvidsplt LSU — 1 4

mviwsplt LSU — 1 4

nand SFX0, SFX1 — 1 1

nand. SFX0, SFX1 — 1 1

neg SFX0, SFX1 — 1 1

neg. SFX0, SFX1 — 1 1

nego SFX0, SFX1 — 2 2

nego. SFX0, SFX1 — 2 2

nor SFX0, SFX1 — 1 1

nor. SFX0, SFX1 — 1 1

or SFX0, SFX1 — 1 1

or. SFX0, SFX1 — 1 1

orc SFX0, SFX1 — 1 1

orc. SFX0, SFX1 — 1 1

ori SFX0, SFX1 — 1 1

oris SFX0, SFX1 — 1 1

popcntb SFX0 — 2 2

popcntd SFX0 — 2 2

popcntw SFX0 — 2 2

prtyd SFX0, SFX1 — 1 1

prtyw SFX0, SFX1 — 1 1

rfci COMP Refetch — — Return-from-interrupt instructions execute 
during completion and are not dispatched to an 
execution unit.

Table 10-4. e6500 instruction latencies (continued)
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rfdi COMP Refetch — — Return-from-interrupt instructions execute 
during completion and are not dispatched to an 
execution unit.

rfgi COMP Refetch — — Return-from-interrupt instructions execute 
during completion and are not dispatched to an 
execution unit.

rfi COMP Refetch — — Return-from-interrupt instructions execute 
during completion and are not dispatched to an 
execution unit.

rfmci COMP Refetch — — Return-from-interrupt instructions execute 
during completion and are not dispatched to an 
execution unit.

rldcl SFX0, SFX1 — 2 2

rldcl. SFX0, SFX1 — 2 2

rldcr SFX0, SFX1 — 2 2

rldcr. SFX0, SFX1 — 2 2

rldic SFX0, SFX1 — 1 1

rldic. SFX0, SFX1 — 1 1

rldicl SFX0, SFX1 — 1 1

rldicl. SFX0, SFX1 — 1 1

rldicr SFX0, SFX1 — 1 1

rldicr. SFX0, SFX1 — 1 1

rldimi SFX0, SFX1 — 1 1

rldimi. SFX0, SFX1 — 1 1

rlwimi SFX0, SFX1 — 1 1

rlwimi. SFX0, SFX1 — 1 1

rlwinm SFX0, SFX1 — 1 1

rlwinm. SFX0, SFX1 — 1 1

rlwnm SFX0, SFX1 — 2 2

rlwnm. SFX0, SFX1 — 2 2

sc COMP Refetch — — The sc instruction executes during completion 
and is not dispatched to an execution unit.

sld SFX0, SFX1 — 2 2

sld. SFX0, SFX1 — 2 2

slw SFX0, SFX1 — 2 2

slw. SFX0, SFX1 — 2 2
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srad SFX0, SFX1 — 2 2

srad. SFX0, SFX1 — 2 2

sradi SFX0, SFX1 — 1 1

sradi. SFX0, SFX1 — 1 1

sraw SFX0, SFX1 — 2 2

sraw. SFX0, SFX1 — 2 2

srawi SFX0, SFX1 — 1 1

srawi. SFX0, SFX1 — 1 1

srd SFX0, SFX1 — 2 2

srd. SFX0, SFX1 — 2 2

srw SFX0, SFX1 — 2 2

srw. SFX0, SFX1 — 2 2

stb LSU Store 1 3

stbcx. LSU Presync, postsync, 
store

1 3

stbdx LSU Store 1 3

stbepx LSU Store 1 3

stbu LSU Store 1 3

stbux LSU Store 1 3

stbx LSU Store 1 3

std LSU Store 1 3

stdbrx LSU Store 1 3

stdcx. LSU Presync, postsync, 
store

1 3

stddx LSU Store 1 3

stdepx LSU Store 1 3

stdu LSU Store 1 3

stdux LSU Store 1 3

stdx LSU Store 1 3

stfd LSU Store 1 3

stfddx LSU Store 1 3

stfdepx LSU Store 1 3

stfdu LSU Store 1 3
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stfdux LSU Store 1 3

stfdx LSU Store 1 3

stfiwx LSU Store 1 3

stfs LSU Store 1 3

stfsu LSU Store 1 3

stfsux LSU Store 1 3

stfsx LSU Store 1 3

sth LSU Store 1 3

sthbrx LSU Store 1 3

sthcx. LSU Presync, postsync, 
store

1 3

sthdx LSU Store 1 3

sthepx LSU Store 1 3

sthu LSU Store 1 3

sthux LSU Store 1 3

sthx LSU Store 1 3

stmw LSU Store r + 1 r + 3 r indicates the number of register stored. stmw 
actually stalls in decode while completion queue 
entries are allocated for it each cycle.

stvebx LSU — 1 4

stvehx LSU — 1 4

stvewx LSU — 1 4

stvexbx LSU — 1 4

stvexhx LSU — 1 4

stvexwx LSU — 1 4

stvflx LSU — 1 4

stvflxl LSU — 1 4

stvfrx LSU — 1 4

stvfrxl LSU — 1 4

stvswx LSU — 1 4

stvswxl LSU — 1 4

stvx LSU — 1 4

stvxl LSU — 1 4
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stw LSU Store 1 3

stwbrx LSU Store 1 3

stwcx. LSU Presync, postsync, 
store

1 3

stwdx LSU Store 1 3

stwepx LSU Store 1 3

stwu LSU Store 1 3

stwux LSU Store 1 3

stwx LSU Store 1 3

subf SFX0, SFX1 — 1 1

subf. SFX0, SFX1 — 1 1

subfc SFX0, SFX1 — 1 1

subfc. SFX0, SFX1 — 1 1

subfco SFX0, SFX1 — 2 2

subfco. SFX0, SFX1 — 2 2

subfe SFX0, SFX1 — 1 1

subfe. SFX0, SFX1 — 1 1

subfeo SFX0, SFX1 — 2 2

subfeo. SFX0, SFX1 — 2 2

subfic SFX0, SFX1 — 1 1

subfme SFX0, SFX1 — 1 1

subfme. SFX0, SFX1 — 1 1

subfmeo SFX0, SFX1 — 2 2

subfmeo. SFX0, SFX1 — 2 2

subfo SFX0, SFX1 — 2 2

subfo. SFX0, SFX1 — 2 2

subfze SFX0, SFX1 — 1 1

subfze. SFX0, SFX1 — 1 1

subfzeo SFX0, SFX1 — 2 2

subfzeo. SFX0, SFX1 — 2 2

sync
(msync)

LSU Postsync, store 1 3 In general, sync takes several more cycles to 
perform the ordering.

td SFX0 — 2 2
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tdi SFX0 — 2 2

tlbilx LSU — 1 or 128 3 or 131 When T = 0 or T = 1, tlbilx requires 131 cycles 
latency and 128 cycles of repeat rate.

tlbivax LSU — 1 3

tlbre CFX Presync, postsync, 
move-to

4 2

tlbsx CFX Presync, postsync, 
move-to

4 2

tlbsync LSU Store 1 3

tlbwe CFX Presync, postsync, 
move-to

4 2

tw SFX0 — 2 2

twi SFX0 — 2 2

vabsdub VSFX — 1 1

vabsduh VSFX — 1 1

vabsduw VSFX — 1 1

vaddcuw VSFX — 1 1

vaddfp VFPU — 1 6

vaddsbs VSFX — 1 1

vaddshs VSFX — 1 1

vaddsws VSFX — 1 1

vaddubm VSFX — 1 1

vaddubs VSFX — 1 1

vadduhm VSFX — 1 1

vadduhs VSFX — 1 1

vadduwm VSFX — 1 1

vadduws VSFX — 1 1

vand VSFX — 1 1

vandc VSFX — 1 1

vavgsb VSFX — 1 1

vavgsh VSFX — 1 1

vavgsw VSFX — 1 1

vavgub VSFX — 1 1

vavguh VSFX — 1 1
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vavguw VSFX — 1 1

vcfsx VFPU — 1 6

vcfux VFPU — 1 6

vcmpbfp VPERM — 1 2

vcmpbfp. VPERM — 1 2 CR result is 2 cycle latency to Branch unit.

vcmpeqfp VPERM — 1 2

vcmpeqfp. VPERM — 1 2 CR result is 2 cycle latency to Branch unit.

vcmpequb VSFX — 1 1

vcmpequb. VSFX — 1 1 CR result is 2 cycle latency to Branch unit.

vcmpequh VSFX — 1 1

vcmpequh. VSFX — 1 1 CR result is 2 cycle latency to Branch unit.

vcmpequw VSFX — 1 1

vcmpequw. VSFX — 1 1 CR result is 2 cycle latency to Branch unit.

vcmpgefp VPERM — 1 2

vcmpgefp. VPERM — 1 2 CR result is 2 cycle latency to Branch unit.

vcmpgtfp VPERM — 1 2

vcmpgtfp. VPERM — 1 2 CR result is 2 cycle latency to Branch unit.

vcmpgtsb VSFX — 1 1

vcmpgtsb. VSFX — 1 1 CR result is 2 cycle latency to Branch unit.

vcmpgtsh VSFX — 1 1

vcmpgtsh. VSFX — 1 1 CR result is 2 cycle latency to Branch unit.

vcmpgtsw VSFX — 1 1

vcmpgtsw. VSFX — 1 1 CR result is 2 cycle latency to Branch unit.

vcmpgtub VSFX — 1 1

vcmpgtub. VSFX — 1 1 CR result is 2 cycle latency to Branch unit.

vcmpgtuh VSFX — 1 1

vcmpgtuh. VSFX — 1 1 CR result is 2 cycle latency to Branch unit.

vcmpgtuw VSFX — 1 1

vcmpgtuw. VSFX — 1 1 CR result is 2 cycle latency to Branch unit.

vctsxs VFPU — 1 6

vctuxs VFPU — 1 6

vexptefp VFPU — 1 6
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vlogefp VFPU — 1 6

vmaddfp VFPU — 1 6

vmaxfp VPERM — 1 2

vmaxsb VSFX — 1 1

vmaxsh VSFX — 1 1

vmaxsw VSFX — 1 1

vmaxub VSFX — 1 1

vmaxuh VSFX — 1 1

vmaxuw VSFX — 1 1

vmhaddshs VCFX — 1 4

vmhraddshs VCFX — 1 4

vminfp VPERM — 1 2

vminsb VSFX — 1 1

vminsh VSFX — 1 1

vminsw VSFX — 1 1

vminub VSFX — 1 1

vminuh VSFX — 1 1

vminuw VSFX — 1 1

vmladduhm VCFX — 1 4

vmrghb VPERM — 1 2

vmrghh VPERM — 1 2

vmrghw VPERM — 1 2

vmrglb VPERM — 1 2

vmrglh VPERM — 1 2

vmrglw VPERM — 1 2

vmsummbm VCFX — 1 4

vmsumshm VCFX — 1 4

vmsumshs VCFX — 1 4

vmsumubm VCFX — 1 4

vmsumuhm VCFX — 1 4

vmsumuhs VCFX — 1 4

vmulesb VCFX — 1 4
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vmulesh VCFX — 1 4

vmuleub VCFX — 1 4

vmuleuh VCFX — 1 4

vmulosb VCFX — 1 4

vmulosh VCFX — 1 4

vmuloub VCFX — 1 4

vmulouh VCFX — 1 4

vnmsubfp VFPU — 1 6

vnor VSFX — 1 1

vor VSFX — 1 1

vperm VPERM — 1 2

vpkpx VPERM — 1 2

vpkshss VPERM — 1 2

vpkshus VPERM — 1 2

vpkswss VPERM — 1 2

vpkswus VPERM — 1 2

vpkuhum VPERM — 1 2

vpkuhus VPERM — 1 2

vpkuwum VPERM — 1 2

vpkuwus VPERM — 1 2

vrefp VFPU — 2 7

vrfim VFPU — 1 6

vrfin VFPU — 1 6

vrfip VFPU — 1 6

vrfiz VFPU — 1 6

vrlb VSFX — 1 1

vrlh VSFX — 1 1

vrlw VSFX — 1 1

vrsqrtefp VFPU — 2 7

vsel VSFX — 1 1

vsl VPERM — 1 2

vslb VSFX — 1 1

Table 10-4. e6500 instruction latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes



Execution Timing

e6500 Core Reference Manual, Rev 0

10-44 Freescale Semiconductor
 

vsldoi VPERM — 1 2

vslh VSFX — 1 1

vslo VPERM — 1 2

vslw VSFX — 1 1

vspltb VPERM — 1 2

vsplth VPERM — 1 2

vspltisb VPERM — 1 2

vspltish VPERM — 1 2

vspltisw VPERM — 1 2

vspltw VPERM — 1 2

vsr VPERM — 1 2

vsrab VSFX — 1 1

vsrah VSFX — 1 1

vsraw VSFX — 1 1

vsrb VSFX — 1 1

vsrh VSFX — 1 1

vsro VPERM — 1 2

vsrw VSFX — 1 1

vsubcuw VSFX — 1 1

vsubfp VFPU — 1 6

vsubsbs VSFX — 1 1

vsubshs VSFX — 1 1

vsubsws VSFX — 1 1

vsububm VSFX — 1 1

vsububs VSFX — 1 1

vsubuhm VSFX — 1 1

vsubuhs VSFX — 1 1

vsubuwm VSFX — 1 1

vsubuws VSFX — 1 1

vsum2sws VCFX — 1 4

vsum4sbs VCFX — 1 4

vsum4shs VCFX — 1 4
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10.6 Instruction scheduling guidelines
This section provides an overview of instruction scheduling guidelines, followed by detailed examples 
showing how to optimize scheduling with respect to various pipeline stages. Performance can be improved 
by avoiding resource conflicts and scheduling instructions to take full advantage of the parallel execution 
units. Instruction scheduling can be improved by observing the following guidelines:

• To reduce branch mispredictions, separate the instruction that sets CR bits from the branch 
instruction that evaluates them. Because there can be no more than 28 instructions in each thread 
(with the instruction that sets CR in CQ0 and the dependent branch instruction in IQ11), there is 
no advantage to having more than 26 instructions between them.

• When branching to a location specified by the CTR or LR, separate the mtspr instruction that 
initializes the CTR or LR from the dependent branch instruction. This ensures the register values 
are immediately available to the branch instruction.

• Schedule instructions so two can be dispatched at a time.

• Schedule instructions to minimize stalls due to busy execution units. 

• Avoid scheduling high-latency instructions close together. Interspersing single-cycle latency 
instructions between longer-latency instructions minimizes the effect that instructions such as 
integer divide can have on throughput. 

vsum4ubs VCFX — 1 4

vsumsws VCFX — 1 4

vupkhpx VPERM — 1 2

vupkhsb VPERM — 1 2

vupkhsb VPERM — 1 2

vupklpx VPERM — 1 2

vupklsb VPERM — 1 2

vupklsh VPERM — 1 2

vxor VSFX — 1 1

wait COMP Refetch — — The wait instruction executes during completion 
and is not dispatched to an execution unit.

wrtee CFX Move-to, postsync 4 2

wrteei CFX Move-to, postsync 4 2

xor SFX0, SFX1 — 1 1

xor. SFX0, SFX1 — 1 1

xori SFX0, SFX1 — 1 1

xoris SFX0, SFX1 — 1 1
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• Avoid using serializing instructions.

• Schedule instructions to avoid dispatch stalls. As many as 16 instructions can be assigned CR and 
GPR renames and can be assigned CQ entries; therefore, 16 instructions can be in the execute 
stages at any one time. (Note the exception, however, of load or store with update instructions, 
which are broken into two instructions at dispatch.)

• Avoid branches where possible; favor using isel over not-taken branches over taken branches.

• Lay out your instruction effective address space such that there are not large numbers of 4 GB 
chunks being used simultaneously. The branch predictor predicts the upper 32-bits of the fetch 
address for branches and can keep only eight simultaneous upper 32-bit values.
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Chapter 11  
Core and Cluster Software Initialization Requirements
This chapter describes the steps software should perform at boot time (that is, after power-on reset has 
occurred) to properly initialize the e6500 cluster, each of the cores in the cluster, and each thread 
(processor) within each core.

One thread of one core is generally used to execute the software used to initialize both its own core and 
resources that are shared by all cores within its cluster. In a device that integrates more than one e6500 
cluster, the same thread can initialize non-core resources in the other e6500 cluster(s) and other parts of 
the integrated device. After completing initialization of the cluster(s) and integrated device, the thread 
signals the integrated device to allow software execution by other cores. One thread of every other core 
then executes the software required to initialize its core and the other thread in its core. There are other 
requirements for software to initialize areas outside of the core and its cluster (for example, other e6500 
clusters and remainder of an integrated device), which are not addressed here. See the integrated device 
reference manual for more information.

11.1 Core and cluster state and software initialization after reset
The state of each area of the cluster and each core within the cluster is presented with respect to how it is 
initially set after a reset has occurred and what actions software should perform to properly initialize the 
core and cluster. Note that, in general, the boot loader software performs most of these actions. Thus, 
operating systems or hypervisors generally start execution with this state appropriately initialized.

11.2 MMU state
At reset, the valid bit (TLB[V]) of every entry in both TLB0 and TLB1 of the MMU is set to 0 (invalid) 
except for the initial boot page, which is described in Section 6.7, “TLB and LRAT states after reset.” In 
addition, all instruction and data L1MMU entries are invalidated. No other information in the invalid TLB 
entries is initialized. If later software depends on certain fields in TLB entries to be set to known values, 
software must write those values by individually writing the fields of the TLB entries to the required 
values.

11.3 Thread state
At reset, thread 0 of each core is enabled and begins execution at 0xFFFFFFFC. Software executed by 
thread 0 should perform core initialization and then may set the initial starting execution address and MSR 
of the other thread(s) by writing the appropriate INIA and IMSR before enabling thread 1 to execute by 
writing TENS.
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Note that, generally, only one core in an integrated device is allowed by the integrated device to fetch 
instructions until software running on that core configures the integrated device to allow other cores to 
proceed. See the integrated device reference manual for more information.

11.4 Core register state

11.4.1 GPRs

At reset, GPRs may contain random values that may differ from core to core or may differ from reset to 
reset. Practically, a GPR should not be used as a source input until it has been previously set to a value by 
software. However, to aid in debugging boot software, the GPRs should be set to known values (for 
example, 0) after reset. Zeroing the GPRs can be accomplished by performing an xor instruction for each 
register using the same register as the rA, rS, and rB operands:

xor r0,r0,r0 // set r0 to 0
xor r1,r1,r1 // set r1 to 0
... // do for all 32 GPRs

11.4.2 FPRs

At reset, the FPU is disabled, and the FPRs may contain random values that may differ from core to core 
or may differ from reset to reset. Practically, an FPR should not be used as a source input until it has been 
previously set to a value by software. However, FPRs contain hidden tag bits that describe the type of 
information that the FPR holds, and using an FPR that has never been properly initialized may give 
unpredictable results. Therefore, the FPRs should be set to known values immediately after the FPU has 
been enabled after reset. This can be accomplished by loading the FPRs with a known value from memory. 

Note that loading the FPRs from memory may not be able to be performed until later in the boot process 
or possibly at the start of the operating system or hypervisor, when software has properly initialized 
memory. The following code sequence can be used to enable the FPU and clear the FPRs, assuming that 
r3 points to a doubleword aligned scratch memory location:

mfmsr r5 // get current MSR
xor r4,r4,r4 // set r4 to 0
ori r4,r5,0x2000 // set MSR[FP]
mtmsr r4
isync
xor r4,r4,r4 // set to 0
stw r4,0(r3) // clear first word of memory location
stw r4,4(r3) // clear second word of memory location
lfd fr0,0(r3) // set fr0 to 0
fmr fr1,fr0 // set fr1 to 0
fmr fr2,fr0 // set fr2 to 0
... // set rest of FPRs using fmr from r0
mtmsr r5 // restore MSR (turn off FP if desired)
isync
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11.4.3 VRs

At reset, the AltiVec unit is disabled and the VRs may contain random values that may differ from core to 
core or may differ from reset to reset. Practically, an VR should not be used as a source input until it has 
been previously set to a value by software. However, to aid in debugging boot software, the VRs should be 
set to known values immediately after the AltiVec unit is enabled after reset. This can be accomplished by 
loading the VPRs with a known value from either a GPR or memory. If the desired known value for all 
VPRs is 0, the following code sequence can be used: 

mfmsr r5 // get current MSR
xor r4,r4,r4 // set r4 to 0
oris r4,r5,0x0200 // set MSR[SPV]
mtmsr r4
isync
vxor v0,v0,v0 // set to 0
vxor v1,v1,v1 // set to 0
... // do for all 32 vector registers
mtmsr r5 // restore MSR (turn off SPV if desired)
isync

11.4.4 SPRs

At reset, SPRs are generally set to 0, except for certain SPRs that contain either configuration values or 
that reflect special state out of reset. Writable SPRs that have initial values other than 0 out of reset are 
shown in the following table.

Table 11-1. SPRs and TMRs with non-zero reset values

SPR Description of Non-Zero Reset Values

CDCSR0 Set to configuration information denoting presence of Floating-Point capability and presence and 
state of AltiVec facility.

CIR Set to a unique identifier of the integrated device distinct from other SoC products and versions of 
the same SoC from Freescale Semiconductor. This value is set from signal inputs from the 
integrated device. All cores in the integrated device contain the same value. This register is an alias 
to SVR.

DBSR DBSR[MRR] is set to reflect the most recent reset, which after a hard reset will be 0b10.

EPTCFG Set to configuration information describing the pagetable capabilities and organization.

INIA0, INIA1 Set to 0xFFFFFFFC.

L1CFG0 Set to configuration information describing the L1 cache capabilities and organization.

L1CFG1 Set to configuration information describing the L1 cache capabilities and organization.

LRATCFG Set to configuration information describing the LRAT capabilities and organization.

LRATPS Set to configuration information describing the LRAT page size availability.

MMUCFG Set to configuration information describing the MMU capabilities and organization.

PIR Set to a unique identifier of the core distinct from other cores in the system. This value is set from 
signal inputs from the integrated device. The initial value reflects the core’s location in the device’s 
topology and all cores in an integrated device contain unique values for that device.

PVR Set to a value which can identify the version of the core from other Power Architecture cores.
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Other SPRs need to be set up by software, particularly those SPRs that enable and control various aspects 
about how the core operates.

This table lists SPRs for which software should initialize to appropriate values at boot time.

11.4.5 MSR, FPSCR, and VSCR

At reset, the MSR, FPSCR, and VSCR of each thread are set to 0. The FPSCR and VSCR do not require 
initialization and can be set at a later time before floating-point or AltiVec is used depending on which 
modes software wishes to operate in.

SCCSRBAR Set to a value which reflects the current setting of the SoC CCSRBAR.

SVR Set to a unique identifier of the integrated device distinct from other SoC products and versions of 
the same SoC from Freescale Semiconductor. This value is set from signal inputs from the 
integrated device. All cores in the integrated device contain the same value. This register is an alias 
to CIR.

TLB0CFG Set to configuration information describing the TLB0 capabilities and organization.

TLB1CFG Set to configuration information describing the TLB1 capabilities and organization.

TLB0PS Set to configuration information describing the TLB0 page size availability.

TLB1PS Set to configuration information describing the TLB1 page size availability.

TENC, TENS, TENSR Set to thread 0 enabled, all other threads disabled.

Table 11-2. SPRs to configure the e6500

SPR What to Configure

BUCSR Branch unit control and status register of each thread (processor). See Section 2.7.4, “Branch Unit Control 
and Status (BUCSR) register.”

L1CSR0 L1 Control and Status register. See Section 2.11, “L1 cache registers.”

L1CSR1 L1 Control and Status register. See Section 2.11, “L1 cache registers.”

L1CSR2 L1 Control and Status register. See Section 2.11, “L1 cache registers.”

PWRMGTCR0 Power Management Control register. See Section 2.7.7, “Power Management Control 0 (PWRMGTCR0) 
register.”

HID0 Error management can be controlled with HID0. Software can set EMCP in order to receive asynchronous 
errors from the SoC. EN_L2MMU_MHD can also be set to have hardware detect multiple hits during 
translation which can result from MMU programming errors or soft errors in the TLB arrays.

The core can be configured to strongly order all guarded cache inhibited loads and stores by setting CIGLSO 
which allows device drivers that perform memory mapped access to cache inhibited guarded memory to not 
require memory barriers.

See Section 2.7.5, “Hardware Implementation-Dependent 0 (HID0) register.”

Table 11-1. SPRs and TMRs with non-zero reset values (continued)

SPR Description of Non-Zero Reset Values
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11.5 Timer state
At reset, all the timers are set to 0 and do not require initialization. Timer controls are also set to 0 and, 
when software wishes to begin using timers such as the Decrementer, FIT, or Watchdog timer, software 
must write appropriate values in the TCR.

Both the Time Base and the Alternate Time Base are set to 0 out of reset. The Alternate Time Base begins 
counting immediately out of reset. However, because Time Base ticks are externally signaled to the core, 
the Time Base begins counting once the integrated device is programmed to enable Time Base ticks to the 
core. See the integrated device reference manual for more information on enabling Time Base ticks to the 
core.

11.6 L1 cache state
At reset, both the instruction and data L1 caches are disabled. The contents of the L1 caches is random. 
There can be random values for tag bits, data bits, valid bits, coherency bits, and lock bits. Software must 
properly initialize an L1 cache before it is enabled. (Enabling an L1 cache is described in Section 5.6.2, 
“Enabling and disabling the L1 caches. Note that enabling either L1 cache without first enabling the L2 
cache is not supported.)

Initialization of an L1 cache can be accomplished by flash invalidating the L1 cache and the L1 cache 
locks. These operations clear the valid and lock bits for all cache lines. The tag bits and data bits do not 
need to be initialized after flash invalidation because all lines and tags are invalid and are set correctly when 
a new cache line is allocated. Software should execute the following code sequence to flash invalidate the 
L1 caches prior to enabling them:

// L1 data cache
xor r4,r4,r4  // set r4 to 0
ori r5,r4,0x0102 // set CFLC and CFI bits
sync
isync // synchronize setting of L1CSR0
mtspr L1CSR0,r5 // flash invalidate L1 data cache
isync // synchronize setting of L1CSR0

dloop:
mfspr r4,L1CSR0 // get current value
and. r4,r4,r5 // test written bits
bne dloop // check again if not complete
isync // discard prefetched instructions

// L1 instruction cache
xor r4,r4,r4  // set r4 to 0
ori r5,r4,0x0102 // set ICFLC and ICFI bits
sync
isync // synchronize setting of L1CSR1
mtspr L1CSR1,r5 // flash invalidate L1 instruction cache
isync // synchronize setting of L1CSR1

iloop:
mfspr r4,L1CSR1 // get current value
and. r4,r4,r5 // test written bits
bne iloop // check again if not complete
isync // discard prefetched instructions
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After the L1 caches have been invalidated, they can be enabled by writing to the L1CSR0[CE] and 
L1CSR1[ICE] bits, respectively. Parity checking can also be enabled by writing to the appropriate bits in 
L1CSR0 and L1CSR1. See Section 2.11, “L1 cache registers,” for descriptions of L1CSR0 and L1CSR1.

11.7 L2 cache state
The L2 cache is shared by all cores in an e6500 cluster and contains both the cache memory and the 
interface between the cluster and the integrated device. The L2 cache is controlled by memory mapped 
registers, as described in Section 2.2.3, “Memory-mapped registers (MMRs).” 

At reset, the L2 cache memory is disabled and its contents are random (that is, random values for tag bits, 
data bits, valid bits, coherency bits, and lock bits). Software must properly initialize the L2 cache before 
the L2 cache is enabled. This can be accomplished by clearing the valid bits and lock bits for all L2 cache 
lines by flash invalidating both the L2 cache and the L2 cache locks. The lock bits must be cleared because 
the L2 cache supports persistent locks. If the lock bits are not cleared, then, on average, 50% of the cache 
appears to be locked, and those lines are not available for allocation, which causes serious performance 
consequences. The L2 cache tag bits and data bits do not need to be initialized after flash invalidation, 
because all lines and tags are invalid and are set correctly when a new line is allocated.

The code sequence below assumes 64-bit mode, and real address mapped the same as effective addresses. 
If SCCSRBAR resides in the first 4 GB of real address space, this code also works in 32-bit mode.

To flash invalidate the L2 cache, software should execute the following code sequence in prior to enabling 
the L2 cache:

// L2 data cache invalidation & unlocking
lis r4,0x0020 // create flash invalidate & unlock bit mask (see Table 2-19)
ori r4,r4,0x0400 // 
mfspr r5,SCCSRBAR // get base address of memory mapped registers
li r7,24 // get shift count
sld r5,r5,r7
lis r6,0x00C2 // block offset for desired cluster (see Table 2-4)
// subsequent cluster L2 caches may be invalidated & unlocked by adding 0x40000 to r6
add r6,r6,r5 // 
addi r6,r6,0 // L2SCR0 offset (see Table 2-5), included here only for example
sync // ensure prior memory transactions are performed
stw r4,0(r6) // write L2SCR0 MMR to flash invalidate L2 cache and locks

l2loop:
lwz r5,(0)r6 // get current L2SCR0 MMR value
and. r5,r5,r4 // compare to mask to see if complete
bne l2loop
isync // 

After the L2 cache has been invalidated, it can be enabled by writing to the L2CSR0[L2E] bit (bit 32). 
Error detection and correction can be enabled, as well, by writing to the appropriate bits in the L2CSR0 
register. See Section 2.12, “L2 cache registers,” for descriptions of L2CSR0 and L2 error management 
registers.
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11.8 Branch target buffer state
At reset, the branch prediction mechanisms of all threads of all cores are disabled. To obtain full 
performance of the e6500 core, branch prediction mechanisms should be enabled. 

Also at reset, the contents of the branch target buffer is random, with random target addresses and random 
valid bits for BTB entries. While this does not cause any specific problem because the BTB and other 
branch predictor elements self-correct over time and mispredicted branches are resolved correctly, 
software should invalidate the contents of the BTB at boot. This assists in debugging boot software because 
fetch accesses are more deterministic once branch prediction is enabled. The branch prediction 
mechanisms can be invalidated and enabled by the following code sequence:

// Branch prediction
xor r4,r4,r4  // set r4 to 0
ori r5,r4,0x0201 // set BBFI and BPEN
oris r5,r5,0x0140 // set STAC_EN and LS_EN
mtspr BUCSR,r5 // flash invalidate and enable branch prediction
isync // synchronize setting of BUCSR
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Appendix A  
Simplified Mnemonics
This chapter describes simplified mnemonics, which are provided for easier coding of assembly language 
programs. Simplified mnemonics are defined for the most frequently used forms of branch conditional, 
compare, trap, rotate and shift, and certain other instructions defined by the Power ISA and by 
implementations of and extensions to the Power ISA. 

A.1 Overview
Simplified (or extended) mnemonics allow an assembly-language programmer to program using more 
intuitive mnemonics and symbols than the instructions and syntax defined by the instruction set 
architecture. For example, to code a conditional branch to a relative target if CR4 specifies a greater than 
condition without using simplified mnemonics, the programmer codes the branch conditional instruction, 
bc 12,17, target. The simplified mnemonic, branch if greater than, bgt cr4,target, incorporates the 
conditions. Not only is it easier to remember the symbols than the numbers when programming, it is also 
easier to interpret simplified mnemonics when reading existing code. 

Although the Power ISA documents include a set of simplified mnemonics, these are not a formal part of 
the architecture, but rather a recommendation for assemblers that support the instruction set. 

Many simplified mnemonics have been added to those originally included in the architecture 
documentation. Some assemblers created their own, and others have been added to support extensions to 
the instruction set. Simplified mnemonics have been added for new architecturally defined and new 
implementation-specific special-purpose registers (SPRs). These simplified mnemonics are described only 
in a very general way. 

A.2 Subtract simplified mnemonics 
This section describes simplified mnemonics for subtract instructions.

A.2.1 Subtract immediate

There is no subtract immediate instruction; however, its effect is achieved by negating the immediate 
operand of an Add Immediate instruction, addi. Simplified mnemonics include this negation, making the 
intent of the computation more clear. These are listed in the following table.

Table A-1. Subtract immediate simplified mnemonics

Simplified Mnemonic Standard Mnemonic

subi rD,rA,value addi rD,rA,–value

subis rD,rA,value addis rD,rA,–value
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A.2.2 Subtract

Subtract from instructions subtract the second operand (rA) from the third (rB). The simplified 
mnemonics in the following table use the more common order in which the third operand is subtracted 
from the second. 

A.3 Rotate and shift simplified mnemonics
Rotate and shift instructions provide powerful, general ways to manipulate register contents, but can be 
difficult to understand. Simplified mnemonics are provided for the following operations:

• Extract—Select a field of n bits starting at bit position b in the source register; left or right justify 
this field in the target register; clear all other bits of the target register.

• Insert—Select a left- or right-justified field of n bits in the source register; insert this field starting 
at bit position b of the target register; leave other bits of the target register unchanged. (No 
simplified mnemonic is provided for insertion of a left-justified field when operating on 
doublewords because such an insertion requires more than one instruction.)

• Rotate—Rotate the contents of a register right or left n bits without masking.

• Shift—Shift the contents of a register right or left n bits, clearing vacated bits (logical shift).

• Clear—Clear the leftmost or rightmost n bits of a register.

• Clear left and shift left—Clear the leftmost b bits of a register, then shift the register left by n bits. 
This operation can be used to scale a (known non-negative) array index by the width of an element. 

A.3.1 Operations on words

The simplified mnemonics in the following table can be coded with a dot (.) suffix to cause the Rc bit to 
be set in the underlying instruction.

subic rD,rA,value addic rD,rA,–value

subic. rD,rA,value addic. rD,rA,–value

Table A-2. Subtract simplified mnemonics

Simplified Mnemonic Standard Mnemonic1

1 rD,rB,rA is not the standard order for the operands. The order of rB and rA is 
reversed to show the equivalent behavior of the simplified mnemonic.

sub[o][.] rD,rA,rB subf[o][.] rD,rB,rA

subc[o][.] rD,rA,rB subfc[o][.] rD,rB,rA

Table A-1. Subtract immediate simplified mnemonics (continued)

Simplified Mnemonic Standard Mnemonic
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The following examples use word mnemonics:

1. Extract the sign bit (bit 0) of rS and place the result right-justified into rA.
extrwi rA,rS,1,0 equivalent to rlwinm rA,rS,1,31,31

2. Insert the bit extracted in (1) into the sign bit (bit 0) of rB.
insrwi rB,rA,1,0 equivalent to rlwimi rB,rA,31,0,0

3. Shift the contents of rA left 8 bits.
slwi rA,rA,8 equivalent to rlwinm rA,rA,8,0,23

4. Clear the high-order 16 bits of rS and place the result into rA.
clrlwi rA,rS,16 equivalent to rlwinm rA,rS,0,16,31

A.3.2 Operations on doublewords

The simplified mnemonics in the following table can be coded with a dot (.) suffix to cause the Rc bit to 
be set in the underlying instruction.

Table A-3. Word rotate and shift simplified mnemonics

Operation Simplified Mnemonic Equivalent to:

Extract and left justify word immediate extlwi rA,rS,n,b (n > 0) rlwinm rA,rS,b,0,n – 1

Extract and right justify word immediate extrwi rA,rS,n,b (n > 0) rlwinm rA,rS,b + n, 32 – n,31

Insert from left word immediate inslwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – b,b,(b + n) – 1

Insert from right word immediate insrwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – (b + n),b,(b + n) – 1

Rotate left word immediate rotlwi rA,rS,n rlwinm rA,rS,n,0,31

Rotate right word immediate rotrwi rA,rS,n rlwinm rA,rS,32 – n,0,31

Rotate word left rotlw rA,rS,rB rlwnm rA,rS,rB,0,31

Shift left word immediate slwi rA,rS,n (n < 32) rlwinm rA,rS,n,0,31 – n

Shift right word immediate srwi rA,rS,n (n < 32) rlwinm rA,rS,32 – n,n,31

Clear left word immediate clrlwi rA,rS,n (n < 32) rlwinm rA,rS,0,n,31

Clear right word immediate clrrwi rA,rS,n (n < 32) rlwinm rA,rS,0,0,31 – n

Clear left and shift left word immediate clrlslwi rA,rS,b,n (n ≤ b ≤ 31) rlwinm rA,rS,n,b – n,31 – n

Table A-4. Doubleword rotate and shift simplified mnemonics

Operation Simplified Mnemonic Equivalent to:

Extract and left justify doubleword 
immediate

extldi rA,rS,n,b (n > 0) rldicr rA,rS,b,n – 1

Extract and right justify doubleword 
immediate

extrdi rA,rS,n,b (n > 0) rldicl rA,rS,b + n, 64 – n

Insert from right doubleword immediate insrdi rA,rS,n,b (n > 0) rldimi rA,rS,64 – (b + n),b

Rotate left doubleword immediate rotldi rA,rS,n rldicl rA,rS,n,0

Rotate right doubleword immediate rotrdi rA,rS,n rldicl rA,rS,64 – n,0
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The following examples use word mnemonics:

1. Extract the sign bit (bit 0) of rS and place the result right-justified into rA.
extrdi rA,rS,1,0 equivalent to rldicl rA,rS,1,63

2. Insert the bit extracted in (1) into the sign bit (bit 0) of rB.
insrdi rB,rA,1,0 equivalent to rldimi rB,rA,63,0

3. Shift the contents of rA left 8 bits.
sldi rA,rA,8 equivalent to rldicr rA,rA,8,55

4. Clear the high-order 32 bits of rS and place the result into rA.
clrldi rA,rS,32 equivalent to rldicl rA,rS,0,32

A.4 Branch instruction simplified mnemonics 
Branch conditional instructions can be coded with the operations, a condition to be tested, and a prediction, 
as part of the instruction mnemonic rather than as numeric operands (the BO and BI operands). The 
following table shows the four general types of branch instructions. Simplified mnemonics are defined 
only for branch instructions that include BO and BI operands; there is no need to simplify unconditional 
branch mnemonics. 

The BO and BI operands correspond to two fields in the instruction opcode, as shown in the following 
figure for Branch Conditional (bc, bca, bcl, and bcla) instructions. 

Rotate doubleword left rotld rA,rS,rB rldcl rA,rS,rB,0

Shift left doubleword immediate sldi rA,rS,n (n < 64) rldicr rA,rS,n,63 – n

Shift right doubleword immediate srdi rA,rS,n (n < 64) rldicl rA,rS,64 – n,n

Clear left doubleword immediate clrldi rA,rS,n (n < 64) rldicl rA,rS,0,n

Clear right doubleword immediate clrrdi rA,rS,n (n < 64) rldicr rA,rS,0,63 – n

Clear left and shift left doubleword 
immediate

clrlsldi rA,rS,b,n (n ≤ b ≤ 63) rldic rA,rS,n,b – n

Table A-5. Branch instructions 

Instruction Name Mnemonic Syntax 

Branch b (ba bl bla) target_addr 

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr 

Branch Conditional to Link register bclr (bclrl) BO,BI 

Branch Conditional to Count register bcctr (bcctrl) BO,BI 

0 5 6 10 11 15 16 29 30 31

Figure A-1. Branch conditional (bc) instruction format

Table A-4. Doubleword rotate and shift simplified mnemonics (continued)

Operation Simplified Mnemonic Equivalent to:
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The BO operand specifies branch operations that involve decrementing CTR. It is also used to determine 
whether testing a CR bit causes a branch to occur if the condition is true or false. 

The BI operand identifies a CR bit to test (for example, whether a comparison is less than or greater than). 
The simplified mnemonics avoid the need to memorize the numerical values for BO and BI. 

For example, bc 16,0,target is a conditional branch that, as a BO value of 16 (0b1_0000) indicates, 
decrements CTR, then branches if the decremented CTR is not zero. The operation specified by BO is 
abbreviated as d (for decrement) and nz (for not zero), which replace the c in the original mnemonic; so, 
the simplified mnemonic for bc becomes bdnz. The branch does not depend on a condition in the CR, so 
BI can be eliminated, reducing the expression to bdnz target. 

In addition to CTR operations, the BO operand provides an optional prediction bit, and a true or false 
indicator can be added. For example, if the previous instruction should branch only on an equal condition 
in CR0, the instruction becomes bc 8,2,target. To incorporate a true condition, the BO value becomes 8 
(as shown in Table A-7); the CR0 equal field is indicated by a BI value of 2 (as shown in Table A-8). 
Incorporating the branch-if-true condition adds a ‘t’ to the simplified mnemonic, bdnzt. The equal 
condition that is specified by a BI value of 2 (indicating the EQ bit in CR0) is replaced by the eq symbol. 
Using the simplified mnemonic and the eq operand, the expression becomes bdnzt eq,target. 

This example tests CR0[EQ]; however, to test the equal condition in CR5 (CR bit 22), the expression 
becomes bc 8,22,target. The BI operand of 22 indicates CR[22] (CR5[2], or BI field 0b10110), as shown 
in Table A-8. This can be expressed as the simplified mnemonic, bdnzt 4 * cr5 + eq,target. 

The notation, 4 * cr5 + eq may at first seem awkward, but it eliminates computing the value of the CR bit. 
It can be seen that (4 * 5) + 2 = 22. Note that, although 32-bit registers in Power ISA processors are 
numbered 32–63, only values 0–31 are valid (or possible) for BI operands. The encoding of the field in the 
instruction uses numbering from 0–31, and the instruction converts this into the architecturally described 
bit number by adding 32. For example, specifying a BI value of 22 actually selects bit 54 (BI value 22 + 
32 = 54). 

A.4.1 Key facts about simplified branch mnemonics

The following key points are helpful in understanding how to use simplified branch mnemonics:

• All simplified branch mnemonics eliminate the BO operand, so if any operand is present in a 
branch simplified mnemonic, it is the BI operand (or a reduced form of it). 

• If CR is not involved in the branch, the BI operand can be deleted.

• If CR is involved in the branch, the BI operand can be treated in the following ways:

— It can be specified as a numeric value, just as it is in the architecturally defined instruction, or 
it can be indicated with an easier to remember formula, 4 * crn + [test bit symbol], where n 
indicates the CR field number.

— The condition of the test bit (eq, lt, gt, and so) can be incorporated into the mnemonic, leaving 
the need for an operand that defines only the CR field. 

0 0 1 0 0 0 BO BI BD AA LK

Figure A-1. Branch conditional (bc) instruction format
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– If the test bit is in CR0, no operand is needed.

– If the test bit is in CR1–CR7, the BI operand can be replaced with a crS operand (that is, 
cr1, cr2, cr3, and so forth). 

A.4.2 Eliminating the BO operand

The 5-bit BO field, shown in Figure A-2, encodes the following operations in conditional branch 
instructions:

• Decrement count (CTR) register

— And test if result is equal to zero

— And test if result is not equal to zero

• Test condition (CR) register

— Test condition true

— Test condition false

• Branch prediction (taken, fall through). If the prediction bit, y, is needed, it is signified by 
appending a plus or minus sign as described in Section A.4.3, “Incorporating the BO branch 
prediction.”

BO bits can be interpreted individually, as described in the following table.

Thus, a BO encoding of 10100 (decimal 20) means ignore the CR bit comparison and do not decrement 
the CTR—in other words, branch unconditionally. Encodings for the BO operand are shown in Table A-7. 
A z bit indicates that the bit is ignored. However, these bits should be cleared because they may be assigned 
a meaning in a future version of the architecture. 

0 1 2 3 4

Figure A-2. BO field (bits 6–10 of the instruction encoding) 

Table A-6. BO bit encodings

BO Bit Description

0 If set, ignore the CR bit comparison.

1 If set, the CR bit comparison is against true. If not set, the CR bit comparison is against false.

2 If set, the CTR is not decremented. 

3 If BO[2] is set, this bit determines whether the CTR comparison is for equal to zero or not equal to zero.

4 Used for static branch prediction. Use of this bit is optional and independent from the interpretation of the rest of the BO 
operand. Because simplified branch mnemonics eliminate the BO operand, this bit (the t bit) and other branch prediction 
hint bits (the “a” bit) are programmed by adding a plus or minus sign to the simplified mnemonic, as described in 
Section A.4.3, “Incorporating the BO branch prediction.”
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As shown in the following table, the c in the standard mnemonic is replaced with the operations otherwise 
specified in the BO field (d for decrement, z for zero, nz for nonzero, t for true, and f for false). 

Note that the test of when a the CTR reaches 0 varies between 32-bit mode and 64-bit mode. M = 32 in 
32-bit mode (of a 64-bit implementation) and M = 0 in 64-bit mode. If the BO field specifies that the CTR 
is to be decremented, the entire 64-bit CTR is decremented, regardless of the mode.

A.4.3 Incorporating the BO branch prediction 

As shown in Table A-7, the low-order bit (t bit) of the BO field, along with the a bit, provides a hint about 
whether the branch is likely to be taken (static branch prediction). Assemblers should clear these bits 
unless otherwise directed. This default action indicates the following:

• A branch conditional with a negative displacement field is predicted to be taken.
• A branch conditional with a non-negative displacement field is predicted not to be taken (fall 

through).
• A branch conditional to an address in the LR or CTR is predicted not to be taken (fall through).

If the likely outcome (branch or fall through) of a given branch conditional instruction is known, a suffix can 
be added to the mnemonic that tells the assembler how to set the at bits. That is, ‘+’ indicates that the branch 

Table A-7. BO operand encodings

BO Field
Value1

(Decimal)

1 Assumes t = z = 0. Section A.4.3, “Incorporating the BO branch prediction,” describes how to use simplified mnemonics to 
program the y bit for static prediction. 

Description Symbol

0000z2

2 A z bit indicates a bit that is ignored. However, these bits should be cleared because they may be assigned a meaning in a 
future version of the architecture.

0 Decrement the CTR, then branch if the decremented CTR[M:63] ≠ 0; condition is FALSE. dnzf

0001z 2 Decrement the CTR, then branch if the decremented CTR[M:63] = 0; condition is FALSE. dzf

001at3

3 The a and t bits are used for static branch prediction hints such that at = 0b00 specifies no hint, 0b10 specifies the branch is 
very likely not to be taken, and 0b11 specifies the branch is very likely to be taken.

4 Branch if the condition is FALSE.4 Note that ‘false’ and ‘four’ both start with ‘f’.

4 Instructions for which B0 is 12 (branch if condition true) or 4 (branch if condition false) do not depend on the CTR value and 
can be alternately coded by incorporating the condition specified by the BI field, as described in Section A.4.6, “Simplified 
mnemonics that incorporate CR conditions (eliminate BO and replace BI with crS).”

f

0100z 8 Decrement the CTR, then branch if the decremented CTR[M:63] ≠ 0; condition is TRUE. dnzt 

0101z 10 Decrement the CTR, then branch if the decremented CTR[M:63] = 0; condition is TRUE. dzt 

011at 12 Branch if the condition is TRUE. 2 Note that ‘true’ and ‘twelve’ both start with ‘t’. t

1a00t5

5 Simplified mnemonics for branch instructions that do not test CR bits (BO = 16, 18, and 20) should specify only a target. 
Otherwise a programming error may occur. 

16 Decrement the CTR, then branch if the decremented CTR[M:63] ≠ 0. dnz6

6 Notice that these instructions do not use the branch if condition true or false operations. For that reason, simplified mnemonics 
for these should not specify a BI operand. 

1a01t5 18 Decrement the CTR, then branch if the decremented CTR[M:63] = 0. dz 6

1z1zz 5 20 Branch always. —
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is to be taken and ‘–’ indicates that the branch is not to be taken. This suffix can be added to any standard of 
simplified branch conditional mnemonic.

For relative and absolute branches (bc[l][a]), the setting of the at bits depends on whether the displacement 
field is negative or non-negative. For negative displacement fields, coding the suffix ‘+’ causes the bit to 
be cleared and coding the suffix ‘–’ causes the bit to be set. For nonnegative displacement fields, coding 
the suffix ‘+’ causes the bit to be set, and coding the suffix ‘–’ causes the bit to be cleared.

For branches to an address in the LR or CTR (bclr[l] or bcctr[l]), coding the suffix ‘+’ causes the at bits 
to be set, and coding the suffix ‘–’ causes the at bits to be set to 0b10.

Examples of branch prediction:

1. Branch if CR0 reflects less than condition, specifying that the branch should be predicted as taken.

blt+ target 

2. Same as (1), but target address is in the LR and the branch should be predicted as not taken.

bltlr–

A.4.4 The BI operand—CR bit and field representations

With standard branch mnemonics, the BI operand is used when it is necessary to test a CR bit, as shown 
in the example in Section A.4, “Branch instruction simplified mnemonics.” 

With simplified mnemonics, the BI operand is handled differently depending on whether the simplified 
mnemonic incorporates a CR condition to test, as follows:

• Some branch simplified mnemonics incorporate only the BO operand. These simplified 
mnemonics can use the architecturally defined BI operand to specify the CR bit, as follows:

— The BI operand can be presented exactly as it is with standard mnemonics—as a decimal 
number, 0–31.

— Symbols can be used to replace the decimal operand, as shown in the example in Section A.4, 
“Branch instruction simplified mnemonics,” where bdnzt 4 * cr5 + eq,target could be used 
instead of bdnzt 22,target. This is described in Section A.4.4.1.1, “Specifying a CR bit.”

The simplified mnemonics in Section A.4.5, “Simplified mnemonics that incorporate the BO 
operand,” use one of these two methods to specify a CR bit. 

• Additional simplified mnemonics are specified that incorporate CR conditions that would 
otherwise be specified by the BI operand, so the BI operand is replaced by the crS operand to 
specify the CR field, CR0–CR7. See Section A.4.4.1, “BI operand instruction encoding.” 

These mnemonics are described in Section A.4.6, “Simplified mnemonics that incorporate CR 
conditions (eliminate BO and replace BI with crS).”

A.4.4.1 BI operand instruction encoding

The entire 5-bit BI field, shown in Figure A-3, represents the bit number for the CR bit to be tested. For 
standard branch mnemonics and for branch simplified mnemonics that do not incorporate a CR condition, 
the BI operand provides all 5 bits. 
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For simplified branch mnemonics described in Section A.4.6, “Simplified mnemonics that incorporate CR 
conditions (eliminate BO and replace BI with crS),” the BI operand is replaced by a crS operand. To 
understand this, it is useful to view the BI operand as comprised of two parts. As the following figure 
shows, BI[0–2] indicates the CR field and BI[3–4] represents the condition to test.

Figure A-3. BI field (bits 11–14 of the instruction encoding)

Integer record-form instructions update CR0 and floating-point record-form instructions update CR1 as 
described in Table A-8. 

A.4.4.1.1 Specifying a CR bit

Note that the AIM version the PowerPC architecture numbers CR bits 0–31 and Book E numbers them 
32–63. However, no adjustment is necessary to the code; in Book E devices, 32 is automatically added to 
the BI value, as shown in Table A-8 and Table A-9.

Some simplified mnemonics incorporate only the BO field, as described Section A.4.2, “Eliminating the 
BO operand”). If one of these simplified mnemonics is used and the CR must be accessed, the BI operand 
can be specified either as a numeric value or by using the symbols in Table A-9. 

Table A-8. CR0 and CR1 fields as updated by integer and floating-point instructions

 CRn Bit CR Bits (Operand)
BI

Description
0–2 3–4

CR0[0] 32(0) 000 00 Negative (LT)—Set when the result is negative.

CR0[1] 33(1) 000 01 Positive (GT)—Set when the result is positive (and not zero).

CR0[2] 34(2) 000 10 Zero (EQ)—Set when the result is zero.

CR0[3] 35(3) 000 11 Summary overflow (SO). Copy of XER[SO] at the instruction’s completion.

CR1[0] 36(4) 001 00 Copy of FPSCR[FX] at the instruction’s completion.

CR1[1] 37(5) 001 01 Copy of FPSCR[FEX] at the instruction’s completion.

CR1[2] 38(6) 001 10 Copy of FPSCR[VX] at the instruction’s completion.

CR1[3] 39(6) 001 11 Copy of FPSCR[OX] at the instruction’s completion.

0 1 2 3 4

BI[0–2] specifies CR field, CR0–CR7. BI[3–4] specifies one of the 
4 bits in a CR field. (LT, GT, EQ,SO) 

Simplified mnemonics based on CR
conditions but not CTR values—BO = 12

(branch if true) and BO = 4 branch if false)

Specified by a separate,
reduced BI operand (crS)

Incorporated into the simplified 
mnemonic.

Standard branch mnemonics and
simplified mnemonics based on CTR

values

The BI operand specifies the entire 5-bit field. If CR0 is used, 
the bit can be identified by LT, GT, EQ, or SO. If CR1–CR7 are 
used, the form 4 * crS + LT|GT|EQ|SO can be used. 

BI Opcode Field
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Compare word instructions, described in Section A.5, “Compare word simplified mnemonics”, 
floating-point compare instructions, move to CR instructions, and others can also modify CR fields, so 
CR0 and CR1 may hold values that do not adhere to the meanings described in Table A-8. CR logical 
instructions, described in Section A.7, “Condition register logical simplified mnemonics,” can update 
individual CR bits. 

To provide simplified mnemonics for every possible combination of BO and BI (that is, including bits that 
identified the CR field) would require 210 = 1024 mnemonics, most of which would be only marginally 
useful. The abbreviated set in Section A.4.5, “Simplified mnemonics that incorporate the BO operand,” 
covers useful cases. Unusual cases can be coded using a standard branch conditional syntax.

Table A-9. BI operand settings for CR fields for branch comparisons

 CRn 
Bit

Bit Expression 

CR Bits BI

DescriptionBI 
Operand)

Power 
ISA Bit 
Number

0–2 3–4

CRn[0] 4 * cr0 + lt (or lt)
4 * cr1 + lt
4 * cr2 + lt
4 * cr3+ lt
4 * cr4 + lt
4 * cr5 + lt
4 * cr6 + lt
4 * cr7 + lt

0
4
8
12
16
20
24
28

32
36
40
44
48
52
56
60

000
001
010
011
100
101
110
111

00 Less than or floating-point less than (LT, FL).
For integer compare instructions: 
rA < SIMM or rB (signed comparison) or rA < UIMM or 
rB (unsigned comparison).
For floating-point compare instructions: frA < frB.

CRn[1] 4 * cr0 + gt (or gt)
4 * cr1 + gt
4 * cr2 + gt
4 * cr3+ gt
4 * cr4 + gt
4 * cr5 + gt
4 * cr6 + gt
4 * cr7 + gt

1
5
9
13
17
21
25
29

33
37
41
45
49
53
57
61

000
001
010
011
100
101
110
111

01 Greater than or floating-point greater than (GT, FG).
For integer compare instructions: 
rA > SIMM or rB (signed comparison) or rA > UIMM or 
rB (unsigned comparison).
For floating-point compare instructions: frA > frB. 

CRn[2] 4 * cr0 + eq (or eq)
4 * cr1 + eq
4 * cr2 + eq 
4 * cr3+ eq
4 * cr4 + eq
4 * cr5 + eq
4 * cr6 + eq
4 * cr7 + eq

2
6
10
14
18
22
26
30

34
38
42
46
50
54
58
62

000
001
010
011
100
101
110
111

10 Equal or floating-point equal (EQ, FE).
For integer compare instructions: rA = SIMM, UIMM, 
or rB.
For floating-point compare instructions: frA = frB.

CRn[3] 4 * cr0 + so/un (or 
so/un)

4 * cr1 + so/un
4* cr2 + so/un
4* cr3 + so/un
4* cr4 + so/un
4* cr5 + so/un
4* cr6 + so/un
4* cr7 + so/un

3
7
11
15
19
23
27
31

35
39
43
47
51
55
59
63

000
001
010
011
100
101
110
111

11 Summary overflow or floating-point unordered (SO, 
FU).
For integer compare instructions, this is a copy of 
XER[SO] at instruction completion.
For floating-point compare instructions, one or both of 
frA and frB is a NaN.
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A.4.4.1.2 The crS operand 

The crS symbols are shown in the following table. Note that either the symbol or the operand value can be 
used in the syntax used with the simplified mnemonic. 

To identify a CR bit, an expression in which a CR field symbol is multiplied by 4 and then added to a 
bit-number-within-CR-field symbol can be used (for example, cr0 * 4 + eq). 

A.4.5 Simplified mnemonics that incorporate the BO operand

The mnemonics in the following table allow common BO operand encodings to be specified as part of the 
mnemonic, along with the absolute address (AA) and set link register bits (LK). There are no simplified 
mnemonics for relative and absolute unconditional branches. For these, the basic mnemonics b, ba, bl, and 
bla are used. 

Table A-10. CR field identification symbols

Symbol BI[0–2] CR Bits

cr0 (default, can be eliminated from syntax) 000 32–35

cr1 001 36–39

cr2 010 40–43

cr3 011 44–47

cr4 100 48–51

cr5 101 52–55

cr6 110 56–59

cr7 111 60–63

Table A-11. Branch simplified mnemonics

Branch Semantics
LR Update Not Enabled LR Update Enabled

bc bca bclr bcctr bcl bcla bclrl bcctrl

Branch unconditionally 1 — — blr bctr — — blrl bctrl 

Branch if condition true bt bta btlr btctr btl btla btlrl btctrl

Branch if condition false bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR, branch if 
CTR ≠ 0 1

bdnz bdnza bdnzlr — bdnzl bdnzla bdnzlrl —

Decrement CTR, branch if 
CTR ≠ 0 and condition true

bdnzt bdnzta bdnztlr — bdnztl bdnztla bdnztlrl —

Decrement CTR, branch if 
CTR ≠ 0 and condition false

bdnzf bdnzfa bdnzflr — bdnzfl bdnzfla bdnzflrl —

Decrement CTR, branch if 
CTR = 0 1

bdz bdza bdzlr — bdzl bdzla bdzlrl —
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This table shows the syntax for basic simplified branch mnemonics

The simplified mnemonics in Table A-11 that test a condition require a corresponding CR bit as the first 
operand (as examples 2–5 in the following section illustrate). The symbols in Table A-10 can be used in 
place of a numeric value.

A.4.5.1 Examples that Eliminate the BO Operand

The simplified mnemonics in Table A-11 are used in the following examples: 

1. Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a count loaded into 
CTR) (note that no CR bits are tested).
bdnz target  equivalent to bc 16,0,target

Because this instruction does not test a CR bit, the simplified mnemonic should specify only a 
target operand. Specifying a CR (for example, bdnz 0,target or bdnz cr0,target) may be 
considered a programming error. Subsequent examples test conditions.

2. Same as (1), but branch only if CTR is nonzero and equal condition in CR0.
bdnzt eq,target  equivalent to bc 8,2,target

Other equivalents include bdnzt 2,target or the unlikely bdnzt 4*cr0+eq,target

3. Same as (2), but equal condition is in CR5.
bdnzt 4 * cr5 + eq,target equivalent to bc 8,22,target

bdnzt 22,target would also work

Decrement CTR, branch if 
CTR = 0 and condition true

bdzt bdzta bdztlr — bdztl bdztla bdztlrl —

Decrement CTR, branch if 
CTR = 0 and condition false

bdzf bdzfa bdzflr — bdzfl bdzfla bdzflrl —

1 Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. Otherwise, a programming 
error may occur. 

Table A-12. Branch instructions 

Instruction
Standard 

Mnemonic
Syntax 

Simplified 
Mnemonic 

Syntax 

Branch b (ba bl bla) target_addr N/A, syntax does not include BO

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr bx1(bxa bxl bxla)

1 x stands for one of the symbols in Table A-7, where applicable.

BI2target_addr

2 BI can be a numeric value or an expression as shown in Table A-10.

Branch Conditional to Link Register bclr (bclrl) BO,BI bxlr (bxlrl) BI

Branch Conditional to Count Register bcctr (bcctrl) BO,BI bxctr (bxctrl) BI

Table A-11. Branch simplified mnemonics (continued)

Branch Semantics
LR Update Not Enabled LR Update Enabled

bc bca bclr bcctr bcl bcla bclrl bcctrl
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4. Branch if bit 59 of CR is false.
bf 27,target  equivalent to bc 4,27,target

bf 4*cr6+so,target would also work

5. Same as (4), but set the link register. This is a form of conditional call.
bfl 27,target  equivalent to bcl 4,27,target

This table lists simplified mnemonics and syntax for bc and bca without LR updating. 

This table lists simplified mnemonics and syntax for bclr and bcctr without LR updating. 

Table A-13. Simplified mnemonics for bc and bca without LR update

Branch Semantics bc
Simplified
Mnemonic

bca
Simplified
Mnemonic

Branch unconditionally — — — —

Branch if condition true1

1 Instructions for which B0 is either 12 (branch if condition true) or 4 (branch if condition false) do not depend on the 
CTR value and can be alternately coded by incorporating the condition specified by the BI field, as described in 
Section A.4.6, “Simplified mnemonics that incorporate CR conditions (eliminate BO and replace BI with crS).”

bc 12,BI,target  bt BI,target bca 12,BI,target bta BI,target

Branch if condition false1 bc 4,BI,target bf BI,target bca 4,BI,target bfa BI,target

Decrement CTR, branch if CTR ≠ 0 bc 16,0,target bdnz target2

2 Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. Otherwise, a 
programming error may occur. 

bca 16,0,target bdnza target 2

Decrement CTR, branch if CTR ≠ 0 and 
condition true

bc 8,BI,target bdnzt BI,target bca 8,BI,target bdnzta BI,target

Decrement CTR, branch if CTR ≠ 0 and 
condition false

bc 0,BI,target bdnzf BI,target bca 0,BI,target bdnzfa BI,target

Decrement CTR, branch if CTR = 0 bc 18,0,target bdz target 2 bca 18,0,target bdza target 2

Decrement CTR, branch if CTR = 0 and 
condition true

bc 10,BI,target bdzt BI,target bca 10,BI,target bdzta BI,target

Decrement CTR, branch if CTR = 0 and 
condition false

bc 2,BI,target bdzf BI,target bca 2,BI,target bdzfa BI,target

Table A-14. Simplified mnemonics for bclr and bcctr without LR update

Branch Semantics bclr
Simplified
Mnemonic

bcctr
Simplified
Mnemonic

Branch unconditionally bclr 20,0 blr 1 bcctr 20,0 bctr 1

Branch if condition true2 bclr 12,BI btlr BI bcctr 12,BI btctr BI 

Branch if condition false 2 bclr 4,BI bflr BI bcctr 4,BI bfctr BI 

Decrement CTR, branch if CTR ≠ 0 bclr 16,BI bdnzlr BI — —

Decrement CTR, branch if CTR ≠ 0 and condition true bclr 8,BI bdnztlr BI — —

Decrement CTR, branch if CTR ≠ 0 and condition false bclr 0,BI bdnzflr BI — —

Decrement CTR, branch if CTR = 0 bclr 18,0 bdzlr 1 — —
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This table provides simplified mnemonics and syntax for bcl and bcla with LR updating.

This table provides simplified mnemonics and syntax for bclrl and bcctrl with LR updating. 

Decrement CTR, branch if CTR = 0 and condition true bclr 8,BI bdnztlr BI — —

Decrement CTR, branch if CTR = 0 and condition false bclr 2,BI bdzflr BI — —

1 Simplified mnemonics for branch instructions that do not test a CR bit should not specify one; a programming error may occur.
2 Instructions for which B0 is 12 (branch if condition true) or 4 (branch if condition false) do not depend on a CTR value and can 

be alternately coded by incorporating the condition specified by the BI field. See Section A.4.6, “Simplified mnemonics that 
incorporate CR conditions (eliminate BO and replace BI with crS).”

Table A-15. Simplified mnemonics for bcl and bcla with LR update

Branch Semantics bcl
Simplified
Mnemonic

bcla
Simplified
Mnemonic

Branch unconditionally — — — —

Branch if condition true 1

1 Instructions for which B0 is either 12 (branch if condition true) or 4 (branch if condition false) do not depend on the CTR value 
and can be alternately coded by incorporating the condition specified by the BI field. See Section A.4.6, “Simplified mnemonics 
that incorporate CR conditions (eliminate BO and replace BI with crS).”

bcl 12,BI,target  btl BI,target bcla 12,BI,target btla BI,target 

Branch if condition false 1 bcl 4,BI,target bfl BI,target bcla 4,BI,target bfla BI,target 

Decrement CTR, branch if CTR ≠ 0 bcl 16,0,target bdnzl target 2

2 Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. A programming error may 
occur. 

bcla 16,0,target bdnzla target 2

Decrement CTR, branch if CTR ≠ 0 and 
condition true

bcl 8,0,target bdnztl BI,target bcla 8,BI,target bdnztla BI,target 

Decrement CTR, branch if CTR ≠ 0 and 
condition false

bcl 0,BI,target bdnzfl BI,target bcla 0,BI,target bdnzfla BI,target 

Decrement CTR, branch if CTR = 0 bcl 18,BI,target bdzl target 2 bcla 18,BI,target bdzla target 2

Decrement CTR, branch if CTR = 0 and 
condition true

bcl 10,BI,target bdztl BI,target bcla 10,BI,target bdztla BI,target 

Decrement CTR, branch if CTR = 0 and 
condition false

bcl 2,BI,target bdzfl BI,target bcla 2,BI,target bdzfla BI,target 

Table A-16. Simplified mnemonics for bclrl and bcctrl with LR update

Branch Semantics bclrl
Simplified
Mnemonic

bcctrl
Simplified
Mnemonic

Branch unconditionally bclrl 20,0 blrl 1 bcctrl 20,0 bctrl 1

Branch if condition true bclrl 12,BI btlrl BI bcctrl 12,BI btctrl BI 

Branch if condition false bclrl 4,BI bflrl BI bcctrl 4,BI bfctrl BI 

Decrement CTR, branch if CTR ≠ 0 bclrl 16,0 bdnzlrl 1 — —

Table A-14. Simplified mnemonics for bclr and bcctr without LR update (continued)

Branch Semantics bclr
Simplified
Mnemonic

bcctr
Simplified
Mnemonic
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A.4.6 Simplified mnemonics that incorporate CR conditions (eliminate BO
and replace BI with crS)

The mnemonics in Table A-19 are variations of the branch-if-condition-true (BO = 12) and 
branch-if-condition-false (BO = 4) encodings. Because these instructions do not depend on the CTR, the 
true/false conditions specified by BO can be combined with the CR test bit specified by BI to create a 
different set of simplified mnemonics that eliminate the BO operand and the portion of the BI operand 
(BI[3–4]) that specifies one of the four possible test bits. However, the simplified mnemonics cannot 
specify in which of the eight CR fields the test bit falls, so the BI operand is replaced by a crS operand. 

The standard codes shown in the following table are used for the most common combinations of branch 
conditions. Note that for ease of programming, these codes include synonyms; for example, less than or 
equal (le) and not greater than (ng) achieve the same result. 

NOTE
A CR field symbol, cr0–cr7, is used as the first operand after the simplified 
mnemonic. If CR0 is used, no crS is necessary. 

Decrement CTR, branch if CTR ≠ 0 and condition true bclrl 8,BI bdnztlrl BI — —

Decrement CTR, branch if CTR ≠ 0 and condition false bclrl 0,BI bdnzflrl BI — —

Decrement CTR, branch if CTR = 0 bclrl 18,0 bdzlrl 1 — —

Decrement CTR, branch if CTR = 0 and condition true bclrl 10, BI bdztlrl BI — —

Decrement CTR, branch if CTR = 0 and condition false bclrl 2,BI bdzflrl BI — —

1 Simplified mnemonics for branch instructions that do not test a CR bit should not specify one. A programming error may occur.

Table A-17. Standard coding for branch conditions

Code Description Equivalent Bit Tested

lt Less than — LT

le Less than or equal (equivalent to ng) ng GT

eq Equal — EQ

ge Greater than or equal (equivalent to nl) nl LT

gt Greater than — GT

nl Not less than (equivalent to ge) ge LT

ne Not equal — EQ

ng Not greater than (equivalent to le) le GT

so Summary overflow — SO

ns Not summary overflow — SO

Table A-16. Simplified mnemonics for bclrl and bcctrl with LR update (continued)

Branch Semantics bclrl
Simplified
Mnemonic

bcctrl
Simplified
Mnemonic
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The following table shows the syntax for simplified branch mnemonics that incorporate CR conditions. 
Here, crS replaces a BI operand to specify only a CR field because the specific CR bit within the field is 
now part of the simplified mnemonic. Note that the default is CR0; if no crS is specified, CR0 is used.

This table shows the simplified branch mnemonics incorporating conditions.

un Unordered (after floating-point comparison) — SO

nu Not unordered (after floating-point comparison) — SO

Table A-18. Branch Instructions and Simplified Mnemonics that Incorporate CR Conditions

Instruction
Standard 

Mnemonic
Syntax 

Simplified 
Mnemonic 

Syntax 

Branch b (ba bl bla) target_addr —

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr bx 1(bxa bxl bxla)

1 x stands for one of the symbols in Table A-17, where applicable.

crS2,target_addr 

2 BI can be a numeric value or an expression as shown in Table A-10.

Branch Conditional to Link Register bclr (bclrl) BO,BI bxlr (bxlrl) crS 

Branch Conditional to Count Register bcctr (bcctrl) BO,BI bxctr (bxctrl) crS 

Table A-19. Simplified Mnemonics with Comparison Conditions

Branch Semantics
LR Update Not Enabled LR Update Enabled

bc bca bclr bcctr bcl bcla bclrl bcctrl

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or equal ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than or equal bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if not summary overflow bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl

Table A-17. Standard coding for branch conditions (continued)

Code Description Equivalent Bit Tested
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Instructions using the mnemonics in Table A-19 indicate the condition bit but not the CR field. If no CR 
field is specified, CR0 is used. The CR field symbols defined in Table A-10 (cr0–cr7) are used for this 
operand, as shown in examples 2–4 in the following section. 

A.4.6.1 Branch simplified mnemonics that incorporate CR conditions:
examples

The following examples use the simplified mnemonics shown in Table A-19:

1. Branch if CR0 reflects not-equal condition.
bne target equivalent to bc 4,2,target

2. Same as (1) but condition is in CR3.
bne cr3,target equivalent to bc 4,14,target

3. Branch to an absolute target if CR4 specifies greater than condition, setting the LR. This is a form 
of conditional call.
bgtla cr4,target equivalent to bcla 12,17,target

4. Same as (3), but target address is in the CTR.
bgtctrl cr4 equivalent to bcctrl 12,17

A.4.6.2 Branch simplified mnemonics that incorporate CR conditions:
listings

This table shows simplified branch mnemonics and syntax for bc and bca without LR updating. 

Table A-20. Simplified mnemonics for bc and bca without comparison conditions or
LR update

Branch Semantics bc Simplified Mnemonic bca Simplified Mnemonic

Branch if less than bc 12,BI1,target

1 The value in the BI operand selects CRn[0], the LT bit. 

blt crS target bca 12,BI1,target blta crS target

Branch if less than or equal bc 4,BI2,target

2 The value in the BI operand selects CRn[1], the GT bit. 

ble crS target bca 4,BI2,target blea crS target

Branch if not greater than bng crS target bnga crS target

Branch if equal bc 12,BI3,target

3 The value in the BI operand selects CRn[2], the EQ bit. 

beq crS target bca 12,BI3,target beqa crS target

Branch if greater than or equal bc 4,BI1,target bge crS target bca 4,BI1,target bgea crS target

Branch if not less than bnl crS target bnla crS target

Branch if greater than bc 12,BI2,target bgt crS target bca 12,BI2,target bgta crS target

Branch if not equal bc 4,BI3,target bne crS target bca 4,BI3,target bnea crS target

Branch if summary overflow bc 12,BI4,target bso crS target bca 12,BI4,target bsoa crS target

Branch if unordered bun crS target buna crS target

Branch if not summary overflow bc 4,BI4,target bns crS target bca 4,BI4,target bnsa crS target

Branch if not unordered bnu crS target bnua crS target
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This table shows simplified branch mnemonics and syntax for bclr and bcctr without LR updating. 

This table shows simplified branch mnemonics and syntax for bcl and bcla with LR updating. 

4 The value in the BI operand selects CRn[3], the SO bit. 

The following table show the simplified mnemonics for bc and bca without LR updating, using the default 
CR0.

Table A-21. Simplified mnemonics for bclr and bcctr without comparison conditions
or LR update

Branch Semantics bclr Simplified 
Mnemonic

bcctr Simplified 
Mnemonic

Branch if less than bclr 12,BI1,target

1 The value in the BI operand selects CRn[0], the LT bit. 

bltlr crS target bcctr 12,BI1,target bltctr crS target

Branch if less than or equal bclr 4,BI2,target

2 The value in the BI operand selects CRn[1], the GT bit. 

blelr crS target bcctr 4,BI2,target blectr crS target

Branch if not greater than bnglr crS target bngctr crS target

Branch if equal bclr 12,BI3,target

3 The value in the BI operand selects CRn[2], the EQ bit. 

beqlr crS target bcctr 12,BI3,target beqctr crS target

Branch if greater than or equal bclr 4,BI1,target bgelr crS target bcctr 4,BI1,target bgectr crS target

Branch if not less than bnllr crS target bnlctr crS target

Branch if greater than bclr 12,BI2,target bgtlr crS target bcctr 12,BI2,target bgtctr crS target

Branch if not equal bclr 4,BI3,target bnelr crS target bcctr 4,BI3,target bnectr crS target

Branch if summary overflow bclr 12,BI4,target

4 The value in the BI operand selects CRn[3], the SO bit. 

bsolr crS target bcctr 12,BI4,target bsoctr crS target

Branch if unordered bunlr crS target bunctr crS target

Branch if not summary overflow bclr 4,BI4,target bnslr crS target bcctr 4,BI4,target bnsctr crS target

Branch if not unordered — bnulr crS target — bnuctr crS target

Table A-22. Simplified mnemonics for bcl and bcla with comparison conditions and
LR update

Branch Semantics bcl
Simplified 
Mnemonic

bcla
Simplified 
Mnemonic

Branch if less than bcl 12,BI1,target bltl crS target bcla 12,BI1,target bltla crS target

Branch if less than or equal bcl 4,BI2,target blel crS target bcla 4,BI2,target blela crS target

Branch if not greater than bngl crS target bngla crS target

Branch if equal bcl 12,BI3,target beql crS target bcla 12,BI3,target beqla crS target

Branch if greater than or equal bcl 4,BI1,target bgel crS target bcla 4,BI1,target bgela crS target

Branch if not less than bnll crS target bnlla crS target

Branch if greater than bcl 12,BI2,target bgtl crS target bcla 12,BI2,target bgtla crS target

Branch if not equal bcl 4,BI3,target bnel crS target bcla 4,BI3,target bnela crS target
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This table shows the simplified branch mnemonics and syntax for bclrl and bcctrl with LR updating. 

A.5 Compare word simplified mnemonics
In compare word instructions, the L operand indicates a word (L = 0) or a doubleword (L = 1). Simplified 
mnemonics in the following table eliminate the L operand for word comparisons. 

Branch if summary overflow bcl 12,BI4,target bsol crS target bcla 12,BI4,target bsola crS target

Branch if unordered — bunl crS target — bunla crS target

Branch if not summary overflow bcl 4,BI4,target bnsl crS target bcla 4,BI4,target bnsla crS target

Branch if not unordered — bnul crS target — bnula crS target

1 The value in the BI operand selects CRn[0], the LT bit. 
2 The value in the BI operand selects CRn[1], the GT bit. 
3 The value in the BI operand selects CRn[2], the EQ bit. 
4 The value in the BI operand selects CRn[3], the SO bit. 

This table shows the simplified mnemonics for bcl and bcla with LR updating, using the default CR0.

Table A-23. Simplified mnemonics for bclrl and bcctrl with comparison conditions
and LR update

Branch Semantics bclrl
Simplified 
Mnemonic

bcctrl
Simplified 
Mnemonic

Branch if less than bclrl 12,BI1,target

1 The value in the BI operand selects CRn[0], the LT bit. 

bltlrl crS target bcctrl 12,BI1,target bltctrl crS target

Branch if less than or equal bclrl 4,BI2,target

2 The value in the BI operand selects CRn[1], the GT bit. 

blelrl crS target bcctrl 4,BI2,target blectrl crS target

Branch if not greater than bnglrl crS target bngctrl crS target

Branch if equal bclrl 12,BI3,target

3 The value in the BI operand selects CRn[2], the EQ bit. 

beqlrl crS target bcctrl 12,BI3,target beqctrl crS target

Branch if greater than or equal bclrl 4,BI1,target bgelrl crS target bcctrl 4,BI1,target bgectrl crS target

Branch if not less than bnllrl crS target bnlctrl crS target

Branch if greater than bclrl 12,BI2,target bgtlrl crS target bcctrl 12,BI2,target bgtctrl crS target

Branch if not equal bclrl 4,BI3,target bnelrl crS target bcctrl 4,BI3,target bnectrl crS target

Branch if summary overflow bclrl 12,B4,target

4 The value in the BI operand selects CRn[3], the SO bit. 

bsolrl crS target bcctrl 12,BI4,target bsoctrl crS target

Branch if unordered — bunlrl crS target — bunctrl crS target

Branch if not summary overflow bclrl 4,BI4,target bnslrl crS target bcctrl 4,BI4,target bnsctrl crS target

Branch if not unordered — bnulrl crS target — bnuctrl crS target

Table A-22. Simplified mnemonics for bcl and bcla with comparison conditions and
LR update (continued)

Branch Semantics bcl
Simplified 
Mnemonic

bcla
Simplified 
Mnemonic
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As with branch mnemonics, the crD field of a compare instruction can be omitted if CR0 is used, as shown 
in the following three examples. Otherwise, the target CR field must be specified as the first operand. The 
following examples use word compare mnemonics: 

1. Compare rA with immediate value 100 as signed 32-bit integers and place result in CR0.
cmpwi rA,100 equivalent to cmpi 0,0,rA,100

2. Same as (1), but place results in CR4.
cmpwi cr4,rA,100 equivalent to cmpi 4,0,rA,100

3. Compare rA and rB as unsigned 32-bit integers and place result in CR0.
cmplw rA,rB equivalent to cmpl 0,0,rA,rB

A.6 Compare doubleword simplified mnemonics
In compare double-word instructions, the L operand indicates a word (L = 0) or a double-word (L = 1). 
Simplified mnemonics in the following table eliminate the L operand for doubleword comparisons. 

As with branch mnemonics, the crD field of a compare instruction can be omitted if CR0 is used, as shown 
in the following three examples. Otherwise, the target CR field must be specified as the first operand. The 
following examples use word compare mnemonics: 

1. Compare rA with immediate value 100 as signed 64-bit integers and place result in CR0.
cmpdi rA,100 equivalent to cmpi 0,1,rA,100

2. Same as (1), but place results in CR4.
cmpdi cr4,rA,100 equivalent to cmpi 4,1,rA,100

3. Compare rA and rB as unsigned 64-bit integers and place result in CR0.
cmpld rA,rB equivalent to cmpl 0,1,rA,rB

Table A-24. Word compare simplified mnemonics

Operation Simplified Mnemonic Equivalent to:

Compare Word Immediate cmpwi crD,rA,SIMM cmpi crD,0,rA,SIMM

Compare Word cmpw crD,rA,rB cmp crD,0,rA,rB

Compare Logical Word Immediate cmplwi crD,rA,UIMM cmpli crD,0,rA,UIMM

Compare Logical Word cmplw crD,rA,rB cmpl crD,0,rA,rB

Table A-25. Doubleword compare simplified mnemonics

Operation Simplified Mnemonic Equivalent to:

Compare Doubleword Immediate cmpdi crD,rA,SIMM cmpi crD,1,rA,SIMM

Compare Doubleword cmpd crD,rA,rB cmp crD,1,rA,rB

Compare Logical Doubleword Immediate cmpldi crD,rA,UIMM cmpli crD,1,rA,UIMM

Compare Logical Doubleword cmpld crD,rA,rB cmpl crD,1,rA,rB
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A.7 Condition register logical simplified mnemonics 
The CR logical instructions, shown in the following table, can be used to set, clear, copy, or invert a given 
CR bit. Simplified mnemonics allow these operations to be coded easily. Note that the symbols defined in 
Table A-9 can be used to identify the CR bit.

The following examples use the CR logical mnemonics:

1. Set CR[57].
crset 25 equivalent to creqv 25,25,25

2. Clear CR0[SO].
crclr so equivalent to crxor 3,3,3

3. Same as (2), but clear CR3[SO].
crclr 4 * cr3 + so equivalent to crxor 15,15,15

4. Invert the CR0[EQ].crnot eq,eq equivalent tocrnor 2,2,2
5. Same as (4), but CR4[EQ] is inverted and the result is placed into CR5[EQ].

crnot 4 * cr5 + eq, 4 * cr4 + eq equivalent to crnor 22,18,18

A.8 Trap instructions simplified mnemonics 
The codes in the following table are for the most common combinations of trap conditions. 

Table A-26. Condition register logical simplified mnemonics

Operation Simplified Mnemonic Equivalent to

Condition register set crset bx creqv bx,bx,bx

Condition register clear crclr bx crxor bx,bx,bx

Condition register move crmove bx,by cror bx,by,by

Condition register not crnot bx,by crnor bx,by,by

Table A-27. Standard codes for trap instructions

Code Description TO Encoding < > = <U1 >U 2

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1
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The mnemonics in the following table are variations of trap instructions, with the most useful TO values 
represented in the mnemonic rather than specified as a numeric operand.

The following examples use the simplified trap mnemonics:

1. Trap if rA is not zero.
twnei rA,0 equivalent to twi 24,rA,0

2. Trap if rA is not equal to rB.
twne rA, rB equivalent to tw 24,rA,rB

3. Trap if rA is logically greater than 0x7FF.
twlgti rA, 0x7FF equivalent to twi 1,rA, 0x7FF

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

— Unconditional 31 1 1 1 1 1

1 The symbol ‘<U’ indicates an unsigned less-than evaluation is performed. 
2 The symbol ‘>U’ indicates an unsigned greater-than evaluation is performed.

Table A-28. Trap simplified mnemonics

Trap Semantics
32-Bit Comparison 64-Bit Comparison 

twi Immediate tw Register tdi Immediate td Register

Trap unconditionally — trap — —

Trap if less than twlti twlt tdlti tdlt

Trap if less than or equal twlei twle tdlei tdle

Trap if equal tweqi tweq tdeqi tdeq

Trap if greater than or equal twgei twge tdgei tdge

Trap if greater than twgti twgt tdgti tdgt

Trap if not less than twnli twnl tdnli tdnl

Trap if not equal twnei twne tdnei tdne

Trap if not greater than twngi twng tdngi tdng

Trap if logically less than twllti twllt tdllti tdllt

Trap if logically less than or equal twllei twlle tdllei tdlle

Trap if logically greater than or equal twlgei twlge tdlgei tdlge

Trap if logically greater than twlgti twlgt tdlgti tdlgt

Trap if logically not less than twlnli twlnl tdlnli tdlnl

Trap if logically not greater than twlngi twlng tdlngi tdlng

Table A-27. Standard codes for trap instructions (continued)

Code Description TO Encoding < > = <U1 >U 2
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4. Trap unconditionally.
trap equivalent to  tw 31,0,0

Trap instructions evaluate a trap condition as follows: The contents of rA are compared with either the 
sign-extended SIMM field or the contents of rB, depending on the trap instruction. 

The comparison results in five conditions that are ANDed with operand TO. If the result is not 0, the trap 
exception handler is invoked. This table lists these conditions.

A.9 Simplified mnemonics for accessing SPRs
The mtspr and mfspr instructions specify a special-purpose register (SPR) as a numeric operand. 
Simplified mnemonics are provided that represent the SPR in the mnemonic rather than requiring it to be 
coded as a numeric operand. The pattern for mtspr and mfspr simplified mnemonics is straightforward: 
replace the -spr portion of the mnemonic with the abbreviation for the spr (for example XER, SRR0, or 
LR), eliminate the SPRN operand, leaving the source or destination GPR operand, rS or rD. 

The following examples use the SPR simplified mnemonics:

1. Copy the contents of the low-order 32 bits of rS to the XER.
mtxer rS  equivalent to mtspr 1,rS

2. Copy the contents of the LR to rD.
mflr rD  equivalent to mfspr rD,8

3. Copy the contents of rS to the CTR.
mtctr rS  equivalent to mtspr 9,rS

The architecture describes extended mnemonics for accessing CTR, LR, and XER only. However, some 
assemblers support other SPRs in the same fashion as shown in the following examples:

1. Copy the contents of the low-order 32 bits of rS to CSRR1.
mtcsrr1 rS equivalent to mtspr 59,rS

2. Copy the contents of IVOR0 to rD.
mfivor0 rD equivalent to mfspr rD,400

3. Copy the contents of rS to the SRR0.
mtsrr0 rS  equivalent to mtspr 26,rS

Table A-29. TO operand bit encoding

TO Bit ANDed with Condition

0 Less than, using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison
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There is an additional simplified mnemonic convention for accessing SPRGs. These are shown in the 
following table, along with the equivalent simplified mnemonic using the formula described above.

A.10 AltiVec simplified mnemonics
The following simplified mnemonics are supported:

Vector Move Register

vmr vD,vS equivalent to vor vD, vS, vS

Vector Logical Not 

vnot vD,vS equivalent to vnorvD, vS, vS

A.11 Recommended simplified mnemonics
This section describes commonly-used operations (such as no-op, load immediate, load address, move 
register, and complement register). 

A.11.1 No-op (nop)

Many instructions can be coded so that, effectively, no operation is performed. A mnemonic is provided 
for the preferred form of no-op. If an implementation performs any type of run-time optimization related 
to no-ops, the preferred form is the following:

nop  equivalent to ori 0,0,0

A.11.2 Load immediate (li)

The addi and addis instructions can be used to load an immediate value into a register. Additional 
mnemonics are provided to convey the idea that no addition is being performed but that data is being 
moved from the immediate operand of the instruction to a register.

1. Load a 16-bit signed immediate value into rD.
li rD,value equivalent to addi rD,0,value

2. Load a 16-bit signed immediate value, shifted left by 16 bits, into rD. 
lis rD,value equivalent to addis rD,0,value

A.11.3 Load address (la) 

This mnemonic permits computing the value of a base-displacement operand, using the addi instruction 
that normally requires a separate register and immediate operands.

Table A-30. Additional simplified mnemonics for accessing SPRGs

SPR
Move to SPR Move from SPR

Simplified Mnemonic Equivalent to Simplified Mnemonic Equivalent to

SPRGs mtsprg n, rS mtspr 272 + n,rS mfsprg rD, n mfspr rD,272 + n

mtsprgn, rS mfsprgn rD
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la rD,d(rA) equivalent to addi rD,rA,d

The la mnemonic is useful for obtaining the address of a variable specified by name, allowing the 
assembler to supply the base register number and compute the displacement. If the variable v is located at 
offset dv bytes from the address in rv, and the assembler has been told to use rv as a base for references 
to the data structure containing v, the following line causes the address of v to be loaded into rD:

la rD,v equivalent to addi rD,rv,dv

A.11.4 Move register (mr)

Several instructions can be coded to copy the contents of one register to another. A simplified mnemonic 
is provided that signifies that no computation is being performed but merely that data is being moved from 
one register to another.

The following instruction copies the contents of rS into rA. This mnemonic can be coded with a dot (.) 
suffix to cause the Rc bit to be set in the underlying instruction.

mr rA,rS equivalent to or rA,rS,rS

A.11.5 Complement register (not)

Several instructions can be coded in a way that they complement the contents of one register and place the 
result into another register. A simplified mnemonic is provided that allows this operation to be coded 
easily.

The following instruction complements the contents of rS and places the result into rA. This mnemonic 
can be coded with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction.

not rA,rS equivalent to nor rA,rS,rS

A.11.6 Move to condition register (mtcr)

This mnemonic permits copying the contents of a GPR to the CR, using the same syntax as the mfcr 
instruction.

mtcr rS equivalent to mtcrf 0xFF,rS

A.11.7 Sync (sync)

The sync extended mnemonics provide simpler mnemonics for specifying certain sync operations:

Elemental sync
esync E equivalent to sync x,E

Note: x should be set by the assembler
to the complement of bit 2 of the 4-bit
E (bits 0 to 3) field.
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Lightweight sync
lwsync equivalent to sync 1

sync 1,0
Heavyweight sync
hwsync equivalent to sync 0 

sync 0,0
Book E / PowerPC compatibility
sync equivalent to sync 0

sync 0,0
msync equivalent to sync 0

sync 0,0

A.11.8 Integer select (isel)

The following mnemonics simplify the most common variants of the isel instruction that access CR0:

Integer Select Less Than 
isellt rD,rA,rB equivalent to isel rD,rA,rB,0 

Integer Select Greater Than 
iselgt rD,rA,rB equivalent to isel rD,rA,rB,1 

Integer Select Equal 
iseleq rD,rA,rB equivalent to isel rD,rA,rB,2

A.11.9 TLB invalidate local indexed 

The following simplified mnemonics are provided for tlbilx encodings: 

tlbilxlpid equivalent to tlbilx 0,0
tlbilxpid equivalent to tlbilx 1,0,0
tlbilxva rA,rB equivalent to tlbilx 3,rA,rB
tlbilxva rB equivalent to tlbilx 3,0,rB
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