MC33466

Fixed Frequency PWM Micropower DC-to-DC Converter

The MC33466 series are micropower switching voltage regulators, specifically designed for handheld and laptop applications, to provide regulated output voltages using a minimum of external parts. A wide choice of output voltages are available. These devices feature a very low quiescent bias current of $15 \mu \mathrm{~A}$ typical.

The MC33466H-XXJT1 series features a highly accurate voltage reference, an oscillator, a pulse width modulation (PWM) controller, a driver transistor (Lx), an error amplifier and feedback resistive divider.

The MC33466H-XXLT1 is identical to the MC33466H-XXJT1, except that a drive pin (EXT) for an external transistor is provided.

Due to the low bias current specifications, these devices are ideally suited for battery powered computer, consumer, and industrial equipment where an extension of useful battery life is desirable.

MC33466 Series Features:

- Low Quiescent Bias Current of $15 \mu \mathrm{~A}$
- High Output Voltage Accuracy of $\pm 2.5 \%$
- Low Startup Voltage of 0.9 V at 1.0 mA
- Soft-Start $=500 \mu \mathrm{~s}$
- Surface Mount Package

ON Semiconductor ${ }^{\text {w }}$
http://onsemi.com
MARKING
DIAGRAM

$x x=$ Voltage Option $(30,33,50)$
yy $=1 \mathrm{~A}=\mathrm{JT} 1,2 \mathrm{~B}=\mathrm{LT} 1$
zz = Lot Code

PIN CONNECTIONS

MC33466H-XXLT1

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet.

MC33466

XX Denotes Output Voltage
This device contains 100 active transistors.

Figure 1. Representative Block Diagrams

MAXIMUM RATINGS ($T_{C}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage (Transient)	V_{O}	12	V
Power Supply Voltage (Operating)	V_{O}	8.0	V
External Pin Voltage	$\mathrm{V}_{\mathrm{EXT}}$	-0.3 to V_{O}	V
Lx Pin Voltage	V_{Lx}	12	V
EXT Pin Source/Sink Current	$\mathrm{I}_{\mathrm{EXT}}$	± 50	mA
Lx Pin Sink Current	I_{Lx}	250	mA
Power Dissipation and Thermal Characteristics H Suffix, Plastic Package Case 1213 (SOT-89) Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
Thermal Resistance, Junction-to-Air	P_{D}	500	mW
Operating Junction Temperature	$\mathrm{R}_{\text {өJA }}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Ambient Temperature	T_{J}	125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	T_{A}	-30 to +80	${ }^{\circ} \mathrm{C}$

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OSCILLATOR					
Frequency JT1 Suffix LT1 Suffix	$\mathrm{f}_{\text {osc }}$	$\begin{aligned} & 40 \\ & 80 \end{aligned}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{gathered} 60 \\ 120 \end{gathered}$	kHz
Oscillator Minimum Startup Voltage ($\mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~mA}$) JT1 Suffix	$\mathrm{V}_{\text {start }}$	-	0.8	0.9	V
Oscillator Minimum Supply Voltage ($\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}$) JT1 Suffix	V_{CC}	0.7	-	-	V
Oscillator Startup Voltage ($\mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}$) LT1 Suffix	$\mathrm{V}_{\text {start }}$	-	0.7	0.8	V

LX OUTPUT (JT1 SUFFIX)

ON State Sink Current ($\mathrm{V}_{\mathrm{Lx}}=0.4 \mathrm{~V}$)	I_{Lx}			mA	
30JT1 Suffix		60	-	-	
33JT1 Suffix		63	-	-	
50JT1 Suffix		80	-	-	
$\mathrm{V}_{\text {Lx }}$ Voltage Limit (Note 1)	$\mathrm{V}_{\text {LxLim }}$	0.65	0.8	1.0	V
OFF State Leakage Current $\left(\mathrm{V}_{\mathrm{Lx}}=6.0 \mathrm{~V}\right)$	$\mathrm{I}_{\text {LKG }}$	-	-	0.5	$\mu \mathrm{~A}$

EXT OUTPUT (LT1 SUFFIX)

ON State Source Current $\left(\mathrm{V}_{\mathrm{EXT}}=\mathrm{V}_{\mathrm{O}}-0.4 \mathrm{~V}\right)$	$\mathrm{I}_{\text {source }}$				
30LT1 Suffix		1.5	-	-	mA
33LT1 Suffix		1.575	-	-	
50LT1 Suffix		2.0	-	-	
OFF State Sink Current $\left(\mathrm{V}_{\mathrm{EXT}}=0.4 \mathrm{~V}\right)$	$\mathrm{I}_{\text {sink }}$				mA
30LT1 Suffix		1.5	-	-	
33LT1 Suffix		1.575	-	-	
50LT1 Suffix		2.0	-	-	

TOTAL DEVICE

Maximum Duty Ratio Each Cycle	D	70	80	90	\%
Output Voltage 30JT1 or 30LT1 Suffix 33JT1 or 33LT1 Suffix 50JT1 or 50LT1 Suffix	V_{O}	$\begin{aligned} & 2.925 \\ & 3.218 \\ & 4.875 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.075 \\ & 3.383 \\ & 5.125 \end{aligned}$	V
Soft-Start Time (Note 2)	$\mathrm{T}_{\text {ss }}$	0.5	2.0	-	ms
Quiescent Bias Current ($\mathrm{l}=0 \mathrm{~mA}$) 30JT1 Suffix $\left(V_{i n}=1.8 \mathrm{~V}\right)$ 33JT1 Suffix 50JT1 Suffix ($\mathrm{V}_{\text {in }}=3.0 \mathrm{~V}$) Quiescent Bias Current $\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{O}}+0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}\right)$ 30JT1 Suffix 33JT1 Suffix 50JT1 Suffix	I_{Q}	- - - - - -	$\begin{aligned} & 15 \\ & 17 \\ & 30 \\ & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 25 \\ & 27 \\ & 45 \\ & \\ & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$
```Quiescent Bias Current ( \(\mathrm{l}=0 \mathrm{~mA}\) ) 30LT1 Suffix ( \(\mathrm{V}_{\text {in }}=1.8 \mathrm{~V}\) ) 33LT1 Suffix 50LT1 Suffix ( \(\mathrm{V}_{\text {in }}=3.0 \mathrm{~V}\) ) Quiescent Bias Current \(\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{O}}+0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}\right)\) 30LT1 Suffix 33LT1 Suffix 50LT1 Suffix```	$\mathrm{l}_{\mathrm{Q}}$	- - - - - -	$\begin{gathered} 30 \\ 34.5 \\ 60 \\ \\ 2.0 \\ 2.0 \\ 2.0 \end{gathered}$	$\begin{aligned} & 50 \\ & 56 \\ & 90 \\ & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$

1. When the $L x$ switch is turned on, $\mathrm{I}_{\mathrm{Lx}}$ current carried through the $\mathrm{R}_{\mathrm{DS}(o n)}$ of the Lx switch results in $V_{L x}$. When $V_{L x}$ reaches $V_{L x L i m}$, the $L x$ switch is turned off by the Lx switch protection circuit.
2. The soft-start circuit turn-on sequence is as follows:
a) $V_{\text {in }}$ is applied.
b) The internal IC $\mathrm{V}_{\text {ref }}$ is held at zero for $200 \mu \mathrm{~s}$. During this time, the error amplifier output voltage ramps up to the positive voltage rail.
c) The internal reference steps up to 0.7 V after $200 \mu$ s delay has timed out.
d) The error amplifier output voltage integrates down to its steady state value. As the error amplifier output integrates down, the output Lx pin of EXT pin pulse width gradually widens to its steady operating value.

TYPICAL APPLICATIONS


Figure 2. Quiescent Current versus Temperature


Figure 4. Oscillator Frequency versus Temperature


Figure 6. Lx Switching Current versus Temperature


Figure 3. Quiescent Current versus Temperature


Figure 5. Maximum Duty Ratio versus Temperature

$\mathrm{T}_{\mathrm{A}}$, AMBIENT TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ )
Figure 7. $\mathrm{V}_{\mathrm{Lx}}$ Voltage Limit versus Temperature

TYPICAL APPLICATIONS


Figure 8. Output Voltage versus Output Current


Figure 10. Output Voltage versus Output Current


Figure 12. Efficiency versus
Output Current


Figure 9. Output Voltage versus Output Current


Figure 11. Output Voltage versus Output Current

$\mathrm{I}_{\mathrm{O}}$, OUTPUT CURRENT (mA)
Figure 13. Effciency versus Output Current

TYPICAL APPLICATIONS

$\mathrm{l}_{\mathrm{O}}$, OUTPUT CURRENT (mA)
Figure 14. Efficiency versus Output Current


Figure 16. Startup/Hold Voltage versus Output Current


Figure 18. Output Voltage versus Temperature


Figure 15. Efficiency versus Output Current


Figure 17. Startup/Hold Voltage versus Output Current


Figure 19. Startup/Hold Voltage versus Temperature

## MC33466

## TYPICAL APPLICATIONS



Figure 20. Supply Current versus Input Voltage


Figure 21. Load Transient Response

## DEFINITIONS

Quiescent Bias Current - Current which is used to operate the switching regulator chip and is not delivered to the load.
Leakage Current - Current drawn through a transistor junction, under a specified collector voltage, when the transistor is off.

## FUNCTIONAL DESCRIPTION

## Introduction

The MC33466 series are monolithic power switching regulators optimized for dc-to-dc converter applications where power drain must be minimized. The combination of features in this series allows the system designer to directly implement step-up, step-down or flyback converters with a small number of external components. Potential applications include low power consumer products and battery powered portable products. Typical application circuits are shown in Figures 22 through 26.

## Operating Description

The MC33466 series converters operate as a fixed frequency voltage mode regulator. Operation is intended to be in the discontinuous mode, where the inductor current ramps up to a peak value which is greater than or equal to twice the value of the dc input current during the on-time of the transistor switch. During the off-time of the transistor switch, the inductor current ramps down to zero and remains at zero until another switching cycle begins.

Because the output voltage pin is also used as the supply voltage for powering internal circuitry, an external startup circuit is needed in step-down converter and flyback designs to provide initial power to the integrated circuit to begin switching. The startup circuit needed can be three discrete components, as shown in Figure 24, or a micropower undervoltage sensor, as shown in Figure 25.

## Oscillator

The oscillator frequency, is internally programmed to 50 kHz for the JT 1 suffix and 100 kHz for the LT1 suffix. The timing capacitor $\left(\mathrm{C}_{\mathrm{T}}\right)$ discharge to charge ratio of the oscillator is designed for a maximum duty cycle of $80 \%$ at the Lx or EXT output. During the charge of $\mathrm{C}_{\mathrm{T}}$, the oscillator generates an internal blanking pulse that holds the PWM control off, disabling the output transistor drive. The oscillator peak and valley thresholds are 0.5 V and ground, respectively.

## Pulse Width Modulator

The Pulse Width Modulator consists of a comparator with the oscillator ramp voltage applied to the inverting input, while the error amplifier output is applied to the noninverting input. Output switch conduction is initiated when the timing capacitor is charged to its peak voltage value. When the timing capacitor ramp discharges to a voltage below the error amplifier output, the comparator resets a latch terminating output transistor drive for the duration of the oscillator ramp period.

## Error Amplifier and Reference

An Error Amplifier is provided which has a nominal 80 dB of voltage gain at dc. Internal compensation components provide poles at $0.25 \mathrm{~Hz}, 30 \mathrm{kHz}$ and 33 kHz . Two zeros are provided at 1.0 kHz and at 2.5 kHz . The output voltage value is set by the internal voltage divider and a 0.7 V reference which is trimmed to an accuracy of $\pm 2.5 \%$. Because the loop compensation components are located within the IC, discontinuous mode operation is recommended for most applications.

## Driver and Output Switch

To aid in system design flexibility and conversion efficiency, two output driver options are provided. The MC33466H-XXJT1 converters have an internal drive transistor which is capable of sinking currents greater than 60 mA into the Lx pin. An internal $\mathrm{V}_{\mathrm{Lx}}$ limiter circuit senses if the Lx pin voltage exceeds 1.0 V during $\mathrm{t}_{\mathrm{on}}$ and turns off the drive transistor. The MC33466H-XXLT1 provides output drive for an external transistor.

## Applications

The following converter applications show the simplicity and flexibility of the converter architecture. Three main converter topologies are demonstrated in Figures 22 through 26.


Figure 22. MC33466H-50JT1 Typical Step-Up Application


Figure 23. MC33466H-50LT1 Typical Step-Up Application


Figure 24. MC33466H-33JT1 Step-Down Application

Test	Condition	Results
Line Regulation	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=320 \mathrm{~mA}$	$7.0 \mathrm{mV}= \pm 0.1 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=7.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3.3 \mathrm{~mA}$ to 320 mA	$3.0 \mathrm{mV}= \pm 0.04 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=7.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=320 \mathrm{~mA}$	70 mVpp
Efficiency	$\mathrm{V}_{\text {in }}=7.0 \mathrm{~V}, \mathrm{I}=320 \mathrm{~mA}$	$63.8 \%$



NOTE: Using the MC33464N-30ATR reduces current drawn in the startup circuit to 1 mA during normal operation.
Figure 25. Micropower Step-Down Application


Figure 26. Flyback Application

Calculation	Step-Down	Step-Up	Flyback
L	$<\frac{\left(\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{O}}\right)\left(\mathrm{t}_{\mathrm{on}}\right)}{2 \mathrm{I}_{\mathrm{O}}}$	$<\frac{\left(v_{\text {in }}\right)\left(t_{\text {on }}\right)}{\left.2\right\|_{\text {in }}}$	$<\frac{\left(\mathrm{v}_{\mathrm{in}}\right)\left(\mathrm{t}_{\mathrm{on}}\right)}{21_{\mathrm{in}}}$
$\mathrm{t}_{\text {on }}$	$\frac{\mathrm{D}}{\mathrm{fs}}$	$\frac{\mathrm{D}}{\mathrm{fs}}$	$\frac{\mathrm{D}}{\mathrm{fs}}$
D	$<\frac{\left(\mathrm{V}_{\mathrm{O}}\right)}{\left(\mathrm{V}_{\text {in }}\right)}$	$<\frac{\left(\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{in}}\right)}{\left(\mathrm{V}_{\mathrm{O}}\right)}$	$<\frac{v_{O}}{\left[\left(\frac{N s}{N p}\right)\left(V_{\text {in }}\right)+V_{O}\right]}$
L(avg)	10	$1{ }_{\text {in }}$	$\mathrm{l}_{\text {in }}$
$\mathrm{l}_{\mathrm{L}(\mathrm{pk})}$	$\frac{\left(V_{\text {in }}-V_{0}\right)\left(t_{\text {on }}\right)}{L}$	$\frac{\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {sat }}\left(\mathrm{t}_{\text {on }}\right)\right.}{\mathrm{L}}$	$\frac{\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {sat }}\left(\mathrm{t}_{\text {on }}\right)\right.}{\mathrm{L}}$
$\mathrm{V}_{\text {ripple(pp) }}$		$\mathrm{I}_{\mathrm{L}(\mathrm{pk})}\left[\left(\frac{1}{8 f s C_{O}}\right)^{2}+(\mathrm{ESR})^{2}\right]^{\frac{1}{2}}$	

The following converter design characteristics must be chosen:
$\mathrm{V}_{\text {in }}$ - Nominal Operating dc input voltage
$\mathrm{V}_{\mathrm{O}}$ - Desired dc output voltage
$\mathrm{I}_{\mathrm{O}}$ - Desired dc output current
$\mathrm{V}_{\text {ripple(pp) }}$ - Desired peak-to-peak output ripple voltage. For best performance the ripple voltage should be kept to a low value since it will directly affect line and load regulation. Capacitor $C_{O}$ should be a low equivalent series resistance (ESR) electrolytic designed for switching regulator applications.
$D$ - Operating duty cycle $=t_{o n}(f s)$. This parameter must be chosen to be $<0.5$ for step-up and flyback applications.
NOTES: 1. $\mathrm{V}_{\text {sat }}-$ Saturation voltage of the switching transistor.
2. $l_{\text {in }}$ - DC input switch.
3. fs - Switching frequency, nominally 50 kHz .
4. $\mathrm{R}_{\mathrm{O}}$ - Load resistance. $\mathrm{R}_{\mathrm{O}}=\mathrm{V}_{\mathrm{O}} / \mathrm{l}_{\mathrm{O}}$.
5. Ns, Np - In flyback applications Ns is the number of turns of the secondary transformer winding; Np is the number of the primary winding turns.

Figure 27. Design Equations

## Design Example - Step-down Application

Required: $\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}$, an output voltage of 3.3 V at 300 mA is desired with an output ripple of less than 300 mVpp .

$$
\mathrm{R}_{\mathrm{O}}=\frac{\mathrm{v}_{\mathrm{O}}}{\mathrm{I}_{\mathrm{O}}}=11 \Omega
$$

1. Because this is a discontinuous mode design, $\mathrm{D}<\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{V}_{\text {in }}}=\frac{3.3}{8}=0.41$. Choose $\mathrm{D}=0.33$.
2. $\mathrm{t}_{\mathrm{on}} \approx \frac{\mathrm{D}}{\mathrm{fs}}=\frac{0.33}{(50 \mathrm{kHz})}=6.6 \mu \mathrm{~s}$.
3. $\mathrm{L}<\frac{\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\right)\left(\mathrm{t}_{\mathrm{on}}\right)}{{ }^{2 \mathrm{I}} \mathrm{O}}=\frac{(8-3.3)(6.6 \mu \mathrm{~s})}{[2(0.3)]}=51.7 \mu \mathrm{H}$.

Choose $\mathrm{L}=47 \mu \mathrm{H}$. Coilcraft part number DO3316P-473.
4. $\mathrm{I}_{\mathrm{L}(\mathrm{pk})}=\frac{\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\right)\left(\mathrm{t}_{\mathrm{on}}\right)}{\mathrm{L}}=\frac{(8-3.3)(6.6 \mu \mathrm{~s})}{(47 \mu \mathrm{H})}=660 \mathrm{~mA}$.
5. $\mathrm{ESR}<\frac{\mathrm{V}_{\text {ripple }(\mathrm{pp})}}{\mathrm{I}_{\mathrm{L}(\mathrm{pk})}}=\frac{(300 \mathrm{mV})}{(660 \mathrm{~mA})}=0.455 \Omega$.

Choose $\mathrm{C}_{\mathrm{O}}=$ two parallel AVX $330 \mu \mathrm{~F}$ tantalum chip capacitors. Part Number TAJE337M006.
Specified maximum ESR for each is $0.9 \Omega$.
The complete design schematic is shown in Figure 24.

## MC33466

ORDERING INFORMATION

Device	Output   Voltage	Type	Operating Temperature Range	Package	Shipping
MC33466H-30JT1	3.0	Int. Switch	$\mathrm{T}_{\mathrm{A}}=-30^{\circ}$ to $+80^{\circ} \mathrm{C}$	SOT-89	1000 Tape \& Reel
MC33466H-33JT1	3.3				
MC33466H-50JT1	5.0				
MC33466H-30LT1	3.0	Ext.			
MC33466H-33LT1	3.3	Switch			
MC33466H-50LT1	5.0	Drive			

Other voltages from 2.5 V to 7.5 V , in 0.1 V increments are available. Consult factory for information.

## MC33466

## PACKAGE DIMENSIONS



MC33466
Notes


#### Abstract

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.


## PUBLICATION ORDERING INFORMATION

Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

