16-bit MCU with MAC unit, 832 Kbyte Flash memory and 68 Kbyte RAM

Features

- High performance 16-bit CPU with DSP functions
- 31.25 ns instruction cycle time at 64 MHz max CPU clock
- Multiply/accumulate unit (MAC) 16×16-bit multiplication, 40-bit accumulator
- Enhanced boolean bit manipulation facilities
- Single-cycle context switching support

■ Memory organization

- 512 Kbyte Flash memory (32-bit fetch)
- 320 Kbyte extension Flash memory (16-bit fetch)
- 100 k erasing/programming cycles
- Up to 16 Mbyte linear address space for code and data (5 Mbytes with CAN or ${ }^{12} \mathrm{C}$)
- 2 Kbyte on-chip internal RAM 'FArN;
- 66 Kbyte on-chip extension $3 A V_{i}$ (XRAM)
- Programmable exterñiínce characteristics for different addres s lariyes
- Five progran mabiョ chip-select sig.anis
- Hold-ackinwledge bus arbitraticn vupport

■ Inter:urs
 single cycle : iterr.pi driven data transfer
16-prioritv-leve! interrupt system with 56 source., alanpling rate down to 15.6 ns

- Timer
- . multi-functional general purpose timer units with 5 timers
- Two 16-channel capture/compare units

■ Analog-to-digital converter (ADC)

- 32-channel 10-bit
- $3 \mu \mathrm{~s}$ minimum conversion time
- Tlmer for ADC channel injection

■ 4-channel PWM unit and 4-channel XPWM

PBGA 208 $\left(23 \times 23 \times 1.96 \mathrm{~m} . \mathrm{n}^{\prime}\right)$

- Serial channels
- Two synchroncus/asynch. seriá channels
- Two hich s'jeed synchiono's Enannels
- $1^{2} C=t=$ ndard interfare
- r... CAN 2.0B int rizcis operating on one or two CAN busses ' 64 or 2×32 message objects, C•C.け version)
- Fail-s.at-r rotection
- Drigrammable watchdog timer
- Oscillator watchdog
- On-chip bootstrap loader
- Clock generation
- On-chip PLL and 4-12 MHz oscillator
- Direct or prescaled clock input

■ Real-time clock
■ Up to 143 general purpose I/O lines

- Individually programmable as input, output or special function
- Programmable threshold (hysteresis)

■ Idle, power-down and stand-by modes

- single voltage supply: $5 \mathrm{~V} \pm 10 \%$ (embedded regulator for 1.8 V core supply).

Table 1. Device summary

Order codes	Temp. range (${ }^{\circ} \mathrm{C}$)	CPU freq. range (MHz)
ST10F296	-40 to 125	1 to 64
ST10F296TR		

Contents

1 Description 17
2 Ball data 20
3 Functional description 32
4 Memory organization 33
4.1 IFlash 33
4.2 XFlash 34
4.3 Internal RAM (IRAM) 34
4.4 Extension RAM (XRAM) 35
4.5 Special function register (SFR) areas 35
4.6 CAN1 35
4.7 CAN2 36
4.8 Real-time clock (RTC) 36
4.9 Pulse-width modulation i (PWM1) 36
4.10 ASC1 36
4.11 SSC1 36
$4.12 \quad I^{2} \mathrm{C}$ 37
4.13 .Timer/XMiscellaneous 37
1.1/t XPort 9/XPort 10 37
4. 15 Visibility of XBus peripherals 37
4.16 XPeripheral configuration registers 39
5 Internal Flash memory 42
5.1 Functional description 42
5.1.1 Structure 42
5.1.2 Module structure 43
5.1.3 Low power mode 45
5.2 Write operation 45
5.2.1 Power supply drop 46
5.3 Internal Flash memory registers 46
5.4 Protection strategy 57
5.4.1 Protection registers 57
5.4.2 Access protection 60
5.4.3 Write protection 61
5.4.4 Temporary unprotection 61
5.5 Write operation examples 62
5.5.1 Word program 62
5.5.2 Double word program 62
5.5.3 Sector erase 62
5.5.4 Suspend and resume 62
5.5.5 Erase suspend, program and resume 63
5.5.6 Set protection 64
5.6 Write operation summary 65
6 The bootstrap loader 66
6.1 Selection among user-code, standard ur aliernate bootstrap 66
6.2 Standard bootstrap loader (BSI) 67
6.2.1 Entering the stande rd b ovistrap loader 67
6.2.2 ST10 configuration in BSL 68
6.2.3 Booting st spo 70
6.2.4 Harıwa:s is activate BSL 70
6.2.5 Viomory configuration in bootstrap loader mode 71
S.f.t Loading the startup code 72
6.2.7 Exiting bootstrap loader mode 73
6.2.8 Hardware requirements 73
0.3 Standard bootstrap with UART (RS232 or K-line) 73
6.3.1 Features 73
6.3.2 Entering bootstrap via UART 74
6.3.3 ST10 configuration in UART BSL (RS232 or K-line) 75
6.3.4 Loading the startup code 75
6.3.5 Choosing the baud rate for the BSL via UART 76
6.4 Standard bootstrap with CAN 78
6.4.1 Features 78
6.4.2 Entering the CAN bootstrap loader 79
6.4.3 ST10 configuration in CAN BSL 80
6.4.4 Loading the startup code via CAN 81
6.4.5 Choosing the baud rate for the BSL via CAN 82
6.4.6 How to compute the baud rate error 84
6.4.7 Bootstrap via CAN 85
6.5 Comparing the old and the new bootstrap loader 85
6.5.1 Software aspects 85
6.5.2 Hardware aspects 86
6.6 Alternate boot mode (ABM) 86
6.6.1 Activation 86
6.6.2 Memory mapping 86
6.6.3 Interrupts 86
6.6.4 ST10 configuration in alternate boot mode 87
6.6.5 Watchdog 88
6.6.6 Exiting alternate boot mode 88
6.6.7 Alternate boot user software 88
6.6.8 User/alternate boot mode signature (hesk 88
6.6.9 Alternate boot user software aspic:s 89
6.6.10 Internal decoding of test minos. 89
6.6.11 Example of alternate bc ct :node operation 89
6.7 Selective boot mode 90
7 Central processir.g unit (CPU) 92
7.1 Multipli¿:-accumulator unit (MAC) 93
7.2 Intiriction set summary 94
7.3 MAC coprocessor specific instructions 96
8 External bus controller (EBC) 97
8.1 Programmable chip select timing control 98
8.2 READY programmable polarity 98
8.3 EA functionality 99
9 Interrupt system 100
9.1 XPeripheral interrupt 103
9.2 Exception and error traps list 105
10 Capture/compare (CAPCOM) units 106
11 General purpose timer unit 110
11.1 GPT1 110
11.2 GPT2 112
12 Pulse-width modulation (PWM) modules 114
12.1 XPWM output signals 115
12.2 XPWM registers 115
12.2.1 Software control of the XPWM outputs 116
13 Parallel ports 118
13.1 I/O special features 121
13.1.1 Open-drain mode 121
13.1.2 Input threshold control 121
13.1.3 I/O port registers 121
13.1.4 Alternate port functions 125
13.2 Port 0 126
13.2.1 Port 0 registers 126
13.2.2 Alternate functions of P,rt 0 127
13.3 Port 1 130
13.3.1 Port 1 registers 130
13.3.2 Alía néte functions of Port 1 131
13.4 Port ? 133
13.1.1 Port 2 registers 133
i3.4.2 Alternate functions of Port 2 134
13.4.3 Port 2 and external interrupts 137
13.5 Port 3 138
13.5.1 Port 3 registers 138
13.5.2 Alternate functions of Port 3 139
13.6 Port 4 142
13.6.1 Port 4 registers 142
13.6.2 Alternate functions of Port 4 144
13.7 Port 5 150
13.7.1 Port 5 registers 150
13.7.2 Alternate functions of port 5 150
13.7.3 Port 5 analog inputs disturb protection 152
13.8 Port 6 152
13.8.1 Port 6 registers 152
13.8.2 Alternate functions of Port 6 154
13.9 Port 7 159
13.9.1 Port 7 registers 159
13.9.2 Alternate functions of Port 7 160
13.10 Port 8 163
13.10.1 Port 8 registers 163
13.10.2 Alternate functions of Port 8 165
13.11 XPort 9 169
13.11.1 XPort 9 registers 169
13.12 XPort 10 172
13.12.1 XPort 10 registers 172
13.12.2 Alternate functions of XPort 10 173
13.12.3 XPort 10 analog inputs disturb protection 174
14 Analog-to-digital converter (ADC) 176
14.1 Mode selection and operation 177
14.2 Calibration 179
14.3 XTimer module 180
14.3.1 Main foaturo's 180
15 Serial chanr e's 183
15.1 rssirinronous/synchronous serial interface (ASCO) 183
15.1.1 ASC0 in asynchronous mode 183
15.1.2 Asynchronous mode baud rates 184
15.1.3 ASC0 in synchronous mode 186
15.1.4 Synchronous mode baud rates 186
15.2 Asynchronous/synchronous serial interface (ASC1) 188
15.3 High speed synchronous serial interface (SSC0) 188
15.3.1 Baud rate generation 189
15.4 High speed synchronous serial interface (SSC1) 190
$16 \quad \mathrm{I}^{2} \mathrm{C}$ interface 191
16.1 $I^{2} C$ bus speed selection 191
17 CAN modules 192
17.1 CAN module memory mapping 192
17.1.1 CAN1 192
17.1.2 CAN2 192
17.2 Configuration support 193
17.3 Clock prescaling 193
17.4 CAN bus configurations 194
17.4.1 Single CAN bus 194
17.4.2 Multiple CAN bus 195
17.4.3 Parallel mode 195
17.5 System clock tolerance range 196
17.6 Configuration of the CAN controller 199
17.7 Calculation of the bit timing parameters 200
17.7.1 Example of bit timing at high baud rate 201
17.7.2 Example of bit timing at low baud rate 202
18 Real-time clock (RTC) 203
18.1 RTC registers 205
18.2 Programming the RTC 209
19 Watchdog timer 211
20 System rest t 214
20.1 Iru ílter 214
20.2. Asynchronous reset 215
20.2.1 Power-on reset 215
20.2.2 Hardware reset 218
20.2.3 Exit from asynchronous reset state 219
20.3 Synchronous reset (warm reset) 220
20.3.1 Short and long synchronous reset 221
20.3.2 Exit from synchronous reset state 222
20.3.3 Synchronous reset and the RPD pin 222
20.4 Software reset 226
20.5 Watchdog timer reset 227
20.6 Bidirectional reset 229
20.6.1 WDTCON flags 230
20.7 Reset circuitry 233
$\pi /$ 7/346
20.8 Reset application examples 235
20.9 Reset summary 237
21 Power reduction modes 240
21.1 Idle mode 240
21.2 Power-down mode 240
21.2.1 Protected power-down mode 241
21.2.2 Interruptible power-down mode 241
21.3 Standby mode 244
21.3.1 Entering standby mode 244
21.3.2 Exiting standby mode 245
21.4 Power reduction modes summary 246
22 Programmable output clock divider 247
23 Register set 248
23.1 Register description format 248
23.2 General purpose registers (GF'ris) 249
23.3 SFRs ordered by name 251
23.4 SFRs ordered bj' andress 258
23.5 X registors गidered by name 265
23.6 X reyinios ordered by address 270
23.7 Flash registers ordered by name 276
\therefore ¿ Flash registers ordered by address 277
23.9 Identification registers 278
23.10 System configuration registers 280
23.10.1 XPEREMU register 290
23.11 Emulation dedicated registers 291
24 Electrical characteristics 292
24.1 Absolute maximum ratings 292
24.2 Recommended operating conditions 293
24.3 Power considerations 293
24.4 Parameter interpretation 294
24.5 DC characteristics 295
24.6 Flash characteristics 300
24.7 ADC characteristics 302
24.7.1 Conversion timing control 303
24.7.2 ADC conversion accuracy 304
24.7.3 Analog reference pins 306
24.7.4 Analog input pins 306
24.7.5 Example of external network sizing 310
24.8 AC characteristics 311
24.8.1 Test waveforms 311
24.8.2 Definition of internal timing 312
24.8.3 Clock generation modes 313
24.8.4 Prescaler operation 314
24.8.5 Direct drive 314
24.8.6 Oscillator watchdog (OWD) 315
24.8.7 Phase-locked loop (PLL) 315
24.8.8 Voltage controlled oscillator 316
24.8.9 PLL jitter 317
24.8.10 Jitter in the input clock 317
24.8.11 Noise in the PLL loop 317
24.8.12 PLL locl// ninck 319
24.8.13 Mair, us eliator specifications 319
24.8.14 Extırnal clock drive XTAL1 320
2481 Memory cycle variables 321
24.8.16 External memory bus timing 322
24.8.17 $\overline{\text { READY }}$ and CLKOUT 334
24.8.18 External bus arbitration 336
24.8.19 High-speed synchronous serial interface (SSC) timing modes 338
25 Package mechanical data 342
26 Ordering information 344
27 Revision history 345

List of tables

Table 1. Device summary 1
Table 2. Ball description 21
Table 3. Address ranges for IFlash. 33
Table 4. Address ranges for IFlash. 34
Table 5. XPERCON register description. 39
Table 6. Segment 8 address range mapping 41
Table 7. Flash module absolute mapping. 42
Table 8. Sectorization of the Flash modules (read operations) 43
Table 9. Sectorization of the Flash modules (write operations or with ROMS1 = 1) 44
Table 10. Control register interface 45
Table 11. FCROL register decription. 46
Table 12. FCROH register decription 48
Table 13. FCR1L register description (SMOD $=0$, XFlash selected) 50
Table 14. FCR1L register description (SMOD $=1$, IFlash selected) 50
Table 15. FCR1H register description (SMOD $=0$, XFlash selected). 51
Table 16. FCR1H register description (SMOD $=1$, IFlash selected) 52
Table 17. Banks (BxS) and sectors (BxFy) status bits meaning. 52
Table 18. FDROL register description 52
Table 19. FDROH register description 53
Table 20. FDR1L register description 53
Table 21. FDR1H register description 53
Table 22. FARL register description 54
Table 23. FARH register description. 54
Table 24. FER register description 55
Table 25. XFICR register descriptior 56
Table 26. FNVWPXRL register ritsiription 57
Table 27. FNVWPXRH reçisteı ciescription 58
Table 28. FNVWPIRL reg stir description 58
Table 29. FNVWPIR'4 ergister description 58
Table 30. FNVAI? ${ }^{\circ} 0$ register description 59
Table 31. FN̈̈'APFi1L register description 59
Table 32. F NóAPR1H register description 60
Table 23. Summary of access protection levels 61
Tarie 34. Flash write operations. 65
Taill 35. ST10F296E boot mode selection 67
1able 36. ST10 configuration in BSL mode 68
Table 37. ST10 configuration in UART BSL mode (RS232 or K-line). 75
Table 38. ST10 configuration in CAN BSL mode 80
Table 39. Timer content ranges of BRP value in Equation 5 83
Table 40. Software topics summary 85
Table 41. Hardware topics summary 86
Table 42. ST10 configuration in alternate boot mode 87
Table 43. EMUCON register description 89
Table 44. Selective boot mode configurations 90
Table 45. Instruction set summary 94
Table 46. MAC instruction set summary 96
Table 47. Interrupt sources 101
Table 48. XInterrupt detailed mapping 104
Table 49．Trap priorities 105
Table 50．Compare modes 108
Table 51．CAPCOM timer input frequencies，resolution，and periods at 40 MHz 109
Table 52．CAPCOM timer input frequencies，resolution，and periods at 64 MHz 109
Table 53．GPT1 timer input frequencies，resolution，and periods at 40 MHz 111
Table 54．GPT1 timer input frequencies，resolution，and periods at 64 MHz 111
Table 55．GPT2 timer input frequencies，resolution，and period at 40 MHz 112
Table 56．GPT2 timer input frequencies，resolution，and period at 64 MHz 112
Table 57．PWM unit frequencies and resolution at 40 MHz CPU clock 114
Table 58．PWM unit frequencies and resolution at 64 MHz CPU clock 115
Table 59．XPOLAR register description 115
Table 60．XPWMPORT register description 116
Table 61．PICON register description 122
Table 62．XPICON register description． 122
Table 63．XPICON9 register description 123
Table 64．XPICON9SET register description 123
Table 65．XPICON9CLR register description 123
Table 66．XPICON10 register description 124
Table 67．POL and POH register description 126
Table 68．DPOL and DPOH register description 127
Table 69．P1L and P1H register description 130
Table 70．DP1L and DP1H register description 131
Table 71．P2 register description 133
Table 72．DP2 register description 133
Table 73．ODP2 register description． 134
Table 74．Alternate functions of Port 2 135
Table 75．EXISEL register description 137
Table 76．External interrupt selection 137
Table 77．P3 register description 138
Table 78．DP3 register descripti on 138
Table 79．ODP3 register de seristion． 139
 139
Table 81．P4 renioiっ，acscription 142
Table 82．DP4 re，ıster description 143
Table 83．〇ரノ 4 register description． 143
Table 84．Cort 4 alternate functions 144
Table 5s．P5 register description 150
Talip ic．Port 5 alternate functions 150
「aıie 87．P5DIDIS register description 152
Table 88．P6 register description 152
Table 89．DP6 register description 153
Table 90．ODP6 register description 153
Table 91．ODP6 register description 154
Table 92．Port 6 alternate functions 155
Table 93．P7 register description 159
Table 94．DP7 register description 159
Table 95．ODP7 register description 160
Table 96．Port 7 alternate functions 160
Table 97．P8 register description 163
Table 98．DP8 register description 163
Table 99．ODP8 register description． 164
Table 100．XS1PORT register description 164
Table 101. Port 8 alternate functions 165
Table 102. XP9 register description 169
Table 103. XP9SET register description 169
Table 104. XP9CLR register description 170
Table 105. XDP9 register description 170
Table 106. XDP9SET register description 170
Table 107. XDP9CLR register description 171
Table 108. XODP9 register description 171
Table 109. XODP9SET register description 171
Table 110. XODP9CLR register description 172
Table 111. XP10 register description 172
Table 112. XPort 10 alternate functions 173
Table 113. XP10DIDIS register description 174
Table 114. XP10DIDISSET register description 175
Table 115. XP10DIDISCLR register description. 175
Table 116. ADC programming at $\mathrm{f}_{\mathrm{CPU}}=64 \mathrm{MHz}$ 179
Table 117. Different counting modes 181
Table 118. Commonly used baud rates by reload value and deviation error $\left(\mathrm{f}_{\mathrm{CPU}}=40 \mathrm{MHz}\right.$) 185
Table 119. Commonly used baud rates by reload value and deviation err.r $\left(\mathrm{f}_{\mathrm{CPU}}=64 \mathrm{MHz}\right.$) 185
Table 120. Commonly used baud rates by reload value and deviaic n error ($\mathrm{f}_{\mathrm{CPU}}=40 \mathrm{MHz}$) 187
Table 121. Commonly used baud rates by reload value and deviation errors $\left(\mathrm{f}_{\mathrm{CPU}}=64 \mathrm{MHz}\right.$) 187
Table 122. Synchronous baud rate and reload velues, ($\mathrm{f}_{\mathrm{CPU}}=40 \mathrm{MHz}$) 189
Table 123. Synchronous baud rate and reload values ($\mathrm{f}_{\mathrm{CPU}}=64 \mathrm{MHz}$) 190
Table 124. RTCCON register description. 205
Table 125. EXISEL register descriptic n 209
Table 126. Interrupt sources ass(iciaisa with the RTC. 210
Table 127. WDTCON regist r de scription 212
Table 128. WDTCON bit..alu s on different resets 212
Table 129. WDTP E_{i}, olad value ($\mathrm{f}_{\mathrm{CPU}}=40 \mathrm{MHz}$). 213
Table 130. WDTR ${ }^{-}$L reload value ($\mathrm{f}_{\mathrm{CPU}}=64 \mathrm{MHz}$) 213
Table 131. Ret event definition. 214
Table 132 . 1 ?set events summary 237
Table is's Latched configurations of Port 0 for the different reset events 238
Talıle is4. EXICON register description. 241
' T) ile 135. Power reduction modes summary 246
Table 136. XCLKOUTDIV register description 247
Table 137. Word register description 248
Table 138. General purpose registers (GPRs) 249
Table 139. General purpose registers (GPRs) bit wise addressing 250
Table 140. SFRs ordered by name. 251
Table 141. SFRs ordered by address. 258
Table 142. X registers ordered by name 265
Table 143. X registers ordered by address. 270
Table 144. Flash registers ordered by name 276
Table 145. Flash registers ordered by address 277
Table 146. IDMANUF register description 278
Table 147. IDCHIP register description 278
Table 148. IDMEM register description 279
Table 149. IDPROG register description 279
Table 150. SYSCON register description 280
Table 151. BUSCONx register description 283
Table 152. RPOH register description. 284
Table 153. EXICON register description. 285
Table 154. EXISEL register description 286
Table 155. External interrupt selection 286
Table 156. xxIC register description 287
Table 157. XPERCON register description 288
Table 158. Segment 8 address range mapping 290
Table 159. Absolute maximum ratings 292
Table 160. Recommended operating conditions 293
Table 161. Thermal characteristics 294
Table 162. Package characteristics 294
Table 163. DC characteristics. 295
Table 164. Flash characteristics 300
Table 165. Data retention characteristics 301
Table 166. ADC characteristics 302
Table 167. ADC programming 304
Table 168. On-chip clock generator selections. 313
Table 169. Internal PLL divider mechanism 316
Table 170. PLL lock/unlock timing 319
Table 171. Main oscillator specifications 319
 320
Table 173. External clock drive timing 321
Table 174. Memory cycle variables 321
Table 175. Multiplexed bus timings 322
Table 176. Demultiplexed bus 328
Table 177. READY and CLKOUT 334
Table 178. External bus arbitraticn. 336
Table 179. Master mode 338
Table 180. Slave mode 340
Table 181. PBGA $\approx \imath^{2}\left(\iota_{2} 3 \times 23 \times 1.96 \mathrm{~mm}\right)$ mechanical data. 343
Table 182. Order (dodes 344
Table 183. norument revision history 345

List of figures

Figure 1. Logic diagram 19
Figure 2. Pin configuration (bottom view) 20
Figure 3. Block diagram 32
Figure 4. ST10F296E on-chip memory mapping 38
Figure 5. Flash modules structure 42
Figure 6. ST10F296E new standard bootstrap loader program flow 69
Figure 7. Booting steps for the ST10F296E. 70
Figure 8. Hardware provisions to activate the BSL 71
Figure 9. Memory configuration after reset 72
Figure 10. UART bootstrap loader sequence 74
Figure 11. Baud rate deviation between the host and ST10F296E 77
Figure 12. CAN bootstrap loader sequence. 78
Figure 13. Bit rate measurement over a predefined zero-frame 82
Figure 14. Reference signature computation. 88
Figure 15. Reset boot sequence 91
Figure 16. CPU block diagram (MAC unit not included) 92
Figure 17. MAC unit architecture 93
Figure 18. Chip select delay 98
Figure 19. $\overline{\mathrm{EA}} / \mathrm{V}_{\text {STBY }}$ external circuit 99
Figure 20. XInterrupt basic structure 103
Figure 21. CAPCOM unit block diagram 107
Figure 22. Block diagram of CAPCOM timers TC anc is 107
Figure 23. Block diagram of CAPCOM timers T1 and T8 108
Figure 24. Block diagram of GPT1 111
Figure 25. Block diagram of GPT2 113
Figure 26. Block diagram of PWRim nociale 114
Figure 27. XPWM output siarral zei ieration 117
Figure 28. SFRs and pinc as ociated with the parallel ports (A) 119
Figure 29. SFRs and Jins associated with the parallel ports (B) 120
Figure 30. Outpuı dirivers in push-pull mode and in open-drain mode 124
Figure 31. Hysiaresis concept 124
Figure 32. Fni:U I/O and alternate functions 128
Figure 3's Slock diagram of a Port 0 pin 129
Fig'ıí 3c. Port 1 I/O and alternate functions 132
-igure 35. Block diagram of a Port 1 pin 132
Figure 36. Port 2 I/O and alternate functions 135
Figure 37. Block diagram of a Port 2 pin 136
Figure 38. Port 3 I/O and alternate functions 140
Figure 39. Block diagram of a Port 3 pin 141
Figure 40. Block diagram of pins P3.15 (CLKOUT) and P3.12 (BHE/WRH) 142
Figure 41. Port $4 \mathrm{I} / \mathrm{O}$ and alternate functions 145
Figure 42. Block diagram of Port 4 pins 3 to 0. 145
Figure 43. Block diagram of pin P4.4. 146
Figure 44. Block diagram of pin P4.5. 147
Figure 45. Block diagram of pin P4.6. 148
Figure 46. Block diagram of pin P4.7. 149
Figure 47. Port $5 \mathrm{I} / \mathrm{O}$ and alternate functions 151
Figure 48. Block diagram of a Port 5 pin 151
Figure 49. Port $6 \mathrm{I} / \mathrm{O}$ and alternate functions 155
Figure 50. Block diagram of Port 6 pins 7, 6, 1, 0 156
Figure 51. Block diagram of pin P6.5. 157
Figure 52. Block diagram of pins P6.2, P6.3, and P6.4 158
Figure 53. Port $7 \mathrm{I} / \mathrm{O}$ and alternate functions 161
Figure 54. Block diagram of Port 7 pins 3 to 0. 161
Figure 55. Block diagram of Port 7 pins 7 to 4 162
Figure 56. Port $8 \mathrm{I} / \mathrm{O}$ and alternate functions 165
Figure 57. Block diagram of P8 pins 5 to 0 166
Figure 58. Block diagram of pin P8.6. 167
Figure 59. Block diagram of pin P8.7. 168
Figure 60. XPort $10 \mathrm{I} / \mathrm{O}$ and alternate functions. 173
Figure 61. Block diagram of an XPort 10 pin 174
Figure 62. ADC block diagram 178
Figure 63. XTimer block diagram 180
Figure 64. Asynchronous mode of serial channel ASCO 184
Figure 65. Synchronous mode of serial channel ASC0 186
Figure 66. Synchronous serial channel SSC0 block diagram 188
Figure 67. Connection to a single CAN bus via separate CAN transceivfis 194
Figure 68. Connection to a single CAN bus via common CAN transceive, s 194
Figure 69. Connection to two different CAN buses (example for gatterey application) 195
Figure 70. Connection to one CAN bus with internal parallel mcar enabled. 195
Figure 71. ESFRs and port pins associated with the RTC. 204
Figure 72. RTC block diagram 204
Figure 73. Prescaler registers 206
Figure 74. Divider counter registers. 207
Figure 75. Asynchronous power-on reset ($\overline{\mathrm{EA}}=1$) 217
Figure 76. Asynchronous power-on resct $(\overline{\bar{E} A}=0)$ 218
Figure 77. Asynchronous hardware reset ($\bar{E} \bar{A}=1$) 219
Figure 78. Asynchronous hardwitre ioset ($\overline{\mathrm{EA}}=0$) 220
Figure 79. Synchronous shi rilong hardware reset $(\overline{E A}=1)$. 223
Figure 80. Synchronoue, $=1$ or ${ }^{\prime}$ long hardware reset $(\overline{E A}=0)$. 224
Figure 81. Synchroic is ! ong hardware reset $(\overline{E A}=1)$ 225
Figure 82. Syncht nous long hardware reset $(\overline{\mathrm{EA}}=0)$ 226
Figure 83. Scttware/watchdog timer unidirectional reset ($\overline{E A}=1$). 227
Figure 84. Sotware/watchdog timer unidirectional reset $(\overline{\mathrm{EA}}=0)$. 228
Figure 05 . Joftware/watchdog timer bidirectional reset $(\overline{E A}=1)$. 230
Fig iro O'J. Software/watchdog timer bidirectional reset ($\overline{\mathrm{EA}}=0$). 231
io ule 87. Software/watchdog timer bidirectional reset $(\overline{E A}=0)$ followed by a hardware reset 232
Figure 88. Minimum external reset circuitry 234
Figure 89. System reset circuit 234
Figure 90 . Example of software or watchdog bidirectional reset $(\overline{\mathrm{EA}}=1)$ 235
Figure 91. Example of software or watchdog bidirectional reset $(\overline{\mathrm{EA}}=0)$ 236
Figure 92. Port 0 bits latched into the different registers after reset 239
Figure 93. External RC circuit on the RPD pin 242
Figure 94. Simplified power-down exit circuitry 243
Figure 95. Power-down exit sequence when using an external interrupt (PLL x 2) 243
Figure 96. Port 2 test mode structure 298
Figure 97. Supply current versus the operating frequency (run and idle modes) 299
Figure 98. AD conversion characteristic 305
Figure 99. ADC input pins scheme 306
Figure 100. Charge sharing timing diagram during sampling phase 307
Figure 101. Anti-aliasing filter and conversion rate 309
Figure 102. Input/output waveforms 311
Figure 103. Float waveforms 312
Figure 104. Generation mechanisms for the CPU clock 313
Figure 105. ST10F296E PLL jitter 318
Figure 106. ST10F296ECrystal oscillator and resonator connection diagram. 320
Figure 107. External clock drive XTAL1 321
Figure 108. Multiplexed bus with/without R/W delay and normal ALE. 324
Figure 109. Multiplexed bus with/without R/W delay and extended ALE 325
Figure 110. Multiplexed bus with/without R/W delay, normal ALE, R/W $\overline{\mathrm{CS}}$ 326
Figure 111. Multiplexed bus with/without R/ W delay, extended ALE, R/W CS 327
Figure 112. Demultiplexed bus with/without read/write delay and normal ALE 330
Figure 113. Demultiplexed bus with/without R/W delay and extended ALE 331
Figure 114. Demultiplexed bus with ALE and R/W $\overline{\mathrm{CS}}$ 332
Figure 115. Demultiplexed bus no R/W delay, extended ALE, R/W $\overline{\mathrm{CS}}$ 333
Figure 116. READY and CLKOUT. 335
Figure 117. External bus arbitration (releasing the bus) 336
Figure 118. External bus arbitration (regaining the bus) 337
Figure 119. SSC master timing 339
Figure 120. SSC slave timing 341
Figure 121. PBGA $208(23 \times 23 \times 1.96 \mathrm{~mm})$ outline 342

1 Description

The ST10F296E is a derivative of the STMicroelectronics ST10 family of 16-bit single-chip CMOS microcontrollers. It combines high CPU performance (up to 32 million instructions per second) with high peripheral functionality and enhanced I/O-capabilities. It also provides on-chip high-speed single voltage Flash memory, on-chip high-speed RAM, and clock generation via the phase-locked loop (PLL).

ST10F296E is processed in $0.18 \mu \mathrm{~m}$ CMOS technology. The MCU core and the logic is supplied with a 5 V to 1.8 V on-chip voltage regulator. The part is supplied with a single 5 V supply and I/Os work at 5 V .
The device is upwardly compatible with the ST10F280 device, with the following differences:

- The Flash control interface is now based on STMicroelectronics third generativii 01 standalone Flash memories (M29F400 series), with an embedded progran.'e:əse controller. This completely frees up the CPU during programming or eravirig of the Flash.
- Pins DC1 and DC2 of ST10F280, are renamed as V_{18}. $D=r_{1}$)t \because ennect these pins to 5.0 V external supply. Instead, these pin should be conne-ied to a decoupling capacitor (ceramic type, typical value 10 nF , maximum value 10リ) nF).
- The AC and DC parameters are modified duE t (1 cifterence in the maximum CPU frequency.
- The EA pin has assumed a new, alterriaie unctionality: It is also used to provide a dedicated power supply (see V_{S} 「BY, in naintain a portion of the XRAM (16 Kbytes) biased when the main power suprly of the device ($V_{D D}$ and consequently the internally generated V_{18}) is turned eff for low power mode, thereby allowing data retention. $\mathrm{V}_{\text {STBY }}$ voltage is in the range $+5-5.5 \mathrm{~V}$, and a dedicated embedded low power voltage regulator provides the 1.0 V for the RAM. The upper limit of up to 6 V may be exceeded for a very short prija of time during the global life of the device. The lower limit of 4 V may also $\mathrm{ke} 3, \mathrm{c}$ eeded.
- A secor d jЬC, mapped on the XBus, has been added (SSC of ST10F280 becomes SSC0, while the new SSC is referred to as XSSC or SSC1). There are some res،rictions and functional differences due to peculiarities present in the XBus between he classic SSC and the new XSSC.
- A second ASC, mapped on the XBus, has been added (ASC0 of ST10F280 remains ASC0, while the new one is referred to as XASC or ASC1). Some restrictions and functional differences due to peculiarities present in the XBus between the classic ASC, and the new XASC.
- The second PWM (XPWM), mapped on the XBus, has been improved adding set/clear command for safe management of the control register. Memory mapping is thus slightly different.
- An $I^{2} C$ interface on the XBus has been added (see $X-I^{2} C$ or simply $I^{2} C$ interface).
- The CLKOUT function can output either the CPU clock (as in ST10F280) or a software programmable prescaled value of the CPU clock.
- the embedded memory size has been significantly increased (both Flash and RAM).
- PLL multiplication factors have been adapted to new frequency range.
- The ADC is not fully compatible with the ST10F280 (timing and programming model). The formula for the convertion time is still valid, while the sampling phase programming model is different.
- The external memory bus potential limitations on maximum speed and maximum capacitance load are under evaluation and may be introduced: ST10F296E will probably not be able to address an external memory at 64 MHz with 0 wait states.
- The XPERCON register bit mapping has been modified according to new peripheral implementation (which is not fully compatible with ST10F280).
- The bondout chip for emulation (ST10R201) cannot achieve more than 50 MHz at room temperature (so, no real-time emulation is possible at maximum speed).
- Input section characteristics are different. The threshold programmability is extended to all port pins (additional XPICON register); it is possible to select standard TTL (with up to 400 mV of hysteresis) and standard CMOS (with up to 750 mV of hysteresis,.
- Output transition is not programmable.
- An RTC module has been added.
- The CAN module has been enhanced: ST10F296E implements tivo ©-CAN modules, so the programming model is slightly different. The possin:lit in rap both CAN modules simultaneously has been added (on P4.5/P4.6).
- The on-chip main oscillator input frequency range hes neen reshaped, reducing it from $1-25 \mathrm{MHz}$ to $4-12 \mathrm{MHz}$. This is a high perforna is a scillator amplifier, that provides a very high negative resistance and wide oscilinion amplitude. When this on-chip amplifier is used as a reference for the FIS, n odule, the power-down consumption is dominated by the consumption of itic os cillator amplifier itself. A metal option is added to offer a low power oscillator an olifier working in the range $4-8 \mathrm{MHz}$ which allows a power consumption reduction when the RTC is running in power-down mode using the on-chip main oscillator s!'ock as a reference.
- The possibility to $r \in$, rıgiam the internal XBus chip select window characteristics (XRAM2 and X:Fas'ו address window) has been added.

Figure 1. Logic diagram

2
 Ball data

The ST10F296E package is a PBGA measuring $23 \times 23 \times 1.96 \mathrm{~mm}$. Ball pitch is 1.27 mm . Pin configuration is shown in Figure 2 while the signal assignment of the balls is given in Table 2. This package has 25 additional thermal balls.

Figure 2. Pin configuration (bottom view)

Table 2. Ball description

Symbol	Ball no.	Type	Function (including p	ort, p	ternate	tion where applicable)
P6.0 to P6.7	E4	0	8-bit bidirectional I/O port, bit-wise programmable for input or output via direction bit. Programming an I/O pin as input forces the corresponding output driver to high impedance state. Port 6 outputs can be configured as push-pull or open-drain drivers. The input threshold of Port 6 is selectable (TTL or CMOS).	P6.0	CS0	Chip select 0 output
	D3	0		P6.1	CS1	Chip select 1 output
	B1	0		P6.2	$\overline{\mathrm{CS} 2}$	Chip select 2 output
		I/O			SCLK1	SSC1: Master clock output/slave clock input
	C1	0		P6.3	$\overline{\mathrm{CS3}}$	Chip select 3 output
		I/O			MTSR1	SSC1: Master-transmitter/slave-re caiv ?r O/I
	D2	0		P6.4	$\overline{\text { CS4 }}$	Chip selec ${ }^{1} \cdot 0$ utput
		I/O			MRST1	S.S, : 1 'asterr e ? $\mathrm{ver} /$ slave-transmitter l'O
	E3	1		P6.5	Fintio	External master hold request input
	F4	0		P6.6	HLDA	Hold acknowledge output
	D1	0		「;	$\overline{\text { BREQ }}$	Bus request output
$\mathrm{P} 8 こ \mathfrak{C} 8.7$	E2	I/O		P8.0	CC16IO	CAPCOM2: CC16 capture input/compare output
	F3	I/O		P8.	CC17IO	CAPCOM2: CC17 capture input/compare output
	F2	I/O		P8.2	CC18IO	CAPCOM2: CC18 capture input/compare output
	G3	$\therefore \mathrm{O}$	bit-wise programmable for input or output via direction	P8.3	CC19IO	CAPCOM2: CC19 capture input/compare output
	$G .2$	I/O	bit. Programming an I/O pin as input forces the	P8.4	CC20IO	CAPCOM2: CC20 capture input/compare output
	H4	I/O	to high impedance state. Port 8 outputs can be	P8.5	CC21IO	CAPCOM2: CC21 capture input/compare output
	3		configured as push-pull or open-drain drivers. The		CC22IO	CAPCOM2: CC22 capture input/compare output
	H3	I/O	selectable (TTL or CMOS).	P8.6	RxD1	ASC1: Data input (asynchronous) or I/O (synchronous)
	H2	I/O		P8.7	CC23IO	CAPCOM2: CC23 capture input/compare output
		0			TxD1	ASC1: Clock/data output (asynchronous/synchronous)

Table 2．Ball description（continued）

Symbol	Ball	Type	Function（including port，pin and alternate function where applicable）			
P7．0 to P7．7	J4	0	8－bit bidirectional I／O port， bit－wise programmable for input or output via direction bit．Programming an I／O pin as input forces the corresponding output driver to high impedance state． Port 7 outputs can be configured as push－pull or open－drain drivers．The input threshold of Port 7 is selectable（TTL or CMOS）．	P7．0	POUTO	PWMO：Channel 0 output
	J3	0		P7．1	POUT1	PWMO：Channel 1 output
	J2	0		P7．2	POUT2	PWMO：Channel 2 output
	J1	0		P7．3	POUT3	PWMO：Channel 3 output
	K2	I／O		P7．4	CC28IO	CAPCOM2：CC28 capture input／compare output
	K3	I／O		P7．5	CC291O	CAPCOM2：CC29 capture input／compare outp＇t
	K4	I／O		P7．6	CC3010	CAPCOM2：C 3i capture input／comiáre jutput
	L2	I／O		P7．7	CC31IO	CAP こCVí：CC31 capture ir，〕ui＇compare output
$\begin{gathered} \text { XP10.0 to } \\ \text { XP10.15 } \end{gathered}$	M4	1	16－bit input－only port with Schmitt－Trigger characteristics．The pins of XPort 10 can be in $\begin{gathered}\text { analog }\end{gathered}$ input chame＇s（up to 16）for the $A D C$ ．were XP10．x ec Ua＇s A． $\mathrm{N} y$（analog input Cr＇aıınel y ，where $y=x+$ 16）．The input threshold of XPort 10 is selectable（TTL	XP10．0		$\times 1$
	M3	1		XP10．1		
	M2	1		XP10．2		（
	M1	1		XP1し．		
	N4	1		疒io．4		
	N3	1		XP10．5		
	N2	1		XP10．6		
	N1	1		XP10．7		
	P4	1		XP10．8		
	P3	1		XP10．9		
	P2	1		XP10．10		
	$1 \cdot 1$	1		XP10．11		
	R2			XP10．12		
	R1			XP10．13		
	T1			XP10．14		
	U1			XP10．15		

Table 2. Ball description (continued)

Table 2. Ball description (continued)

Table 2. Ball description (continued)

Symbol	$\begin{aligned} & \text { Ball } \\ & \text { no. } \end{aligned}$	Type	Function (including port, pin and alternate function where applicable)			
$\begin{gathered} \text { P3.0 to } \\ \text { P3.13, P3.15 } \end{gathered}$	R12	I	15-bit (P3.14 is missing) bidirectional I/O port, bitwise programmable for input or output via direction bit. Programming an I/O pin as input forces the corresponding output driver to high impedance state. Port 3 outputs can be configured as push-pull or open-drain drivers. The input thresho if poit 3 is selectable (7 : or CMOS).	P3.0	TOIN	CAPCOM1: Timer T0 count input
	T13	0		P3.1	T60UT	GPT2: Timer T6 toggle latch output
	P12	I		P3.2	CAPIN	GPT2: Register caprel capture input
	R13	0		P3.3	T3OUT	GPT1: Timer T3 toggle latch output
	T14	1		P3.4	T3EUD	GPT1: Timer T3 e: ternel up/down contr_1 linpui
	P13	I		P3.5	T4IN	GPT1 Tim ? ? ? 4 input for coun /g،'tcireload/capture
	R14	I		P3.6	T3IN	G1)T1: Timer T3 count/gate input
	P14	I		P3.7	Trin	GPT1: Timer T2 input for count/gate/reload/capture
	R15	I/O		$\text { P3 } 8$	MRST0	SSC0: Master receive/slave transmit I/O
	R16	I/O		P3.9	MTSRO	SSC0: Master transmit/slave receive O/I
	N14	I/O		P3.10	TxD0	ASC0: Clock/data output (asynchronous/synchronous)
	P15	0		P3.11	RxD0	ASC0: Data input (asynchronous) or I/O (synchronous)
					$\overline{\text { BHE }}$	External memory high byte enable signal
	$1 t^{16}$	0		P3.12	$\overline{\mathrm{WRH}}$	External memory high byte write strobe
	M14	I/O		P3.13	SCLK0	SSC0: Master clock output/slave clock input
	T17	0		P3.15	CLKOUT	Clock output (programmable divider on CPU clock)

Table 2. Ball description (continued)

Symbol	Ball no.	Type	Function (including port, pin and alternate function where applicable)			
P4.0 to P4.7	N16	0	8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bit. Programming an I/O pin as input forces the corresponding output driver to high impedance state. The input threshold is selectable (TTL or CMOS). Port 4.4, 4.5, 4.6 and 4.7 outputs can be configured as push-pull or open-drain drivers. In case of an external bus configuration, Port 4 can be used to output the segment address lines.	P4.0	A16	Least significant segment address line
	M15	0		P4.1	A17	Segment address line
	L14	0		P4.2	A18	Segment address line
	M16	0		P4.3	A19	Segment address line
	L15	0		P4.4	A20	Segment address line
		1			CAN2_RxD	CAN2: Receive data input
		I/O			SCL	$1^{2} \mathrm{C}$ interface: Seric 1 Iock
	L16	0		P4.5	A21	Segment ac'ares s line
		1			CAN1_RxD	CAN $1.53{ }^{\text {c }}$-ive data input
		1			CAN2_Rx	C.AN2: Receive Data Input
	K14	0		P4.6	A22	Segment address line
		0			Crn 1 TxD	CAN1: Transmit data output
		\bigcirc			CAN2_TxD	CAN2: Transmit data output
	K15	0		M	A23	Most significant segment address line
		0		4.7	CAN2_TxD	CAN2: Transmit data output
		I/O			SDA	$\mathrm{I}^{2} \mathrm{C}$ interface: Serial data
$\overline{\mathrm{RD}}$	J14	0	External mencry read strobe: $\overline{\mathrm{RD}}$ is activated for every external instruction or data read ac eiss.			
$\overline{W R}$ and $\overline{\text { WRL }}$	J15		F. tei .al memory write strobe: $\operatorname{In} \overline{W R}$ mode this pin is activated for every external data w ite access. In WRL mode this pin is activated for low byte data write access on a 16bit bus, and, for every data write access on an 8-bit bus. See WRCFG in register SYSCON for mode selection.			
READ: anc' FE, © 1	J16	1	Ready input: The active level is programmable. When the Ready function is enabled, the selected inactive level at this pin during an external memory access forces the insertion of memory cycle time waitstates until the pin returns to the selected active level.			
ALE	J17	0	Address latch enable output: Can be used for latching the address into external memory or an address latch in the multiplexed bus modes.			
EA and $V_{\text {STBY }}$	H17	1	External access enable pin: A low level applied to this pin during and after reset forces the ST10F296E to start the program from the external memory space. A high level forces ST10F296E to start in the internal memory space. This pin is also used (when standby mode is entered: ST10F296E under reset and main V_{DD} turned off) to provide a reference voltage for the low-power embedded voltage regulator which generates the internal 1.8 V supply to retain data inside the standby portion of the XRAM (16 Kbyte). It can range from 4.5 to 5.5 V (6 V for a reduced amount of time during the device life). In running mode, this pin can be tied low during reset without affecting XRAM activities, since the presence of a stable V_{DD} guarantees the proper biasing of this module.			

Table 2. Ball description (continued)

Symbol	Ball no.	Type	Function (including port, pin and alternate function where applicable)			
POL. 0 to POL. 7 and POH .0 to POH. 7	H16	I/O	Two 8-bit bidirectional I/O ports POL and POH, bit-wise programmable for input or output via direction bit. Programming an I/O pin as input forces the corresponding output driver to high impedance state. The input threshold of Port 0 is selectable (TTL or CMOS). In case of an external bus configuration, Port 0 serves as the address (A) and as the address/data (AD) bus in multiplexed bus modes and as the data (D) bus in demultiplexed bus modes. Demultiplexed bus modes P0L.0-P0L.7: D0-D7 (8-bit), D0-D7 (16-bit). POH.O-POH.7: I/O (8-bit), D8-D15 (16-bit). Multiplexed bus modes POL.0-P0L.7: ADO.AD7 (8bit), ADO-AD? (6 hii). POH.O-POH. 7: 48-A15 (8bit), AL8 AD 15 (16-bit).	POL. 0		
	H15	1/O		P0L. 1		
	H14	I/O		POL. 2		
	G16	I/O		POL. 3		
	G15	I/O		POL. 4		
	G14	I/O		POL. 5		
	F16	I/O		P0L. 6		
	E17	I/O		P0L. 7		$\times 31$
	F15	I/O		POH. 0		
	E16	I/O		POH. 1		
	F14	I/O		POH. 2		
	D17	I/O		POH. 3		
	E15	I/O		POH. 4	-	,
	D16	I/O		POH. 5		ก
	C17	I/O		+)HE		\checkmark
	E14	I/O		$\text { POH. } 7$		

Table 2. Ball description (continued)

Table 2. Ball description (continued)

Symbol	Ball no.	Type	Function (including port, pin and alternate function where applicable)		
$\begin{gathered} \text { XPORT9.0 } \\ \text { to } \\ \text { XPORT9.15 } \end{gathered}$	D15	I/O	16-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into highimpedance state. XPort 9 outputs can be configured as push-pull or open-drain drivers. The input threshold of XPort 9 is selectable (TTL or CMOS).	XPORT9.0	
	C16	I/O		XPORT9.1	
	D14	I/O		XPORT9.2	
	C15	I/O		XPORT9.3	
	B16	I/O		XPORT9.4	
	D13	I/O		XPORT9.5	
	C14	I/O		XPORT9.6	
	B15	I/O		XPORT9.7	$\times 31$
	A15	I/O		XPORT9.8	- (1)
	B14	I/O		XPORT9.9	\cdots
	C13	I/O		XPORT9.10	$1 \times$ (
	D12	I/O		XPORT9.11	- +
	B13	I/O		XPORT9.12	- ${ }^{\text {a }}$
	C12	I/O		XPORT 1.13	-
	D11	I/O		$\lambda \times \sim$ ¢i. 9.14	-
	B12	I/O		-PORT9.15	$\times 2$
XTAL1	A5	1	XTAL1: Input to the oscillator amplifier and/or external clock input.		
XTAL2	A6	0	XTAL2: Ourbu of the oscillator amplifier circuit. To clock the device from an external source c rive ViriL1 while leaving XTAL2 unconnected. Minimum and maximum hiai, ${ }_{1}$ iow and rise/fall times specified in the AC characteristics must be observed		
$\overline{\text { RSTIN }}$	A3	1	hevet input with CMOS Schmitt-Trigger characteristics: A low level at this pin for a specified duration while the oscillator is running resets ST10F296E. An internal pull-up resistor permits power-on reset using only a capacitor connected to V_{SS}. In bidirectional reset mode (enabled by setting bit BDRSTEN in SYSCON register), the $\overline{\text { RSTIN }}$ line is pulled low for the duration of the internal reset sequence.		
DSTOUT	B4	0	Internal reset indication output: This pin is driven to a low level during hardware, software or watchdog timer reset. RSTOUT remains low until the EINIT (end of initialization) instruction is executed.		
$\overline{\mathrm{NMI}}$	C4	1	Non maskable interrupt input: A high to low transition at this pin causes the CPU to vector to the NMI trap routine. If bit PWDCFG $=0$ in the SYSCON register, when the PWRDN (power-down) instruction is executed, the NMI pin must be low in order to force the ST10F296E to go into power-down mode. If $\overline{\text { NMI }}$ is high and PWDCFG $=0$, when PWRDN is executed, the part will continue to run in normal mode. If not being used, pin NMI should be pulled high externally.		
XPOUT. 0	D4	0	XPWM: Channel 0 output		
XPOUT. 1	C3	0	XPWM: Channel 1 output		
XPOUT. 2	B2	0	XPWM: Channel 2 output		
XPOUT. 3	C2	0	XPWM: Channel 3 output		
XADCINJ	L3	0	Output trigger for ADC channel injection		

Table 2. Ball description (continued)

Symbol	Ball no.	Type	Function (including port, pin and alternate function where applicable)
$V_{\text {AREF }}$	U2	-	ADC reference voltage and analog supply
$\mathrm{V}_{\text {AGND }}$	U3	-	ADC reference and analog ground
RPD	M17	I/O	Timing pin for the return from power-down circuit and synchronous/ asynchronous reset selection.
V_{18}	G1, U11	0	1.8 V decoupling pin: A decoupling capacitor (typical value of 10 nF , max 100 nF) must be connected between this pin and nearest V_{SS} pin.
$V_{\text {DD }}$	A2 A9 A12 A14 E1 K1 U8 U15 P17 L17 G17	-	Digital supply voltage: 5 V during normal operation, idle and power-c $\boldsymbol{\sim}$ can be turned off when standby RAM mode is selected.

Table 2. Ball description (continued)

Symbol	Ball no.	Typ	Function (including port, pin and alternate function where applicab
$\mathrm{V}_{\text {SS }}$	A1, A4 A8, A11, A13, A16 A17, B3, B5 B6, B8 B9, B17, D5, D6 F1, F17, G4, H1 K16, K17, L1, L4 N15, N17, R17, T15, T16, U7, U10, U13, U14, U16, $1 \div 1$		Digital ground

3 Functional description

The architecture of the ST10F296E combines advantages of both RISC and CISC processors and an advanced peripheral subsystem. The block diagram of Figure 3 gives an overview of the different on-chip components and the high bandwidth internal bus structure of the ST10F296E.

Figure 3. Block diagram

(

4 Memory organization

The memory space of the ST10F296E is configured in a unified memory architecture. Code memory, data memory, registers and I/O ports are organized within the same linear address space of 16 Mbytes. The entire memory space can be accessed byte wise or word wise. Particular portions of the on-chip memory have additionally been made directly bit addressable.

The organization of the ST10F296E memory is described in the sections below and shown in Figure 4: ST10F296E on-chip memory mapping on page 38.

4.1 IFlash

IFlash comprises 512 Kbytes of on-chip Flash memory. It is divided into 10 kiucrs (B0F0...B0F9) of Bank 0, and two blocks of Bank 1 (B1F0, B1F1). Reac'-ivhi't write operations inside the same bank are not allowed. When bootstrap mnile is selected, the Test-Flash Block B0TF (8 Kbyte) appears at address 00'0000h. Fei er io Section 5: Internal Flash memory on page 42 for more details on memory mapp $\cdot y$ in boot mode. The summary of address ranges for IFlash is given in Table 3

Table 3. Address ranges for IFlash

4．2 XFlash

XFlash comprises 320 Kbytes of on－chip extension Flash memory．The XFLASH address range is 09＇0000h－0E＇FFFFh if enabled（if the XPEN bit，bit 2，of the SYSCON register and the XFLASHEN bit，bit 5，of the XPERCON register are set ）．If the XPEN bit is cleared，any access in the address range 09＇0000h－0E＇FFFFh is directed to the external memory interface，using the BUSCONx register corresponding to an address matching the ADDRSELx register．When the XPEN bit is set，but the XFLASHEN and XRAM2EN bits are cleared．

Note：\quad When the Flash control registers are not accessible，no program／erase operations are possible．
XFlash is divided into 3 blocks（B2F0．．．B0F2）of Bank 2，and two blocks of Bank 3 （B3F0， B3F1）．Read－while－write operations inside the same bank are not allowed．Flash crntrol registers are mapped in the range 0E＇0000h－0E＇FFFFh．The summary of addrosis rar．ge for XFLASH is given in Table 4.

Table 4．Address ranges for IFlash

Blocks	User Mode	Size（Kbytes）
B2F0	09＇0000h－nc Fi－FFh	2 64
B2F1	0A＇00しか－OA FFFFh	64
B2F2	「ごしプJh－OB＇FFFFh	64
B3F0	1C＇0000h－0C＇FFFFh	64
B3F1	0D＇0000h－OD＇FFFFh	64
CTRL Registers	0E＇0000h－0E＇FFFFFh	64

The XFlash is access ac like an external memory in 16－bit demultiplexed bus－mode without read／write delay．The＇＾یer must set the proper number of waitstates according to the system frequency（ 1 wi its＇ate for $\mathrm{f}_{\mathrm{CPU}}$ higher than $40 \mathrm{MHz}, 0$ waitstates otherwise）．Refer to the XFICR ${ }^{\circ} \mathrm{g}$＇s．ar described in Section 5：Internal Flash memory on page 42）．Byte and word access is aliowed．

Note：

4．3 Internal RAM（IRAM）

2 Kbytes of on－chip IRAM（dual－port）is provided as a storage for data，system stack， general purpose register bank and code．A register bank includes 16 wordwide（R0 to R15） and／or bytewide（RLO，RH0，．．．，RL7，RH7）general purpose registers．

4．4 Extension RAM（XRAM）

64 Kbyte and 2 Kbytes of on－chip XRAM（single port XRAM）is provided as a storage for data，user stack and code．

The XRAM is divided into 2 areas，the first 2 kbytes and second 64 Kbytes，called XRAM1 and XRAM2 respectively，are connected to the internal XBus and are accessed like an external memory in 16－bit demultiplexed bus－mode without wait state or read／write delay （ 31.25 ns access at 64 MHz CPU clock）．Byte and word access is allowed．

The XRAM1 address range is 00＇E000h－00＇E7FFh if the XPEN bit（bit 2 of the SYSCON register）and XRAM1EN bit（bit 2 of the XPERCON register）are set．If the XRAM1EN or XPEN bits are cleared，any access in the address range 00＇E000h－00＇E7FFh is directed to external memory interface，using the BUSCONx register corresponding to an address matching the ADDRSELx register．

The XRAM2 address range is 0F＇0000h－0F＇FFFFh if the XPEN bit and XRAM $=5_{1} 1$ bit（bit 3 of the XPERCON register）are set．If the XRAM2EN or XPEN bits are cleare 1 ，a y access in the address range 00＇C000h－00＇DFFFh is directed to the external me nor；interface，using the BUSCONx register corresponding to an address matching the $/ D_{1}$－ same thing happens when the XPEN bit is set，but both the X $2 \mathcal{A} . M_{2}$ ？EN and XFLASHEN bits are cleared．

The lower 16 Kbyte portion of XRAM2（address rence 0－0000h－0F＇3FFFh）represents the standby RAM which can be maintained biased tr．in＇ $\mathrm{y}^{\mathrm{L}}, \overline{\mathrm{EA}} / \mathrm{V}_{\text {STBY }}$ pin when the main supply $V_{D D}$ is turned off．
As the XRAM appears as external mo ic cannot be used as a system stack or as a register bank．The XRAM is not provician for single bit storage and therefore is not bit addressable．
Note：When the ROMEN bit ir tie s ISCON register is low，and the XPEN bit is set，and at least one of the two bits XFLAこクこN or XRAM2EN in the XPERCON register are also set，the address 08，0006．－८9 FFFFh must be reserved（no external memory access is enabled）．

4．5 Special function register（SFR）areas

47 area of 1024 bytes（ 2×512 bytes）of address space is reserved for special function ．egisters（SFR）and extended special function registers（ESFR）．SFRs are wordwide registers which are used to control and to monitor the function of the different on－chip units．

4．6 CAN1

Address range 00＇EF00h－00＇EFFFh is reserved for the CAN1 module access．CAN1 is enabled by setting the XPEN bit（bit 2 of the SYSCON register）and the CAN1EN bit（bit 0 of the XPERCON register）．Access to the CAN module use demultiplexed addresses and a 16－ bit data bus（only word access is possible）．Two wait states give an access time of 62.5 ns at 64 MHz CPU clock．No tristate wait states are used．

4.7 CAN2

Address range 00'EEOOh - 00'EEFFh is reserved for the CAN2 module access. CAN2 is enabled by setting the XPEN bit (bit 2 of the SYSCON register) and the CAN2EN bit (bit 1 of the new XPERCON register). Access to the CAN module use demultiplexed addresses and a 16-bit data bus (only word access is possible). Two wait states give an access time of 62.5 ns at 64 MHz CPU clock. No tristate wait states are used.

Note: \quad If one or both CAN modules are used, Port 4 cannot be programmed to output all eight segment address lines. Thus, only four segment address lines can be used, reducing the external memory space to 5 Mbytes (1 Mbyte per $\overline{C S}$ line).

4.8 Real-time clock (RTC)

Address range 00'ED00h - 00'EDFFh is reserved for the RTC module access .he RTC is enabled by setting the XPEN bit (bit 2 of the SYSCON register) and bit 4 oí t, e XPERCON register. Access to the RTC module use demultiplexed addresses and a 1 に-jit data bus (only word access is possible). Two waitstates give an access time ot '力 2.5 ns at 64 MHz CPU clock. No tristate waitstate is used.

4.9 Pulse-width modulation 1 (PWM1;

Address range 00'EC00h - 00'ECFFh is reco, $\because e^{\prime}$ ior the PWM1 module access. The PWM1 is enabled by setting the XPEN bit (bic $2 \omega_{i}$ the SYSCON register) and bit 6 of the XPERCON register. Access to the PW'M1 module use demultiplexed addresses and a 16-bit data bus (only word access is nossible). Two waitstates give an access time of 62.5 ns at 64 MHz CPU clock. No tristae wait,state is used. Only word access is allowed.

4.10 ASC1

Addre'ss ange 00'E900h - 00'E9FFh is reserved for the ASC1 module access. The ASC1 is enablec by setting the XPEN bit (bit 2 of the SYSCON register) and bit 7 of the XPERCON -a rister. Access to the ASC1 module use demultiplexed addresses and a 16-bit data bus io.aly word access is possible). Two waitstates give an access time of 62.5 ns at 64 MHz CPU clock. No tristate waitstate is used.

4.11 SSC1

Address range 00'E800h - 00'E8FFh is reserved for the SSC1 module access. The SSC1 is enabled by setting the XPEN bit (bit 2 of the SYSCON register) and bit 8 of the XPERCON register. Access to the SSC1 module use demultiplexed addresses and a 16-bit data bus (only word access is possible). Two waitstates give an access time of 62.5 ns at 64 MHz CPU clock. No tristate waitstate is used.

$4.12 \quad \mathrm{I}^{2} \mathrm{C}$

Address range 00'EAOOh - 00'EAFFh is reserved for the $\mathrm{I}^{2} \mathrm{C}$ module access. The $\mathrm{I}^{2} \mathrm{C}$ is enabled by setting the XPEN bit (bit 2 of the SYSCON register) and bit 9 of the XPERCON register. Access to the $\mathrm{I}^{2} \mathrm{C}$ module use demultiplexed addresses and a 16-bit data bus (only word access is possible). Two waitstates give an access time of 62.5 ns at 64 MHz CPU clock. No tristate waitstate is used.

4.13 XTimer/XMiscellaneous

Address range 00'EB00h - 00'EB7Fh is reserved for the access to XTimer and to a set of XBus additional features (XMiscellaneous). They are enabled by setting the XPEN bit (bit 2 of the SYSCON register) and bit 10 of the XPERCON register. Access to these additio nal modules and features use demultiplexed addresses and a 16-bit data bus (only woru access is possible). Two waitstates give an access time of 62.5 ns at 64 MHz CPU cl ock. No tristate waitstate is used. In addition to the XTimer module control registers, the inlliwing set of features are provided:

- CLKOUT programmable divider
- XBus interrupt management registers
- ADC multiplexing on the P1L register
- Port 1L digital disable register for extra ADC ráaitiels
- CAN2 multiplexing on P4.5/P4.6
- CAN1-2 main clock prescaler
- Main voltage regulator disable for nuwer-down mode
- TTL/CMOS threshold selection for Port 0, Port 1, Port 5, XPort 9 and XPort 10.

4.14 XPort 9/XPint 10 ú

Addres rance J0'EB80h - 00'EBFFh is reserved for access to XPort 9 and XPort 10. They are en. ${ }^{2}$ Jeea by setting the XPEN bit (bit 2 of the SYSCON register) and bit 11 of the XF $\bar{\varepsilon}$.RCUN register. These additional modules are accessed by demultiplexed addresses ancia 16-bit data bus (only word access is possible). Two waitstates give an access time of 'j2.5 ns at 64 MHz CPU clock. No tristate waitstate is used.

4.15 Visibility of XBus peripherals

To retain compatibility between the ST10F296E and the ST10F280, the XBus peripherals can be selected to be visible and/or accessible on the external address/data bus. Different bits must be set in the XPERCON register to enable the XPeripherals. If these bits are cleared before global enabling with the XPEN bit (in the SYSCON register), the corresponding address space, port pins and interrupts are not occupied by the peripherals, and the peripheral is not visible and not available. Refer to Section 23: Register set on page 248.

Figure 4. ST10F296E on-chip memory mapping

. Blocks BOF0, BOF1, BOF2, B0F3 may be remapped from segment 0 to segment 1 by setting SYSCONROMS1 (before EINIT).
2. Data page number and absolute memory address are hexadecimal values.

4．16 XPeripheral configuration registers

XPERCON register

XPERCON（F024h／12h）								ESFR					Reset value：005h		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
－	－	－	－	$\begin{gathered} \text { XPORT } \\ \text { EN } \end{gathered}$	$\begin{gathered} \text { XMISC } \\ \text { EN } \end{gathered}$	$\begin{gathered} \mathrm{XI2C} \\ \mathrm{EN} \end{gathered}$	$\begin{gathered} \text { XSSC } \\ \text { EN } \end{gathered}$	$\begin{gathered} \text { XASC } \\ \text { EN } \end{gathered}$	XPWM EN	$\begin{gathered} \text { XFLASH } \\ \text { EN } \end{gathered}$	$\begin{gathered} \text { XRTC } \\ \text { EN } \end{gathered}$	$\begin{aligned} & \text { XRAM } \\ & \text { 2EN } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { XRAM } \\ \text { 1EN } \end{array}$	$\begin{aligned} & \text { CAN } \\ & 2 E N \end{aligned}$	$\begin{aligned} & \text { CAN } \\ & \text { 1EN } \end{aligned}$
				RW											

Table 5．XPERCON register description

	Blt	Bit name	Function
	11	XPORTEN	XPort 9 and XPort 10 enable bit 0 ：Access to the on－chip XPort 9 and XPort 10 mo． w^{\prime}＇es is disabled． Address range $00^{\prime} E B 80 h$ to $00^{\prime} E B F F h$ is dirert ${ }^{\prime}$＇to the external memory only if CAN1EN，CAN2EN，XRT？N ，XASCEN，XSSCEN， XPWMEN，XI2CEN and XMISCEN are fiso \cup ． 1：The on－chip XPort 9 and XPort ic are enabled and can be accessed．
	10	XMISCEN	XBus additional features and X I：ner enable bit 0 ：Access to the additior rai r iscellaneous features is disabled．Address range 00＇EBOOh to C 1＇Eヒ？？ CAN1EN，CfiñéN，XĨTCEN，XASCEN，XSSCEN，XPWMEN，XI2CEN and XPORT EN a re also 0 ． 1：The additional features and XTimer are enabled and can be accessed．
	9	Xİしミ:	${ }^{2}$ ？crable bit J ：Access to the on－chip $\mathrm{I}^{2} \mathrm{C}$ is disabled，external access performed． Address range 00＇EAOOh to $00^{\prime} E A F F h$ is directed to the external memory only if CAN1EN，CAN2EN，XRTCEN，XASCEN，XSSCEN， XPWMEN，XMISCEN and XPORTEN are also 0. 1：The on－chip ${ }^{2} \mathrm{C}$ is enabled and can be accessed．
	8	XSSCEN	SSC1 enable bit 0 ：Access to the on－chip SSC1 is disabled，external access performed． Address range 00＇E800h to 00＇E8FFh is directed to the external memory only if CAN1EN，CAN2EN，XRTCEN，XASCEN，XI2CEN， XPWMEN，XMISCEN and XPORTEN are also 0. 1：The on－chip SSC1 is enabled and can be accessed．
	7	XASCEN	ASC1 enable bit 0 ：Access to the on－chip ASC1 is disabled，external access performed． Address range 00＇E900h to 00＇E9FFh is directed to the external memory only if CAN1EN，CAN2EN，XRTCEN，XASCEN，XI2CEN， XPWMEN，XMISCEN and XPORTEN are also 0. 1：The on－chip ASC1 is enabled and can be accessed．
	6	XPWMEN	XPWM enable 0 ：Access to the on－chip PWM1 module is disabled，external access is performed．Address range 00^{\prime} ECOOh to 00^{\prime} ECFF is directed to the external memory only if CAN1EN，CAN2EN，XASCEN，XSSCEN， XI2CEN，XRTCEN，XMISCEN and XPORTEN are also 0. 1：The on－chip PWM1 module is enabled and can be accessed．

Table 5. XPERCON register description

Blt	Bit name	Function
5	XFLASHEN	XFlash enable bit 0 : Access to the on-chip XFlash is disabled, external access is performed. Address range 09'0000h to 0E'FFFFF is directed to the external memory only if XRAM2EN is also 0. 1: The on-chip XFlash is enabled and can be accessed.
4	XRTCEN	RTC enable 0 : Access to the on-chip RTC module is disabled, external access is performed. Address range 00'EDOOh to 00'EDFF is directed to the external memory only if CAN1EN, CAN2EN, XASCEN, XSSCEN, XI2CEN, XPWMEN, XMISCEN and XPORTEN are also 0. 1: The on-chip RTC module is enabled and can be accessed.
3	XRAM2EN	XRAM2 enable bit 0 : Access to the on-chip 64 KByte XRAM is disabloc Exı2r, lal access is performed. Address range 0F'0000h to OF'FFFF'ルに ci::ected to the external memory only if XFLASHEN is also ρ 1: The on-chip 64 Kbyte XRAM is ena' ller an can be accessed.
2	XRAM1EN	XRAM1 enable bit 0 : Access to the on-chip $2 \mathrm{KP}_{\mathrm{y}}{ }^{+} \mathrm{e} \times \overline{\mathrm{r}} \mathrm{AM}$ is disabled. Address range $00^{\prime} E 000 \mathrm{~h}$ to $00^{\prime} E 7 F F h$ is $d_{i}, e+t 5 \mathrm{~d}$ to the external memory. 1: The on-chip $2 \mathrm{Kby} \pm=$, R M M is enabled and can be accessed.
1	CAN2EN	CAN2 enable rit 0 : Access to the on-chip CAN2 XPeripheral and its functions is disabled (P4 4 and P4.7 pins can be used as general purpose IOs, but, address rar.je 90^{\prime} ECOOh to $00^{\prime} E F F F$ h is directed to the external memory only if CANIEN, XRTCEN, XASCEN, XSSCEN, XI2CEN, XPWMEN, X_{i} IISCEN and XPORTEN are also 0). 1: The on-chip CAN2 XPeripheral is enabled and can be accessed.
	CAN1EN	CAN1 enable bit 0 : Access to the on-chip CAN1 XPeripheral and its functions is disabled (P 4.5 and P 4.6 pins can be used as general purpose IOs, but, address range $00^{\prime} E C 00 \mathrm{~h}$ to $00^{\prime} E F F F$ h is directed to the external memory only if CAN2EN, XRTCEN, XASCEN, XSSCEN, XI2CEN, XPWMEN an XMISCEN are also 0). 1: The on-chip CAN1 XPeripheral is enabled and can be accessed.

When CAN1, CAN2, RTC, ASC1, SSC1, $I^{2} \mathrm{C}, \mathrm{PWM} 1$, XBus additional features, XTimer and XPort modules are disabled via XPERCON settings, any access in the address range 00'E800h to 00'EFFFh is directed to the external memory interface, using the BUSCONx register associated with the ADDRSELx register matching the target address. All pins involved with the XPeripherals can be used as general purpose IOs whenever the related module is not enabled.

The default XPER selection after reset is identical to configuration of the XBus in the ST10F280. CAN1 and XRAM1 are enabled, CAN2 and XRAM2 are disabled, all other XPeripherals are disabled after reset.
the XPERCON register cannot be changed after globally enabling the XPeripherals (after setting the XPEN bit in the SYSCON register).

In emulation mode, all XPeripherals are enabled (all XPERCON bits are set). The access to the external memory and/or the XBus is controlled by the bondout chip.

Reserved bits of the XPERCON register must always be written to 0 .
When the RTC is disabled (RTCEN = 0) the main clock oscillator is switched off if the ST10 enters power-down mode. When the RTC is enabled, the RTCOFF bit of the RTCCON register allows the power-down mode of the main clock oscillator to be chosen (eee Section 18: Real-time clock (RTC) on page 203).
Table 6 summarizes the address range mapping on segment 8 for programming the ROMEN and XPEN bits (of the SYSCON register) and the XRAM2EN and XFLASHEN bits (of the XPERCON register).

Table 6. Segment 8 address range mapping

ROMEN	XPEN	XRAM2EN	XFLASHEN	Segmeı $\pm i$
0	0	$\mathrm{x}^{(1)}$	$\mathrm{x}^{(1)}$	Ex'erná momory
0	1	0	0	$\mathrm{x}^{(1)}$
0	1	1	1	Reserved
0	1	$\mathrm{x}^{(1)}$	Reserved	
1	$\mathrm{x}^{(1)}$	$\mathrm{x}^{(1)}$	$; 11$	IFlash (B1F1)

1. Don't care

XPEREMU register

The XPEREMU register is a write-only register that is mapped on the XBus memory space at address EB7Eh. It contrasts vith the XPERCON register, a read/write ESFR register, which must be programmed io enable the single XBus modules separately.

Once the XPEN bit of the JYSCON register is set and at least one of the XPeripherals (except the meririos,) is activated, the XPEREMU register must be written with the same content as tre X P $=$ RCON register. This is to allow a correct emulation of the new set of featur:s nrociuced on the XBus for the new ST10 generation. The following instructions must bt added inside the initialization routine:

```
if (SYSCON.XPEN && (XPERCON & OXO7D3))
then { XPEREMU = XPERCON }
```

XPEREMU must be programmed after both the XPERCON and SYSCON registers in such a way that the final configuration for the XPeripherals is stored in the XPEREMU register and used for the emulation hardware setup.

$$
\text { XPEREMU (EB7Eh) } \quad \text { XBus } \quad \text { Reset value: } x x x x h
$$

1514		13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	$\begin{gathered} \text { XPORT } \\ \text { EN } \end{gathered}$	$\begin{array}{\|c} \text { XMISC } \\ \text { EN } \end{array}$	$\begin{gathered} \mathrm{XI} 2 \mathrm{C} \\ \mathrm{EN} \end{gathered}$	$\begin{gathered} \text { XSSC } \\ \text { EN } \end{gathered}$	$\begin{gathered} \text { XASC } \\ \text { EN } \end{gathered}$	$\begin{gathered} \text { XPWM } \\ \text { EN } \end{gathered}$	$\begin{gathered} \text { XFLASH } \\ \text { EN } \end{gathered}$	$\begin{gathered} \text { XRTC } \\ \text { EN } \end{gathered}$	$\begin{aligned} & \text { XRAM } \\ & \text { 2EN } \end{aligned}$	$\begin{gathered} \text { XRAM } \\ \text { 1EN } \end{gathered}$	$\begin{aligned} & \text { CAN } \\ & \text { 2EN } \end{aligned}$	$\begin{aligned} & \text { CAN } \\ & \text { 1EN } \end{aligned}$
-	-	-	-	W	W	W	W	W	W	W	W	W	W	W	W

XPEREMU bit descriptition follows the XPERCON register (see Table 5: XPERCON register description on page 39).

$5 \quad$ Internal Flash memory

The on-chip Flash is composed of two matrix modules each one containing one array divided into two banks that can be read and modified independently of the other (i.e. one bank can be read while the other is under modification).

Figure 5. Flash modules structure

The write operations of the four bank: arf, managed by an embedded Flash program/erase controller (FPEC). The high voltages needed for program/erase operations are internally generated.

The data bus is 32 bits \downarrow 'ac. Due to ST10 core architecture limitations, only the first 512 Kbytes are accessec' ct' 32 -bit (internal Flash bus, also known as IBus), while the remaining 320 Kbytes are ac 心ssed at 16-bit (also known as XBus).

5.1 Fincional description

5.1.1 Structure

Table 7 shows the address space reserved for the Flash module.
Table 7. Flash module absolute mapping

Description	Addresses	Size (Kbytes)
IFlash sectors	0×000000 to 0×08 FFFF	512
XFlash sectors	0×090000 to 0x0D FFFF	320
Registers and Flash internal reserved area	$0 x 0 E 0000$ to 0x0E FFFF	64

5．1．2 Module structure

The IFlash module is composed by two banks．Bank 0 contains 384 Kbytes of program memory divided into 10 sectors．Bank 0 also contains a reserved sector named＇Test－Flash＇． Bank 1 contains 128 Kbyte of program memory divided into two sectors（ 64 Kbytes each）．
The XFlash module is also composed of two banks．Bank 2 contains 192 Kbytes of program memory divided into 3 sectors．Bank 3 contains 128 Kbytes of program memory divided into two sectors（ 64 Kbytes each）．
Addresses from 0x0E 0000 to 0x0E FFFF are reserved for the control register interface and other internal service memory space used by the Flash program／erase controller．
Table 8 shows the memory mapping of the Flash when it is accessed in read mode and Table 9 when it is accessed in write or erase mode．
Note：With this second mapping，the first three banks are remapped into code segmon＋i！aine result as setting ROMS1 bit in the SYSCON register）．

Table 8．Sectorization of the Flash modules（read operationc）

Bank	Description	Addresses	size （Kbytes）	ST10 bus size
B0	Bank 0 Flash 0 （B0FO）	0x00000000－0x＾nしつ ：－FFF	8	32－bit（IBus）
	Bank 0 Flash 1 （B0F1）	0x0000 200rs－0．0000 3FFF	8	
	Bank 0 Flash 2 （B0F2）	0x0し～う 2 ¢ ¢－0x0000 5FFF	8	
	Bank 0 Flash 3 （B0F3）	1x00 J0 6000－0x0000 7FFF	8	
	Bank 0 Flash 4 （B0F．1）	0x00018000－0x0001 FFFF	32	
	Bank 0 Flash 5 （Burt）	0x0002 0000－0x0002 FFFF	64	
	Bank 0 Flash 6 （30F6）	0x0003 0000－0x0003 FFFF	64	
	Banl 0 frash 7 （B0F7）	0x0004 0000－0x0004 FFFF	64	
	Ba．r．x 0 Flash 8 （B0F8）	0x0005 0000－0x0005 FFFF	64	
	Bank 0 Flash 9 （B0F9）	0x0006 0000－0x0006 FFFF	64	
B1	Bank 1 Flash 0 （B1F0）	0x0007 0000－0x0007 FFFF	64	
	Bank 1 Flash 1 （B1F1）	0x0008 0000－0x0008 FFFF	64	
	Bank 2 Flash 0 （B2F0）	0x0009 0000－0x0009 FFFF	64	16－bit（X－BUS）
B2	Bank 2 Flash 1 （B2F1）	0x000A 0000－0x000A FFFF	64	
	Bank 2 Flash 2 （B2F2）	0x000B 0000－0x000B FFFF	64	
B3	Bank 3 Flash 0 （B3F0）	0x000C 0000－0x000C FFFF	64	
	Bank 3 Flash 1 （B3F1）	0x000D 0000－0x000D FFFF	64	

Table 9. Sectorization of the Flash modules (write operations or with ROMS1 = 1)

Table 9 refers to r_{1} ? cortiguration when bit ROMS1 of the SYSCON register is set. When bootstrap mod , is antered:

- $T=$ si F'as'i is seen and is available for code fetches (address 00'0000h)
- Usur IFlash is only available for read and write access
- Write access must be made using addresses in segment 1 that start at 01'0000h, irrespective of the ROMS1 bit value in the SYSCON register. Note that the user must not rely on the ROMS1 bit because it is 'don't care' for write operations.
- Read access is made in segment 0 or in segment 1 depending on the ROMS1 value.

In bootstrap mode, ROMS1 = 0 by default, so the first 32 Kbytes of IFlash are mapped in segment 0.

Example

To program address 0 using the default configuration, the user must put the value 01 '0000h in the FARL and FARH registers. However, to verify the content of address 0 a read to 00'0000h must be performed.

Table 10 shows the composition of the control register interface．These registers can be addressed by the CPU

Table 10．Control register interface

Name	Description	Addresses	Size （byte）	ST10 bus size
FCR1－0	Flash control registers 1－0	0x000E 0000－0x000E 0007	8	
FDR1－0	Flash data registers 1－0	0x000E 0008－0x000E 000F	8	
FAR	Flash address registers	0x000E 0010－0x000E 0013	4	
FER	Flash error register	0x000E 0014－0x000E 0015	2	
FNVWPXR	Flash non volatile protection X register	0x000E DFB0－0x000E DFB3	4	:6-vit
FNVWPIR	Flash non volatile protection I register	0x000E DFB4－0x000E DFB7	（4）	（XBus）
FNVAPR0	Flash non volatile access protection register 0	0x000E DFB8－0nor E DIB9	2	61
FNVAPR1	Flash non volatile access protection register 1	0x000E LFEC． $0 \times 000 \mathrm{E}$ DFBF	4	
XFICR	XFlash interface control register	0ソニつした こ000－0x000E E001	2	

5．1．3 Low power mode

The Flash modules are automatice．ily switched off when executing the PWRDN instruction． Consumption is drasticall！reduced，but，exiting this state can take a long time（ t_{PD} ）．
Note：\quad Recovery time from priver－down mode for the Flash modules is shorter than the main oscillator start－u，tinis．．o avoid problems restarting to fetch code from the Flash，it is important to pro＇pe riy size the external circuit on the RPD pin．
Power oiflailı mode is entered only at the end of the Flash write operation．

5.2 W＇rite operation

The Flash modules have a single register interface mapped in the memory space of the XFlash module（ $0 x 0 E 0000$ to $0 x 0 E 0013$ ）．All operations are enabled through four 16－bit control registers：Flash control register 1－0 high／low（FCR1H／L－FCR0H／L）．Eight other 16－bit registers are used to store Flash addresses and data for program operations（FARH／L and FDR1H／L－FDR0H／L）and write operation error flags（FERH／L）．All registers are accessible with 8 and 16－bit instructions（since they are mapped on the ST10 XBus）．

Note：
Before accessing the XFlash module（and consequently the Flash register to be used for program／erasing operations），the XFLASHEN bit in the XPERCON register and the XPEN bit in the SYSCON register must be set．
The four Flash module banks have their own dedicated sense amplifiers，so that any bank can be read while any other bank is written．However simultaneous write operations（＇write＇ meaning either program or erase）on different banks are forbidden．When a write operation is occurring in the Flash，no other write operations can be performed．

During a Flash write operation any attempt to read the bank under modification outputs invalid data (software trap 009Bh). This means that the Flash bank is not fetchable when a write operation is active. The write operation commands must be executed from another bank, from the other module or from another memory (internal RAM or external memory).

Note: \quad During a write operation, when the LOCK bit of the FCRO register is set, it is forbidden to write into the Flash control registers.

5.2.1 Power supply drop

If, during a write operation, the internal low voltage supply drops below a certain internal voltage threshold, any write operation that is running is suddenly interrupted and the modules are reset to read mode. Following power-on, an interrupted Flash write operation must be repeated.

5.3 Internal Flash memory registers

Flash control register 0 low (FCROL)

The Flash control register 0 low (FCROL) together with the Flaish control register 0 high (FCROH) is used to enable and to monitor all the write rerations for both Flash modules. The user has no access in write mode to the Test- $F^{-1} \mathrm{c}_{\mathrm{c}} \mathrm{l}$ (LOTF). The Test-Flash block is only seen by the user in bootstrap mode.

Table 11. Fr.3fil register decription

B.t	Bit name	(5) Function
15-7		Reserved
6-5	BSY[1:0]	Bank 1:0 busy (IFlash) These bits indicate that a write operation is running in the corresponding bank of IFlash. They are automatically set when the WMS bit of the FCROH register is set. When the BSY [1:0] bits are set every read access to the corresponding bank outputs invalid data (software trap 009Bh), while every write access to the bank is ignored. At the end of a write operation or during a program or erase suspend these bits are automatically reset and the bank returns to read mode. After a program or erase resume these bits are automatically reset.

Table 11. FCROL register decription (continued)

Blt	Bit name	Function
4	LOCK	Flash registers access locked When this bit is set, access to the Flash control registers FCR0H/L-FCR1H/L, FDR0H/L-FDR1H/L, FARH/L and FER is locked by the FPEC. Any read access to the registers outputs invalid data (software trap 009Bh) and any write access is ineffective. The LOCK bit is automatically set when the Flash bit WMS of the FCROH register is set. The LOCK bit is the only bit the user can always access to detect the status of the Flash. If it is low, the remainder of the FCROL and all other Flash registers are accessible by the user. Note: When the LOCK bit is low, the FER register content can be read, but, its content is updated only when the BSY bits are reset.
3	-	Reserved
2-1	BSY[3:2]	Bank 3:2 busy (XFlash) These bits indicate that a write operation is rint ity on the corresponding bank of XFlash. They cie u'orıatically set when bit WMS in the FCROH register is set. Set. ng the protection operation automatically sets the BSY2 bit (\leqslant r.e? the protection registers are in Block B2). When both buev (天1 lash) bits are set, every read access to the corresponding bank $-n, \uparrow n^{t}$ invalid data (software trap 009Bh), while every write acress tr the bank is ignored. At the end of a write automatical y res e. and the bank returns to read mode. After a program or erase resuine these bits are automatically reset.
0	-	Ressrved

Flash control register 0 high (FCROH)

The Flash control register 0 high (FCROH) together with the Flash control register 0 low (FCROL) is used to enable and monitor write operations for both the Flash modules. The user has no access in write mode to the Test-Flash (BOTF). The Test-Flash block is only seen by the user in bootstrap mode.

FCROH (0x0E 0002)					FCR					Reset value: 0000h				
15	14	13	12	11	109	8	7	6	5	4	3	2	1	0
WMS	SUSP	WPG	DWPG	SER	Reserved	SPR	SMOD				erv			
RW	RW	RW	RW	RW	-	RW	RW				-			

Table 12. FCROH register decription

Bit	Bit name	Function
15	WMS	Write mode start This bit must be set to start every write operatior in the Flash modules. At the end of the write operation or during a wse.ad, this bit is automatically reset. To resume a suspended operation, this bit must be set again. It is forbidden to set this bit if the ERR L't it he FER register is high (the operation is not accepted). It i: a lsc furbidden to start a new write (program or erase) operation (by sett' ng tie WMS bit high) when the SUSP bit of the FCRO register is high F.c5?uing this bit by software has no effect.
14	SUSiP	Suspend This bit must be set to suspend the current program (word or double word) or secto: erase operation to read data in one of the sectors of the bank undermolification or to program data in another bank. The suspend o, ee:ation resets the Flash bank to normal read mode (automatically resetting bits BSYx). When in program suspend, the two Flash modules accept only read and program resume operations. When in erase suspend, the modules accept only read, erase resume, and program (word or double word) operations. Program operations cannot be suspended during erase suspend. To resume the suspended operation, the WMS bit must be set again, together with the selection bit corresponding to the operation to resume (WPG, DWPG, SER). Note: It is forbidden to start a new write operation with the SUSP bit already set.
13	WPG	Word program This bit must be set to select the word (32 bits) program operation in the Flash modules. The word program operation allows 0s to be programmed instead of 1s. The Flash address to be programmed must be written in the FARH/L registers, while the Flash data to be programmed must be written in the FDROH/L registers before starting the execution by setting the WMS bit. The WPG bit is automatically reset at the end of the word program operation.

Table 12. FCROH register decription (continued)

Bit	Bit name	Function
12	DWPG	Double word program This bit must be set to select the double word (64 bits) program operation in the Flash modules. The double word program operation allows 0 s to be programmed instead of 1 s . The Flash address in which to program (aligned with even words) must be written in the FARH/L registers, while the two Flash data to be programmed must be written in the FDROH/L registers (even word) and FDR1H/L registers (odd word) before starting the execution by setting the WMS bit. The DWPG bit is automatically reset at the end of the double word program operation.
11	SER	Sector erase This bit must be set to select the sector erase operation in the Flas'i modules. The sector erase operation allows all Flash location t) Ove. F to be erased. 1 to all sectors of the same bank (excluding the les.-Fiash for Bank BO) can be erased through bits BxFy of the FCF:1it/L reyisters before starting the execution by setting the WMS bit. Prenr igr rmming the sectors to 0×00 is done automatically. The SER bit is atitm atically reset at the end of the sector erase operation.
10-9	-	Reserved + + +
8	SPR	Set protection This bit must be set to sele it $t \in$ set protection operation. The set protection operation $=. .1$ wvs 0 s to be programmed instead of 1 s in the Flash non-volatile prc (ectin, registers. The Flash address in which to program must be written in the FARH/L registers, while the Flash data to be programmed must be written in the FDROH/L before starting the execution by setting the WMS bit. A sequence error is flagged by the SEQER bit of ih \in FEF. register if the address written in FARH/L is not in the range $0 \times \cap E D F B 0-0 \times 0 E D F B F$. The SPR bit is automatically reset at the end of the set protection operation.
	SMOD	Select module If this bit is reset, a write operation is performed on the XFlash module. if this bit is set, a write operation is performed on IFlash module. The SMOD bit is automatically reset at the end of the write operation.
6-0		Reserved

Flash control register 1 low (FCR1L)

The Flash control register 1 low (FCR1L) and the Flash control register 1 high (FCR1H) are used to select the sectors to erase or they are used, during any write operation, to monitor the status of each sector of the module selected by the SMOD bit of the FCROH register. FCR1L is shown below when SMOD $=0$ and when SMOD $=1$.

FCR1L (0x0E 0004) SMOD = 0								FCR		5	4	3	Reset value: 0000h		
15	14	13	12	11	10	9	8	7	6				2	1	0
Reserved													B2F2	B2F1	B2F0

Table 13. FCR1L register description (SMOD $=0$, XFlash selected)

BIt	Bit name	Function
15-3	-	Reserved
2-0	B2F[2:0]	Bank 2 XFlash sector 2:0 status These bits must be set during a sector crase operation to select the sectors to be erased in Bank 2. Diri.' g any erase operation, these bits are automatically set and givsite status of the three sectors of Bank 2 (B2F2-B2F0). The meaning 0: 52Fy bit for sector y of Bank 2 is given in Table 17. The BTF [2:01 its, are automatically reset at the end of a write operation if no eiror are detected.

FCR1L (0x0E 0004) SMOD = $1 \quad$ FCR Reset value: 0000h

Table 14. FCR1L register description (SMOD = 1, IFlash selected)

Blt	Bit name	Function
$9-0$	Reserved	
B0F[9:0]	Bank 0 IFlash sector 9:0 status These bits must be set during a sector erase operation to select the sectors to be erased in Bank 0. During any erase operation, these bits are automatically set and give the status of the 10 sectors of Bank 0 (B0F9-B0F0). The meaning of B0Fy bit for sector y of Bank 0 is given in Table 17. The BOF [9:0] bits are automatically reset at the end of a write operation if no errors are detected.	

Flash control register 1 high (FCR1H)

The Flash control register 1 high (FCR1H) and the Flash control register 1 low (FCR1L) are used to select the sectors to erase, or they are used, during any write operation, to monitor the status of each sector and each bank of the module selected by the SMOD bit of the FCROH register. FCR1H is shown below when SMOD $=0$ and when SMOD $=1$.

Table 15. FCR1H register description (SMOD $=0$, XFlash selected)

Blt	Bit name	Function
15-10	-	Reserved
9-8	B[3:2]S	Bank 3-2 status (XFlash) During any erase operation, these bits i re automatically modified and give the status of the two banks E3 32. The meaning of the BxS bit for Bank x is given in Table 17. Pit. L[J.2]S are automatically reset at the end of a erase operation if 10 2 rors are detected.
7-2	-	Reserved
1-0	B3F[1:0]	Bank 3 XFlasl sec ${ }^{\circ}$. 1:0 status During any erase operation, these bits are automatically set and give the siatus of the two sectors of Bank 3 (B3F1-B3F0). The meaning of B2'5; bit for sector y of Bank 1 is given in Table 17. Bits B3F[1:0] are a'tomatically reset at the end of a erase operation if no errors are detected.

Table 16. FCR1H register description (SMOD = 1, IFlash selected)

Blt	Bit name	Function
15-10	-	Reserved
9-8	B[1:0]S	Bank 1-0 status (IFlash) During any erase operation, these bits are automatically modifiea and give the status of the two banks, B1-B0. The meaning of Bxis Lit f. fr Bank x is given in Table 17. Bits $\mathrm{B}[1: 0] S$ are automatically 1 ?s ?t at the end of a erase operation if no errors are detected.
7-2	-	Reserved
1-0	B1F[1:0]	Bank 1 IFlash sector 1:0 status During any erase operation, these bits áre automatically set and give the status of the two sectors of Pen.' 1 (B1F1-B1F0). The meaning of B1Fy bit for sector y of Bank 1 . s viven in Table 17. These bits are automatically reset at ther.a ur a erase operation if no errors are detected.

Table 17. Banks (BxS) and sectc rs (i3iFy) status bits meaning

ERR	SUSP	$B x S=1$ neaning	BxFy = 1 meaning
1	-	Erase errcrintarkx	Erase error in sector y of Bank x
0	1	Era $¢$ ¢ suspended in Bank x	Erase suspended in sector y of Bank x
0	0	Drit care	Don't care

Flast dat: register 0 low (FDROL)

Tre $\overline{\text { rlash }}$ address registers (FARH/L) and the Flash data registers (FDR1H/L-FDR0H/L) aio used during program operations to store Flash addresses and data to program.

FDROL (0x0E 0008)					FCR							Reset value: FFFFh			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Table 18. FDROL register description

Blt	Bit name	Function
$15-0$	DIN[15:0]	Data input 15:0 These bits must be written with the data to program the Flash with the following operations: Word program (32-bit), double word program (64- bit) and set protection.

Flash data register 0 high (FDROH)

FDROH (0x0E 000A)					FCR							Reset value: FFFFh			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Table 19. FDROH register description

Blt	Bit name	Function
$31-16$	DIN[31:16]	Data input 31:16 These bits must be written with the data to program the Flash. vith t.e following operations: Word program (32-bit), double word /rog:2n. (64-bit) and set protection.

Flash data register 1 low (FDR1L)

Table 20. FDR1L register de scription

BIt	Bit name	Function
$15-0$	OIN[15:0]	Data input 15:0 These bits must be written with the data to program the Flash with the following operations: Word program (32-bit), double word program (64- bit) and set protection.

C:ash data register 1 high (FDR1H)

FDR1H (0x0E 000E)					FCR							Reset value: FFFFh			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN	DIN
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Table 21. FDR1H register description

Blt	Bit name	Function
31-16	DIN[31:16]	Data input 31:16 These bits must be written with the data to program the Flash with the following operations: Word program (32-bit), double word program (64-bit) and set protection.

Flash address register low (FARL)

FARL (0x0E 0010)					FCR							Reset value: 0000h		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	10
$\begin{array}{\|c} \text { ADD } \\ 15 \end{array}$	$\begin{gathered} \text { ADD } \\ 14 \end{gathered}$	$\begin{array}{\|c} \text { ADD } \\ 13 \end{array}$	$\begin{array}{\|c} \text { ADD } \\ 12 \end{array}$	$\begin{array}{\|c} \text { ADD } \\ 11 \end{array}$	$\begin{gathered} \text { ADD } \\ 10 \end{gathered}$	$\begin{array}{\|c} \text { ADD } \\ 9 \end{array}$	$\begin{gathered} \text { ADD } \\ 8 \end{gathered}$	$\begin{gathered} \text { ADD } \\ 7 \end{gathered}$	$\begin{array}{\|c} \text { ADD } \\ 6 \end{array}$	$\begin{gathered} \text { ADD } \\ 5 \end{gathered}$	$\begin{gathered} \text { ADD } \\ 4 \end{gathered}$	$\begin{gathered} \text { ADD } \\ 3 \end{gathered}$	$\begin{gathered} \text { ADD } \\ 2 \end{gathered}$	Reserved
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	-

Table 22. FARL register description

Blt	Bit name	Function
15-2	ADD[15:2]	Address 15:2 These bits must be written with the address of the Flash locitic $n+n$ program in the following operations: Word program (32-bit) and acuble word program (64-bit). In double word program the \uparrow CD'c bii must be written to 0 .
1-0	-	Reserved (C)

Flash address register high (FARH)

Table 23. FARH ristster description

BIt	Reserved	
$15-5$	-	Function
$4-0$	ADD[20:16]Address $20: 16$ These bits must be written with the address of the Flash location to program in the following operations: Word program and double word program.	

Flash error register (FER)

The Flash error register (and all other Flash registers) can only be properly read once the LOCK bit of the FCROL register is low. Nevertheless, its content is updated when the BSY bits are reset. For this reason, it is meaningful to read the FER register content only when the LOCK bit and all BSY bits are cleared.

FER (0xE 0014)								FCR				Reset value: 0000h		
15	14	13	12	11	10	9	8	7	6	54	3	2	1	0
Reserved							WPF	RESER	SEQER	Reserved	10ER	PGER	ERER	ERR
-							RC	RC	RC	-	RC	RC	RC	RC

Table 24. FER register description

Bit	Bit name	Function
15-9	-	Reserved
8	WPF	Write protection flag This bit is automatically set when trying o program or erase in a sector that is write protected. In the case c: a multiple sector erase, unprotected sectors are eras zi^{\prime}, protected sectors are not erased, and the WPF bit is set. The W!D- c^{i+} has to be reset by software.
7	RESER	Resume error This bit is al tom a a, icilly set when a suspended program or erase operation is rot esumed correctly due to a protocol error. In this case the suspcided operation is aborted. This bit has to be reset by software.
6	SEQEF,	S эq: ithis bit is automatically set when the control registers (FCR1H/LFCROH/L, FARH/L, FDR1H/L-FDROH/L) are not correctly filled to execute a valid write operation. In this case no write operation is executed. This bit has to be reset by software.
5-4	-	Reserved
3	10ER	1 over 0 error This bit is automatically set when trying to program bits to 1 that have previously been set to 0 (this does not happen when programming the protection bits). This error is not due to a failure of the Flash cell. It flags that the desired data has not been written. The 10ER bit has to be reset by software.
2	PGER	Program error This bit is automatically set when a program error occurs during a Flash write operation. This error is due to a failure of a Flash cell that can no longer be programmed. The word where this error occurred must be discarded. This bit has to be reset by software.

Table 24. FER register description (continued)

Bit	Bit name	Function
1	ERER	Erase error This bit is automatically set when an erase error occurs during a Flash write operation. This error is due to a failure of a Flash cell that can no longer be erased. This kind of error is fatal and the sector where it occurred must be discarded. This bit has to be reset by software.
0	ERR	Write error This bit is automatically set when an error occurs during a Flash write operation or when a bad operation setup is written. Once the error has been discovered and understood, the ERR bit must be reset by software.

XFlash interface control register (XFICR)

This register is used to configure the XFlash interface behavior on the ''Eus $\because \ddagger$ allows the number of wait states introduced on the XBus to be set before the internil $\bar{\sim} E A D Y$ signal is given to the ST10 bus master.

Table 25. XFICR register öascription

Bit	Bit name	Function
15-4		T.Reserved (
j-0	WS[3:0]	Wait state setting These three bits are the binary coding of the wait state number introduced by the XFlash interface through the internal READY signal of the XBus. The default value after reset is 1111 , where up to 15 wait states are set. Recommendations for the ST10F296E include: For $\mathrm{f}_{\mathrm{CPU}}>40 \mathrm{MHz}$: 1 wait state $\mathrm{WS}[3: 0]=0001$ For $\mathrm{f}_{\mathrm{CPU}} \leq 40 \mathrm{MHz}$: 0 wait state $\mathrm{WS}[3: 0]=0000$

5.4 Protection strategy

The protection bits are stored in non-volatile Flash cells inside the XFlash module. They are read once at reset and stored in seven volatile registers. Before they are read from the nonvolatile cells, all available protections are forced active during reset.
Protection can be programmed using the set protection operation (see the Flash control registers of Section 5.3), that can be executed from all the internal or external memories except from the Flash bank, B2.

Two kinds of protection are available:

- Write protections to avoid unwanted writings
- Access protections to avoid piracy

5.4.1 Protection registers

This section describes the seven non-volatile protection registers and their aicr itectural limitations. These registers are one time programmable.
Four registers (FNVWPXRL/H-FNVWPIRL/H) are used to stors t' e wite protection fuses respectively for each sector of the XFlash module (see ' X ' in ti` e sections below) and IFlash module (see ' l ' in the sections below). The other three re \Vdash,ters (FNVAPR0 and FNVAPR1L/H) are used to store the access protertir,, t'ses (common to both Flash modules, though, with some limitations).

Table ?f. FNVWPXRL register description

Fit name	Function	
15	W2PPR	Write protection Bank 2 non-volatile cells This bit, if programmed at 0, disables any write access to the non- volatile cells of Bank 2. Since these non-volatile cells are dedicated to protection registers, once the W2PPR bit is set, the configuration of protection setting is frozen, and can only be modified by executing a temporary write unprotection operation.
$14-3$	-	Reserved
$2-0$	W2P[2:0]	Write protection Bank 2 sectors 2-0 (XFlash) These bits, if programmed at 0, disable any write access to the sectors of Bank 2 (XFlash).

Flash non-volatile write protection X register high (FNVWPXRH)

FNVWPXRH (0x0E DFB2)					NVR							Delivery value: FFFFh			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved														W3P1	W3P0

Table 27. FNVWPXRH register description

Bit	Bit name	Function
$15-2$	-	Reserved
$1-0$	W3P[1:0]	Write protection Bank 3/sectors 1-0 (XFlash) These bits, if programmed at 0, disable any write access to the sectors of Bank 3 (XFlash).

Flash non-volatile write protection I register low (FNVWP'in')

Table 28. FNVWPIRL recister description

Bit	Bit name	
$15-10$		Function
$9-i$	WOP[9:0]	Write protection Bank 0/sectors 9-0 (IFlash) These bits, if programmed at 0, disable any write access to the sectors of Bank 0 (IFlash).

Fiash non-volatile write protection I register high (FNVWPIRH)

FNVWPIRH (0x0E DFB6)				NVR							Delivery value: FFFFh			
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved													W1P1	W1P0

Table 29. FNVWPIRH register description

Bit	Bit name	Function
$15-2$	-	Reserved
$1-0$	W1P[1:0]	Write protection Bank 1/sectors 1-0 (IFlash) These bits, if programmed at 0, disable any write access to the sectors of Bank 1 (IFlash).

Flash non-volatile access protection register 0 (FNVAPR0)

Because of the ST10 architecture, the XFlash is seen as external memory. For this reason, it is impossible to access protect it from the real external memory or internal RAM.

FNVAPR0 (0x0E DFB8)					NVR							Delivery value: ACFFh			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved														DBGP	ACCP

Table 30. FNVAPRO register description

Bit	Bit name	Function
15-2	-	Reserved
1	DBGP	Debug protection This bit, if erased at 1 , allows all protections $t r$, it $h y$-passed using the debug features through the test interfare. Ii orsmammed at 0 , all the debug features and Flash test modes, c id the test interface are disabled. STMicroelectronics will re unable to access the device to run any eventual failure analysis.
0	ACCP	Access protection This bit, if programmこ́́a ı 0 , disables any access (read/write) to data mapped inside in, If lash module address space, unless the current instruction is fetr ned from one of the two Flash modules.

Flash non-volatile access protection register 1 low (FNVAPR1L)

Table 31. FNVAPR1L register description

Bit	Bit name	Function
$15-0$	PDS[15:0]	Protections disable 15-0 If bit PDSx is programmed at 0 and bit PENx (of the FNVAPR1H register) is erased at 1, the ACCP bit action is disabled. Bit PDS0 can be programmed at 0 only if bits DBGP and ACCP (of the FNVAPR0 register) have already been programmed at 0. Bit PDSx can be programmed at 0 only if bit PENx-1 has already been programmed at 0.

Flash non-volatile access protection register 1 high (FNVAPR1H)

FNVAPR1H (0x0E DFBE)					NVR							Delivery value: FFFFh			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$\begin{array}{\|c\|c\|} \hline \text { PEN } \\ 15 \end{array}$	$\begin{gathered} \text { PEN } \\ 14 \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { PEN } \\ 13 \end{array}$	$\begin{array}{\|c} \text { PEN } \\ 12 \end{array}$	$\begin{array}{\|c} \text { PEN } \\ 11 \end{array}$	$\begin{gathered} \text { PEN } \\ 10 \end{gathered}$	$\begin{gathered} \text { PEN } \\ 9 \end{gathered}$	$\begin{gathered} \text { PEN } \\ 8 \end{gathered}$	$\begin{gathered} \text { PEN } \\ 7 \end{gathered}$	$\begin{gathered} \text { PEN } \\ 6 \end{gathered}$	$\begin{array}{\|c} \text { PEN } \\ 5 \end{array}$	$\begin{array}{\|c} \text { PEN } \\ 4 \end{array}$	$\begin{gathered} \text { PEN } \\ 3 \end{gathered}$	$\begin{gathered} \text { PEN } \\ 2 \end{gathered}$	$\begin{array}{\|c} \text { PEN } \\ 1 \end{array}$	$\begin{gathered} \text { PEN } \\ 0 \end{gathered}$
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Table 32. FNVAPR1H register description

Bit	Bit name	Function
$15-0$	PEN[15:0]	Protections enable 15-0 If bit PEN x is programmed at 0 and bit PDS $x+1$ is erased $c^{+}+1$ action is enabled again. Bit PEN x can be programmed $i t 0$ inly if bit PDSx has already been programmed at 0.

5.4.2 Access protection

The Flash modules have one level of access protection (xceess to data both when reading and writing). If bit ACCP of the FNVAPR0 register is pionrammed at 0 , the IFlash module becomes access protected: Data in the IFlash moswle can be read/written only if the current execution is from the IFlash module itself.

Protection can be permanently disab'ed Ly programming bit PDS0 of the FNVAPR1H register to analyze rejects. Allowing PこSJ bit programming only when the ACCP bit is programmed, guarantees thai ?nly an execution from the Flash itself can disable the protections.
Protection can be per nar or tly enabled again by programming bit PEN0 of the FNVAPR1L register. Access ?ntt ction can be permanantly disabled and enabled again up to 16 times.

Trying to wri e iniu the access protected Flash from internal RAM is unsuccessful. Trying to read i i to the access protected Flash from internal RAM outputs dummy data.
W' $1, n$, the Flash module is access protected, data access through the program erase coniroller (PEC) of a peripheral is forbidden. To read/write data in PEC mode from/to a protected bank, the Flash module must be temporarily unprotected.

Due to the ST10 architecture, the XFlash is seen as external memory. For this reason, it is impossible to access protect it from real external memory or internal RAM. Table 33 summarizes the different access protection levels. In particular, it shows what is possible (and not possible) if trying to enable all access protections when fetching from a memory (see column 1).

Table 33. Summary of access protection levels

	Read IFlash/ jump to IFlash	Read XFlash/ jump to XFlash	Read Flash registers	Write Flash registers
Fetching from IFlash	Yes/Yes	Yes/Yes	Yes	Yes
Fetching from XFlash	No/Yes	Yes/Yes	Yes	No
Fetching from IRAM	No/Yes	Yes/Yes	Yes	No
Fetching from XRAM	No/Yes	Yes/Yes	Yes	No
Fetching from external memory	No/Yes	Yes/Yes	Yes	No

5.4.3 Write protection

The Flash modules have one level of write protection. Each sector of each bark. of e.ch. Flash module can be software write protected by programming the related $\bar{V} \mathrm{yP} \lambda$ bii of the FNVWPXRH/L-FNVWPIRH/L registers at 0.

5.4.4 Temporary unprotection

Bits WyPx of the FNVWPXRH/L-FNVWPIRH/L registers if.n be temporary unprotected by executing the set protection operation and writing 1 ini these bits.
Bit ACCP can be temporarily unprotected by execlting the set protection operation and writing 1 into these bits, bu,t only if these v:- ite ilstructions are executed from the Flash modules.

To restore the write and access protection bits or to execute a set protection operation and write 0 into the desired bits, the microcontroller must be reset.
It is not necessary to ter, ourarly unprotect an access protected Flash to update the code. it is sufficient to execu't the updating instructions from another Flash bank.

When a temporary unprotection operation is executed, the corresponding volatile register is written $\pm \div$? while the non-volatile registers bits previously written to 0 (for a protection set operatı $\because 11)$, continue to maintain the 0 . For this reason, the user software must track the cuirent protection status (for example, by using a specific RAM area), as it is not possible to $a ? c i u c e$ it by reading the non-volatile register content (a temporary unprotection cannot be detected).

5.5 Write operation examples

Examples are presented below for each kind of Flash write operation.

5.5.1 Word program

Example: 32-bit word program of data 0xAAAAAAAA at address 0x0C5554 in XFlash module.

```
FCROH|= 0x2000; /*Set WPG in FCROH */
FARL = 0x5554; /*Load Add in FARL*/
FARH = 0x000C; /*Load Add in FARH*/
FDROL = OXAAAA; /*Load Data in FDROL*/
FDROH = OXAAAA; /*Load Data in FDROH*/
FCROH|= 0x8000; /*Operation start*/
```


5.5.2 Double word program

Example: Double word program (64-bit) of data 0x55AA55AA at ad arcぃこ 0x095558 and data 0xAA55AA55 at address 0x09555C in IFlash module.

```
FCROH|= 0x1080; /*Set DWPG, SMOD*/
FARL = 0x5558; /*Load Add in FAP._*!
FARH = 0x0009; /*Load Add in FERIS./
FDROL = 0x55AA; /*Load Data it. IDROL*/
FDROH = 0x55AA; /*Load na.ca in FDR0H*/
FDR1L = 0xAA55; /*Loal Da.ta in FDR1L*/
FDR1H = 0xAA55; /*Lozd Data in FDR1H*/
FCROH|= 0x8000; /'Operation start*/
```

Double word program is al.vays performed on the double word aligned on an even word. Bit ADD2 of FARL is igrcrerl.

5.5.3 Sector erisi?

Exampı ?: Sector erase of sectors B3F1 and B3F0 of Bank 3 in XFlash module.

```
TCROH|= 0x0800; /*Set SER in FCROH*/
FCR1H|= 0x0003; /*Set B3F1, B3F0*/
FCROH|= 0x8000; /*Operation start*/
```


5.5.4 Suspend and resume

Example: Word program, double word program, and sector erase operations can be suspended in the following way:

```
FCROH|= 0x4000; /*Set SUSP in FCROH*/
```

The operation can be resumed in the following way:

```
FCROH|= 0x0800; /*Set SER in FCROH*/
FCROH|= 0x8000; /*Operation resume*/
```

Before resuming a suspended erase, FCR1H/FCR1L registers must be read to check if the erase is already completed (FCR1H = FCR1L $=0 \times 0000$ if erase is complete). The original setup of select operation bits in the FCROH/L registers must be restored before the operation resume, otherwise the operation is aborted and bit RESER of FER is set.

5.5.5 Erase suspend, program and resume

A sector erase operation can be suspended in order to program (word or double word) another sector.

Example: Sector erase of sector B3F1 of Bank 3 in XFlash module.

```
FCROH|=0x0800; /*Set SER in FCROH*/
FCR1H|= 0x0002; /*Set B3F1*/
FCROH|= 0x8000; /*Operation start*/
```

Example: Sector erase suspend

```
FCROH|=0x4000; /*Set SUSP in FCROH*/
do /* Loop to wait for LOCK=0 and BSY bit(s)=0 */
{tmp = FCROL ;
} while( (tmp && 0x00E6) );
```

Example: Word program of data 0×5555 AAAA at address $0 \times 0 \mathrm{C} 5554$ in XFiz:h nodule.

```
FCROH&= 0xBFFF; /*Rst SUSP in FCROH*/
FCROH|= 0x2000; /*Set WPG in FCROH*/
FARL = 0x5554; /*Load Add in FARL*/
FARH = 0x000C; /*Load Add in FARH*/
FDROL = OXAAAA; /*Load Data in F\GammaNOS,*,
FDROH = 0x5555; /*Load Data in LT,nノH*/
FCROH|=0x8000; /*OperationSLa゙t*/
```

Once the program operation is finished, li't eiase operation can be resumed in the following way:

```
FCROH|= 0x0800; /'Set SER in FCROH*/
FCR0H|= 0x8000; /*)peration resume*/
```

During the program preraion in erase suspend, bits SER and SUSP are low. A word or double word prey*am during erase suspend cannot be suspended.
To summa'iza:

- A , ector erase can be suspended by setting SUSP bit
\therefore To perform a word program operation during erase suspend, bits SUSP and SER must first be reset, then bits WPG and WMS can be set.
- To resume the sector erase operation bit SER must be set again
- It is forbidden to start any write operation when the SUSP bit is set

5.5.6 Set protection

Example 1: Enable write protection of sectors B0F3-0 of Bank 0 in the IFlash module.

```
FCROH|= 0x0100; /*Set SPR in FCROH*/
FARL = 0xDFB4; /*Load Add of register FNVWPIRL in FARL*/
FARH = 0x000E; /*Load Add of register FNVWPIRL in FARH*/
FDROL = OxFFFO; /*Load Data in FDROL*/
FDROH = 0xFFFF; /*Load Data in FDROH*/
FCROH|= 0x8000; /*Operation start*/
```

Bit SMOD of FCROH must not be set as the write protection bits of the IFlash module are stored in the Test-Flash (XFlash module).

Example 2: Enable access and debug protection.

```
FCROH|= 0x0100; /*Set SPR in FCROH*/
FARL = 0xDFB8; /*Load Add of register FNVAPRO in %AKT,n!
FARH = OxOOOE; /*Load Add of register FNVAPRO in faRH*/
FDROL = 0xFFFC; /*Load Data in FDROL*/
FCROH|= 0x8000; /*Operation start*/
```

Example 3: Disable access and debug protection permanently.

```
FCROH|= 0x0100; /*Set SPR in FCRCr**,
FARL = 0xDFBC; /*Load Add of register FNVAPRIL in FARL*/
FARH = 0x000E; /*Load Add JI register FNVAPRIL in FARH*/
FDROL = OxFFFE; /*Load Daca En FDROL for clearing PDSO*/
FCROH|= 0x8000; /*Ope:at:on start*/
```

Example 4: Re- enable accesะ anci debug protection permanently .

```
FCR0H|= 0x0100; /*,set SPR in FCROH*/
FARL = 0xDFBC; /*Load Add register FNVAPR1H in FARL*/
```



```
FDROH = 0\FTrE; /*Load Data in FDROH for clearing PENO*/
FCR^Y!= Cx8000; /*Operation start*/
```

Disablir. \boldsymbol{y} and re-enabling access and debug protection permanently way (as shown above) ar. re done up to a maximum of 16 times.

5.6 Write operation summary

Write operations are generally started with the following three steps:

1. The first instruction is used to select the desired operation by setting its corresponding selection bit in the Flash control register 0 . This instruction is also used to select in which Flash Module to apply the write operation (by setting/resetting the SMOD bit).
2. The second step is the definition of the address and data for programming or the sectors or banks to erase.
3. The third instruction is used to start the write operation, by setting the start bit, WMS, in the FCRO register.

Once selected, but not yet started, one operation can be canceled by resetting the operation selection bit.

A summary of the available Flash module write operations are shown in Table 3i.
Table 34. Flash write operations

Operation	Select bit	Address and dati	Start bit
Word program (32-bit)	WPG	FARL;F/ARF; FRRIL/FJROH	WMS
Double word program (64-bit)	DWPG	FARL/FARH FDROL/FDROH FDR1L/FDR1H	WMS
Sector erase	SE	FCR1L/FCR1H	WMS
Set protection	SPR	FDROL/FDROH	WMS
Program/erase suspend	SUSP	None	None

6 The bootstrap loader

The ST10F296E implements innovative boot capabilities to：
－Support a user defined bootstrap（see ‘alternate bootstrap loader＇）；
－Support bootstrap via UART or bootstrap via CAN for the standard bootstrap．

6．1 Selection among user－code，standard or alternate bootstrap

The selection among user－code，standard bootstrap or alternate bootstrap is made by special combinations on Port 0L［5．．．4］during the time the reset configuration is latched from Port 0.

The alternate boot mode is triggered with a special combination set on Port OLに．．．4］．These signals，as with other configuration signals are latched on the rising edge c^{f} he KSTIN pin．

The alternate boot function is divided into two functional parts（which ire independent from each other）：

Part 1

Selection of the reset sequence according to Port 0 гっワiquiation，user mode，and alternate mode signatures：
－Decoding reset configuration POL． $5=1$ 극 Г ． $0 \mathrm{~L} .4=1$ selects normal mode and selects that user Flash is mapperi iio．n iudress 00＇0000h．
－Decoding reset configuration POL $5:=1$ and P0L． $4=0$ selects ST10 standard bootstrap mode（Test－Flash is active anu overlaps user Flash for code fetches from address 00＇0000h；user Flash is dctive and available for read and program）．
－Decoding reset cnniguration POL． $5=0$ and POL． $4=1$ activates new verifications to select which honstrap software to execute：
－If the ist r mode signature in the user Flash is programmed correctly，a software $r>s$ at sequence is selected and the user code is executed．
－if the user mode signature is not programmed correctly，but，the alternate mode signature in the user Flash is programmed correctly，alternate boot mode is selected．
－If both the user and alternate mode signatures are not programmed correctly in the user Flash，the user key location is read again．Its value determines the behavior of the selective bootstrap loader．

Part 2
Running of user selected reset sequences：
－Standard bootstrap loader：Jump to a predefined memory location in Test－Flash （controlled by ST）．
－Alternate boot mode：Jump to address 09＇0000h．
－Selective bootstrap loader：Jump to a predefined location in Test－Flash（controlled by ST）and check which communication channel is selected．
－User code：Make a software reset and jump to 00’0000h．

Table 35．ST10F296E boot mode selection

$\mathbf{P 0 . 5}$	$\mathbf{P 0 . 4}$	ST10 decoding
1	1	User mode：User Flash is mapped at 00＇0000h
1	0	Standard bootstrap loader：User Flash is mapped from 00＇0000h，code fetches redirected data to Test－Flash at 00＇0000h
0	1	Alternate boot mode：Flash mapping depends on signature integrity check
0	0	Reserved

6．2 Standard bootstrap loader（BSL）

The built－in bootstrap loader of the ST10F296E provides a mechanism to load the startup program，which is executed after reset，via the serial interface．In this case ne e．ttrnal （ROM）memory or internal ROM is required for the initialization code startiri，at location $00^{\prime} 0000_{\mathrm{H}}$ ．The bootstrap loader moves code／data into the IRAM，but it is ziso possible to transfer data via the serial interface into an external RAM usind a \vdots ？ c rid level loader routine．ROM memory（internal or external）is not necessary．H＇swever，it may be used to provide lookup tables or may provide＇core－code＇，a set of ミentral purpose subroutines，for I／O operations，number crunching，system initialization，e．

The bootstrap loader may be used to load the crmútie application software into ROMless systems．It may also load temporary software inに complete systems for testing or calibration．in addition，it may be used iv 心ac a programming routine for Flash devices．

The BSL mechanism may be used for こ亡．andard system startup as well as for special occasions such as system maintenance（firmware update），end－of－line programming，or testing．

6．2．1 Entering the standard bootstrap loader

The ST10F296＝enters BSL mode if pin P0L． 4 is sampled low at the end of a hardware reset．n his case the built－in bootstrap loader is activated independently of the selected bus mone．ihe bootstrap loader code is stored in a special Test－Flash：No part of the standard ils st．memory area is required for this．

After entering BSL mode and completing the respective initialization steps，the ST10F296E scans the RxD0 line and the CAN1＿RxD line to receive either a valid dominant bit from the CAN interface，or a start condition from the UART line．
Start condition on UART RxD：The ST10F296E starts the standard bootstrap loader．This bootstrap loader is identical to other ST10 devices（for example，the ST10F280）．See Section 6．3：Standard bootstrap with UART（RS232 or K－line）on page 73 for details．

Valid dominant bit on CAN1 RxD：The ST10F296E starts bootstrapping via CAN1．This bootstrapping method is new and is described in Section 6．4：Standard bootstrap with CAN on page 78．Figure 6：ST10F296E new standard bootstrap loader program flow on page 69 shows the program flow of the new bootstrap loader．It illustrates how new functionalities are implemented，which is as follows：
－UART：UART has priority over CAN after a falling edge on CAN1＿RxD untill the first valid rising edge on CAN1＿RxD．
－CAN：Pulses on CAN1＿RxD which are shorter than 20＊CPU－cycles，are filtered．

6.2.2 ST10 configuration in BSL

When the ST10F296E has entered BSL mode, the configuration shown in Table 36 is automatically set (values that deviate from the normal reset values, are highlighted in bold italic).

Table 36. ST10 configuration in BSL mode

Watchdog timer	Disabled	
Register SYSCON	0404H ${ }^{(1)}$	XPEN bit set for bootstrap via CAN or alternate boot mode
Context pointer CP	$\mathrm{FAOO}_{\mathrm{H}}$	
Register STKUN	$\mathrm{FCOO}_{\mathrm{H}}$	
Stack pointer SP	$\mathrm{FAHO}_{\mathrm{H}}$	
Register STKOV	$\mathrm{FAOO}_{\mathrm{H}}$	
Register BUSCONO	Acc. to startup config. ${ }^{(2)}$	
Register SOCON	8011 ${ }_{\text {H }}$	Initialized onI, ir bootstrap is run via UART
Register SOBG	Acc. to '00' byte	Initial:-e o oly if bootstrap is run via UART
P3.10/TXD0	1	In, 't, alized only if bootstrap is run via UART
DP3.10	1	\therefore.itialized only if bootstrap is run via UART
CAN1 status/control register	$\mathrm{OCOO}_{\mathrm{H}}$	Initialized only if bootstrap is run via CAN
CAN1 bit timing register	Acc, to 0 trame	Initialized only if bootstrap is run via CAN
XPERCON	$042 D_{H}$	XRAM1-2, XFlash, CAN1 and XMISC enabled. Initialized only if bootstrap is run via CAN
P4.6/CAN1_Tx[1	Initialized only if bootstrap is run via CAN
DP4.6	1	Initialized only if bootstrap is run via CAN

1. In boc'strap modes (standard or alternate) the ROMEN bit, bit 10 of the SYSCON register, is always set regardless of the EA pin level. The BYTDIS bit, bit 9 of the SYSCON register, is set according to the data Zus width selection via Port 0 configuration.
2. BUSCONO is initialized with 0000h which disables the external bus if pin $\overline{E A}$ is high during reset. If pin $\overline{E A}$ is low during reset, the BUSACTO bit, bit 10, and the ALECTLO bit, bit 9, are set, enabling the external bus with a lengthened ALE signal. BTYP field, bit 7 and 6 , is set according to Port 0 configuration.

Figure 6. ST10F296E new standard bootstrap loader program flow

The watchdog timer is disabled, except after a normal reset, so the bootstrap loading sequence is not time limited. Depending on the selected serial link (UART0 or CAN1), pin TxD0 or CAN1_TxD is configured as output, so the ST10F296E can return the acknowledge byte. Even if the internal IFlash is enabled, no code can be executed out of it.

6.2.3 Booting steps

There are four steps to booting the ST10F296E with the boot loader code (see Figure 7):

1. The ST10F296E is reset with P0L. 4 low
2. The internal new bootstrap code runs on the ST10 and a first level user code is downloaded from the external device, via the selected serial link (UART0 or CAN1). The bootstrap code is contained in the ST10F296E Test-Flash and is automatically run when ST10F296E is reset with P0L. 4 low. After loading a preselected number of bytes, ST10F296E begins executing the downloaded program.
3. The first level user code is run on ST10F296E. Typically, this user code is another loader that is used to download the application software into the ST10F296E.
4. The loaded application software is now running

Figure 7. Booting steps for the ST10F296E

ร.2.? Hardware to activate BSL

The hardware that activates the BSL during every hardware reset may be a simple pulldown resistor on POL.4. switchable solution (via jumper or an external signal) may be used for systems that only temporarily use the BSL.

Note:
The CAN alternate function on Port 4 lines is not activated if the user has selected eight address segments (Port 4 pins have three functions: I/O port, address-segment, and CAN). Bootstrapping via CAN requires that four address segments or less are selected.

Figure 8. Hardware provisions to activate the BSL

6.2.5 Memory configuration in bootstrap loader mode

The configuration (i.e. the accessibility) of the ST10F296E's n emory areas after reset in bootstrap loader mode differs from the standard case. Dill is selected to enable the external bus or not:

- If $\overline{E A}=1$, the external bus is disabled (BUSAㄷ, $T U=0$ in BUSCON0 register);
- If $\overline{E A}=0$, the external bus is enable, (Zu:ACTO $=1$ in BUSCONO register).

Moreover, while in BSL mode, acces to the internal IFlash area are partly redirected:

- Code access is made from the special Test-Flash seen in the range 00'0000h to 00'01FFFh.
- User IFlash is only c vailable for read and write access (Test-Flash cannot be read nor written).
- Write acress riust be made with addresses starting in segment 1 from 01'0000h, whateverthe value of the ROMS1 bit in the SYSCON register.
- Rt ad access is made in segment 0 or in segment 1 depending on the ROMS1 bit value.
- In BSL mode, by default, ROMS1= 0 so the first 32 Kbytes of IFlash are mapped in segment 0.

Example

In default configuration, to program address 0 , the user must put the value $01^{\prime} 0000 \mathrm{~h}$ in the FARL and FARH registers. However, to verify the content of the address 0 a read to 00'0000h must be performed.

Figure 9 shows the memory configuration after reset.

Figure 9. Memory configuration after reset

1. As long as the ST10F296E is in BSL, user snftu tre should not try to execute code from the internal IFlash as the fetches are redirected to the Test-F ash.

6.2.6 Loading the startup code

After the serial link initia Zuticr, sequence (see Section 6.3 and Section 6.4), the BSL enters a loop to receive 32 b,tes (buot via UART) or 128 bytes (boot via CAN).
These bytes are s'o.ed sequentially into the ST10F296E dual-port RAM from location 00'FA40h.

To exec 'te the loaded code, the BSL jumps to location 00'FA40h. The bootstrap sequence "u ring from the Test-Flash terminates. However, the microcontroller remains in BSL mode.

The initially loaded routine (the first level user code) most probably loads additional code and data. This first level user code may use the pre-initialized interface (UART or CAN) to receive data, a second level code, and store it to arbitrary user-defined locations.

This second level code may be the final application code. It may also be another, more sophisticated, loader routine that adds a transmission protocol to enhance the integrity of the loaded code or data. It may also contain a code sequence to change the system configuration and enable the bus interface to store the received data into external memory. In all cases, the ST10F296E runs in BSL mode, i.e. with the watchdog timer disabled and with limited access to the internal IFlash area.

6．2．7 Exiting bootstrap loader mode

To execute a program in normal mode，the BSL mode must first be terminated．The ST10F296E exits BSL mode upon a software reset（level on P0L． 4 is ignored）or a hardware reset（P0L． 4 must be high in this case）．After the reset，the ST10F296E starts executing from location $00^{\prime} 0000_{\mathrm{H}}$ of the internal Flash（user Flash）or the external memory，as programmed via pin $\overline{\mathrm{EA}}$ ．

Note：If a bidirectional software reset is executed，and external memory boot is selected（ $\overline{E A}=0$ ）， a degeneration of the software reset event into a hardware reset can occur．This implies that POL． 4 becomes transparent，so to exit from bootstrap mode it is necessary to release pin POL． 4 （it is no longer ignored）．

6．2．8 Hardware requirements

Although the new bootstrap loader has been designed to be compatible with th． P 心ld une， there are a few hardware requirements related to the new one：
－External bus configuration：Four segment address lines or less（ k Ə七つ CAN I／O＇s available）are required．
－Use of CAN pins（P4．5 and P4．6）：P4．5（CAN1＿RxD）car unly be used as a port input． Pin P4．6（CAN1＿TxD）can be used as input or outplit．
－Level on UART RxD and CAN1＿RxD during the iotstrap phase（see step 2 of Figure 7：Booting steps for the ST10F296E on r．juge 70）：Must be 1 （external pull－up＇s recommended）．

6．3 Standard bootstrap with UART（RS232 or K－line）

6．3．1 Features

ST10F296E bor：it：a！，via UART has the same overall behavior as the old ST10 bootstrap via UART：
－Sarre bootstrapping steps
－Saıne bootstrap method：To analyze the timing of a predefined byte，send back an acknowledge byte，load a fixed number of bytes and then run．
－Same functionalities：To boot with different crystals and PLL ratios．

Figure 10. UART bootstrap loader sequence

1. BSL initialization time $>1 \mathrm{~ms} @ \mathrm{f}_{\mathrm{CPU}}=40 \mathrm{MHz}$.
2. Zero byte (1 start bit, eight 0 data bits, 1 stop bit), sent by host.
3. Acknowledge byte, sent by ST10F296E.
4. 32 bytes of code / data, sent by host.
5. TxDO is only driven a certain time after reception of the zei $\boldsymbol{\sim}$ lwte ($\because 3 \mathrm{~ms} @ \mathrm{f}_{\mathrm{CPU}}=40 \mathrm{MHz}$).
6. Internal boot ROM / Test-Flash.

6.3.2 Entering bootstrap via UART

The ST10F296E enters BSL mode at the end of a hardware reset if pin P0L. 4 is sampled low. In this case, the built-in hoctstrap loader is activated independent of the selected bus mode. The bootstrap loader crde is stored in a special Test-Flash, for which no part of the standard mask ROM or Fiasin memory area is required.

After entering S $_{L}$, node and the respective initialization, the ST10F296E scans the RxD0 line to receive c <ero byte (one start bit, eight 0 data bits and one stop bit). From this zero byte, i. cslc.lates the corresponding baud rate factor with respect to the current CPU clock, initializes the serial interface ASC0 accordingly, and switches the TxD0 pin to output. Using ini. raud rate, an acknowledge byte is returned to the host that provides the loaded data.
The acknowledge byte for the ST10F296E is D5h.

6.3.3 ST10 configuration in UART BSL (RS232 or K-line)

When the ST10F296E has entered BSL mode on the UART, the configuration shown in Table 37 is automatically set (values that deviate from the normal reset values, are
highlighted in bold italic).
Table 37. ST10 configuration in UART BSL mode (RS232 or K-line)

Watchdog timer	Disabled	
Register SYSCON	$0400^{(1)}$	
Context pointer CP	$\mathrm{FAOO}_{\mathrm{H}}$	
Register STKUN	$\mathrm{FAOO}_{\mathrm{H}}$	
Stack pointer SP	$\mathrm{FA4O}_{\mathrm{H}}$	
Register STKOV	$\mathrm{FCOO}_{\mathrm{H}}$	
Register BUSCONO	Acc. to startup config. ${ }^{(2)}$	
Register SOCON	88011^{H}	Initialized only if i 0 cts "arr is run via UART
Register S0BG	Acc. to 00 byte	Initialized only in Bootstrap is run via UART
P3.10/TXD0	1	
DP3.10	1	1.ivialized only if Bootstrap is run via UART

1. In bootstrap modes (standard or alternate) the ROッ15N bit, bit 10 of the SYSCON register, is always set regardless of the EA pin level. The BYTDIr, bit, $\mathrm{t}+\mathrm{+}+$ of the SYSCON register, is set according to the data bus width selection via Port 0 configuratioı
2. BUSCONO is initialized with 000 h whicin disables the external bus if pin $\overline{E A}$ is high during reset. If pin $\overline{E A}$ is low during reset, the BUSACTO Lit, bit 10, and the ALECTLO bit, bit 9, are set, enabling the external bus with a lengthened ALE signel. $37 \vee P$ field, bit 7 and 6 , is set according to Port 0 configuration.

The watchdog timer is cuis $\begin{gathered}\text { b.od, except after a normal reset, so the bootstrap loading }\end{gathered}$ sequence is not 'ime 'minted. Pin TxD0 is configured as output, so the ST10F296E can return the ackn.ww suge byte. Even if the internal IFlash is enabled, no code can be executed cui ot it.

6.3.4 Losding the startup code

After sending the acknowledge byte the BSL enters a loop to receive 32 bytes via ASC0. These bytes are stored sequentially into locations $00^{\prime} F A 40_{H}$ through $00^{\prime} F A 5 F_{H}$ of the IRAM. Up to 16 instructions may be placed into the RAM area. To execute the loaded code the BSL jumps to location $00^{\prime} F A 40_{H}$, i.e. the first loaded instruction. The bootstrap loading sequence then terminates, however, the ST10F296E remains in BSL mode. It is likely that the initially loaded routine loads additional code or data, as an average application is likely to require substantially more than 16 instructions. This second receive loop may directly use the preinitialized interface ASC0 to receive data and store it to arbitrary user-defined locations.
This second level of loaded code may be the final application code. It may also be another, more sophisticated, loader routine that adds a transmission protocol to enhance the integrity of the loaded code or data. In addition, it may contain a code sequence to change the system configuration and enable the bus interface to store the received data into the external memory.

This process may go through several iterations or may directly execute the final application． In all cases，the ST10F296E runs in BSL mode，i．e．with the watchdog timer disabled and limited access to the internal Flash area．All code fetches from the internal IFlash area $\left(01^{\prime} 0000_{H} \ldots 08^{\prime} \mathrm{FFFF}_{\mathrm{H}}\right)$ are redirected to the special Test－Flash．Data read operations access the internal Flash of the ST10F296E，if any is available，but return undefined data on ROM－less devices．

6．3．5 Choosing the baud rate for the BSL via UART

The calculation of the serial baud rate for ASCO from the length of the first zero byte that is received，allows the bootstrap loader of the ST10F296E to operate with a wide range of baud rates．However，upper and lower limits have to be respected to insure proper data transfer．

Equation 1

$\mathrm{B}_{\text {ST10F296 }}=\mathrm{f}_{\mathrm{CPU}} / 32 \times(\mathrm{SOBRL}+1)$
The ST10F296E uses Timer T6 to measure the length of the initial ファってryte．The quantization uncertainty of this measurement implies the first civv atin from the real baud rate．The next deviation is implied by the computation of the $S^{\prime}, B R L$ reload value from the timer contents．Equation 2 below shows the association：

Equation 2

SOBRL $=(T 6-36) / 72$
Where：

$$
\mathrm{T} 6=9 / 4 \times \mathrm{f}_{\mathrm{CPU}} / \mathrm{B}_{\mathrm{Host}}
$$

For correct data transfe； $\mathrm{fi}_{\mathrm{om}} \pm \mathrm{\epsilon} \in$ host to the ST10F296E，the maximum deviation between the internal initialized＇Jaud rate for ASCO and the real baud rate of the host should be below 2.5% ．The devia＇ion＇r_{B} ，in percent）between host baud rate and the ST10F296E baud rate can be calculated via Equation 3：

Equation 3

$I_{B}=\left(B_{\text {Contr }}-B_{\text {Host }}\right) / B_{\text {Contr }} \times 100$
where：
$\mathrm{FB} \leq 2.5 \%$
Note：$\quad F_{B}$ does not consider the tolerances of oscillators and other devices supporting the serial communication．

This baud rate deviation is a nonlinear function depending on the CPU clock and the baud rate of the host．The maxima of F_{B} increases with the host baud rate due to the smaller baud rate pre－scaler factors and the implied higher quantization error（see Figure 11）．

Figure 11. Baud rate deviation between the host and ST10F296E

The minimum baud rate ($\mathrm{B}_{\text {Low }}$ in Figure 11) is determined by the maximum count capacity of Timer T6, when measuring the zero byte, i.e. it depends on the CPU clock. Usina tr.e maximum T6 count as 2^{16} in the formula, the minimum baud rate can be calculaieci. h ? lowest standard baud rate in this case is 1200 Baud. Baud rates below $B_{\text {Low }}$ val'st $T 6$ to overflow. In this case ASC0 cannot be initialized properly.

The maximum baud rate $\left(B_{\text {High }}\right.$ in Figure 11) is the highest baud ra'e where the deviation does not exceed the limit, i.e. all baud rates between $B_{\text {Low }}$ an'i $E_{\text {Hich }}$ are below the deviation limit. The maximum standard baud rate that fulfills this reauire.nent is 19200 Baud.

Higher baud rates, however, may be used as long as the cifual deviation does not exceed the limit. The baud rate marked 'l' in Figure 11 may w'ate the deviation limit, while the higher baud rate, marked 'Il', in Figure 11 sta's veil below it. This depends on the host interface.

6.4 Standard bootstrap with CAN

6.4.1 Features

The bootstrap via CAN has the same overall behavior as the bootstrap via UART:

- Same bootstrapping steps
- Same bootstrap method: To analyze the timing of a predefined frame, send back an acknowledge frame (on request only), load a fixed number of bytes and then run.
- Same functionalities: To boot with different crystals and PLL ratios.

Figure 12. CAN bootstrap loader sequence

1. $B S L$ initialization time $=1 \mathrm{mi}$ © ${ }^{\ddagger} \mathrm{CPU}=40 \mathrm{MHz}$
2. Zero frame (CAN n es, aye: standard ID $=0, D L C=0$) sent by host
3. CAN messéjo sta ndard ID = E6h, DLC = 3, Data0 = D5h, Data1-Data2 = IDCHIP_low-high) sent by ST10F2a'sE or request.
4. 128 'r, es uf code/data, sent by host
5. CAN1_TxD is only driven a certain time after reception of the zero byte ($1.3 \mathrm{~ms} @ \mathrm{f}_{\mathrm{CPU}}=40 \mathrm{MHz}$).
6. internal boot ROM/Test-Flash

The bootstrap loader may be used to load the complete application software into ROM-less systems. It may also load temporary software into complete systems for testing or calibration. In addition, it may be used to load a programming routine for Flash devices.

The BSL mechanism may be used for standard system start-ups as well as for special occasions like system maintenance (firmware update), end-of-line programming or testing.

6.4.2 Entering the CAN bootstrap loader

The ST10F296E enters BSL mode, if pin P0L. 4 is sampled low at the end of a hardware reset. In this case, the built-in bootstrap loader is activated independent of the selected bus mode. The bootstrap loader code is stored in a special Test-Flash, no part of the standard mask ROM or Flash memory area is required for this.
After entering BSL mode and the respective initialization the ST10F296E scans the CAN1_TxD line to receive the following initialization frame:

- Standard identifier $=0 h$
- DLC $=0 \mathrm{~h}$

As all the bits to be transmitted are dominant bits, a succession of five dominant bits and one stuff bit on the CAN network is used. From the duration of this frame it calculate= the corresponding baud rate factor with respect to the current CPU clock, initializes the TA.V1 interface accordingly, switches pin CAN1_TxD to output and enables the CAN: ir, ${ }^{+}$eriace to take part in the network communication. Using this baud rate, a message cb,ect is configured to send an acknowledge frame. The ST10F296E does send iu is niessage object, but, the host can request it by sending remote frame.

The acknowledge frame is the following for the ST10F296E:

- Standard identifier $=$ E6h
- DLC = 3h
- Data0 = D5h (generic acknowledge of the (iT 1 devices)
- Data1 = IDCHIP least significant hı, te
- Data2 = IDCHIP most significani byt 3

For the ST10F296E, IDCHIP $=128 X h$.
Note: Two behaviors can be d"sting"shied regarding acknowledgement of the ST10 by the host. If the host is behaving e cco.dlıig to CAN protocol, as long as the ST10 CAN module is not configured, the hist i: alone on the CAN network and does not receive acknowledgement. It automaticall,$~<s$ sends the zero frame. As soon as the ST10 CAN is configured, the host ackno'vic ci $x \in=$ ihe zero frame. The 'acknowledge frame', with identifier 0xE6, is configured, but, the transmit request is not set. The host can request this frame to be sent, and therefore $\pi \epsilon t$ tife IDCHIP, by sending a remote frame.
As the IDCHIP is sent in the acknowledge frame, Flash programming software now has the possibility to know immediately the exact type of device to be programmed.

6.4.3 ST10 configuration in CAN BSL

When the ST10F296E has entered BSL mode via CAN, the configuration shown in Table 38 is automatically set (values that deviate from the normal reset values, are marked in bold italic)

Table 38. ST10 configuration in CAN BSL mode

Watchdog timer	Disabled	
Register SYSCON	0404H ${ }^{(1)}$	XPEN bit set
Context pointer CP	$\mathrm{FAOO}_{\mathrm{H}}$	
Register STKUN	$\mathrm{FAOO}_{\mathrm{H}}$	
Stack pointer SP	$\mathrm{FAHO}_{\mathrm{H}}$	
Register STKOV	$\mathrm{FCOO}_{\mathrm{H}}$	K
Register BUSCON0	Acc. to startup config. ${ }^{(2)}$	
CAN1 status/control register	0000_{H}	Initialized only if ${ }^{\text {a }}$ (siones is run via UART
CAN1 bit timing register	Acc. to 0 frame	Initialized only if sootstrap is run via CAN
XPERCON	042D ${ }_{H}$	
P4.6/CAN1_TxD	1	I'miaized only if bootstrap is run via CAN
DP4.6	1	Thitialized only if bootstrap is run via CAN

1. In bootstrap modes (standard or alternate) the FOMEN bit, bit 10 of the SYSCON register, is always set regardless of the EA pin level. The BYTDIS wit, bit 9 of the SYSCON register, is set according to the data bus width selection via Port 0 contiquration.
2. BUSCONO is initialized with OCOn u hich disables the external bus if pin $\overline{E A}$ is high during reset. If pin $\overline{E A}$ is low during reset, the BL $3 \not-$ CT~ oit, bit 10, and the ALECTLO bit, bit 9 , are set, enabling the external bus with a lengthened ALE signil LTYP field, bit 7 and 6 , is set according to Port 0 configuration.

The watchdog tin. e^{-r} is, disabled, except after a normal reset, so the bootstrap loading sequence is nut tirne limited. The CAN1_TxD1 pin is configured as output, so the ST105 $266 \mathrm{~L}=$ can return the identification frame. Even if the internal IFlash is enabled, no code can be executed out of it.

6.4.4 Loading the startup code via CAN

After sending the acknowledge byte the BSL enters a loop to receive 128 bytes via CAN1.
Note: \quad The number of bytes loaded when booting via the CAN interface has been extended to 128 bytes to allow re-configuration of the CAN bit timing register with the best timings (synchronization window, ...). This can be achieved by the following sequence of instructions:

```
ReconfigureBaudRate:
    MOV R1,#041h
    MOV DPP3:0EFOOh,R1 ; Put CAN in Init, enable Configuration Change
    MOV R1,#01600h
    MOV DPP3:0EF06h,R1 ; 1MBaud at Fcpu = 20 MHz
```

These 128 bytes are stored sequentially into locations $00^{\prime} F A 40_{H}$ to $00^{\prime} F A B F_{H}$ of the iRAM. So, up to 64 instructions may be placed into the RAM area. To execute the loaded onde the BSL jumps to location $00^{\prime} F A 40_{\mathrm{H}}$, the first loaded instruction. The bootstrap loncing sequence is now terminated, however, the ST10F296E remains in BSL mocie. It is likely that the initially loaded routine loads additional code or data (because an average application is likely to require substantially more than 64 instructions). This secor ditueive loop may directly use the pre-initialized CAN interface to receive data a nd siore it to arbitrary userdefined locations.

The second level of loaded code may be the final ap riioction code. It may also be another, more sophisticated, loader routine that adds a traiis, niusion protocol to enhance the integrity of the loaded code or data. In addition, it ma) contain a code sequence to change the system configuration and enable the $r u=$, iteriace to store the received data into the external memory.

This process may go through soveral iterations or may directly execute the final application. In all cases the ST10F296E rins in BSL mode, with the watchdog timer disabled and limited access to the internal $F_{i c}$ si area. All code fetches from the internal Flash area $\left(01^{\prime} 0000_{\mathrm{H}}\right.$ $\ldots 08^{\prime} \mathrm{FFFF}_{\mathrm{H}}$) are reärctad to the special Test-Flash. Data read operations access the internal Flash ó $\omega^{\prime} \in$ ST10F296E, if any is available, but return undefined data on ROM-less devices.

6.4.5 Choosing the baud rate for the BSL via CAN

The bootstrap via CAN acts in the same way as the UART bootstrap mode. When the ST10F296E is started in BSL mode, it polls the RxD0 and CAN1_RxD lines. When polling a low level on one of these lines, a timer is launched that is stopped when the line goes back to high level.

For CAN communication, the algorithm is made to receive a zero frame, where the standard identifier is 0×0 and DLC is 0 . This frame produces the following levels on the network: 5 D , $1 R, 5 D, 1 R, 5 D, 1 R, 5 D, 1 R, 5 D, 1 R, 4 D, 1 R, 1 D, 11 R$. The algorithm lets the timer run until detection of the $5^{\text {th }}$ recessive bit. In this way, the bit timing is calculated over 29 bit time durations. This minimizes the error introduced by the polling.

Figure 13. Bit rate measurement over a predefined zero-frame

Error induced by the polling

The code used for polling is as follow:

```
WaitCom:
    JNB P4.5,CAN_Boct ; if SOF detected on CAN, then go to CAN
    ; loader
    JB P3.11,Maitcoin ; Wait for start bit at RxD0
    BSET T6R ; Start Timer T6
CAN Ron_.
        BCEI PWMCONO.O ; Start PWM Timer0
                            ; (resolution is 1 CPU clk cycle)
        JMPR CC_UC,WaitRecessiveBit
waitDominantBit:
        JB P4.5,WaitDominantBit ; wait for end of stuff bit
NaitRecessiveBit
    JNB P4.5,WaitRecessiveBit ; wait for 1st dominant bit = Stuff bit
    CMPI1 R1,#5 ; Test if 5th stuff bit detected
    JMPR CC_NE,WaitDominantBit ; No, go back to count more
    BCLR PWMCON.O ; Stop timer
here the 5th stuff bit is detected
; PTO = 29 Bit_Time (25D and 4R)
```

The maximum error at detection of communication on the CAN pin is: (1 not taken +1 taken jumps) +1 taken jump + 1 bit set: (6) +6 CPU clock cycles

The error at detection of the $5^{\text {th }}$ recessive bit is: (1 taken jump) +1 not taken jump +1 compare +1 bit clear: (4) +6 CPU cycles
In the worst case scenario, the induced error is 6 CPU clock cycles. So, polling could induce an error of 6 timer ticks.

Error induced by the baud rate calculation

The content of the PT0 timer counter corresponds to 29 bit times. This gives the following equation:

Equation 4

$$
\text { PT0 }=58 \times(\text { BRP }+1) \times(1+\text { Tseg } 1+\text { Tseg } 2)
$$

where BRP (bit rate prescaler), Tseg1 and Tseg2 are the field of the CAN bit timing register.
The CAN protocol specification recommends implementing a bit time composed of at least eight time quantum (tq). This recommendation has been applied above. The maximum bit time length is 25 tq . To achieve good precision, the target must have the smallest BRP and the maximum number of tq in a bit time.

The ranges for PT0 according to BRP are given in Equation 5.

Equation 5

$8 \leq 1+$ Tseg $1+$ Tseg $2 \leq 25$
$464 \times(1+\mathrm{BRP}) \leq \mathrm{PT} 0 \leq 1450 \times(1+B R P)$
Table 39. Timer content ranges of BRP value ir taviation 5

BRP	PTO_min	PTO_max	Comments
0	464	$14^{\circ} \mathrm{O}$	-
1	1451	2¢00	$\times 2$
2	2901	4350	
3	4351	5800	
4	-821	7250	
5	/251	8700	
,	
43	20416	63800	
- 44	20880	65250	
45	21344	66700	Possible timer overflow
	
63	X	X	

The error coming from the measurement of bit 29 is:
$e_{1}=6 /[P T O]$
It is maximal for the smallest BRP value and the smallest number of ticks in PTO.
Therefore:
$e_{1 \text { Max }}=1.29 \%$
For the best precision possible, the target must have the smallest BRP, which minimises errors when calculating time quanta in a bit time.

To achieve this, the PT0 value is divided into ranges of 1450 ticks. In the bootstrap algorithm, PT0 is divided by 1451 and the result gives the BRP value. 3

This calculated BRP value is then divided into PT0 to give the ' $1+$ Tseg1 + Tseg2' value. A table is then made to set the values for Tseg1 and Tseg2 according to the ' $1+$ Tseg1 + Tseg2' value. The Tseg1 and Tseg2 values are chosen to reach a sample point between 70% and 80% of the bit time.

During the calculation of ' $1+T \operatorname{seg} 1+T \operatorname{seg} 2$ ', an error, e_{2}, can be introduced. The maximum value of this error is 1 time quantum.

To compensate for any possible errors on the bit rate, the (re)synchronization jump width is fixed to two time quanta.

6.4.6 How to compute the baud rate error

An example of the baud rate error computation is as follows:
Conditions:

- CPU frequency: 20 MHz
- Target bit rate: $1 \mathrm{Mbit} / \mathrm{s}$

The content of the PTO timer for bit 29 is given in Equation 6 :

Equation 6

[PT0] $=29 \times \mathrm{f}_{\mathrm{CPU}} /($ BitRate $)=29 \times 20 \times \mathrm{F}, 1_{\prime}$ 1. $10^{6}=580$
Therefore:
574 < [PTO] < 586
This gives:
$-\quad B R P=0$
$-\quad t q=1 \mathrm{~J} \mathrm{r} . \mathrm{c}$
Compration $n!1+T$ seg $1+T$ seg2 considering Equation 4 is given in Equation 7 :

Ecivation 7

$9=\frac{574}{58} \leq T \operatorname{seg} 1+T \operatorname{seg} 2 \leq \frac{586}{58}=10$
In the algorithm, a rounding to the superior value is made if the remainder of the division is greater than half of the divisor. This would have been the case above, if the PT0 content was 574. Thus in this example, $1+T \operatorname{seg} 1+$ Tseg $2=10$, giving a bit time of exactly $1 \mu \mathrm{~s}=>$ no error in bit rate.

Note:

Note:

In most cases ($24 \mathrm{MHz}, 32 \mathrm{MHz}$, and 40 MHz of CPU frequency and 125, 250, 500 or $1 \mathrm{Mbyte} / \mathrm{s}$ of bit rate) there is no error. However, it is better to check the error with real application parameters.
The content of the bit timing register is: 0×1640. This gives a sample point of 80%. The (re)synchronization jump width is fixed to 2 time quanta.

6.4.7 Bootstrap via CAN

After the bootstrap phase, the ST10F296E CAN module is configured as follows:

- Pin P4.6 is configured as output (the latch value is: $1=$ recessive) to assume CAN1_TxD function.
- The MO2 is configured to output the acknowledge of the bootstrap with the standard identifier E6h, DLC $=3$, Data0 $=$ D5h, and Data1\&2 $=$ IDCHIP.
- The MO1 is configured to receive messages with the standard identifier 5 h . Its acceptance mask is set in order that all bits must match. The DLC received is not checked: The ST10 expects only 1 byte of data at a time.

No other message is sent by the ST10F296E after the acknowledge.
Note: \quad The CAN bootstrap loader waits for 128 bytes of data instead of 32 bytes (see Section 6.3: Standard bootstrap with UART (RS232 or K-line) on page 73). This is to allow the ,sar to reconfigure the CAN bit rate as soon as possible.

6.5 Comparing the old and the new bootstran lower

Table 40 and Table 41 summarize the differences between hoostrapping via UART only (old ST10 method) and bootstrapping via UART or CAN (ne v $5: 10 \mathrm{~F} 296 \mathrm{E}$ method).

Table 40. Software topics summary

Old bootstrap loader	New boot=trc D 1 Jader	Comments
Uses only 32 bytes in dualport RAM from 00'FA40h	Uses up to 128 bytes in diral- oort RAM from LútA.toh	For compatibility between bootstrapping via UART and bootstrapping via CAN1, avoid loading the application software in the 00'FA60h/00'FABFh range
Loads 32 bytes fre r, the UART	Loads 32 bytes from UART (bootstrapping via UART mode)	Same files can be used for bootstrapping via UART
User sciected XPeripherals č. n be enabled during inotstrapping (see steps 3 I and 4 of Section 6.2.3: Booting steps on page 70)	XPeripherals selection is fixed.	User can change the XPeripheral selections through a specific code

6.5.1 Software aspects

As CAN1 is needed, the XPERCON register is configured by the bootstrap loader code and the XPEN bit of the SYSCON register is set. This is done as follows:

- Disable the XPeripherals by clearing the XPEN bit in the SYSCON register. Caution: This part of code must not be located in the XRAM, because if so, it is disabled.
- Enable the XPeripherals that are needed by writing the correct value in the XPERCON register.
- Set the XPEN bit in the SYSCON.

Note: \quad The settings can be modified if the EINIT instruction is not executed (and is not in the bootstrap loader code).

6.5.2 Hardware aspects

The new bootstrap loading method via UART and CAN is compatible with the old method via UART only. However, some additional hardware is required with the new method which is summarized in Table 41.

Table 41. Hardware topics summary

Actual bootstrap loader	New bootstrap loader	Comments
P4.5 can be used as output in BSL mode	P4.5 cannot be used as user output in BSL mode. It can only be used as CAN1_RxD, input, or address- segments.	
The level on CAN1_RxD can change during step 2 of the booting steps (see Section 6.2.3 on page 70)	The level on CAN1_RxD must be stable at 1 during step 2 of the booting steps (see Section 6.2.3 on page 70)	External pull-un in needed

6.6 Alternate boot mode (ABM)

6.6.1 Activation

Alternate boot mode is activated with the cor, hination 01 on Port $0 \mathrm{~L}[5 . .4]$ at the rising edge of RSTIN.

6.6.2 Memory mapping

ST10F296E has the sar:e meinory mapping for standard and alternate boot mode:

- Test-Flash: Mafces trom 00'0000h. The standard bootstrap loader can be started by executing ז, 小"? to the address of this routine (JMPS 00'xxxx; address to be defined).
- User Flast : the user Flash is divided into two parts: The IFlash, visible only for n. or, 10 y reads and memory writes (no code fetch) and the XFlash, visible for any ST10 accəss (memory read, memory write, code fetch).
All ST10F296E XRAM and XPeripheral modules can be accessed if enabled in the XPERCON register.

The alternate boot mode can be used to reprogram the whole content of ST10F296E user Flash (except Block 0 in Bank 2).

6.6.3 Interrupts

The ST10 interrupt vector table is always mapped from address 00'0000h.
As a consequence, interrupts are not allowed in alternate boot mode. All maskable and non maskable interrupts must be disabled.

6.6.4 ST10 configuration in alternate boot mode

When the ST10F296E has entered BSL mode via CAN, the configuration shown in Table 42 is automatically set (values that deviate from the normal reset values, are marked in bold italic).

Table 42. ST10 configuration in alternate boot mode

Watchdog timer	Disabled	
Register SYSCON	0404H ${ }^{(1)}$	XPEN bit set
Context pointer CP	$\mathrm{FAOO}_{\mathrm{H}}$	
Register STKUN	$\mathrm{FAOO}_{\mathrm{H}}$	
Stack pointer SP	$\mathrm{FA4O}_{\mathrm{H}}$	
Register STKOV	$\mathrm{FCOO}_{\mathrm{H}}$	$\times 1$
Register BUSCONO	Acc. to startup config. ${ }^{(2)}$	
XPERCON	002D ${ }_{H}$	XRAM1-2, XF'asi C. ${ }^{\text {a }}$, 1 enabled

1. In bootstrap modes (standard or alternate) the ROMEN bit, bit 10 of the S^{\prime} 'SCON register, is always set regardless of the EA pin level. The BYTDIS bit, bit 9 of the SYSC.O v, egister, is set according to the data bus width selection via Port 0 configuration.
2. BUSCONO is initialized with 0000 which disables the eytrr, 'a. tus if pin $\overline{E A}$ is high during reset. If pin $\overline{E A}$ is low during reset, the BUSACTO bit, bit 10, and the $\Delta L \equiv C-L 0$ bit, bit 9, are set, enabling the external bus with a lengthened ALE signal. BTYP field, bit 7 and $: \approx$ set according to Port 0 configuration.
Even if the internal IFlash is enabled, no :cue can be executed out of it.

> Warning: As the XFish is needed, the XPERCON register is configured by inc inM loader code and the XPEN bit of the SYSCON register

To do ins:
a Copy a function into DPRAM that can do the following:

- Disable the XPeripherals by clearing the XPEN bit in the SYSCON register
- Enable the XPeripherals that are needed by writing the correct value in the XPERCON register
Set the XPEN bit in the SYSCON register
- Return to the calling address

Call the function from XFlash
Changing the XPERCON value can not be executed from the XFlash because the XFlash is disabled when the XPEN bit in the SYSCON register is cleared.

The settings can be modified if the EINIT instruction is not executed (and is not in the bootstrap loader code).

6.6.5 Watchdog

The watchdog timer remains disabled during both standard and alternate boot mode. If a watchdog reset occurs, a software reset is generated.
Note: \quad See note concerning software reset in Section 6.2.7 on page 73.

6.6.6 Exiting alternate boot mode

Once the ABM mode is entered, it can be exited only with a software or hardware reset.
Note: \quad See note concerning software reset in Section 6.2.7 on page 73.

6.6.7 Alternate boot user software

Users can write the software they want to execute in alternate boot user mode if ther des concerning the following items are met:

- Mapping variables
- Disabling interrupts
- Exiting conditions
- Predefining vectors in Block 0 of Bank 2
- Using the watchdog

The starting address is $09^{\prime} 0000 \mathrm{~h}$.

6.6.8 User/alternate boot mode siç nainie check

To operate user/alternate boct mocie, the signature of two memory location contents are calculated and compared to a reference signature. Flash memory locations must be reserved and programma as roliows:

User mode sign.a+uı ${ }^{+}$

00'0000ヶ.: Me, nory address of operand0 for the signature computing
$\mathrm{C}^{\prime} \boldsymbol{\jmath}_{1} \mathrm{~F}_{1} \mathrm{C}$ i.: Memory address of operand1 for the signature computing
$00 \div$ FFEh: Memory address for the signature reference

A'ternate mode signature

09'0000h: Memory address of operand0 for the signature computing
09'1FFCh: Memory address of operand1 for the signature computing 09'1FFEh: Memory address for the signature reference

Correct values for operand0, operand1 and the reference signature allow the sequence in Figure 14 to execute successfully.

Figure 14. Reference signature computation

MOV	Rx, CheckBlock1Addr	; 00'0000h for standard reset
ADD	Rx, CheckBlock2Addr	; 00'1FFCh for standard reset
CPLB	RLx	; 1s complement of the lower
		; byte of the sum

6.6.9 Alternate boot user software aspects

User defined alternate boot code must start at 09'0000h. A new SFR has been created on ST10F296E to indicate that the device is running in alternate boot mode. Bit 5 of the EMUCON register (mapped at 0xFEOAh) is set when the alternate boot is selected by the reset configuration. All other bits must be ignored when checking the content of this register to read the value of bit5.

This bit is a read-only bit. It remains set until the next software or hardware reset.

EMUCON register

Table 43. EMUCON register description

Bit	Bit name	Funetion
15-6	-	Reserved
5	ABM	ABM Flag (or TMOD3) 0 : Alternate boo. rilae s not selected by reset configuration on POL[5..4] 1: Alternate ınni mode is selected by reset configuration on POL[5..4]. This hit is set if POL[5..4] = 01 during hardware reset.
4-0	-	R эseivec

6.6.10 Internal decr,tiny of test modes

The tes: r. x'a decoding logic is located inside the ST10F296E bus controller.
The dec oding is as follows:

- Alternate boot mode decoding: ($\overline{\mathrm{POL} .5} \&$ POL.4)
b Standard bootstrap decoding: (POL. $5 \& \overline{\text { POL. } 4)}$
- Normal operation: (POL. 5 \& POL.4)

The other configurations select ST internal test modes.

6.6.11

Example of alternate boot mode operation

- The reset configuration is latched on the rising edge of the $\overline{\mathrm{RSTIN}} \mathrm{pin}$.
- If bootstrap loader mode is not enabled (P0L[5..4] = 11), ST10F296E hardware starts a standard hardware reset procedure.
- If standard bootstrap loader is enabled (P0L[5..4] = 10), the standard ST10 bootstrap loader is enabled and a variable is cleared to indicate that ABM is not enabled.
- If alternate boot mode is selected (P0L[5..4] = 01), a predefined reset sequence may be activated. This depends on the user/alternate boot mode signature check.

6.7 Selective boot mode

Selective boot mode is a sub-case of alternate boot mode.
The following additional check is made when no signature of the alternate boot mode signature check is correct:
Address 00'1FFCh is read again.

- If a value 0000h or FFFFh is obtained, a jump is performed to the standard bootstrap loader.
- If the value obtained is not 0000h or FFFFh:
- High byte bits are disregarded
- Low byte bits select which communication channel is enabled (see Table 44).

Table 44. Selective boot mode configurations

Bit	Function
0	UART selection 0: UART not watched for a start condition 1: UART is watched for a start condition
1	CAN1 selection 0: CAN1 not watched for a start conc'it. on 1: CAN1 is watched for a start co. Idicicn
$2-7$	Reserved Must be programmed to 0 ior upward compatibility

- 0xXX03 configures the se'ective bootstrap loader to poll for RxD0 and CAN1_RxD.
- 0xXX01 configures the se ective bootstrap loader to poll RxD0 only (no bootloading via CAN).
- 0xXX02 con ficures the selective bootstrap loader to poll CAN1_RxD only (no bootloariil's va UART).
- c nerlalues will let the ST10F296E executing an endless loop into the Test-Flash.

Figure 15. Reset boot sequence

7 Central processing unit (CPU)

The CPU includes a four-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been added for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Most instructions of the ST10F296E can be executed in one instruction cycle which requires 31.25 ns at 25 MHz CPU clock. For example, shift and rotate instructions are processed in one instruction cycle independent of the number of bits to be shifted.

Multiple-cycle instructions have been optimized. Branches are carried out in two cycles, 16 x 16-bit multiplication in five cycles and a 32/16-bit division in 10 cycles.

The jump cache reduces the execution time of repeatedly performed jumps in a loon, irom two cycles to one cycle.

The CPU uses a bank of 16 word registers to run the current context. This icnl. of general purpose registers (GPR) is physically stored within the on-chip internal $\bar{n} \mathcal{A}^{\wedge} \wedge$ (IRAM) area. A context pointer (CP) register determines the base address of the ar til = iegister bank to be accessed by the CPU.

The number of register banks is restricted by the available nternal RAM space. For easy parameter passing, a register bank may overlap othf,
A system stack of up to 1024 bytes is provided $\varepsilon S_{\text {c }}$ storage for temporary data. The system stack is allocated in the on-chip RAM are \exists, जinu it is accessed by the CPU via the stack $^{\text {in }}$ pointer (SP) register.

Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access ior the detection of a stack overflow or underflow.

Figure 16. CPU blo ik ('iasram (MAC unit not included)

7.1 Multiplier-accumulator unit (MAC)

The specialized MAC coprocessor has been added to the ST10 CPU core to improve the computing performances of the ST10 device during signal processing tasks.

The standard ST10 CPU has been modified to include new addressing capabilities which enable the CPU to supply the new coprocessor with up to two operands per instruction cycle.

This new MAC coprocessor contains a fast multiply-accumulate unit and a repeat unit.
The coprocessor instructions extend the ST10 CPU instruction set with multiply, multiplyaccumulate, and 32-bit signed arithmetic operations.

Figure 17. MAC unit architecture

1. Shared with standard ALU

7.2 Instruction set summary

Table 45 lists the instructions of the ST10F296E. A detailed description of each instruction can be found in the ST10 family programming manual (PM0036).

Table 45. Instruction set summary

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	?
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bit-wise AND, (word/byte operands)	2/4
OR(B)	Bit-wise OR, (word/byte operanc's)	2/4
XOR(B)	Bit-wise XOR, (word/bvtt נp ararids)	2/4
BCLR	Clear direct bit +	2
BSET	Set direct bii	2
BMOV(N)	Move (n ggatf d) direct bit to direct bit	4
$\begin{aligned} & \text { BAND, BOR, } \\ & \text { BXOR } \end{aligned}$	AI ' $\mathrm{L}, / \mathrm{J} / \mathrm{R} / \mathrm{XOR}$ direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFI DHi:	Bit-wise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CivP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by $1 / 2$	2/4
CMPI1/2	Compare word data to GPR and increment GPR by $1 / 2$	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL/SHR	Shift left/right direct word GPR	2
ROL/ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2
MOV(B)	Move word (byte) data	2/4
MOVBS	Move byte operand to word operand with sign extension	2/4
MOVBZ	Move byte operand to word operand with zero extension	2/4
JMPA, JMPI, JMPR	Jump absolute/indirect/relative if condition is met	4

Table 45. Instruction set summary (continued)

Mnemonic	Description	Bytes
JMPS	Jump absolute to a code segment	4
$J(N) B$	Jump relative if direct bit is (not) set	4
JBC	Jump relative and clear bit if direct bit is set	4
JNBS	Jump relative and set bit if direct bit is not set	4
CALLA, CALLI, CALLR	Call absolute/indirect/relative subroutine if condition is met	4
CALLS	Call absolute subroutine in any code segment	4
PCALL	Push direct word register onto system stack and call absolute subroutine	4
TRAP	Call interrupt service routine via immediate trap number	2
PUSH, POP	Push/pop direct word register onto/from system stack	2
SCXT	Push direct word register onto system stack and upria'e egister with word operand	4
RET	Return from intra-segment subroutine	2
RETS	Return from inter-segment subroutiot $-\square$	2
RETP	Return from intra-segment su'voctive and pop direct word register from system stack	2
RETI	Return from interrup، ser jice subroutine	2
SRST	Software rest ${ }^{+}$	4
IDLE	Enter idi m made	4
PWRDN	E,it,r yower-down mode (supposes $\overline{\text { NMI }}$-pin being low)	4
SRVWDT	Service watchdog timer	4
DISW「J	Disable watchdog timer	4
Els.'T	Signify end-of-initialization on RSTOUT pin	4
hTUMIC	Begin ATOMIC sequence	2
EXTR	Begin EXTended register sequence	2
$\operatorname{EXTP}(\mathrm{R})$	Begin EXTended page (and register) sequence	2/4
EXTS(R)	Begin EXTended segment (and register) sequence	2/4
NOP	Null operation	2

7.3 MAC coprocessor specific instructions

Table 46 lists the MAC instructions of the ST10F296E. A detailed description of each instruction can be found in the ST10 family programming manual (PM0036). Note that all MAC instructions are encoded on four bytes.

Table 46. MAC instruction set summary

Mnemonic	Description
CoABS	Absolute value of the accumulator
CoADD(2)	Addition
CoASHR(rnd)	Accumulator arithmetic shift right and optional round
CoCMP	Compare accumulator with operands
CoLOAD(-,2)	Load accumulator with operands
CoMAC(R,u,s,-,rnd)	(Un)signed/(un)signed multiply-accumulate ar. γ ¢p ional round
CoMACM(R)(u,s,-,rnd)	(Un)signed/(un)signed multiply-accumu'a te vin parallel data move and optional round
CoMAX/CoMIN	Maximum/minimum of operar ar ana accumulator
CoMOV	Memory to memory miovo
CoMUL(u,s,-,rnd)	(Un)signed/(un)sisrı ${ }^{\text {a }}$ d multiply and optional round
CoNEG(rnd)	Negate acilnularor and optional round
CoNOP	No-operation
CoRND	Found accumulator
CoSHL/CoSHR	Accumulator logical shift left/right
CoStore	Store a MAC unit register
$\operatorname{CoSUB}(2, \mathrm{R})$	Substraction

8 External bus controller (EBC)

All external memory access is performed by the on-chip external bus controller.
The EBC can be programmed to single chip mode when no external memory is required, or to one of four different external memory access modes:

- 16-/18-/20-/24-bit addresses and 16-bit data, demultiplexed
- 16-/18-/ 20-/24-bit addresses and 16-bit data, multiplexed
- 16-/18-/20-/24-bit addresses and 8-bit data, multiplexed
- 16-/18-/20-/24-bit addresses and 8-bit data, demultiplexed

In demultiplexed bus modes addresses are output on Port 1 and data is input/output cn Port 0 or POL, respectively. In the multiplexed bus modes both addresses and data us ? [Jnt of for input/output.
Timing characteristics of the external bus interface (memory cycle time. meinury tri-state time, length of ALE and read/write delay) are programmable giving ${ }^{\text {the }}$, ch oice of a wide range of memories and external peripherals.

Up to four independent address windows may be defined (usir, g register pairs
ADDRSELx/BUSCONx) to access different resources in \because r us characteristics.
These address windows are arranged hierarchic $-!!y$ withere BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1.

Access to locations not covered by these te: address windows is controlled by BUSCONO. Up to five external $\overline{\mathrm{CS}}$ signals (four wiride, ws plus default) can be generated to save external glue logic. Access to very slovi' memories is supported by a 'ready' function.
A $\overline{H O L D} / \overline{H L D A}$ protocol is aval able for bus arbitration which shares external resources with other bus masters.

The bus arbitrałiv. ${ }^{\text {: }}$ c enabled by setting the HLDEN bit in the PSW register. After setting HLDEN ons, , flis P6.7 to P6.5 ($\overline{\mathrm{BREQ}}, \overline{\mathrm{HLDA}}$, and $\overline{\mathrm{HOLD}}$) are automatically controlled by the E[C. Ir, master mode (default after reset) the HLDA pin is an output. By setting bit DP6.7 to 1 sla 'e mode is selected where pin $\overline{H L D A}$ is switched to input. This directly connects the Leve controller to another master controller without glue logic.
:-or applications which require less external memory space, the address space can be restricted to 1 Mbyte, 256 Kbytes or to 64 Kbytes. Port 4 outputs all eight address lines if an address space of 16 Mbytes is used, otherwise four, two or no address lines.
Chip select timing can be made programmable. By default (after reset), the $\overline{\mathrm{CSx}}$ lines change half a CPU clock cycle after the rising edge of ALE. With the CSCFG bit set in the SYSCON register, the CSx lines change with the rising edge of ALE.

The active level of the READY pin can be set by the RDYPOL bit in the BUSCONx registers. When the READY function is enabled for a specific address window, each bus cycle within the window must be terminated with the active level defined by the RDYPOL bit in the associated BUSCON register.

8.1 Programmable chip select timing control

The ST10F296E allows the user to adjust the position of the $\overline{\mathrm{CSx}}$ line changes. By default (after reset), the $\overline{\mathrm{CSx}}$ lines change half a CPU clock cycle (7.8 ns at 64 MHz of CPU clock) after the rising edge of ALE. With the CSCFG bit set in the SYSCON register the $\overline{\mathrm{CSx}}$ lines change with the rising edge of ALE, thus the $\overline{\mathrm{CSx}}$ lines and the address lines change at the same time (see Figure 18).

8.2 $\overline{\text { READY }}$ programmable polarity

The active level of the $\overline{\text { READY }}$ pin can be selected by software via the RDYPOL bit in the BUSCONx registers.

When the READY function is enabled for a specific address window, each bus cycle within this window must be terminated with the active level defined by the RDYPOL h_{11} in. the associated BUSCON register.
BUSCONx registers are described in Section 23.10: System configı ! $\cdot=$: + tio : registers on page 280.

Note: \quad ST10F296E has no internal pull-up resistor on the READY pin.
Figure 18. Chip select delay

8．3 EA functionality

The $\overline{E A}$ pin of the ST10F296E is shared with the $V_{\text {StBY }}$ supply pin．When $V_{D D}$ main is on and stable， $\mathrm{V}_{\text {STBY }}$ can be temporarily grounded：The logic that in standby mode is powered by $\mathrm{V}_{\text {STBY }}$（that is standby voltage regulator and 16 Kbyte portion of XRAM），is powered by $V_{D D}$ main．This allows the $\overline{E A}$ pin to be driven low during reset，as requested，to configure the system to start from the external memory．

An appropriate external circuit must be provided to manage dynamically both functionalities associated with the $\overline{E A}$ pin．During reset and with stable V_{DD} ，the pin can be tied low，while after reset（or before turning off the main V_{DD} to enter in standby mode）the $\mathrm{V}_{\text {STBY }}$ supply is applied．
Figure 19 shows a diagram of a possible external circuit．Care should be taken when implementing the resistance for current limitation of bipolar．The resistance should n．ot disturb standby mode when some current（in the order of hundreds of $\mu \mathrm{A}$ ）is provided to the device by the $\mathrm{V}_{\text {STBY }}$ voltage supply source．The voltage at the EA pin of ST1ハッマ．うらE should not become lower than 4.5 V ．

To reduce the effect of current consumption transients on the $\mathrm{V}_{\text {ST } 3: ~} \mathrm{pr}_{1}$（refer to $\mathrm{I}_{\mathrm{SB} 3}$ in Section 24：Electrical characteristics）which may create voltave drops if a very low power external voltage regulator is used，it is suggested to add an exisrnal capacitance which can filter the eventual current peaks．Additional care must k ？，12．d to external hardware to limit the current peaks due to the presence of the capacite rice（when EA functionality is used and the external bipolar is turned on，see Figure 19）

Figure 19．$\overline{E A} / V_{\text {STBY }}$ external circ it

9 Interrupt system

The interrupt response time for internal program execution is from 78 ns to 187.5 ns at 64 MHz CPU clock.

The ST10F296E architecture supports several mechanisms for fast, flexible responses to service requests that can be generated from various sources (internal or external) to the microcontroller. Any of these interrupt requests can be serviced by the Interrupt controller or by the peripheral event controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a singia byte or word data transfer between any two memory locations with an additional increment cf either the PEC source or destination pointer. An individual PEC transfer counts, is implicitly decremented for each PEC service except when performing in the continuc \downarrow † ansfer mode. When this counter reaches zero, a standard interrupt is perform ed in ihe corresponding source related vector location. PEC services are very weli suited to perform the transmission or the reception of blocks of data. The ST1CF~ $3 \mathcal{C l}^{\circ} \mathrm{E}$ nas eight PEC channels, each of them offers such fast interrupt-driven data tr.ansfer capabilities.

An interrupt control register which contains an interrı' N ' 1 ?guest flag, an interrupt enable flag and an interrupt priority bit-field is dedicated to e2er, teisting interrupt source. Because of its related register, each source can be programmed to one of sixteen interrupt priority levels. Once processing by the CPU starts, ar. :n: ərı ipi service can only be interrupted by a higher prioritized service request. For standird i iterrupt processing, each possible interrupt sources has a dedicated vector location.

Software interrupts are supr orted by means of the 'TRAP' instruction in combination with an individual trap (interrunt, n'miver.

Fast external interiup ${ }^{+}$inputs are provided to service external interrupts with high precision requirements. The se fast interrupt inputs feature programmable edge detection (rising edge,

Fast exi ?rnal interrupts may also have interrupt sources selected from other peripherals. For . x-ormple, the CANx controller receive signals (CANx_RxD) and $I^{2} C$ serial clock signal can ne used to interrupt the system.

Table 47 shows all the available ST10F296E interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Table 47. Interrupt sources

Source of Interrupt or PEC service request	Request flag	Enable flag	Interrupt vector	Vector location	Trap number
CAPCOM register 0	CCOIR	CCOIE	CCOINT	00'0040h	10h
CAPCOM register 1	CC1IR	CC1IE	CC1INT	00'0044h	11h
CAPCOM register 2	CC2IR	CC2IE	CC2INT	00'0048h	12h
CAPCOM register 3	CC3IR	CC3IE	CC3INT	00'004Ch	13h
CAPCOM register 4	CC4IR	CC4IE	CC4INT	00'0050h	14h
CAPCOM register 5	CC5IR	CC5IE	CC5INT	00'0054h	15h
CAPCOM register 6	CC6IR	CC6IE	CC6INT	00'0058h	16.'
CAPCOM register 7	CC7IR	CC7IE	CC7INT	00'005Ch	17 h
CAPCOM register 8	CC8IR	CC8IE	CC8INT	00'0060,	18h
CAPCOM register 9	CC9IR	CC9IE	CC9INT	-n $00: 4 \mathrm{~h}$	19h
CAPCOM register 10	CC10IR	CC10IE	CC10lf 1 T	- uv'0068h	1Ah
CAPCOM register 11	CC11IR	CC11IE	CCi INT	00'006Ch	1Bh
CAPCOM register 12	CC12IR	CC12IE	ご2INT	00'0070h	1Ch
CAPCOM register 13	CC13IR	CC131: $=$	CC13INT	00'0074h	1Dh
CAPCOM register 14	CC14IR	CC) 416	CC14INT	00'0078h	1Eh
CAPCOM register 15	CC15IR	CC15IE	CC15INT	00'007Ch	1Fh
CAPCOM register 16	C.C.6IR	CC16IE	CC16INT	00'00C0h	30h
CAPCOM register 17	CC171R	CC17IE	CC17INT	00'00C4h	31h
CAPCOM registe ${ }^{18}$	CC18IR	CC18IE	CC18INT	00'00C8h	32h
CAPCOM rerioter ${ }^{-1}$	CC191R	CC19IE	CC19INT	00'00CCh	33h
CAPCON, register 20	CC20IR	CC20IE	CC2OINT	00'00D0h	34h
C+FCOM register 21	CC21IR	CC21IE	CC21INT	00'00D4h	35h
CAPCOM register 22	CC22IR	CC22IE	CC22INT	00'00D8h	36h
CAPCOM register 23	CC23IR	CC23IE	CC23INT	00'00DCh	37h
CAPCOM register 24	CC24IR	CC24IE	CC24INT	00'00EOh	38h
CAPCOM register 25	CC25IR	CC25IE	CC25INT	00'00E4h	39h
CAPCOM register 26	CC26IR	CC26IE	CC26INT	00'00E8h	3Ah
CAPCOM register 27	CC27IR	CC27IE	CC27INT	00'00ECh	3Bh
CAPCOM register 28	CC28IR	CC28IE	CC28INT	00'00FOh	3Ch
CAPCOM register 29	CC29IR	CC29IE	CC29INT	00'0110h	44h
CAPCOM register 30	CC30IR	CC30IE	CC3OINT	00'0114h	45h
CAPCOM register 31	CC31IR	CC31IE	CC31INT	00'0118h	46h
CAPCOM timer 0	TOIR	TOIE	TOINT	00'0080h	20h
CAPCOM timer 1	T1IR	T1IE	T1INT	00'0084h	21h

Table 47. Interrupt sources (continued)

Source of Interrupt or PEC service request	Request flag	Enable flag	Interrupt vector	Vector location	Trap number
CAPCOM timer 7	T7IR	T7IE	T7INT	00'00F4h	3Dh
CAPCOM timer 8	T8IR	T8IE	T8INT	00'00F8h	3Eh
GPT1 timer 2	T2IR	T2IE	T2INT	00'0088h	22h
GPT1 timer 3	T3IR	T3IE	T3INT	00'008Ch	23h
GPT1 timer 4	T4IR	T4IE	T4INT	00'0090h	24h
GPT2 timer 5	T5IR	T5IE	T5INT	00'0094h	25h
GPT2 timer 6	T6IR	T6IE	T6INT	00'0098h	20%
GPT2 CAPREL register	CRIR	CRIE	CRINT	00'009Ch	Th
ADC complete	ADCIR	ADCIE	ADCINT	00'00ACh	28h
ADC overrun error	ADEIR	ADEIE	ADEINT	$0030,14 n$	29h
ASC0 transmit	SOTIR	SOTIE	SOTIN:	ć 00A8h	2Ah
ASC0 transmit buffer	SOTBIR	SOTBIE	SOTRIN7	00'011Ch	47h
ASC0 receive	SORIR	SORIE	Sาbint	00'00ACh	2Bh
ASC0 error	SOEIR	SOEIE	SOEINT	00'00B0h	2Ch
SSC transmit	SCTIR	SCTIE	SCTINT	00'00B4h	2Dh
SSC receive	SCRIR	SCRIE	SCRINT	00'00B8h	2Eh
SSC error	SCEEIR	SCEIE	SCEINT	00'00BCh	2Fh
PWM channel 0... 3	P! VNIIR	PWMIE	PWMINT	00'00FCh	3Fh
See Section 9.1	XPOIR	XPOIE	XPOINT	00'0100h	40h
See Section 0.1	XP1IR	XP1IE	XP1INT	00'0104h	41h
See Secior 9.1	XP2IR	XP2IE	XP2INT	00'0108h	42h
Sr,t Section 9.1	XP3IR	XP3IE	XP3INT	00'010Ch	43h

Hardware traps are exceptions or error conditions that arise during run-time. They cause immediate non-maskable system reactions similar to a standard interrupt service (branching to a dedicated vector table location).

The occurrence of a hardware trap is signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap interrupts any other program execution. Hardware trap services cannot be interrupted by a standard or PEC interrupt.

9.1 XPeripheral interrupt

The limited number of XBus interrupt lines of the present ST10 architecture, imposes some constraints on the implementation of the new functionality. In particular, the additional XPeripherals SSC1, ASC1, I ${ }^{2}$ C, PWM1, and RTC need some resources to implement interrupt and PEC transfer capabilities. For this reason, a sophisticated but very flexible multiplexed structure for the interrupt management is proposed (see Figure 20). It shows the basic structure replicated for each of the four XInterrupt available vectors (XPOINT, XP1INT, XP2INT, and XP3INT).

It is based on a set of 16 -bit registers XIRxSEL ($x=0,1,2,3$), divided into two portions each:

- Byte high, XIRxSEL[15:8]: Interrupt enable bits
- Byte low, XIRxSEL[7:0]: Interrupt flag bits

When different sources submit an interrupt request, the enable bits (byte high of tive XIRxSEL register) define a mask which controls which sources are associa'td with the unique available vector. If more than one source is enabled to issue thr rry'est, the service routine has to identify the real event to be serviced. This can be do ie by checking the flag bits (byte low of the XIRxSEL register). Note that the flag bits $c=. n$ also provide information about events which are not currently serviced by the interript controller (since they are masked through the enable bits). This allows effective s.t. N =re management in the absence of the possibility to serve the related interrupt reques ${ }^{+}$. A periodic polling of the flag bits may be implemented inside the user application.
Note: The XIRxSEL registers are mapped iric Xiviscellaneous area. Therefore, they can be accessed only if the XMISCEN and λ^{\prime} PEI I pits are set in the XPERCON and SYSCON registers respectively.

Figure 20. XInterrupt bisic structure

Table 48 summarizes the mapping of the different interrupt sources which share the four XInterrupt vectors.

Table 48. XInterrupt detailed mapping

Source	XPOINT	XP1INT	XP2INT	XP3INT
CAN1 interrupt	x			x
CAN2 interrupt		x		x
$1^{2} \mathrm{C}$ receive	x	x	x	
$1^{2} \mathrm{C}$ transmit	X	x	x	
$\mathrm{I}^{2} \mathrm{C}$ error				x
SSC1 receive	X	x	x	
SSC1 transmit	x	x	x	
SSC1 error				x
ASC1 receive	x	x	,	
ASC1 transmit	X	X	X	
ASC1 transmit buffer	X	x		
ASC1 error				x
PLL unlock/OWD				x
PWM1 channel 3...0			x	x

9.2 Exception and error traps list

Table 49 shows all of the possible exceptions or error conditions that can arise during runtime.

Table 49. Trap priorities

Exception condition	Trap flag	Trap vector	Vector location	Trap number	Trap priority ${ }^{(1)}$
Reset functions: Hardware reset Software reset Watchdog timer overflow		RESET RESET RESET	00'0000h 00'0000h 00'0000h	$\begin{aligned} & \text { 00h } \\ & \text { 00h } \end{aligned}$ 00h	$\begin{aligned} & \text { III } \\ & \text { III } \\ & \text { III } \end{aligned}$
Class A hardware traps: Nonmaskable interrupt Stack overflow Stack underflow	NMI STKOF STKUF	NMITRAP STOTRAP STUTRAP	00'0008h 00'0010h 00'0018h	02h 0.4. i6h.	$\begin{array}{r} 11 \\ \text { II } \\ \text { II } \end{array}$
Class B hardware traps: Undefined opcode MAC Interruption Protected instruction fault Illegal word operand access Illegal instruction access Illegal external bus access	UNDOPC MACTRP PRTFLT ILLOPA ILLINA ILLBUS	BTRAP BTRAP BTRAP BTRAP BTRAP RTRirt	00 00.39:1 0N'002とh C. C 028 h 00'0028h 00'0028h 00'0028h	OAh 0Ah 0Ah 0Ah 0Ah 0Ah	
Reserved			[002Ch-003Ch]	[0Bh - OFh]	
Software traps: TRAP Instruction			$\begin{aligned} & \text { Any } \\ & \text { 0000h - 01FCh } \\ & \text { in steps of } 4 \mathrm{~h} \end{aligned}$	$\begin{gathered} \text { Any } \\ {[00 \mathrm{~h}-7 \mathrm{Fh}]} \end{gathered}$	Current CPU priority

1. All class B traps have tha came trap number, trap vector, and lower priority compared to class A traps and resets.
Each class A tripl as a dedicated trap number (and vector). They are prioritized in the second priority level.
Rerets hi ve uie highest priority level and the same trap number.
The ${ }^{\circ} \mathrm{oW}$.ILVL CPU priority is forced to the highest level (15) when these exceptions are serviced.

10 Capture/compare (CAPCOM) units

The ST10F296E has two 16 channel CAPCOM units as shown in Figure 21: CAPCOM unit block diagram. These support generation and control of timing sequences on up to 32 channels with a maximum resolution of 125 ns at $64 \mathrm{MHz} \mathrm{CPU} \mathrm{clock}$. are typically used to handle high speed I/O tasks such as pulse and waveform generation, PMW, digital to analog (D/A) conversion, software timing, or time recording relative to external events.

Four 16-bit timers (T0/T1, T7/T8) with reload registers provide two independent time bases for the capture/compare register array (see Figure 22 and Figure 23).
The input clock for the timers is programmable to several prescaled values of the internal system clock, or it may be derived from an overflow/underflow of Timer T6 in modu'e G1'T2. This provides a wide range of variation for the timer period and resolution and ain ${ }^{\prime}$'s precise adjustments for application-specific requirements. In addition, external court iniuts for CAPCOM timers T0 and T7 allow event scheduling for the capture/cor $\boldsymbol{r}^{7} \boldsymbol{7}^{\circ}$ registers relative to external events.

Each of the two capture/compare register arrays contain 16 a al purpose capture/compare registers, each of which may be individually allocated to firier CAPCOM timer T0 or T1 (T7 or T8, respectively), and programmed for capture or wrinare functions. Each of the 32 registers has one associated port pin which serves \ddagger un input pin for triggering the capture function, or as an output pin to indicate the occur: o. ice of a compare event. Figure 21 shows the basic structure of the two CAPCO N.. s.its.

Figure 21. CAPCOM unit block diagram

1. The CAPCC, iv: "ria provides 16 capture inputs, but only 12 compare outputs. CC24I to CC27l are inputs only.

Fic;:re 22. Block diagram of CAPCOM timers T0 and T7

Figure 23. Block diagram of CAPCOM timers T1 and T8

Note: \quad When an external input signal is connected to the input lines of both $T O$ and $T 7$, th. ese iners count the input signal synchronously. Thus, the two timers can be regarded as one timer whose contents can be compared with 32 capture registers.
When a capture/compare register has been selected for capture mc dt we current contents of the allocated timer are latched (captured) into the capture, \cdot : n f are register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare reais ' ϵ ' 15 generated.
Either a positive, a negative, or both a positive an.d a neggative external signal transition at the pin can be selected as the triggering everit. The contents of all registers which have been selected for one of the five compars mudes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions are taken bisod on the selected compare mode (see Table 50).
The input frequencies i_{T}, for the timer input selector Tx , are determined as a function of the CPU clocks. The timer input frequencies, resolution and periods which result from the selected presnaler option in TxI when using a 40 MHz and 64 MHz CPU clock are listed in Table 5: a'ic Tible 52 respectively.
The nu a mbers for the timer periods are based on a reload value of 0000h. Note that some . urit ers may be rounded to three significant figures.

Table 50. Compare modes

Compare modes	Function
Mode 0	Interrupt-only compare mode Several compare interrupts per timer period are possible
Mode 1	Pin toggles on each compare match Several compare events per timer period are possible
Mode 2	Interrupt-only compare mode Only one compare interrupt per timer period is generated
Mode 3	Pin set to 1 on match pin reset to 0 on compare time overflow Only one compare event per timer period is generated
Double register mode	Two registers operate on one pin Pin toggles on each compare match Several compare events per timer period are possible

Table 51. CAPCOM timer input frequencies, resolution, and periods at 40 MHz

$\mathbf{f}_{\mathbf{C P U}}=\mathbf{4 0} \mathbf{~ M H z}$	Timer input selection TxI								
	$\mathbf{0 0 0 b}$	$\mathbf{0 0 1 b}$	$\mathbf{0 1 0 b}$	$\mathbf{0 1 1 b}$	$\mathbf{1 0 0 b}$	$\mathbf{1 0 1 b}$	$\mathbf{1 1 0 b}$	$\mathbf{1 1 1 b}$	
Prescaler for $\mathrm{f}_{\mathrm{CPU}}$	8	16	32	64	128	256	512	1024	
Input frequency	5 MHz	2.5 MHz	1.25 MHz	625 kHz	312.5 kHz	156.25 kHz	78.125 kHz	39.1 kHz	
Resolution	200 ns	400 ns	$0.8 \mu \mathrm{~s}$	$1.6 \mu \mathrm{~s}$	$3.2 \mu \mathrm{~s}$	$6.4 \mu \mathrm{~s}$	$12.8 \mu \mathrm{~s}$	$25.6 \mu \mathrm{~s}$	
Period	13.1 ms	26.2 ms	52.4 ms	104.8 ms	209.7 ms	419.4 ms	838.9 ms	1.678 s	

Table 52. CAPCOM timer input frequencies, resolution, and periods at 64 MHz

$\mathrm{f}_{\mathrm{CPU}}=\mathbf{2 5} \mathbf{~ M H z}$	Timer input selection TxI							
	000b	001b	010b	011b	100b	101b	110 r	111b
Prescaler for $\mathrm{f}_{\text {CPU }}$	8	16	32	64	128	256	51	1024
Input frequency	8 MHz	4 MHz	2 MHz	1 kHz	500 kHz	$250 \mathrm{kH}: 2$	128 kHz	64 kHz
Resolution	125 ns	250 ns	$0.5 \mu \mathrm{~s}$	$1.0 \mu \mathrm{~s}$	$2.0 \mu \mathrm{~s}$	< $0 \mu \mathrm{~s}$	$8.0 \mu \mathrm{~s}$	16.0 ¢
Period	8.2 ms	16.4 ms	32.8 ms	65.5 ms	131.1 m.	262.1 ms	524.3 ms	1.049 s

11 General purpose timer unit

The GPT unit is a flexible multifunctional timer/counter structure which is used for time related tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication. The GPT unit contains five 16-bit timers organized into two separate modules GPT1 and GPT2. Each timer in each module may operate independently in several different modes, or may be concatenated with another timer of the same module.

11.1 GPT1

Each of the three timers T2, T3, T4 of the GPT1 module can be configured indiv'dıally for one of four basic modes of operation: Timer, gated timer, counter mode and incremental interface mode.

In timer mode, the input clock for a timer is derived from the CPU clonl, civided by a programmable prescaler.

In counter mode, the timer is clocked with reference to externá events.
Pulse width or duty cycle measurement is supported in saied timer mode where the operation of a timer is controlled by the 'gate' levol o: :in external input pin. For these purposes, each timer has one associated poripin, TxIN) which serves as gate or clock input.

Table 53 and Table 54 list the timer in rut requencies, resolution and periods for each prescaler option at 40 MHz and 64 Ml 1 z CPU clock respectively. This also applies to the gated timer mode of T3 and to the ariliary timers T2 and T4 in timer and gated timer mode. The count direction (up/dowr.! ior each timer is programmable by software or may be altered dynamically by an e‘t err ai signal on a port pin (TxEUD).

In incremental i ite tace mode, the GPT1 timers (T2, T3, T4) can be directly connected to the incr= m.rta position sensor signals A and B by their respective inputs TxIN and TxEUD.
Directic 7 and count signals are internally derived from these two input signals so that the - ritents of the respective timer Tx corresponds to the sensor position. The third position stinsor signal TOPO can be connected to an interrupt input.

Timer T3 has output toggle latches (TxOTL) which change state on each timer over flow/underflow. The state of this latch may be output on port pins (TxOUT) for time out monitoring of external hardware components, or may be used internally to clock timers T2 and T 4 for high resolution of long duration measurements.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The contents of timer T3 are captured into T2 or T4 in response to a signal at their associated input pins (TxIN).

Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be constantly generated without software intervention.

Figure 24 shows the block diagram of the GPT1.

Table 53. GPT1 timer input frequencies, resolution, and periods at 40 MHz

$\mathbf{f}_{\mathbf{C P U}}=\mathbf{4 0} \mathbf{~ M H z}$	Timer input selection T2I/T3I/T4I							
	$\mathbf{0 0 0 b}$	$\mathbf{0 0 1 b}$	$\mathbf{0 1 0 b}$	$\mathbf{0 1 1 b}$	$\mathbf{1 0 0 b}$	$\mathbf{1 0 1 b}$	$\mathbf{1 1 0 b}$	$\mathbf{1 1 1 b}$
Prescaler factor	8	16	32	64	128	256	512	1024
Input frequency	5 MHz	2.5 MHz	1.25 MHz	625 kHz	312.5 kHz	156.25 kHz	78.125 kHz	39.1 kHz
Resolution	200 ns	400 ns	$0.8 \mu \mathrm{~s}$	$1.6 \mu \mathrm{~s}$	$3.2 \mu \mathrm{~s}$	$6.4 \mu \mathrm{~s}$	$12.8 \mu \mathrm{~s}$	$25.6 \mu \mathrm{~s}$
Period maximum	13.1 ms	26.2 ms	52.4 ms	104.8 ms	209.7 ms	419.4 ms	838.9 ms	1.678 s

Table 54. GPT1 timer input frequencies, resolution, and periods at $64 \mathbf{~ M H z}$

$\mathbf{f} \mathbf{f} \mathbf{C P U}=\mathbf{6 4} \mathbf{~ M H z}$	Timer input selection T21/T3I /T4I								
	$\mathbf{0 0 0 b}$	$\mathbf{0 0 1 b}$	$\mathbf{0 1 0 b}$	$\mathbf{0 1 1 b}$	$\mathbf{1 0 0 b}$	$\mathbf{1 0 1 b}$	$\mathbf{1 1 0 b}$	$\mathbf{1 1 1 b}$	
Prescaler factor	8	16	32	64	128	256	5	5	1024
Input frequency	8 MHz	4 MHz	2 MHz	1 kHz	500 kHz	250 kH	128 kHz	64 kHz	
Resolution	125 ns	250 ns	$0.5 \mu \mathrm{~s}$	$1.0 \mu \mathrm{~s}$	$2.0 \mu \mathrm{~s}$	$1.0 \mu \mathrm{~s}$	$8.0 \mu \mathrm{~s}$	$16.0 \mu \mathrm{~s}$	
Period maximum	8.2 ms	16.4 ms	32.8 ms	65.5 ms	131.1 rs	262.1 ms	524.3 ms	1.049 s	

Figure 24. Block diagram of GPT1

11．2 GPT2

The GPT2 module provides precise event control and time measurement．It includes two timers（T5，T6）and a capture／reload register（CAPREL）．Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals．The count direction（up／down）for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin（TxEUD）． Concatenation of the timers is supported via the output toggle latch（T6OTL）of timer T6 which changes its state on each timer overflow／underflow．

The state of this latch may be used to clock timer T5，or it may be output on a port pin （T6OUT）．The overflow／underflow of timer T6 can also be used to clock the CAPCOM timers T0 or T1，and to cause a reload from the CAPREL register．The CAPREL register may capture the contents of timer T5 based on an external signal transition on the corresponding port pin（CAPIN），and timer T5 may optionally be cleared after the capture procedurs ihis allows absolute time differences to be measured or pulse multiplication to be ntrtermed without a software overhead．

The capture trigger（timer T5 to CAPREL）may also be generated urn． t tiansition of the GPT1 timer T3 inputs，T3IN and／or T3EUD．This is advantager＇s when T3 operates in incremental interface mode．

Table 55 and Table 56 list the timer input frequencies．ris wtion and periods for each pre－ scaler option at 40 MHz and 64 MHz CPU clock re Fr^{2} ectively．This also applies to the gated timer mode of T6 and to the auxiliary timer T5 ir tii ner and gated timer mode．
Figure 25 shows the block diagram of th？ลドアン。
Table 55．GPT2 timer input frequencies，resolution，and period at 40 MHz

$\mathrm{f}_{\mathrm{CPU}}=40 \mathrm{MHz}$	Timer Input Selection T5I／T6I							
	000b	00111	0i0b	011b	100b	101b	110b	111b
Prescaler factor	4	\bigcirc	16	32	64	128	256	512
Input frequency	$16 \mathrm{~N}^{\prime} \mathrm{H}_{2}$	5 MHz	2.5 MHz	1.25 MHz	625 kHz	312.5 kHz	156.25 kHz	78.125 kHz
Resolution	， 00 ns	200 ns	400 ns	$0.8 \mu \mathrm{~s}$	$1.6 \mu \mathrm{~s}$	$3.2 \mu \mathrm{~s}$	$6.4 \mu \mathrm{~s}$	12.8 ¢
Period mayitl uin	6.55 ms	13.1 ms	26.2 ms	52.4 ms	104.8 ms	209.7 ms	419.4 ms	838.9 ms

Tal／10． $\mathrm{E} . \mathrm{GPT} 2$ timer input frequencies，resolution，and period at 64 MHz

$\mathbf{f}_{\mathbf{C P U}}=\mathbf{6 4} \mathbf{~ M H z}$	Timer Input Selection T5I／T6I							
	$\mathbf{0 0 0 b}$	$\mathbf{0 0 1 b}$	$\mathbf{0 1 0 b}$	$\mathbf{0 1 1 b}$	$\mathbf{1 0 0 b}$	$\mathbf{1 0 1 b}$	$\mathbf{1 1 0 b}$	$\mathbf{1 1 1 b}$
Prescaler factor	4	8	16	32	64	128	256	512
Input frequency	16 MHz	8 MHz	4 MHz	2 MHz	1 kHz	500 kHz	250 kHz	128 kHz
Resolution	62.5 ns	125 ns	250 ns	$0.5 \mu \mathrm{~s}$	$1.0 \mu \mathrm{~s}$	$2.0 \mu \mathrm{~s}$	$4.0 \mu \mathrm{~s}$	$8.0 \mu \mathrm{~s}$
Period maximum	4.1 ms	8.2 ms	16.4 ms	32.8 ms	65.5 ms	131.1 ms	262.1 ms	524.3 ms

Figure 25. Block diagram of GPT2

12 Pulse-width modulation (PWM) modules

Two PWM modules are available on ST10F296E: Standard PWM0 and XBus PWM1. They can generate up to four PWM output signals each, using edge-aligned or centre-aligned PWM. In addition, the PWM modules can generate PWM burst signals and single shot outputs. Table 57 and Table 58 show the PWM frequencies for different resolutions. The level of the output signals is selectable and the PWM modules can generate interrupt requests.

Figure 26 shows the block diagram of the PWM module.
Figure 26. Block diagram of PWM module

1. User readabin/ / ritt.able register

Table 57. PWM unit frequencies and resolution at 40 MHz CPU clock

Mode 0	Resolution	8-bit	10-bit	12-bit	14-bit	16-bit
CPU clock/1	25 ns	156.25 kHz	39.1 kHz	9.77 kHz	2.44 Hz	610 Hz
CPU clock/64	$1.6 \mu \mathrm{~s}$	2.44 kHz	610 Hz	152.6 Hz	38.15 Hz	9.54 Hz
Mode $\mathbf{1}$	Resolution	$\mathbf{8 - b i t}$	$\mathbf{1 0 - b i t}$	$\mathbf{1 2 - b i t}$	$\mathbf{1 4 - b i t}$	$\mathbf{1 6 - b i t}$
CPU clock/1	25 ns	78.12 kHz	19.53 kHz	4.88 kHz	1.22 kHz	305.2 Hz
CPU clock/64	$1.6 \mu \mathrm{~s}$	1.22 kHz	305.17 Hz	76.29 Hz	19.07 Hz	4.77 Hz

Table 58. PWM unit frequencies and resolution at 64 MHz CPU clock

Mode 0	Resolution	8-bit	10-bit	12-bit	14-bit	16-bit
CPU clock/1	15.6 ns	250 kHz	62.5 kHz	15.63 kHz	3.91 Hz	977 Hz
CPU clock/64	$1.0 \mu \mathrm{~s}$	3.91 kHz	976.6 Hz	244.1 Hz	61.01 Hz	15.26 Hz
Mode $\mathbf{1}$	Resolution	$\mathbf{8 - b i t}$	$\mathbf{1 0 - b i t}$	$\mathbf{1 2 - b i t}$	$\mathbf{1 4 - b i t}$	$\mathbf{1 6 - b i t}$
CPU clock/1	15.6 ns	125 kHz	31.25 kHz	7.81 kHz	1.95 kHz	488.3 Hz
CPU clock/64	$1.0 \mu \mathrm{~s}$	1.95 kHz	488.28 Hz	122.07 Hz	30.52 Hz	7.63 Hz

12.1 XPWM output signals

The output signals of the four XPWM channels (XPOUT3...XPOUT0) are available as dedicated pins. The XPWM signals are XORed with the outputs of the XPCI-4Fi register before being driven to the dedicated pins. This allows the XPWM signaii $\lambda^{\prime} D J L A R . x=0$) or the inverted XPWM signal (XPOLAR. $x=1$) to be driven directly.

Note: Using open-drain mode allows two or more XPWM outputs to 'ee combined through an AND-wired configuration, using an external pull-up devic . This provides a type of burst mode for any XPWM channel.

12.2 XPWM registers

XPOLAR register

The XPWMPORT registel cirircls the specific XPWM output pins. Each output can be enabled/disabled whic'ı álo:vs the XPWM to be configured as a push-pull or open-drain driver. In addition, the siynal coming from the XPOLAR register is inverted. If both XPOLAR.Y anc X?.y are set, no inversion is achieved.

Table 59. XPOLAR register description

Bit	Bit name	Function
$15-4$	-	Reserved
$3-0$	XPOLAR.Y	XPWM channel Y polarity bit 0: Polarity of channel Y is normal 1: Polarity of channel Y is inverted

XPWMPORT register

XPWMPORT (EC80h)					XBus								Reset value: 0000h		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved				$\begin{gathered} \text { XODP } \\ .3 \end{gathered}$	$\begin{gathered} \text { XP } \\ .3 \end{gathered}$	$\begin{array}{\|c} \hline \text { XDP } \\ .3 \\ \hline \end{array}$	$\begin{gathered} \text { XODP } \\ .2 \end{gathered}$	$\begin{gathered} \hline \text { XP } \\ \hline .2 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XDP } \\ .2 \end{array}$	$\begin{gathered} \text { XODP8 } \\ 1 \end{gathered}$	$\begin{array}{\|c} \hline \text { XP } \\ . ~ \end{array}$	$\begin{array}{\|c} \hline \text { XDP } \\ .1 \end{array}$	$\begin{gathered} \text { XODP } \\ .0 \end{gathered}$	$\begin{gathered} \text { XP } \\ .0 \end{gathered}$	$\begin{array}{\|c} \hline \text { XDP } \\ .0 \end{array}$

Table 60. XPWMPORT register description

Bit	Bit name	Function
$15-12$	-	Reserved
$11,8,5,2$	XODP.y	Port open-drain control register bit y 0: Port line XPOUT.y output driver in push-pull mode 1: Port line XPOUT.y output driver in open-drain mic'e
$10,7,4,1$	XP.y	Port data register bit y
$9,6,3,0$	XDP.y	Port direction register bit y 0: Port line XPOUT.y is an input (r ic.i impedance) 1: Port line XPOUT.y is an or'n'

The XPWMPORT register is enabled and visiht or ly when the XPEN and XPWMEN bits of the SYSCON and XPERCON registers res, ${ }^{2}$?ctively are set.

12.2.1 Software control of the XPWM outputs

In an application, the XPV/M's'ttput signals are generally controlled by the XPWM module. However, it may be neressary to influence the level of the XPWM output pins via software, either to initialize the system or to react to some extraordinary conditions such as a system fault or an emergeriój.

Clearing the 'inter run bit PTRx stops the associated counter and leaves the respective output ic its current level.
ir $h_{1}+i n d i v i d u a l$ XPWM channel outputs are controlled by comparators according to the formula:

PWM output signal $=[X P T x] \geq[X P W x$ shadow latch $]$
Whenever software changes register XPTx, the respective output reflects the condition after the change. Loading timer XPTx with a value greater than or equal to the value in XPWx immediately sets the respective output, an XPTx value below the XPWx value clears the respective output.

By clearing or setting the respective XPWMPORT output latch the XPWM channel signal is driven directly or inverted to the port pin.
Clearing the enable bit PENx disconnects the XPWM channel and switches the respective pin to the value in the port output latch XP.y.

Note: \quad To prevent further PWM pulses from occurring after such a software intervention the respective counter must be stopped first.
Figure 27 shows the XPWM output signal generation.

Figure 27. XPWM output signal generation

13 Parallel ports

The ST10F296E MCU provides up to 143 I/O lines with programmable features. The MCU is therefore very flexible for a wide range of applications.

The ST10F296E has 11 groups of I/O lines organized as follows:

- Port 0 is a two-time, 8 -bit port named POL (low is the least significant byte) and POH (high is the most significant byte)
- Port 1 is a two-time, 8-bit port named P1L and P1H
- Port 2 is a 16 -bit port
- Port 3 is a 15-bit port (P3.14 line is not implemented)
- Port 4 is an 8 -bit port
- Port 5 is a 16-bit input only port
- Port 6, Port 7 and Port 8 are 8-bit ports
- XPort 9 is a 16 -bit general purpose port
- XPort 10 is a 16-bit input only port

These ports may be used as general purpose bidirectionai' input or output, software controlled with dedicated registers.

For example the output drivers of seven of the pois ($2,3,4,6,7,8$, and 9) can be configured (bit-wise) for push-pull or open-dré in. วreration using the ODPx registers (and the XODP9 register for XPort 9).

The input threshold levels are programimable (TTL/CMOS) for all ports. The logic level of a pin is clocked into the input latch once per state time, regardless of whether the port is configured for input or outpl... The threshold is selected with PICON and XPICON registers control bits.

A write operation tc a port pin configured as an input causes the value to be written into the port output laith. while a read operation returns the latched state of the pin itself. A readmodif! - whe uneration reads the value of the pin, modifies it, and writes it back to the output latch.
$v_{1} / + \pm .1$ ig to a pin configured as an output (DPx.y = 1) causes the output latch and the pin to lave the written value, since the output buffer is enabled. Reading this pin returns the value of the output latch. A read-modify-write operation reads the value of the output latch, modifies it, and writes it back to the output latch, thus also modifying the level at the pin.

I/O lines support an alternate function which is detailed in Section 13.1.4, Section 13.2.2, Section 13.3.2, and Section 13.4.2.

Note:
The I/O ports XPort 9 and XPort10 are not mapped on the SFR space but on the internal XBus interface. They are enabled by setting the XPEN bit, bit 2, of the SYSCON register and bit 11 of the XPERCON register. On the XBus interface, the registers are not bitaddressable

Figure 28. SFRs and pins associated with the parallel ports (A)

Figure 29. SFRs and pins associated with the parallel ports (B)

* XP10 X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

13.1 I/O special features

13.1.1 Open-drain mode

Some of the I/O ports of the ST10F296E support the open-drain capability. This programmable feature may be used with an external pull-up resistor to get an AND wired logical function.

This feature is implemented for ports P2, P3, P4, P6, P7, P8, and XP9 (see Section 13.4, Section 13.5, Section 13.6, Section 13.8, Section 13.9, Section 13.10, and Section 13.11) and is controlled through the respective open-drain control registers ODPx (and the XODP9 register for XP9). These registers allow the individual bit-wise selection of the open-drain mode for each port line. If the respective control bit ODPx.y is 0 (default after reset), the output driver is in the push-pull mode. If ODPx.y is 1 , the open-drain configuration is selected (see Figure 30). All ODPx registers are located in the ESFR space. The 入ín)F'9 register is in the XBus space.

13.1.2 Input threshold control

The standard inputs of the ST10F296E determine the status of input signals according to TTL levels. To accept and recognize noisy signals, CMOS; inpu، thresholds can be selected instead of standard TTL thresholds for all pins. CMOS +r, ${ }^{\circ} \in$ ci'hold $^{\prime}$ are defined above the TTL thresholds and feature a higher hysteresis to preve.n ir.puts from toggling while the respective input signal level is near its threshri. a .

All options for individual direction and ou'c it mode control are available for each pin, independent of the selected input thrt shr, id. The input hysteresis provides stable inputs from noisy or slowly changing exteinal signals (see Figure 31).

13.1.3 I/O port registers

The port input cniniol registers, PICON and XPICON, are used to select thresholds for each byte of the ir uir, ated ports. This means the 8-bit ports P0L, P0H, P1L, P1H, P4, P7, and P8 are cc.tI) ioci 'jy one bit each while ports P2, P3, and P5 are controlled by two bits each. In addition the registers XPICON9 and XPICON10 allow single bit input threshold control for YF 5 and XP10 respectively.
「:or XPort 9 and XPort 10, the bit-addressable feature is available via specific 'set' and 'clear' registers. These are:

- XPICON9SET and XPICON9CLR for XPICON9
- XPICON10SET and XPICON10CLR for XPICON10

PICON register

PIC	F1	/E						ESFR					Reset	value	-00h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved								$\begin{aligned} & \text { P8 } \\ & \text { LIN } \end{aligned}$	$\begin{aligned} & \text { P7 } \\ & \text { LIN } \end{aligned}$	$\begin{aligned} & \text { P6 } \\ & \text { LIN } \end{aligned}$	$\begin{aligned} & \text { P4 } \\ & \text { LIN } \end{aligned}$	$\begin{gathered} \text { P3 } \\ \text { HIN } \end{gathered}$	$\begin{aligned} & \text { P3 } \\ & \text { LIN } \end{aligned}$	$\begin{gathered} \text { P2 } \\ \text { HIN } \end{gathered}$	$\begin{aligned} & \text { P2 } \\ & \text { LIN } \end{aligned}$
-								RW							

Table 61. PICON register description

Bit	Bit name	Function
$15-8$	-	Reserved
$7,6,5,4$,		
2,0		

0: Pins Px.7 to Px.0 switch on standard TTL input levels

1: Pins Px.7 to Px.0 switch on standard CMOS inr. \mathrm{n} le eIs\end{array}\right\}\)

XPICON register

Table 62. XFICris register description

Bit	2: name	Function
$55-6$	-	Reserved
$5,3,1$	PxHIN	Port x high byte input level selection 0: Pins Px. 15 to Px. 8 switch on standard TTL input levels 1: Pins Px. 15 to Px. 8 switch on standard CMOS input levels
$4,2,0$	PxLIN	Port x low byte input level selection 0: Pins Px. 7 to Px. 0 switch on standard TTL input levels 1: Pins Px. 7 to Px. 0 switch on standard CMOS input levels

XPICON9 register

XPICON9 (EB98h)					XBus							Reset value: 0000h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
XP91	XP9I	XP9I	XP9I	XP91	XP9I	XP9									
N. 15	N. 14	N. 13	N. 12	N. 11	N. 10	IN. 9	IN. 8	IN. 7	IN. 6	IN. 5	IN. 4	IN. 3	IN. 2	IN. 1	IN. 0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Table 63. XPICON9 register description

Bit	Bit name	Function
15-0	XP9IN.y	Port 9 bit y input level selection 0: Port line XP9.y switch on standard TTL input levels 1: Port line XP9.y switch on standard CMOS input levels

XPICON9SET register

Table 64. XPICON9SET reg'ster description

Bit	Bit name		Function
$15-0$	XP9IN.S. $=\mathrm{T}$	Writing a 1 sets the corresponding bit of the XPICON9.y register. Writing a 0	

XPIC' JN 9:LR register

, 'FOON9CLR (EB9Ch)					XBus							Reset value: 0000h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9
INC	INC	INC	INC	INC	INC	INC	INC	INC	INC	INC	INC	INC	INC	INC	INC
LR	LR	LR	LR	LR	LR	LR	LR	LR	LR	LR	LR	LR	LR	LR	LR
. 15	. 14	. 13	. 12	. 11	. 10	. 9	. 8	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Table 65. XPICON9CLR register description

Bit	Bit name	Function
$15-0$	XP9INCLR.y	Writing a 1 clears the corresponding bit of the XPICON9.y register. Writing a 0 has no effect.

XPICON10 register

XPICON10 (EBD8h)					XBus							Reset value: 0000h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1
OIN	OIN	OIN	OIN	OIN	OIN	OIN	OIN	OIN	OIN	OIN	OIN	OIN	OIN	OIN	OIN
. 15	. 14	. 13	. 12	. 11	. 10	. 9	. 8	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Table 66. XPICON10 register description

Bit	Bit name	Function
$15-0$	XP10IN.y	Port 10 bit y input level selection 0: Port line XP10.y switches on standard TTL input levels 1: Port line XP10.y switches on standard CMOS input © 'els

Figure 30. Output drivers in push-pull mode and in open-drai 1! ここde

Figre o1. Hysteresis concept

13.1.4 Alternate port functions

Each port line has one associated programmable alternate input or output function.

- Port 0 and Port 1 may be used for address and data lines when accessing the external memory. Port 1 also provides input capture lines.
- Port 2, Port 7 and Port 8 are associated with the capture inputs or compare outputs of the CAPCOM units and/or with the outputs of the PWM0 module, the PWM1 module, and the ASC1. Port 2 is also used for fast external interrupt inputs and for timer 7 input.
- Port 3 includes the alternate functions of timers, serial interfaces, the optional bus control signal $\overline{\mathrm{BHE}}$ and the system clock output (CLKOUT).
- Port 4 outputs the additional segment address bit A23 to A16 in systems where more than 64 Kbytes of memory are accessed directly. In addition, CAN1, CAN2 and I ${ }^{2} \mathrm{C}$ lines are provided.
- Port 5 is used for the analog input channels of the ADC or for the timer co tiol signals.
- Port 6 provides optional bus arbitration signals ($\overline{\mathrm{BREQ}}, \overline{\mathrm{HLDA}}, \overline{\mathrm{HOLD}})$, chio select signals, and SSC1 lines.
- XPort 9 is a general purpose input/output port
- XPort 10 is used for additional analog input channels of t.e ADC

If the alternate output function of a pin is being used, ti. . cirrection of this pin must be programmed for output (DPx.y = 1), except for somie siynuls that are used directly after reset and are configured automatically. Otherwise the pin remains in the high impedance state
 1, because its output is ANDed with t'ie clior, nate output data (except for PWM output signals).
If the alternate input function oi a pin is being used, the direction of the pin must be programmed for input ($D F_{x} \cdot y=0$) if an external device is driving the pin. The input direction is the default after res't. i'nc external device is connected to the pin, the direction of the pin can also be set in pu'vui. In this case, the pin reflects the state of the port output latch. Thus, the alternate mput function reads the value stored in the port output latch. This can be used for ${ }^{+} \epsilon \operatorname{stinc}$ purposes to allow a software trigger of an alternate input function by writing to the $\mathrm{r}^{2} \mathrm{st}$ cutput latch.

Tr rost of the port lines, the user software is responsible for setting the proper direction visien using an alternate input or output function of a pin.

This is done by setting or clearing the direction control bit DPx.y of the pin before enabling the alternate function.

However, there are port lines where the direction of the port line is switched automatically.
For instance, in the multiplexed external bus modes of Port 0 , the direction must be switched several times for an instruction fetch to output the addresses and to input the data.

Obviously, this cannot be done through instructions. In these cases, the direction of the port line is switched automatically by hardware if the alternate function of such a pin is enabled.

To determine the appropriate level of the port output latches, check how the alternate data output is combined with the respective port latch output.

There is one basic structure for all port lines with only an alternate input function. However, port lines with only an alternate output function have different structures due to the way the direction of the pin is switched and depending on whether the pin is accessible by the user software or not in the alternate function mode.

All port lines that are not used for alternate functions may be used as general purpose I/O lines. When using port pins for general purpose output, the initial output value should be written to the port latch prior to enabling the output drivers to avoid undesired transitions on the output pins. This applies to single pins as well as to pin groups (see example below).

SINGLE_BIT:	BSET	P4.7	; Initial output level is "high"
	BSET	DP4.7	; Switch on the output driver
BIT_GROUP:	BFLDH	P4, \#24H, \#24H	; Initial output level is "high"
	BFLDH	DP4, \#24H, \#24H	; Switch on the output drivers

Note: \quad When using several BSET pairs to control several pins of one port, the pairs must be separated by instructions which do not apply to the respective port (see Section 7: Central processing unit (CPU) on page 92).

13.2 Port 0

The two 8-bit ports, POH and POL, represent the higher and lower part of Pᄀ,t C , respectively. Both halves of Port 0 can be written (for example via a PFic l:a،isfer) without affecting the other half.

If this port is used for general purpose I/O, the direction of eaㄴ.. line can be configured via the corresponding direction registers, DPOH and DPOL.

13.2.1 Port 0 registers

POL and POH registers

Table 67. POL and POH register description

Bit	Bit name	Function
$15-8$	-	Reserved
$7-0$	POX.y	Port data register POL or POH bit y

DPOL and DPOH registers

Table 68. DPOL and DPOH register description

Bit	Bit name	Functio 1
$15-8$	-	Reserved
$7-0$	DPOX.y	Port direction register DPOL ir DPJH bit y 0: Port line POX.y is an (nput (high impedance) 1: Port line POX.y : all utput

13.2.2 Alternate functions of Port 0

When an external bus is ϵn^{\prime} 'h.'?c', Port 0 is used as a data bus or an address/data bus.
Note that an external 3-hli demultiplexed bus only uses P0L, while POH is free for I/O (provided that $n \cap c^{\text {the }} \mathrm{r}$ pus mode is enabled).

Port 0 is alsc u ised to select the system startup configuration. During reset, Port 0 is config. irs,d io input, and each line is held high through an internal pull-up device.
$F_{i} c_{r}^{\prime}$ line can now be individually pulled to a low level (see Section 24.5: DC characteristics) through an external pull-down device. A default configuration is selected when the respective Port 0 lines are at a high level. Through pulling individual lines to a low level, this default can be changed according to the needs of the applications.

Internal pull-up devices are designed so that external pull-down resistors (see Section 24.5: DC characteristics) can be used to apply a correct low level.
Such external pull-down resistors can remain connected to Port 0 pins during normal operation. However, care has to be taken that they do not disturb the normal function of Port 0 (for example, if the external resistor is too strong).

At the end of reset, the selected bus configuration is written to the BUSCONO register. The configuration of the high byte of Port 0 , is copied into the RPOH register.
RPOH is a read-only register that holds the selection for the number of chip selects and segment addresses. Software can read this register if required. When the reset is terminated, the internal pull-up devices are switched off, and Port 0 is switched to the appropriate operating mode.

During external access in multiplexed bus modes, Port 0 first outputs the 16-bit intrasegment address as an alternate output function. Port 0 is then switched to high impedance input mode to read the incoming instruction or data.

In 8-bit data bus mode, two memory cycles are required for word access. The first memory cycle is for the low byte of the word and the second is for the high byte. During write cycles Port 0 outputs the data byte or word after outputting the address. During external access in de-multiplexed bus modes Port 0 reads the incoming instruction or data word or outputs the data byte or word (see Figure 32).

When an external bus mode is enabled, the direction of the port pin and the loading of data into the port output latch are controlled by the bus controller hardware. The input of the port output latch is disconnected from the internal bus and is switched to the line labeled 'alternate data output' via a multiplexer. The alternate data can be the 16-bit intra-segment address or the 8/16-bit data information. The incoming data on Port 0 is read on the lirie 'alternate data input'. While an external bus mode is enabled, the user softwari shcu'.d not write to the port output latch, otherwise unpredictable results may occur.

When the external bus modes are disabled, the contents of the directic n ieyister last written by the user becomes active. Figure 33 shows the structure of a Port 0 pin.

Figure 33. Block diagram of a Port 0 pin

13.3 Port 1

The two 8-bit ports P1H and P1L represent the higher and lower part of Port 1, respectively. Both halves of Port 1 can be written (for example via a PEC transfer) without effecting the other half. If this port is used for general purpose I/O, the direction of each line can be configured via the corresponding direction registers DP1H and DP1L.

13.3.1 Port 1 registers

P1L and P1H registers

P1L (FF04h/82h)					SFR								Reset value: --00h		
15	14	13	12	11	10	9	8	7	6	5	4	3	2		0
Reserved								P1L. 7	$\begin{gathered} \mathrm{P} 1 \mathrm{~L} . \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{P} 1 \mathrm{~L} . \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{P} 1 \mathrm{~L} . \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{P} 1 \mathrm{~L} . \\ 3 \end{gathered}$	P11.	$\left[\frac{p 1 L}{}\right.$	$\begin{gathered} \mathrm{P} 1 \mathrm{~L} . \\ 0 \end{gathered}$
-								RW	RW RW RW ЗW RW RW RW						
P1H (FF06h/83h)								SFR					Reset value: --00h		
15	14	13	12	11	10	9	8	7			4	3	2	1	0
Reserved								P14	?.	$\begin{gathered} \mathrm{P} 1 \mathrm{H} \\ .5 \end{gathered}$	$\begin{gathered} \mathrm{P} 1 \mathrm{H} \\ .4 \end{gathered}$	$\int_{.}^{\mathrm{P} 1 \mathrm{H}}$	$\begin{gathered} \text { P1H } \\ .2 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{P} 1 \mathrm{H} \\ .1 \end{array}$	$\begin{gathered} \mathrm{P} 1 \mathrm{H} \\ .0 \end{gathered}$
-								RW RW		RW	RW	RW	RW	RW	RW

Table 69. P 1 L and P 1 H registe: description

Bit	Bit name	
$15-8$	-	Function
$7-0$	Fisserved	

DP1L and DP1H registers

Table 70. DP1L and DP1H register description

Bit	Bit name	Functio 1
$15-8$	-	Reserved
$7-0$	DP1X.y	Port direction register DP1L ir DP1H bit y 0: Port line P1X.y is an ipu it (high impedance) 1: Port line P1X.y : all utput

13.3.2 Alternate functions of Port 1

When a demultiplexed extern \AA^{\prime} ' kus is enabled, Port 1 is used as an address bus. Note that demultiplexed bus modes use Port 1 as a 16-bit port. Otherwise all 16 port lines can be used for general purpose : $/ \mathrm{l}$ The upper four pins of Port $1(\mathrm{P} 1 \mathrm{H} .7$ to P 1 H .4$)$ are also capture input lines for tre $\therefore \therefore$ COM2 unit (CC27-24 I).
The cr.nt 11 Э with a : ample rate of eight CPU clock cycles.
i's a side effect, the capture input capability of these lines can also be used in the address bus mode. Changes of the upper address lines may be detected, thereby triggering an interrupt request that performs some special service routines. External capture signals can only be applied if no address output is selected for Port 1.

During external access in demultiplexed bus modes, Port 1 outputs the 16-bit intra-segment address as an alternate output function.
During external access in multiplexed bus modes, when no BUSCON register selects a demultiplexed bus mode, Port 1 is not used and is available for general purpose I/O.

Figure 34. Port $1 \mathrm{I} / \mathrm{O}$ and alternate functions
(a)

When an external bus mode is enabled, the direction of the port pin an a tre ioading of data into the port output latch are controlled by the bus controller hardwe.te The input of the port output latch is disconnected from the internal bus and is switrne a to the line labeled 'alternate data output' via a multiplexer. The alternate data is l.ee 16-bit intra-segment address.

While an external bus mode is enabled, the user scft.vere should not write to the port output latch, otherwise unpredictable results may occui V/hen the external bus modes are disabled, the contents of the direction rec, istertlat was last written by the user becomes active.

Figure 35 shows the structure of a Port 1 pin.
Figure 35. Block diac am =ıa Port 1 pin

13.4 Port 2

If this 16-bit port is used for general purpose I/O, the direction of each line can be configured via the corresponding direction register DP2. Each port line can be switched into push-pull or open-drain mode via the open-drain control register ODP2.

13.4.1 Port 2 registers

P2 register

P2 (FFCOh/E0h)					SFR							Reset value: 0000h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2		0
P2	P2	P2	P2	P2	P2	P2	P2	P2	P2	P2	P2	P2	P2	5	P2
. 15	. 14	. 13	. 12	. 11	. 10	. 9	. 8	. 7	. 6	. 5	. 4	. 3	.	.	. 0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	F.W		RW	RW

Table 71. P2 register description

Bit	Bit name	Function
$15-0$	P2.y	Port data register P2 bit y

DP2 register

DP2 (FFC2h/E1h)							SFR				Reset value: 0000h				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DP2	DP2	DP2	DP2	D12	こP?	DP2									
. 15	. 14	. 13	. 12	. 11	. 10	. 9	. 8	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
RW	RW	RW		W	RW										

Table 72 n 2 register description

Bit	Bit name	Function
$15-0$	DP2.y	Port direction register DP2 bit y 0: Port line P2.y is an input (high impedance) 1: Port line P2.y is an output

ODP2 register

ODP2 ($\mathrm{F} 1 \mathrm{C} 2 \mathrm{~h} / \mathrm{E} 1 \mathrm{~h}$)					ESFR							Reset value: 0000h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OD	OD	OD	OD	OD	OD	OD	OD	OD	OD	OD	OD	OD	OD	OD	OD
P2	P2	P2	P2	P2	P2	P2	P2	P2	P2	P2	P2	P2	P2	P2	P2
. 15	. 14	. 13	. 12	. 11	. 10	. 9	. 8	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Table 73. ODP2 register description

Bit	Bit name	Function
$15-0$	ODP2.y	Port open-drain control register ODP2 bit y 0: Port line P2.y output driver in push-pull mode 1: Port line P2.y output driver in open-drain mode

13.4.2 Alternate functions of Port 2

All Port 2 lines (P2.15 to P2.0) can be configured as capt \sim - inputs or compare outputs (CC15IO to CCOIO) for the CAPCOM1 unit.

When a Port 2 line is used as a capture input, the siate of the input latch, which represents the state of the port pin, is directed to the CADSCVㅣ unit via the line 'alternate pin data
 set to input. If the direction is set to ou ${ }^{+}$bu ${ }^{+}$, the state of the port output latch is read since the pin represents the state of the output latch. This may trigger a capture event through software by setting or clearir, th e port latch. Note that in the output configuration, no external device may drila 'he pin, otherwise conflicts occur.
When a Port 2 line is leced as a compare output (compare modes 1 and 3), the compare event (or the tin ieı civerflow in compare mode 3) directly affects the port output latch. In compare rode 1, when a valid compare match occurs, the state of the port output latch is read b ! \ddagger. 1 e CAPCOM control hardware via the line 'alternate latch data input'. It is inverted and' writien back to the latch via the line 'alternate data output'. The port output latch is $c^{\prime} c=t . e d$ by the signal 'compare trigger' which is generated by the CAPCOM unit.
in compare mode 3, when a match occurs, the value 1 is written to the port output latch via the line 'alternate data output'. When an overflow of the corresponding timer occurs, a 0 is written to the port output latch. In both cases, the output latch is clocked by the signal 'compare trigger'. The direction of the pin should be set to output by the user, otherwise the pin is in the high impedance state and does not reflect the state of the output latch.
As can be seen from the port structure (Figure 37), the user software always has free access to the port pin even when it is used as a compare output. This is useful for setting up the initial level of the pin when using compare mode 1 or the double-register mode. In these modes, unlike in compare mode 3 , the pin is not set to a specific value when a compare match occurs. It is toggled instead.

When the user wants to write to the port pin at the same time a compare trigger tries to clock the output latch, the write operation of the user software has priority. Each time a CPU write access to the port output latch occurs, the input multiplexer of the port output latch is switched to the line connected to the internal bus. The port output latch receives the value from the internal bus and the hardware triggered change is lost.

The capture input function of pins P2.7 to P2.0 can be used for external interrupt inputs with a sample rate of eight CPU clock cycles.

For pins P2.15 to P2.8, the sampling rate is eight CPU clock cycles when used as capture input, and one CPU clock cycle if used as fast external input.

The upper eight Port 2 lines (P2.15 to P2.8) also support fast external interrupt inputs (EX7IN to EXOIN). In addition, P2.15 is the input for CAPCOM2 timer T7 (T7IN). Table 74 summarizes the alternate functions of Port 2. The pins of this port combine internal capture input bus data with compare output alternate data which is output before the port latch input.

Table 74. Alternate functions of Port 2

P2 pin	Alternate function (a)	Alternate function (b)	Alternate function (c)
P2.0	CC0IO	-	-
P2.1	CC1IO	-	-
P2.2	CC2IO	-	-
P2.3	CC3IO	-	-
P2.4	CC4IO	-	-
P2.5	CC5IO	-	-
P2.6	CC6IO	-	-
P2.7	CC7IO		-
P2.8	CC8IO	EX0IN	Fast External Intrri ipt 0 Input
P2.9	CC9IO	EX1IN	Fast Extern: In tcr., upt 1 Input
P2.10	CC10IO	EX2IN	Fast E) tern Il interrupt 2 Input

Figurs, 3 . Purt 2 I/O and alternate functions

Figure 37. Block diagram of a Port 2 pin

13.4.3 Port 2 and external interrupts

These interrupt inputs are provided to service external interrupts which have high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge, or both edges).
Fast external interrupts may also have interrupt sources selected from other peripherals. For example, the CANx controller receive signal (CANx_RxD) can be used to interrupt the system. This new function of the ST10F296E is controlled using the 'external interrupt source selection' register (EXISEL).

External interrupt source selection register (EXISEL)

EXISEL (F1DAh/EDh)		1110	ESFR			Reset value: $\mathfrak{0} 000 \mathrm{~h}$	
1514	1312		98	76	54	32	10
EXI7SS	EXI6SS	EXI5SS	EXI4SS	EXI3SS ${ }^{(1)}$	EXI2SS ${ }^{(2)}$	EXiCES	EXIOSS
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

1. Alarm interrupt request (RTCAI) is linked with EXI3SS
2. Timed interrupt request (RTCSI) is linked with EXI2SS

Table 75. EXISEL register description

Bit	Bit name	Function
15-0	EXIxSS	External interr:pi y sol rce selection ($x=7$ to 0) 00: Input fro. n as sociated Port 2 pin 01: Input from 'alternate source'(1) 10: Inrut from Port 2 pin ORed with 'alternate source'(1) 11. Ir.put from Port 2 pin ANDed with 'alternate source'

Table 76. Exteinal interrupt selection

EXirSS	Port 2 pin	Alternate source	
0	P2.8	CAN1_RxD	P4.5
1	P2.9	CAN2_RxD/SCL	P4.4
2	P2.10	RTCSI (second)	Internal MUX
3	P2.11	RTCAI (alarm)	Internal MUX
4 to 7	P2.12 to 15	Not used (zero)	-

13.5 Port 3

If this 15 bit port is used for general purpose I / O, the direction of each line can be configured by the corresponding direction register DP3. Most port lines can be switched into push-pull or open-drain mode by the open-drain control register ODP3 (pins P3.15 and P3.12 do not support open-drain mode).
Due to pin limitations, register bit P3.14 is not connected to any output pin.

13.5.1 Port 3 registers

P3 register

Table 77. P3 register description

Bit	Bit name	
$15,13-0$	P3.y	Port data register $\mathrm{P} 3 \mathrm{~b}+\mathrm{j}_{\mathrm{j}}$

DP3 register

DP3 (FFC6h/E3h)						SFR						Reset value: 0000h			
15	14	13	12	1			8	7	6	5	4	3	2	1	0
$\begin{array}{\|c\|} \hline \text { DP3 } \\ .15 \\ \hline \end{array}$	-	DP?	$\frac{L P}{12}$	$\begin{array}{\|c\|} \hline \text { DP3 } \\ \hline .11 \end{array}$	$\begin{array}{\|c} \hline \text { DP3 } \\ .10 \end{array}$	$\begin{array}{\|c} \hline \text { DP3 } \\ \hline .9 \end{array}$	$\begin{gathered} \hline \text { DP3 } \\ .8 \end{gathered}$	$\begin{gathered} \text { DP3 } \\ .7 \end{gathered}$	$\begin{gathered} \hline \text { DP3 } \\ .6 \end{gathered}$	$\begin{gathered} \text { DP3 } \\ .5 \end{gathered}$	$\begin{gathered} \text { DP3 } \\ .4 \end{gathered}$	$\begin{gathered} \text { DP3 } \\ .3 \end{gathered}$	$\begin{gathered} \text { DP3 } \\ .2 \end{gathered}$	$\begin{gathered} \text { DP3 } \\ .1 \end{gathered}$	$\begin{gathered} \text { DP3 } \\ .0 \end{gathered}$
RW		RW													

Ta'slf 78. DP3 register description

Bit	Bit name	Function
$15,13-0$	DP3.y	Port direction register DP3 bit y 0: Port line P3.y is an input (high impedance) 1: Port line P3.y is an output

ODP3 register

DP3 (F1C6h/E3h)					ESFR							Reset value: 0000h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	$\begin{gathered} \text { OD } \\ \text { P3.13 } \end{gathered}$	-	$\begin{gathered} \text { OD } \\ \text { P3.11 } \end{gathered}$	$\begin{gathered} \text { OD } \\ \text { P3.10 } \end{gathered}$	$\begin{gathered} \text { OD } \\ \text { P3. } \end{gathered}$	$\begin{gathered} \text { OD } \\ \text { P3.8 } \end{gathered}$	$\begin{gathered} \text { OD } \\ \text { P3.7 } \end{gathered}$	$\begin{gathered} \text { OD } \\ \text { P3. } 6 \end{gathered}$	$\begin{gathered} \text { OD } \\ \text { P3.5 } \end{gathered}$	$\begin{gathered} \text { OD } \\ \text { P3.4 } \end{gathered}$	$\begin{gathered} \text { OD } \\ \text { P3. } \end{gathered}$	$\begin{gathered} \hline \text { OD } \\ \text { P3. } 2 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{OD} \\ \text { P3.1 } \end{array}$	$\begin{array}{\|c\|} \hline \text { OD } \\ \text { P3.0 } \end{array}$
	-	RW		RW											

Table 79. ODP3 register description

Bit	Bit name	Function
$13,11-0$	ODP3.y	Port open-drain control register ODP3 bit y 0: Port line P3.y output driver in push-pull mode 1: Port line P3.y output driver in open-drain mode

13.5.2 Alternate functions of Port 3

The pins of Port 3 are used for various functions which inclua ${ }^{2}$ external timer control lines, the two serial interfaces and the control lines $\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}}$ and こLKOUT.

Table 80. Port 3 alternative functions

Port 3 pin		Aitervate function
P3.0	TOIN	CAPCOM1 timer u count input
P3.1	T6OUT	Timer 6 to agle output
P3.2	CAPIN	GP:2 casture input
P3.3	T3OUT	I in.ar 3 toggle output
P3.4	T3EUT	I imer 3 external up/down input
P3.5	Triv	Timer 4 count input
P3 5	Toiiv	Timer 3 count input
P3.7	T2IN	Timer 2 count input
TS. 8	MRST0	SSC master receive/slave transmit
P3.9	MTSR0	SSC master transmit/slave receive
P3.10	TxD0	ASC0 transmit data output
P3.11	RxD0	ASC0 receive data input (/output in synchronous mode)
P3.12	$\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}}$	Byte high enable/write high output
P3.13	SCLK0	SSC shift clock input/output
P3.14	---	No pin assigned
P3.15	CLKOUT	System clock output (either prescaled or not through register XCLKOUTDIV)

Figure 38．Port $3 \mathrm{I} / \mathrm{O}$ and alternate functions

The structure of the Port 3 pins depends on their alternate funntion＇s＇se Figure 39）．
When the on－chip peripheral associated with a Port 3 pin is co nfigured to use the alternate input function，it reads the input latch，which represent：t．e state of the pin，via the line labeled＇alternate data input＇．Port 3 pins with alteinats it．put functions are：TOIN，T2IN， T3IN，T4IN，T3EUD and CAPIN．

When the on－chip peripheral associated \downarrow ith，c：＇Port 3 pin is configured to use the alternate output function，its＇alternate data out sut＇ir．e is ANDed with the port output latch line．When using these alternate functions，the user must set the direction of the port line to output （DP3．y $=1$ ）and the port to output latch（P3．y＝1）．If this is not done，the pin is in its high impedance state（when conliyured as input）or the pin is stuck at 0 （when the port output latch is cleared）．Wher，the alternate output functions are not used，the＇alternate data output＇line is in its inactive state，which is a high level（1）．Port 3 pins with alternate output functions are：T5Cじi，T3OUT，TxD0，BHE and CLKOUT．

When int un－unip peripheral associated with a Port 3 pin is configured to use both the alternaı？input and output function，the descriptions above apply to the respective current ps．ating mode．The direction must be set accordingly．Port 3 pins with alternate iniut／output functions are：MTSR0，MRST0，RxD0 and SCLK0．

Notこ：Enabling the CLKOUT function automatically enables the P3．15 output driver．Setting bit DP3．15 $=1$ is not required．

Figure 39. Block diagram of a Port 3 pin

Pin Pi. 1 $2(\overline{3} H E / \overline{W R H})$ is another pin with an alternate output function. However, its strי- $n t u r e$ is slightly different to the Port 3 pin (see Figure 40). After reset, the $\overline{\mathrm{BHE}}$ or $\overline{\mathrm{WRH}}$ I. Ir. ${ }^{\text {t.ion }}$ must be used. In either case, port latches cannot be programmed before. Thus, the appropriate alternate function is selected automatically. If $\overline{\mathrm{BHE} / \overline{W R H}}$ is not used in the system, this pin can be used for general purpose I/O by disabling the alternate function (BYTDIS $=1 /$ WRCFG $=0$).

Note: Enabling the $\overline{B H E}$ or $\overline{W R H}$ function automatically enables the P3.12 output driver. Setting bit DP3.12 = 1 is not required. During bus hold, pin P3.12 is switched back to its standard function and is then controlled by DP3.12 and P3.12. In this case, keep DP3.12 = 0 to ensure floating in hold mode.

Figure 40. Block diagram of pins P3.15 (CLKOUT) and P3.12 ($\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}}$)

13.6 Port 4

If this 8 -bit port is use y for general purpose I/O, the direction of each line can be configured via the correspcinyino direction register DP4.

13.6.1 Port 7 : eyisters

ir register

P4 (FFC8h/E4h)				SFR									Reset value: --00h		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
\square	-	-	-	-	-	-	-	P4.7	P4.6	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0
-	-	-	-	-	-	-	-	RW							

Table 81. P4 register description

Bit	Bit name	
$7-0$	P4.y	Port data register P4 bit y

Only bits 7 to 0 of the P 4 register are implemented. All other bits are read as 0 .

DP4 register

DP4 (FFCAh/E5h)				SFR									Reset value: --00h		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	$\begin{array}{\|c} \hline \text { DP4 } \\ \hline .7 \end{array}$	$\begin{array}{\|c} \hline \text { DP4 } \\ . \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { DP4 } \\ .5 \\ \hline \end{array}$	$\begin{gathered} \text { DP4 } \\ .4 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { DP4 } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { DP4 } \\ \hline \end{array}$	$\begin{gathered} \text { DP4 } \\ .1 \end{gathered}$	$\begin{gathered} \text { DP4 } \\ .0 \end{gathered}$
-	-	-	-	-	-	-	-	RW							

Table 82. DP4 register description

Bit	Bit name	Function
$7-0$	DP4.y	Port direction register DP4 bit y 0: Port line P4.y is an input (high impedance) 1: Port line P4.y is an output

Only bits 7 to 0 of the DP4 register are implemented. All other bits are icad as 0 .

ODP4 register

Table 83. ODP4 registot Gis sription

Bit	Bit name	
		Function
$7-\Lambda$	CDP4.y	Port open-drain control register ODP4 bit y 0: Port line P4.y output driver in push-pull mode 1: Port line P4.y output driver in open-drain mode if P4.y is not a segment address line output

Dily bits 7 to 4 of the ODP4 register are implemented. All other bits are read as 0 .
No ${ }^{+}$: When $I^{2} C$ is enabled by setting the XPEN and XI2CEN bits of the SYSCON and XPERCON registers respectively, pins $P 4.4$ and $P 4.7$ become fully dedicated to the $I^{2} C$ interface. All alternate functions are bypassed (external memory and CAN2 functions). The pins are also automatically configured as open-drain as requested by the $I^{2} C$ bus standard. The Port 4 control registers P4, DP4, and ODP4 can no longer control pins P4.7 and P4.4, as writing in the bits corresponding to $P 4.4$ and $P 4.7$ of these registers has no effect on pin behavior.

13.6.2 Alternate functions of Port 4

During external bus cycles that use segmentation (for address space above 64 Kbytes) a number of Port 4 pins may output the segment address lines. The number of pins that are used for segment address output determines the external address space which is directly accessible. The other pins of Port 4 (if any) may be used for general purpose I/O. If segment address lines are selected, the alternate function of Port 4 may be required to access external memory directly after reset. Consequently, Port 4 is switched to this alternate function automatically.

The number of segment address lines is selected via Port 0 during reset. The selected value can be read from the bit-field, SALSEL, in register RPOH (a read-only register) to check configuration during run time.

The CAN interfaces use two or four pins of Port 4 to interface the CAN module to the external CAN transceiver. In this case the number of possible segment address lines s reduced. The case is the same when the $\mathrm{l}^{2} \mathrm{C}$ interface module is used.

Table 84 summarizes the alternate functions of Port 4 depending on the numer of selected segment address lines (coded via bit-field SALSEL).

Table 84. Port 4 alternate functions

Port 4	Standard function SALSEL = 01 64 Kbytes	Alternate function SALSEL = 11 256 Kbytes	Alternats iuni.tion SALIFL = 00 1 Mbyte	Alternate function SALSEL $=10^{(1)(2)}$ 16 Mbytes
P4.0	GPIO	Segment address P_{10}	S 3gment. address A16	Segment address A16
P4.1	GPIO	Segment address A17	Segment address A17	Segment address A17
P4.2	GPIO	GPIO	Segment address A18	Segment address A18
P4.3	GPIO	GPIO	Segment address A19	Segment address A19
P4.4	GPIO/CAN2_RxD/SCL	GPIC,'C., N2_RxD/SCL	GPIO/CAN2_RxD/SCL	Segment address A20
P4.5	GPIO/CAN1_RxD	Cト'C/CAN1_RxD	GPIO/CAN1_RxD	Segment address A21
P4.6	GPIO/CAN1_TxD	GPIO/CAN1_TxD	GPIO/CAN1_TxD	Segment address A22
P4.7	GPIO/CAN2_Ty'J, SLA	GPIO/CAN2_TxD/SDA	GPIO/CAN2_TxD/SDA	Segment address A23

1. When $\operatorname{SALSEL}=10$, ,AN1 and CAN2 cannot be used and the external memory has a higher priority on the CAN alternate functions. Onc ; $\mathrm{r} . \mathrm{e}^{2} \mathrm{C}$ is enabled, P 4.4 and P 4.7 are dedicated to it and it has higher priority on the CAN alternate functions aric 0.1 segment address functions.
2. If SAL.ㄷ. $=10$ and $\mathrm{I}^{2} \mathrm{C}$ is enabled, P 4.5 and P 4.6 continue to output address lines.

Figure 41. Port 4 I/O and alternate functions

Figure 42. Block diagram of Port 4 pins 3 to 0

Figure 43. Block diagram of pin P4.4

1. When SALSEL $=10,8$-bit segment address lines are selected and $P 4.4$ outputs the address. Any attempt to use the CAN2 on P4.4 is masked. However, by enabling the $\mathrm{I}^{2} \mathrm{C}$, the segment function is masked, pin P4.4 is automatically configured as open-drain and used to input and output the SCL alternate function.
2. When CAN parallel mode is selected, CAN2_RxD is remapped on P4.5. This occurs only if CAN1 is also enabled. If CAN1 is disabled, no remapping occurs.

Figure 44. Block diagram of pin P4.5

1. When SALSEL $=10,8$-bit segment address lines are selected and $P 4.5$ outputs the address. Any attempt to use the CAN1 on P4.5 is masked.
2. When CAN parallel mode is selected, CAN2_RxD is remapped on P4.5. This occurs only if CAN1 is also enabled. If CAN1 is disabled, no remapping occurs.

Figure 45. Block diagram of pin P4.6

1. When $\operatorname{SALSEL}=10,8$-bit segment address lines are selected and P4.6 outputs the address. Any attempt to use the CAN1 on P4.6 is masked.
2. When CAN parallel mode is selected, CAN2_TxD is remapped on P4.6. This occurs only if CAN1 is also enabled. If CAN1 is disabled, no remapping occurs.

Figure 46. Block diagram of pin P4.7

1. When SALSEL $=10$, 8 -bit segment address lines are selected and $P 4.7$ outputs the address. Any attempt to use the CAN2 on P4.7 is masked. However, by enabling the $I^{2} \mathrm{C}$, the segment function is masked, pin P4.7 is automatically configured as open-drain and used to input and output the SDA alternate function.
2. When CAN parallel mode is selected, CAN2_TxD is remapped on P4.6. This occurs only if CAN1 is also enabled. If CAN1 is disabled, no remapping occurs.

13.7 Port 5

This 16-bit input port can only read data. There is no output latch and no direction register. Data written to P5 is lost.

13.7.1 Port 5 registers

P5 register

P5 (FFA2h/D1h)					SFR							Reset value: XXXXh			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
P5	P5	P5	P5	P5	P5	P5	P5	P5	P5	P5	P5	P5	P5	P5	P5
. 15	. 14	. 13	. 12	. 11	. 10	. 9	. 8	. 7	. 6	. 5	. 4	. 3	. 2	1	. 0
R	R	R	R	R	R	R	R	R	R	R	R	R			R

Table 85. P5 register description

Bit	Bit name	Functio.
$15-0$	P5.y	Port data register P5 bit y (read-only',

13.7.2 Alternate functions of port 5

Each line of Port 5 is connected to the int it ruitiplexer of the ADC. All port lines (P5.15 to P5.0) can accept analog signals (AN 5 tc miN0) which can then be converted by the ADC. No special programming is required for pins that are used as analog inputs. The upper 6 pins of Port 5 also serve as external timer control lines for GPT1 and GPT2.

Table 86 summarizes thc alte, nate functions of Port 5.

Table 86. Poris a iernate functions

Port 5 गi.	Alternate function (a)	Alternate function (b)
1'5.0	Analog input ANO	
P5.1	Analog input AN1	-
P5.2	Analog input AN2	-
P5.3	Analog input AN3	-
P5.4	Analog input AN4	-
P5.5	Analog input AN5	-
P5.6	Analog input AN6	-
P5.7	Analog input AN7	-
P5.8	Analog input AN8	-
P5.9	Analog input AN9	-
P5.10	Analog input AN10	T6EUD timer 6 external up/down input
P5.11	Analog input AN11	T5EUD timer 5 external up/down input
P5.12	Analog input AN12	T6IN timer 6 count input
P5.13	Analog input AN13	T5IN timer 5 count input
P5.14	Analog input AN14	T4EUD timer 4 external up/down input
P5.15	Analog input AN15	T2EUD timer 2 external up/down input

Figure 47. Port $5 \mathrm{I} / \mathrm{O}$ and alternate functions

Port 5 is an input only port where the analog input channsi. are directly connected to the pins rather than to the input latches. For these reasor.s, Fil 5 pins have a special port structure (see Figure 48).

Figure 48. Block diagram of a Port 5 win

13.7.3 Port 5 analog inputs disturb protection

A Schmitt trigger protection can be activated on each pin of Port 5 by setting the dedicated bit of register P5DIDIS. This allows the input leakage effect to be reduced.

P5DIDIS register

P5DIDIS (FFA4h/D2h)					SFR							Reset value: 0000h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
P5D	P5D	P5D	P5D	P5D	P5D	P5D	P5D	P5D	P5D	P5D	P5D	P5D	P5D	P5D	P5D
IDIS	IDIS	IDIS	IDIS	IDIS	IDIS	IDIS	IDIS	IDIS	IDIS	IDIS	IDIS	IDIS	IDIS	IDIS	IDIS
. 15	. 14	. 13	. 12	. 11	. 10	. 9	. 8	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	Pivi	RW

Table 87. P5DIDIS register description

Bit	Bit name	Function
$15-0$	P5DIDIS.y	Port 5 digital disable register bit y 0: Port line P5.y digital input is enabled , Schmitt trigger enabled) 1: Port line P5.y digital input is dis 子tind (Schmitt trigger disabled)

13.8 Port 6

Port 6 is an 8-bit port. If it is used for sen r ral purpose I/O, the direction of each line can be configured via the corresponding direction register DP6. Each port line can be switched into push-pull or open-drain mode via the open-drain control register ODP6. In the ST10F296E, SSC1 is implemented o: pinc P6.5, P6.6, and P6.7. When the module is enabled through the XPERCON register, the corresponding bits P6, DP6 and ODP6 are overwritten by the new XSSCPORT reaister (mapped on the XBus). This allows the user to program pins P6.5, P6.6, and Pf..i ce cording to the SSC1 configuration.

13.8.1 Port 6 registers

Pü register

P6 (FFCCh/E6h)					SFR							Reset value: --00h			
+15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
) -	-	-	-	-	-	-	-	P6.7	P6.6	P6.5	P6.4	P6.3	P6.2	P6. 1	P6.0
								RW							

Table 88. P6 register description

Bit	Bit name	Function
$7-0$	P6.y	Port data register P6 bit y

DP6 register

DP6 (FFCEh/E7h)				SFR									Reset value: --00h		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline \text { DP6 } \\ \hline \end{array}$	$\begin{gathered} \hline \text { DP6 } \\ .6 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { DP6 } \\ .5 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { DP6 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { DP6 } \\ .3 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { DP6 } \\ . \end{array}$	$\begin{gathered} \text { DP6 } \\ .1 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { DP6 } \\ .0 \\ \hline \end{array}$
-	-	-	-	-	-	-	-	RW							

Table 89. DP6 register description

Bit	Bit name	Function
$7-0$	DP6.y	Port direction register DP6 bit y 0: Port line P6.y is an input (high impedance) 1: Port line P6.y is an output

ODP6 register

ODP6 (F1CEh/E7h)								ESFR					Reset value: --00h		
15	14	13	12	11	10	\bigcirc	8	7	ϵ		4	3			0
-	-	-	-	-	-	-	-	$\begin{gathered} \hline \text { OD } \\ \text { F } 5.1 \end{gathered}$	$\begin{gathered} \text { P6.6 } \\ \hline 0.6 \end{gathered}$	$\begin{gathered} \hline \text { OD } \\ \text { P6.5 } \end{gathered}$	$\begin{gathered} \hline \text { OD } \\ \text { P6.4 } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{OD} \\ \mathrm{P} 6.3 \\ \hline \end{array}$	$\begin{aligned} & \text { OD } \\ & \text { P6.2 } \end{aligned}$	$\begin{gathered} \hline \text { OD } \\ \text { P6.1 } \end{gathered}$	$\begin{gathered} \hline \mathrm{OD} \\ \mathrm{P6} .0 \end{gathered}$
-	-	-	-	-	-			2W	RW						

Table 90. ODP6 register description

Bit	Bit name	Function
7-0	OL®ה.y	ori spen-drain control register ODP6 bit y 0: Port line P6.y output driver in push-pull mode 1: Port line P6.y output driver in open-drain mode

XSSCPORT register

This register is enabled and visible only when the XPEN and XSSCEN bits of the SYSCON and XPERCON registers respectively are set. However, when SSC1 is disabled, P6, DP6 and ODP6 registers must be used to configure pins P6.2, P6.3, and P6.4.

XSSCPORT (E880h) XBus													Reset value: 0000h		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	$\begin{gathered} \text { XODP } \\ 6.4 \end{gathered}$	$\begin{aligned} & \text { XP } \\ & 6.4 \end{aligned}$	$\begin{gathered} \text { XDP } \\ 6.4 \end{gathered}$	$\begin{gathered} \text { XODP } \\ 6.3 \end{gathered}$	$\begin{aligned} & \text { XP } \\ & 6.3 \end{aligned}$	$\begin{gathered} \text { XDP } \\ 6.3 \end{gathered}$	$\begin{gathered} \text { XODP } \\ 6.2 \end{gathered}$	$\begin{aligned} & \text { XP } \\ & 6.2 \end{aligned}$
								RW							

Table 91. ODP6 register description

13.8.2 Alternate functions of Port 6

A programmable number of s'inip select signals (CS4 to CSO) derived from the bus control registers (BUSCON4 to BLISこOIN0) can be output on five pins of Port 6. The other three pins may be used for Jus urbitration to accommodate additional masters in a ST10F296E system.

The number of onip select signals are selected via Port 0 during reset. The selected value can be reaci from bit-field CSSEL in the RPOH register to check the configuration during run timに
7.ble 92 summarizes the alternate functions of Port 6 depending on the number of chip select lines (coded via bit-field CSSEL) that are selected.

Table 92. Port 6 alternate functions

Port 6 pin	Alternate function $\text { CSSEL = } 10$	Alternate function CSSEL = 01	Alternate function $\text { CSSEL }=00$	Alternate function CSSEL = 11
P6.0	General purpose I/O	Chip select CSO	Chip select CSO	Chip select CSO
P6.1	General purpose I/O	Chip select $\overline{\mathrm{CS} 1}$	Chip select $\overline{\mathrm{CS} 1}$	Chip select $\overline{\mathrm{CS} 1}$
P6.2	General purpose I/O SCLK1	General purpose I/O SCLK1	Chip select $\overline{\mathrm{CS} 2}$ SCLK1	Chip select $\overline{\mathrm{CS} 2}$ SCLK1
P6.3	General purpose I/O MTSR1	General purpose I/O MTSR1	General purpose I/O MTSR1	Chip select $\overline{\text { CS3 }}$ MTSR1
P6.4	General purpose I/O MRST1	General purpose I/O MRST1	General purpose I/O MRST1	Chip select $\overline{\mathrm{CS}} 4$ MRST1
P6.5	HOLD external hold request input			
P6.6	HLDA hold acknowledge output			
P6.7	$\overline{\overline{B R E Q}}$ bus request output			

Figure 49. Port $6 \mathrm{I} / \mathrm{O}$ and alternate functions

The chip select lines of Port 6 have an internal weak pull-up device. This device is switched on under the following conditions:

- During reset
- If Port 6 line is used as a chip select output, the ST10F296E is in hold mode, and the respective pin driver is in push-pull mode (ODP6.x $=0$).
The pull-up device is implemented to drive the chip select lines high during reset to avoid multiple chip selection and to allow another master to access the external memory via the same chip select lines (AND-wired) while the ST10F296E is in hold mode.
When ODP6.x = 1 (open-drain output selected), the internal pull-up device is active during hold mode and external pull-up devices must be used in this case. When entering hold mode the $\overline{\mathrm{CS}}$ lines are actively driven high for one clock phase, at which point the output level is controlled by the pull-up devices (if activated).

After reset the $\overline{\mathrm{CS}}$ function must be used. In this case, the port latches cannot be programmed and the alternate function $(\overline{\mathrm{CS}})$ is selected automatically.

Note: \quad The open-drain output option can only be selected via software during the initialization routine. The $\overline{C S O}$ signal is in push-pull output driver mode directly after reset (see Figure 50 on page 156).

The bus arbitration signals $\overline{\mathrm{HOLD}}, \overline{\mathrm{HLDA}}$ and $\overline{\mathrm{BREQ}}$ are selected with the HLDEN bit in the PSW register. When the bus arbitration signals are enabled via HLDEN, these pins are switched automatically to the appropriate direction. The pin drivers for HLDA and BREQ are automatically enabled while the pin driver for $\overline{\text { HOLD }}$ is automatically disabled (see Figure 51 on page 157 and Figure 52 on page 158).

Figure 50. Block diagram of Port 6 pins 7, 6, 1, 0

Figure 51. Block diagram of pin P6.5

Figure 52. Block diagram of pins P6.2, P6.3, and P6.4

13.9 Port 7

This is an 8-bit port. If it is used for general purpose I/O, the direction of each line can be configured via the corresponding direction register DP7. Each port line can be switched into push-pull or open-drain mode via the open-drain control register ODP7.

13.9.1 Port 7 registers

P7 register

Table 93. P7 register description

Bit	Bit name	Functic:	
$7-0$	P7.y	Port data register P7 bit y	

DP7 register

Table 94. EF7lagister description

$\mathbf{B i}$	Bit name	
		Port direction register DP7 bit y 0: Port line P7.y is an input (high impedance) 1: Port line P7.y is an output

ODP7 register

ODP7 (F1D2h/E9h)					ESFR								Reset value: --00h		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline \mathrm{OD} \\ \mathrm{P} 7.7 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{OD} \\ \mathrm{P} 7.6 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{OD} \\ \mathrm{P} 7.5 \end{array}$	$\begin{gathered} \text { OD } \\ \text { P7.4 } \end{gathered}$	$\begin{gathered} \text { OD } \\ \text { P7.3 } \end{gathered}$	$\begin{gathered} \text { OD } \\ \text { P7. } 2 \end{gathered}$	$\begin{gathered} \mathrm{OD} \\ \mathrm{P} 7.1 \end{gathered}$	$\begin{gathered} \text { OD } \\ \text { P7.0 } \end{gathered}$
-	-	-	-	-	-	-	-	RW							

Table 95. ODP7 register description

Bit	Bit name	Function
$7-0$	ODP7.y	Port open-drain control register ODP7 bit y 0: Port line P7.y output driver in push-pull mode 1: Port line P7.y output driver in open-drain mode

13.9.2 Alternate functions of Port 7

The upper 4 lines of Port 7 (P7.7 to P7.4) are used as capturs :.iputs or compare outputs (CC31IO to CC28IO) for the CAPCOM2 unit.
Port 7 lines are connected to the CAPCOM2 unit anc r.eridled by software in a similar way to Port 2 lines (see Section 13.4.2: Alternate funct'or.s or Port 2 on page 134.
 a sample rate of eight CPU clock cyc es.
The lower 4 lines of Port 7 (P ? 3 tc P7.0) supports outputs of the PWM module (POUT3 to POUT0). At these pins, the 'alut of the respective port output latch is XORed with the value of the PWM output rathe inai: AlNDed. This allows the alternate output value to be used as it is (port latch holds e 0 ' ur to be inverted at the pin (port latch holds a 1).

The PWM outn its nust be enabled via the respective PENx bit in the PWMCON1 register.
Table 90 suminarizes the alternate functions of Port 7.
Tatic 96. Port 7 alternate functions

Port 7 pin	Alternate function	
P7.0	POUT0	PWM mode channel 0 output
P7.1	POUT1	PWM mode channel 1 output
P7.2	POUT2	PWM mode channel 2 output
P7.3	POUT3	PWM mode channel 3 output
P7.4	CC28 I/O	Capture input/compare output channel 28
P7.5	CC29 I/O	Capture input/compare output channel 29
P7.6	CC30 I/O	Capture input/compare output channel 30
P7.7	CC31 I/O	Capture input/compare output channel 31

Figure 53. Port 7 I/O and alternate functions

The structure of Port 7 differs from the other ports in the way the outpı \downarrow aiv'ies are connected to the internal bus and to the pin driver (see Figure 54 ธท faye 161 and Figure 55 on page 162).

Pins P7.3 to P7.0 (POUT3 to POUT0) XOR the alternate Ccta output with the port latch output. This allows alternate data to be used directly o: inverted at the pin driver.

Pins P7.7 to P7.4 (CC31IO to CC28IO) combine in ernal bus data and alternate data output before the port latch input.

Figure 54. Block diagram of Port i pins 3 to 0

Figure 55. Block diagram of Port 7 pins 7 to 4

13.10 Port 8

This is an 8-bit port. If it is used for general purpose I/O, the direction of each line can be configured via the corresponding direction register DP8. Each port line can be switched into push-pull or open-drain mode via the open-drain control register ODP8.
In the ST10F296E, XASC (or ASC1) is implemented on pins P8.6 and P8.7. When the module is enabled through the XPERCON register, the corresponding bits P8, DP8 and ODP8 are overwritten by the new XS1PORT register (mapped on the XBus). This allows the user to program pins P8.6 and P8.7 according to the ASC1 configuration.

13.10.1 Port 8 registers

P8 register

P8 (FFD4h/EAh)				SFR								Reset value: --00h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	P8.7	P8.6	P8.5	F3.	2.3	P8.2	P8. 1	P8.0
-	-	-	-	-	-	-	-	RW							

Table 97. P8 register description

Bit	Bit name	
$7-0$	P8.y	Port data regis ter?こhty

DP8 register

raole 98. DP8 register description

Bit	Bit name	Function
7-0	DP8.y	Port direction register DP8 bit y 0: Port line P8.y is an input (high impedance) 1: Port line P8.y is an output

ODP8 register

ODP8 (F1D6h/EBh)					ESFR								Reset value: --00h		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline \mathrm{OD} \\ \mathrm{~PB} .7 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{OD} \\ \mathrm{P8.6} \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{OD} \\ \mathrm{P} 8.5 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{OD} \\ \mathrm{P} 8.4 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{OD} \\ \mathrm{P} 8.3 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{OD} \\ \mathrm{P} 8.2 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{OD} \\ \mathrm{P} 8.1 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{OD} \\ \mathrm{P} 8.0 \end{array}$
-	-	-	-	-	-	-	-	RW							

Table 99. ODP8 register description

Bit	Bit name	Function
$7-0$	ODP8.y	Port open-drain control register ODP8 bit y 0: Port line P8.y output driver in push-pull mode 1: Port line P8.y output driver in open-drain mode

XS1PORT register

This register is enabled and visible only when the XPEN and ${ }^{\prime} \wedge^{\wedge} C_{E}-\wedge$, bits of the SYSCON and XPERCON registers respectively are set. However, wher ASC1 is disabled, the standard P8, DP8 and ODP8 registers must be used to cor, figure pins P8.6 and P8.7.

Table 100. XS1PCFT egister description

Bit	Rit ne.ne	Function
5,2	XODP8.y	Port open-drain control register bit y ($\mathrm{y}=6,7$ only $)$ 0: Port line P8.y output driver in push-pull mode 1: Port line P8.y output driver in open-drain mode
4,1	XP8.y	Port data register bit y ($\mathrm{y}=6,7$ only)
3,0	XDP8.y	Port direction register bit y ($\mathrm{y}=6,7$ only) 0: Port line P8.y is an input (high impedance) 1: Port line P8.y is an output

13.10.2 Alternate functions of Port 8

All Port 8 lines (P8.7 to P8.0) support capture inputs or compare outputs (CC23IO to CC16IO) for the CAPCOM2 unit (see Table 101). See Section 13.4.2: Alternate functions of Port 2 on page 134 for the use of the port lines by the CAPCOM unit, its accessibility via software, and precautions, all of which are the same as described for Port 2 lines.

The capture input function of pins P8.7 to P8.0 can be used as external interrupt inputs with a sample rate of eight CPU clock cycles. The pins of Port 8 combine internal bus data and alternate data output before the port latch input.

Table 101. Port 8 alternate functions

Port $\mathbf{8}$ pin	Alternate function (a)		
P8.0	CC16IO	Capture input/compare output ch. 16	-
P8.1	CC17IO	Capture input/compare output ch. 17	-
P8.2	CC18IO	Capture input/compare output ch. 18	-
P8.3	CC19IO	Capture input/compare output ch. 19	-
P8.4	CC20IO	Capture input/compare output ch. 20	-
P8.5	CC21IO	Capture input/compare output ch. 21	-
P8.6	CC22IO	Capture input/compare outrut in 22	RxD1
P8.7	CC23IO	Capture input/comr.are receive data input/output	

Figure 56. Port 8 I/O and altern $=$ te functions

Figure 57. Block diagram of P8 pins 5 to 0

Figure 58. Block diagram of pin P8.6

Figure 59. Block diagram of pin P8.7

13.11 XPort 9

XPort 9 is enabled by setting the XPEN and XPORTEN bits of the SYSCON and XPERCON registers respectively. On the XBus interface, the registers are not bit-addressable.

This 16-bit port is used for general purpose I/O. The direction of each line can be configured via the corresponding direction register XDP9. Each port line can be switched into push-pull or open-drain output mode via the open-drain control register XODP9. The port lines can also be switeched into TTL/CMOS input through the input threshold control register XPICON9 (Section 13.1.2: Input threshold control on page 121).

All port lines can be individually (bit-wise) programmed. The 'bit-addressable' feature is available via specific 'set' and 'clear' registers: XP9SET, XP9CLR, XDP9SET, XDP9CLR, XODP9SET, XODP9CLR, XPICON9SET, and XPICON9CLR.

13.11.1 XPort 9 registers

XP9 register

XP9 (EB80h)				11	10	XBus						Reset value: 0000h			
15	14	13	12			9	8	7	ϵ		4	3			0
XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XPS	Y P9	XP9	XP9	XP9	XP9	XP9	XP9
. 15	. 14	. 13	. 12	. 11	. 10	. 9	. 8	7	. 6	5	. 4	. 3	. 2	. 1	. 0
RW	RW	RW	RW	RW	RW	RW		W	RW						

Table 102. XP9 register description,

Bit	Bit name	
$15-0$	XP9.y	Function

XP9SET regis,ict

XP9SET (Eb82h)						XBus						Reset value: 0000h			
¢	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9
SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET
. 15	. 14	. 13	. 12	. 11	. 10	. 9	. 8	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	

Table 103. XP9SET register description

Bit	Bit name	Function
$15-0$	XP9SET.y	Writing a 1 sets the corresponding bit of the XP9.y register. Writing a 0 has no effect.

XP9CLR register

XP9CLR (EB84h)					XBus							Reset value: 0000h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9	XP9
CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR
. 15	. 14	. 13	. 12	. 11	. 10	. 9	. 8	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Table 104. XP9CLR register description

Bit	Bit name	Function
$15-0$	XP9CLR.y	Writing a 1 clears the corresponding bit of the XP9.y register. IVr ting 10 has no effect.

XDP9 register

XDP9 (EB86h)				XBus									Reset value: 0000h		
15	14	13	12	11	10	9	8	7	6	5	4	3	2		0
XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDi	X',	XDP	XDP	XDP	XDP	XDP	XDP
9.15	9.14	9.13	9.12	9.11	9.10	9.9	9.8	\bigcirc	y. 6	9.5	9.4	9.3	9.2	9.1	9.0
RW	RW	RW	RW	RW	RW	RW	Fiv	W	RW						

Table 105. XDP9 register descriptır.

Bit	Bit name		
		Function $15-0$	XDP9.y
		0: Port line XP9.y is an input (high impedance)	
		1: Port line XP9.y is an output	

XDP9「5ET reyister

KL.PJSET (EB88h)					XBus							Reset value: 0000h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP
9SE	9SE	9SE	9SE	9SE	9SE	9SE	9SE	9SE	9SE	9SE	9SE	9SE	9SE	9SE	9SE
T. 15	T. 14	T. 13	T. 12	T. 11	T. 10	T. 9	T. 8	T. 7	T. 6	T. 5	T. 4	T. 3	T. 2	T. 1	T. 0
W	W	W	W	W	W	W	W	W	w	W	W	W	W	W	W

Table 106. XDP9SET register description

Bit	Bit name	Function
$15-0$	XDP9SET.y	Writing a 1 sets the corresponding bit of the XDP9.y register. Writing a 0 has no effect.

XDP9CLR register

XDP9CLR (EB8Ah)					XBus							Reset value: 0000h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP	XDP
9CL	9CL	9CL	9CL	9CL	9CL	9CL	9CL	9CL	9CL	9CL	9CL	9CL	9CL	9CL	9CL
R. 15	R. 14	R. 13	R. 12	R. 11	R. 10	R. 9	R. 8	R. 7	R. 6	R. 5	R. 4	R. 3	R. 2	R. 1	R. 0
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Table 107. XDP9CLR register description

Bit	Bit name	Function
$15-0$	XDP9CLR.y	Writing a 1 clears the corresponding bit of the XDP9.y register. Writing a 0 has no effect.

XODP9 register

XODP9 (EB8Ch)				XBus									Reset value: 0000 h		
15	14	13	12	11	10	9	8	7	6	5	4	3	2		0
XO	XO	XO	XO	XO	XO	XO	XO	XC	(1)	XO	XO	XO	XO	XO	XO
DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	[PE	DP9						
. 15	. 14	. 13	. 12	. 11	. 10	. 9	\bigcirc		. 6	5	4	. 3	. 2	. 1	. 0
RW	RW	RW	RW	RW	RW	R N	Riv	RW							

Table 108. XODP9 register Lescription

Bit	Bit name		Function
$15-0$	XCDr's.y	Port open-drain control register XODP9 bit y 0: Port line XP9.y output driver in push-pull mode 1: Port line XP9.y output driver in open-drain mode	

XODPSSET register

XODP9SET (EB8Eh)					XBus							Reset value: 0000h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
XO	XO	XO	XO	XO	XO	XO	XO	XO	XO	XO	XO	XO	XO	XO	XO
DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9
SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET
. 15	. 14	. 13	. 12	. 11	. 10	. 9	. 8	. 7	. 6	. 5	. 4	. 3	2	. 1	. 0
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Table 109. XODP9SET register description

Bit	Bit name	Function
$15-0$	XODP9SET.y	Writing a 1 sets the corresponding bit of the XODP9.y register. Writing a 0 has no effect.

XODP9CLR register

XODP9CLR (EB90h)					XBus							Reset value: 0000h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
XO	XO	XO	XO	XO	XO	XO	XO	XO	XO	XO	XO	XO	XO	XO	XO
DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9	DP9
CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR	CLR
. 15	. 14	. 13	. 12	. 11	. 10	. 9	. 8	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Table 110. XODP9CLR register description

Bit	Bit name	Function
$15-0$	XODP9CLR.y	Writing a 1 clears the corresponding bit of the XODP9.y renis.or. Writing a 0 has no effect.

13.12 XPort 10

XPort 10 is enabled by setting the XPEN and XPORT1 $E \cdot V$ XPORT9EN bits of the SYSCON and XPERCON registers respectively. C 7 \#If XBus interface, the register are not bit-addressable. This 16-bit input port can only 1 ea data. There is no output latch and no direction register. Data written to XP10 aie : 10 ot.

13.12.1 XPort 10 registers

XP10 register

Table 111. XP10 register description

Bit	Bit name	Function
$15-0$	XP10.y	Port data register XP10 bit y

13.12.2 Alternate functions of XPort 10

Each line of XPort 10 is also connected to a multiplexer of the ADC. All port lines (XP10.15 to XP10.0) can accept analog signals (AN31 to AN16) that can be converted by the ADC. No special programming is required for pins that are used as analog inputs. Table 112 summarizes the alternate functions of XPort 10.

Table 112. XPort 10 alternate functions

Figure 60. XPort 10 l (9) and alternate functions

XPort 10 pins have a special port structure (see Figure 61) because the port is input only and because the analog input channels are directly connected to the pins rather than to the input latches.

Figure 61. Block diagram of an XPort 10 pin

13.12.3 XPort 10 analog inputs disturb protection

The XP10DIDIS, XP10DIDISSET, and XP10DIDICC'-f, iegisters are provided for additional disturb protection support on the analog inputs. Snce one bit of any of the registers is set, the corresponding pin can no longer be used en yeneral purpose input.

XP10DIDIS register

XP10DIDIS (EBD2h)						XBus						Reset value: 0000h			
15	14	13	12	1			8	7	6	5	4	3	2	1	0
XP1	XP1	XP1	λ ' P	XP1											
ODI	ODI	OLI	UDI	ODI											
DIS	Lis	2!	DIS												
. 15	14	. 13	. 12	.11	. 10	. 9	. 8	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
N	W	RW			WW	RW	RW	WW	RW	WW	RW	RW	RW	RW	RW

Table 113. XP10DIDIS register description

Bit	Bit name	Function
15-0	XP10DIDIS.y	XPort 10 digital disable register bit y 0: Port line XP10.y digital input is enabled (Schmitt trigger enabled) 1: Port line XP10.y digital input is disabled (Schmitt trigger disabled, necessary for input leakage current reduction).

XP10DIDISSET register

XP10DIDISSET (EBD4h)					XBus							Reset value: 0000h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1
ODI	ODI	ODI	ODI	ODI	ODI	ODI	ODI	ODI	ODI	ODI	ODI	ODI	ODI	ODI	ODI
DIS	DIS	DIS	DIS	DIS	DIS	DIS	DIS	DIS	DIS	DIS	DIS	DIS	DIS	DIS	DIS
SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET	SET
. 15	. 14	. 13	. 12	. 11	. 10	. 9	. 8	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Table 114. XP10DIDISSET register description

Bit	Bit name	Function
15-0	XP10DIDISSET.y	Writing a 1 sets the corresponding bit of the XP10DIDIS.' ee ster. Writing a 0 has no effect.

XP10DIDISCLR register

XP10DIDISCLR (EBD6h)												Reset value: 0000h			
15	14	13	12	11	10	9	8			5	4	3	2	1	0
XP1	XP1	XP1	XP1	XP1	XP1	XP1	XP1	疒	XP1						
ODI	ODI	ODI	ODI	ODI	ODI	0「1	(DI)	ODI							
DIS	DIS	DIS	DIS	DIS	DIS	D. 5	JIS	DIS							
CLR	CLR	CLR	CLR	CLR	CLR	OLR	CLR								
. 15	. 14	. 13	. 12	. 11	17	. 9	. 8		. 6	. 5	. 4	. 3	. 2	. 1	. 0
W	W	W	W	n	W	W		W	W	W	W	W	W	W	W

Table 115. XP 1 그니IISCLR register description

Bit	Function	
$15,-2$	X? 10DIDISCLR.y	Writing a 1 clears the corresponding bit of the XP10DIDIS.y register. Writing a 0 has no effect.

14 Analog-to-digital converter (ADC)

A 10-bit ADC with 16+16 multiplexed input channels and a sample and hold circuit is integrated on-chip. An automatic self-calibration adjusts the ADC module to process parameter variations at each reset event. The sample time (for loading the capacitors) and the conversion time is programmable and can be adjusted to the external circuitry.

The ADC input bandwidth is limited by the achievable accuracy as follows: If a maximum error of 0.5 LSB (2 mV) impacts the global TUE (TUE also depends on other causes) in the worst case of temperature and process, the maximum frequency for a sine wave analog signal is around 7.5 kHz . To reduce the effect of the input signal variation on the accuracy to 0.05 LSB , the maximum input frequency of the sine wave should be reduced to 800 Hz .

If static signal is applied during the sampling phase, the series resistance shoulc ror $b t$ greater than $20 \mathrm{k} \Omega$ (takingeventual input leakage into account). It is suggested, ,o' to connect any capacitance on analog input pins, to reduce the effect of charg \subseteq 0.rtitioning (and consequent voltage drop error) between the external and the inter ia' ca.pacitance. If an RC filter is necessary the external capacitance must be greater thal ic iIF to minimize the accuracy impact.

Overrun error detection/protection is controlled by the ALL.AT register. Either, an interrupt request is generated when the result of a previous crsiversion has not been read from the result register at the time the next conversion is nonn!?te, or, the next conversion is suspended until the previous result has been read. For applications which require less than 16 analog input channels, the remainir. ¢ с а пniel inputs can be used as digital input port pins. The ADC of the ST10F296E suipor :s different conversion modes:

- Single channel single conversion: The analog level of the selected channel is sampled once and convorted. The result of the conversion is stored in the ADDAT register.
- Single channe. 'continuous conversion: The analog level of the selected channel is repeatedly scriried and converted. The result of the conversion is stored in the ADDAT register
- A r^{+}」 ssan single conversion: The analog level of the selected channels are sampled once and converted. After each conversion the result is stored in the ADDAT register. The data can be transferred to the RAM by interrupt software management or using the PEC data transfer.
- Auto scan continuous conversion: The analog level of the selected channels are repeatedly sampled and converted. The result of the conversion is stored in the ADDAT register. The data can be transferred to the RAM by interrupt software management or using the PEC data transfer.
- Wait for ADDAT read mode: The ADWR bit of the ADCON control register must be activated to avoid overwriting the result of a current conversion by the next one, when using continuous modes. This is because until the ADDAT register is read, the new result is stored in a temporary buffer and the conversion is on hold.
- Channel injection mode: When using continuous modes, a selected channel can be converted between two of the continuous conversions without changing the current operating mode. The 10-bit data of the conversions are stored in the ADRES field of the ADDAT2 register. The current continuous mode remains active after the single conversion is completed.

14.1 Mode selection and operation

The analog input channels AN0 to AN15 are alternate functions of Port 5 which is a 16-bit input-only port (see Section 13.7.2: Alternate functions of port 5 on page 150). Port 5 lines may either be used as analog or digital inputs. No special action is required to configure the lines as analog inputs. An additional register P5DIDIS can be used to protect the ADC input analog section from disabling the digital input section.

The analog input channels AN16 to AN31 are alternate functions of XPort 10 which is also a 16 -bit input-only port (see Section 13.12.2: Alternate functions of XPort 10 on page 173). XPort 10 lines may also be used as either analog or digital inputs and the additional XP10DIDIS register can be used to protect the ADC input analog section from disabling the digital input section.

To configure XPort 10 lines as analog inputs, it is first recommended to set register XP10DIDIS. Next, bit ADCMUX of register XMISC must be set. This ensures th at alt Enalog input channels of Por t5 are disabled and that the analog signal to the ADC is previded through the XPort 10 pins.
Note: \quad Both the XMISC and XP10DIDIS registers can be accessed only a te, lie XMISCEN and XPEN bits of the XPERCON and SYSCON registers have be or stt.

Figure 62. ADC block diagram

Table 116. ADC programming at $\mathrm{f}_{\mathrm{CPU}}=64 \mathrm{MHz}$

ADCTC	ADSTC	Sample	Comparison	Extra	Total convertion
00	00	$0.94 \mu \mathrm{~s}$	$1.88 \mu \mathrm{~s}$	$0.22 \mu \mathrm{~s}$	$3.03 \mu \mathrm{~s}$
00	01	$1.09 \mu \mathrm{~s}$	$2.19 \mu \mathrm{~s}$	$0.13 \mu \mathrm{~s}$	$3.41 \mu \mathrm{~s}$
00	10	$1.56 \mu \mathrm{~s}$	$2.19 \mu \mathrm{~s}$	$0.41 \mu \mathrm{~s}$	$4.16 \mu \mathrm{~s}$
00	11	$3.13 \mu \mathrm{~s}$	$2.19 \mu \mathrm{~s}$	$0.34 \mu \mathrm{~s}$	$5.66 \mu \mathrm{~s}$
11	00	$1.88 \mu \mathrm{~s}$	$3.75 \mu \mathrm{~s}$	$0.41 \mu \mathrm{~s}$	$6.03 \mu \mathrm{~s}$
11	01	$2.19 \mu \mathrm{~s}$	$4.38 \mu \mathrm{~s}$	$0.22 \mu \mathrm{~s}$	$6.78 \mu \mathrm{~s}$
11	10	$3.13 \mu \mathrm{~s}$	$4.38 \mu \mathrm{~s}$	$0.78 \mu \mathrm{~s}$	$8.28 \mu \mathrm{~s}$
11	11	$6.25 \mu \mathrm{~s}$	$4.38 \mu \mathrm{~s}$	$0.41 \mu \mathrm{~s}$	11.28 s
10	00	$3.75 \mu \mathrm{~s}$	$7.50 \mu \mathrm{~s}$	$0.78 \mu \mathrm{~s}$	$12.73: \mathrm{s}$
10	01	$4.38 \mu \mathrm{~s}$	$8.75 \mu \mathrm{~s}$	$0.41 \mu \mathrm{~s}$	$13.53 \mu \mathrm{~s}$
10	10	$6.25 \mu \mathrm{~s}$	$8.75 \mu \mathrm{~s}$	$1.53 \mu \mathrm{~s}$	$16.53 \mu \mathrm{~s}$
10	11	$12.5 \mu \mathrm{~s}$	$8.75 \mu \mathrm{~s}$	1.28 us	$22.53 \mu \mathrm{~s}$

Note: Total conversion time is compatible with the formula wliy is the ST10F280, but, the meaning of the bit fields ADCTC and ADSTC is no: The minimum conversion time is 388 TCL, which at 40 MHz CPU frequency criire'sr onds to 4.85μ s (see the ST10F280 datasheet). ST10F296E devices can targ t c raximum CPU frequency of 64 MHz . This means that the minimum conversion time is around $3 \mu \mathrm{~s}$.

14.2 Calibration

A full calibration sequ't nje is performed after a reset. It lasts 40.629 ± 1 CPU clock cycles. During this time, $\mathrm{t}^{\prime} \in$ 'ousy flag, ADBSY, is set to indicate the operation. It compensates the capacitanc.e mismatch, so, the calibration procedure does not need to be updated during normárseiation.

N(1) io verify when calibration is over, and the module can start a convertion.
At the end of the calibration, both the ADCIR and ADEIR flags are set, because the calibration process repeatedly writes spurious conversion results inside the ADDAT register. Consequently, before starting a conversion, the application performs a dummy read of the ADDAT register and clears the two flags in the ADC initialization routine.
If the ADDAT register is not read before starting the first conversion, and if a 'wait for read mode' is entered (by setting the ADWR bit), the ADC is stacked waiting for the register ADDAT read. This is because the result of the current conversion cannot be immediately written inside the ADDAT register which contains the results of the calibration.

14.3 XTimer module

The XTimer module is a 16-bit up/down counter with a 4-bit exponential scaler dedicated to the channel injection mode of the ADC. This mode injects channel into a running sequence without disturbing it. The PEC stores the conversion results in the memory without entering and exiting interrupt routines for each data transfer.
A channel injection can be triggered by an event on the capture/compare CC31 (Port P7.7) of the CAPCOM2 unit by externally connecting the dedicated output XADCINJ of the XTimer to the input P7.7/CC31. The ADC exclusively converts Port 5 or XPort 10 inputs. If one ' y ' channel has to be used continuously in injection mode, it must be externally connected by hardware to Port5.y and XPort10.y inputs.
The XTimer peripheral is enabled by setting the XPEN bit of the SYSCON register and bit 10 of the XPERCON register.

14.3.1 Main features

Main features include:

- 16-bit linear timer with 4-bit exponential prescaler
- Counting between 16-bit 'start value' and 16-bit 'end value'
- Counting period between four cycles and 2^{33} vy! es (62.5 ns and 134 s using 64 MHz CPU clock)
- 1 trigger output (XADCINJ)

Programmable functions include:

- Up/down counting
- Reload enable
- Continue/stop modés

Clock

The XTCVR register clock is the prescaler output．The prescaler allows the basic register frequency to be divided，therebyoffering a wide range of counting periods，from 2^{2} to 2^{33} cycles．

Registers

The XTCVR register input is linked to several sources：
－XTSVR register（start value）for reload when the period is finished，or for load when the timer is starting．
－Incrementer output when the＇up＇mode is selected
－Decrementer output when the＇down＇mode is selected
－Selection between sources is made through the XTCR control register．
By setting the TEN bit of the XTCR register to 1 when starting the timer，XTC＇v＇i is loaded with the XTSVR value on the first rising edge of the counting clock（XB＿C．Lı ${ }^{\prime}$ ㄷ．Figure 63）．

The XTCVR register output is continuously compared to the $X T E V F_{1}=$ sister to detect the end of the counting period．When the registers are equal，se er．ll things are done depending on the XTCR control register content：
－The output XADCINJ trigger event is generated cc i＇iti nnally depending on the TOE control bit．
－XTCVR is loaded with XTSVR，or it stops，ur i．continues to count（see Table 117： Different counting modes on page 1ママリ．
XTEVR，XTSVR and all the XTCR bit：eycept TEN must not be modified while the timer is counting（while XTCR．TEN＝1）．Th．e timer can be configured only when it is stopped（TEN＝ 0 ）．If this rule is not respectf，i．tiner behavior is not guaranteed．When programming the timer，the XTEVR，XTSI＇R ar，${ }^{\prime}$ XTCR bits（except TEN）can be modified，with TEN $=0$ ．The timer is started by mo lifying the TEN bit．To stop the timer，the TEN bit is modified from 1 to 0 ．To avoid any r， $\boldsymbol{\nu}_{\text {ill }}, \mathrm{ns}$ ，it is recommended to modify the XTCR register in two steps：First， by writing thr：s．s value without setting the TEN bit and second，by re－writing the new value with tra（＇）$I E N$ bit set．

Tabic 117．Different counting modes

TLE	TCS	TCVR（n）＝TEVR	TUD	TEN	TCVR（ $\mathrm{n}+1$ ）	comments
x	x	x	x	0	TCVR（ n ）	Timer disable
x	0	1	x	1		Stop
x	x	0	0		TCVR（n）－1	Decrement
0	1	1				Decrement（continue）
x	x	0	1		TCVR（n）＋1	Increment
0	1	1				Increment（continue）
1	1	1	x		TSVR	Load

Note：\quad Setting the TEN bit to 1 loads the XTCVR register with the TSVR value．If the＇down＇counter mode is selected and XTSVR is less then XTEVR，the XTCVR is loaded with the XTSVR value，but，the timer does not start to count（the current value is hold）．The same behavior occurs in up counter mode（TUD＝1）if TSVR＞TEVR．

Timer output

The trigger output, XADCINJ, is generated when the current value of the timer (XTCVR) matches the end value stored in the XTEVR register and when the output enable bit is set (XTCR.TOE = 1). If the output enable bit is reset, no event is generated regardless of the timer status (the XADINJ pin is kept at high impedance state).

The XADCINJ output trigger event is a positive pulse of 12 CPU clock cycles width (187 ns @64 MHz). To generate an ADC channel injection it has to be externally connected to the input P7.7/CC31 (CAPCOM2 capture/compare).
The ADC exclusively converts Port 5 or XPort 10 inputs. If one ' y ' channel has to be used continuously in injection mode, it must be externally connected by hardware to Port5.y and XPort10.y inputs.

15 Serial channels

Serial communication with other microcontrollers, microprocessors, terminals or external peripheral components is provided by up to four serial interfaces: Two asynchronous/synchronous serial channels (ASC0 and ASC1) and two high-speed synchronous serial channels (SSC0 and SSC1). Dedicated baud rate generators set up all standard baud rates without needing to tune the oscillator. For transmission, reception and erroneous reception, separate interrupt vectors are provided for ASC0 and SSC0 serial channels. A more complex mechanism of interrupt source multiplexing is implemented for ASC1 and SSC1 (XBus mapped).

15.1 Asynchronous/synchronous serial interface (ASC0)

The asynchronous/synchronous serial interfaces (ASCO) provides serial ccๆ murication between the ST10F296E and other microcontrollers, microprocessors vi $^{t} \mathrm{x}^{+}$ernal peripherals.

15.1.1 ASCO in asynchronous mode

In asynchronous mode, 8- or 9-bit data transfer, pirio gtieration and the number of stop bits can be selected. Parity framing and overrun eirur detection is provided to increase the reliability of data transfers. Transmission and roseption of data is double-buffered. Fullduplex communication up to 2 Mbaur's (cl $6<\mathrm{MHz}$ of $\mathrm{f}_{\mathrm{CPU}}$) is supported in this mode. For reference, see Figure 64.

Figure 64. Asynchronous mode of serial channel ASCO

15.1.2 Asynchronous inade baud rates

For asynchroncui operation, the baud rate generator provides a clock with 16 times the rate of the es ailisited baud rate. Every received bit is sampled at the 7th, 8th and 9th cycle of this clock. The baud rate for asynchronous operations of serial channel ASC0 and the :evai ed reload value for a given baud rate can be determined by the following formulae:
$3_{\text {Async }}=\mathrm{f}_{\mathrm{CPU}} / 16 \times[2+(\mathrm{SOBRS})] \times[(\mathrm{SOBRL})+1]$
SOBRL $=\left(\mathrm{f}_{\text {CPU }} / 16 \times[2+(\mathrm{SOBRS})] \times \mathrm{B}_{\text {Async }}\right)-1$
(SOBRL) represents the content of the reload register, taken as an unsigned 13-bit integer. (SOBRS) represents the value of the SOBRS bit (0 or 1), taken as an integer.

Using the above equations, the maximum baud rate can be calculated for any given clock speed. Baud rate versus the reload register value (for both SOBRS = 0 and SOBRS $=1$) is described in Table 118 and Table 119 for a CPU clock frequency equal to 40 MHz and 64 MHz respectively.

Table 118. Commonly used baud rates by reload value and deviation error ($\mathrm{f}_{\mathrm{CPU}}=40 \mathrm{MHz}$)

SOBRS $=0, \mathrm{f}_{\text {CPU }}=40 \mathrm{MHz}$			SOBRS $=1, \mathrm{f}_{\text {CPU }}=40 \mathrm{MHz}$		
Baud rate (baud)	Deviation error ${ }^{(1)}$ (\%)	Reload value (hex)	Baud rate (baud)	Deviation error ${ }^{(1)}$ (\%)	Reload value (hex)
1250000	0.0/0.0	0000/0000	833333	0.0/0.0	0000/0000
112000	1.5/-7.0	000A/000B	112000	6.3/-7.0	0006/0007
56000	1.5/-3.0	0015/0016	56000	6.3/-0.8	000D/000E
38400	1.7/-1.4	001F/0020	38400	3.3/-1.4	0014/0015
19200	0.2/-1.4	0040/0041	19200	0.9/-1.4	002Aルフ2B
9600	0.2/-0.6	0081/0082	9600	0.9/-0.2	0755/5056
4800	0.2/-0.2	0103/0104	4800	0.4/-0.2	J0AC/00AD
2400	0.2/0.0	0207/0208	2400	0.1/-n:	015A/015B
1200	0.1/0.0	0410/0411	1200	0. $1 /-\mathrm{u} .1$	02B5/02B6
600	0.0/0.0	0822/0823	600	0.1/0.0	056B/056C
300	0.0/0.0	1045/1046	30 ')	0.0/0.0	0AD8/0AD9
153	0.0/0.0	1FE8/1FE9	102	0.0/0.0	1FE8/1FE9

1. The deviation errors given above are round u° i 1) a ciu deviation errors use a baud rate crystal (providing a multiple of the ASC0 sampling frequenc!).

Table 119. Commonly used bacid rates by reload value and deviation error
($\mathrm{f}_{\mathrm{CPU}}=64 \mathrm{MH} 7$. .)

SOBRS $=0, \mathrm{f}_{\text {GPL }}=64 \mathrm{MHz}$			SOBRS $=1, \mathrm{f}_{\text {CPU }}=64 \mathrm{MHz}$		
Baud rate (baud)	De'riation error ${ }^{(1)}$ (\%)	Reload value (hex)	Baud rate (baud)	Deviation error ${ }^{(1)}$ (\%)	Reload value (hex)
$2000 \div 0$	0.0/0.0	0000/0000	1333333	0.0/0.0	0000/0000
112000	1.5/-7.0	0010/0011	112000	6.3/-7.0	000A/000B
56000	1.5/-3.0	0022/0023	56000	6.3/-0.8	0016/0017
38400	1.7/-1.4	0033/0034	38400	3.3/-1.4	0021/0022
19200	0.2/-1.4	0067/0068	19200	0.9/-1.4	0044/0045
9600	0.2/-0.6	00CF/00D0	9600	0.9/-0.2	0089/008A
4800	0.2/-0.2	019F/01A0	4800	0.4/-0.2	0114/0115
2400	0.2/0.0	0340/0341	2400	0.1/-0.2	022A/015B
1200	0.1/0.0	0681/0682	1200	0.1/-0.1	0456/0457
600	0.0/0.0	0D04/0D05	600	0.1/0.0	08AD/08AE
300	0.0/0.0	1A09/1A0A	300	0.0/0.0	115B/115C
245	0.0/0.0	1FE2/1FE3	163	0.0/0.0	1FF2/1FF3

1. The deviation errors given above are rounded. To avoid deviation errors use a baud rate crystal (providing a multiple of the ASC0 sampling frequency).

15.1.3 ASCO in synchronous mode

In synchronous mode, data are transmitted or received synchronously to a shift clock which is generated by the ST10F296E. Half-duplex communication up to 8 Mbaud (at 40 MHz of $\mathrm{f}_{\mathrm{CPU}}$) is possible in this mode. See Figure 65.

Figure 65. Synchronous mode of serial channel ASCO

15.1. Synchronous mode baud rates

For synchronous operation, the baud rate generator provides a clock with four times the rate of the established baud rate. The baud rate for synchronous operation of serial channel ASCO can be determined by the following formulae:
$B_{\text {Sync }}=\mathrm{f}_{\mathrm{CPU}} / 4 \times[2+(\mathrm{SOBRS})] \times[($ SOBRL $)+1]$
SOBRL $=\left(\mathrm{f}_{\mathrm{CPU}} / 4 \times[2+(\mathrm{SOBRS})] \times \mathrm{B}_{\mathrm{Sync}}\right)-1$
(SOBRL) represents the content of the reload register, taken as an unsigned 13-bit integer. (SOBRS) represents the value of the SOBRS bit (0 or 1), taken as an integer.
Using the above equations, the maximum baud rate can be calculated for any clock speed as given in Table 121 and Table 120 for a CPU clock frequency equal to 40 MHz and 64 MHz respectively.

Table 120. Commonly used baud rates by reload value and deviation error ($\mathrm{f}_{\mathrm{CPU}}=40 \mathrm{MHz}$)

SOBRS $=0, \mathrm{f}_{\text {CPU }}=40 \mathrm{MHz}$			SOBRS $=1, \mathrm{f}_{\text {CPU }}=40 \mathrm{MHz}$		
Baud rate (baud)	Deviation error ${ }^{(1)}$ (\%)	Reload value (hex)	Baud rate (baud)	Deviation error ${ }^{(1)}$ (\%)	Reload value (hex)
5000000	0.0/0.0	0000/0000	3333333	0.0/0.0	0000/0000
112000	1.5/-0.8	002B/002C	112000	2.6/-0.8	001C/001D
56000	0.3/-0.8	0058/0059	56000	0.9/-0.8	003A/003B
38400	0.2/-0.6	0081/0082	38400	0.9/-0.2	0055/0056
19200	0.2/-0.2	0103/0104	19200	0.4/-0.2	00AC/レつAD
9600	0.2/0.0	0207/0208	9600	0.1/-0.2	2, 5 ¢ $/ 1515$
4800	0.1/0.0	0410/0411	4800	0.1/-0.1	J2B5/02B6
2400	0.0/0.0	0822/0823	2400	$0.1 / \mathrm{n}$	056B/056C
1200	0.0/0.0	1045/1046	1200	$0.9 / 0.0$	0AD8/0AD9
900	0.0/0.0	15B2/15B3	600	0.0/0.0	15B2/15B3
612	0.0/0.0	1FE8/1FE9	481	0.0/0.0	1FFD/1FFE

1. The deviation errors given above are rounded. To avnid de iátion errors use a baud rate crystal (providing a multiple of the ASCO sampling frequency).

Table 121. Commonly used baud rate; oy reload value and deviation errors (f ${ }_{\mathrm{CPU}}=64 \mathrm{MHz}$)

SOBRS $=0, \mathrm{f}_{\text {CPL }}=04 \mathrm{n} \mathrm{Hz}$			SOBRS $=1, \mathrm{f}_{\text {CPU }}=64 \mathrm{MHz}$		
Baud rate (baud)	Deviatio 1 erior ${ }^{(1)}$ (\%)	Reload value (hex)	Baud rate (baud)	Deviation error ${ }^{(1)}$ (\%)	Reload value (hex)
8000000	0.0/0.0	0000/0000	5333333	0.0/0.0	0000/0000
112 ?	0.6/-0.8	0046/0047	112000	1.3/-0.8	002E/002F
56000	0.6/-0.1	008D/008E	56000	0.3/-0.8	005E/005F
38400	0.2/-0.3	00CF/00D0	38400	0.6/0.1	0089/008A
19200	0.2/-0.1	019F/01A0	19200	0.3/-0.1	0114/0115
9600	0.0/-0.1	0340/0341	9600	0.1/-0.1	022A/022B
- 4800	0.0/0.0	0681/0682	4800	0.0/-0.1	0456/0457
2400	0.0/0.0	0D04/0D05	2400	0.0/0.0	08AD/08AE
1200	0.0/0.0	1A09/1A0A	1200	0.0/0.0	115B/115C
977	0.0/0.0	1FFB/1FFC	900	0.0/0.0	1724/1725
			652	0.0/0.0	1FF2/1FF3

1. The deviation errors given above are rounded. To avoid deviation errors use a baud rate crystal (providing a multiple of the ASCO sampling frequency).

15.2 Asynchronous/synchronous serial interface (ASC1)

The XBus asynchronous/synchronous serial interfaces (ASC1) provides the same features as ASC0. Baud rate formulae are the same. The main differences are the register interface and interrupt management.

15.3 High speed synchronous serial interface (SSC0)

The high-speed synchronous serial interface, SSC0, provides flexible high-speed serial communication between the ST10F296E and other microcontrollers, microprocessors or external peripherals.

The SSC0 supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC0 itself (master mode) or be received foo n ar, external master (slave mode). Data width, shift direction, clock polarity and ph₹, programmable.
The SSC0 allows communication with SPI-compatible devices. Tran $\simeq n$ iss, ion and reception of data is double-buffered. A 16-bit baud rate generator provid s. 'nc SSCO with a separate serial clock signal. The SSC0 serial channel has its own dedicatea 16-bit baud rate generator with 16-bit reload capability, allowing the baud rara to be generated independently from the timers.

Figure 66. Synchronous serial channel SOC, ŋlock diagram

15.3.1 Baud rate generation

The baud rate generator is clocked by $\mathrm{f}_{\mathrm{CPU}} / 2$. The timer counts downwards and can be started or stopped through the global enable bit SSCEN in the SSCCONO register. The SSCBRO is a dual-function register for baud rate generation and reloading. Reading SSCBR0, while the SSC0 is enabled, returns the content of the timer. Reading SSCBR0, while the SSC0 is disabled, returns the programmed reload value. In this mode the desired reload value can be written to SSCBRO.

Note: \quad Never write to SSCBRO while the SSCO is enabled
The formulae below calculate the resulting baud rate for a given reload value and the required reload value for a given baud rate:

Baudrate $_{\text {SSC }}=\mathrm{f}_{\mathrm{CPU}} / 2 \times[(S S C B R)+1]$
SSCBR $=\left(\mathrm{f}_{\mathrm{CPU}} / 2 \times\right.$ Baudrate $\left._{\text {SSC }}\right)-1$
Where (SSCBR) represents the content of the reload register, taken as an wsigned 16-bit integer. Table 122 and Table 123 list some possible baud rates agains ${ }^{\dagger}{ }^{i} \in r$ required reload values and the resulting bit times for 40 MHz and 64 MHz CPU cloc'N.こenectively. Maximum baud rate is limited to 8 Mbaud.

Table 122. Synchronous baud rate and reload valt:2:(${ }^{\text {f } \mathrm{CPU}}=40 \mathrm{MHz}$)

Baud rate	Qictime	Reload value
Reserved	-	0000h
Can be used only with $\mathrm{f}_{\mathrm{CPU}}=32 \mathrm{MHz}$ (0. low 3 ()	- ${ }^{-1}$	0001h
6.6 Mbaud	150 ns	0002h
5 Mbaud	200 ns	0003h
2.5 Mbaud	400 ns	0007h
1 Mbaud	$1 \mu \mathrm{~s}$	0013h
$100 \mathrm{~Kb}=: \mathrm{ch}^{\prime}$	$10 \mu \mathrm{~s}$	00C7h
10 Kbald	$100 \mu \mathrm{~s}$	07CFh
Frraud	1 ms	4E1Fh
306 baud	3.26 ms	FF4Eh

Table 123. Synchronous baud rate and reload values ($\mathrm{f}_{\mathrm{CPU}}=64 \mathrm{MHz}$)

Baud rate	Bit time	Reload value
Reserved	-	0000 h
Can be used only with $\mathrm{f}_{\mathrm{CPU}}=32 \mathrm{MHz}$ (or lower)	-	0001 h
Can be used only with $\mathrm{f}_{\mathrm{CPU}}=48 \mathrm{MHz}$ (or lower)	-	0002 h
8 Mbaud	125 ns	0003 h
4 Mbaud	250 ns	0007 h
1 Mbaud	$1 \mu \mathrm{~s}$	001 Fh
100 Kbaud	$10 \mu \mathrm{~s}$	013 Fh
10 Kbaud	$100 \mu \mathrm{~s}$	007 Fh
1 Kbaud	1 ms	70 F
489 baud	2.04 ms	$7-9 \mathrm{Fh}$

15.4 High speed synchronous serial interfare (SSC1)

The XBus high-speed synchronous serial interface, $\mathfrak{j} 5(1$, provides the same features as the SSC0. Baud rate formulae are the same. Th $=17 \mathrm{lim}$ differences are the register interface and interrupt management.

$16 \quad I^{2} C$ interface

The integrated $\mathrm{I}^{2} \mathrm{C}$ bus module handles the transmission and reception of frames over the two-line SDA/SCL in accordance with the $I^{2} \mathrm{C}$ bus specification. The $I^{2} \mathrm{C}$ module can operate in slave mode, in master mode or in multi-master mode. It can receive and transmit data using 7-bit or 10-bit addressing. Data can be transferred at speeds up to $400 \mathrm{kbit} / \mathrm{sec}$ (both standard and fast $I^{2} \mathrm{C}$ bus modes are supported).

The module can generate three different types of interrupt:

- Requests related to bus events, such as start or stop events, arbitration lost, etc.
- Requests related to data transmission
- Requests related to data reception

These requests are issued to the interrupt controller by three different lines, anc a a ntified as error, transmit, and receive interrupt lines.
When the ${ }^{2} \mathrm{C}$ module is enabled by setting the XI2CEN bit in the XPE $\{C$ Cid register, pins P4.4 and P4.7 (SCL and SDA respectively mapped as alternate fun tic ns) are automatically configured as bidirectional open-drain. The value of the exter ? a! pu!l-up resistor depends on the application. P4, DP4 and ODP4 cannot influence the pin configuration.
When the $\mathrm{I}^{2} \mathrm{C}$ cell is disabled (clearing the XI2CEN' biti, pins P 4.4 and P 4.7 are standard I / O controlled by P4, DP4 and ODP4.

16.1 $\quad I^{2} C$ bus speed selection

The speed of the $I^{2} \mathrm{C}$ interfaco riay be selected between standard mode $(0-100 \mathrm{kHz})$ and fast $I^{2} \mathrm{C}$ mode ($100-400$ 'r I ') ihe selection is provided through the FM/SM bit in the clock control register 1 (CC 21).
Once bus mode is sslected, the frequency of the serial clock line can be defined by setting prescaler bit © C u to CC11 (CCR1 and CCR2). Different formulae are used according to the mode se.ec'ed:

- Standard mode (FM/SM = 0): $\mathrm{F}_{\mathrm{SCL}} \leq 100 \mathrm{kHz}$
$F_{\mathrm{SCL}}=\mathrm{F}_{\mathrm{CPU}} /(2 \times[\mathrm{CC} 11 \ldots \mathrm{CC} 0]+7)$
- Fast mode (FM/SM = 1): $\mathrm{F}_{\text {SCL }}>100 \mathrm{kHz}$

$$
\mathrm{F}_{\mathrm{SCL}}=\mathrm{F}_{\mathrm{CPU}} /(3 \times[\mathrm{CC} 11 \ldots \mathrm{CC} 0]+9)
$$

17 CAN modules

The two integrated CAN modules (CAN1 and CAN2) are identical and handle the autonomous transmission and reception of CAN frames according to the CAN specification V2.0 part B (active). It is based on the C-CAN specification.

Each on-chip CAN module can receive and transmit standard frames with 11-bit identifiers and extended frames with 29-bit identifiers.

Because of duplication of the CAN controllers, the following adjustments must be considered:

- Use the same internal register addresses for both CAN controllers, but, with base addresses differing in address bit A8. Also, use a separate chip select for each C.AN module. Refer to Section 4: Memory organization on page 33.
- The CAN1 transmit line (CAN1_TxD) is the alternate function of the PoriP4 5 pin and the receive line (CAN1_RxD) is the alternate function of the Port F 1.5 म in $^{\mathrm{I}}$.
- The CAN2 transmit line (CAN2_TxD) is the alternate function rit.。Port P4.7 pin and the receive line (CAN2_RxD) is the alternate function of unt ? 0_{1} : P4.4 pin.
- The interrupt request lines of the CAN1 and CAN2 mndults are connected to the XBus interrupt lines with other XPeripherals sharing the o, r rectors.
- The CAN modules must be selected with the $\because, N \times N$ bit of the XPERCON register before the XPEN bit of the SYSCON register is set.
- The reset default configuration is $\cdots+$ Ni cilabled, CAN2 disabled.

17.1 CAN module memery mapping

17.1.1 CAN1

Address ran'رє $\mathbf{C N}^{\prime}$ ' $\mathrm{EFOOh}-00$ 'EFFFh is reserved for CAN1 module access. CAN1 is enable , tiby setilng the XPEN bit of the SYSCON register and by setting bit 0 of the XPERCON register. Accesses to the CAN module use demultiplexed addresses and a 16hit dıta bus (byte accesses are possible). Two wait states give an access time of 62.5 ns at $3 \therefore$ MHz CPU clock. No tri-state wait states are used.

17.1.! CAN2

Address range 00'EE00h - 00'EEFFh is reserved for CAN2 module access. CAN2 is enabled by setting the XPEN bit of the SYSCON register and by setting bit 1 of the XPERCON register. Accesses to the CAN module use demultiplexed addresses and a 16bit data bus (byte accesses are possible). Two wait states give an access time of 62.5 ns at 64 MHz CPU clock. No tri-state wait states are used.

Note: If one or both CAN modules is used, Port 4 cannot be programmed to output all eight segment address lines. Thus, only four segment address lines can be used, reducing the external memory space to 5 Mbytes (1 Mbyte per $\overline{C S}$ line).

17.2 Configuration support

Both CAN controllers can work on the same CAN bus and support up to 64 message objects. In this configuration, both receive and transmit signals are linked together when using the same CAN transceiver. This configuration is particularly supported by providing open-drain outputs for the CAN1_Txd and CAN2_TxD signals. The open-drain function is controlled with the ODP4 register for Port P4. In this way it is possible to connect pins P4.4 with P4.5 (receive lines) and pins P4.6 with P4.7 (transmit lines configured to be opendrain).

The user is also allowed to map both CAN modules internally on the same pins, P4.5 and P4.6. In this way, pins P4.4 and P4.7 may be used either as general purpose I/O lines or for $I^{2} \mathrm{C}$ interface. This is done by setting the CANPAR bit of the XMISC register. To access this register, the XMISCEN and XPEN bits of the XPERCON and SYSCON registers respectively must be set.

Note: \quad CAN parallel mode is effective only if both CAN1 and CAN2 are enabled by ietting bits CAN1EN and CAN2EN in the XPERCON register. If CAN1 is disabled. $\because A N \prime$ remains on P4.4/P4.7 even if bit CANPAR is set.

17.3 Clock prescaling

The XMISC register also provides a bit (CANCK?) $\begin{array}{r}\text {,ith } \\ \text { is }\end{array}$ driving both the CAN modules. Due to archite ciu: \boldsymbol{m} ! limitations of the CAN module, when the CPU frequency is higher than 40 MHz it is reaummended to provide each CAN module with the CPU clock divided by 2 . It is suffic ient to supply 20 MHz for the CAN module to produce the maximum baud rate defined by the protocol standard. The CPU frequency can be reduced down to 8 MHz . It is sti.' possible to obtain the maximum CAN speed (1Mbaud) by feeding the CAN module c'irecty with the CPU clock disabling the prescaler factor.

After reset, the prescaler is enabled, the CPU clock is divided by two, and provides the CAN modules. Accordir's $\dagger j$ the system clock frequency, the application can disable the prescaler to obtain the $r \in$ quired baud rate.

17.4 CAN bus configurations

Depending on the application, CAN bus configuration may be one single bus with single or multiple interfaces or a multiple bus with single or multiple interfaces. The ST10F296E is able to support both situations.

17.4.1 Single CAN bus

The single CAN bus multiple interface configuration may be implemented using two CAN transceivers as shown in Figure 67.

Figure 67. Connection to a single CAN bus via separate CAN transceivers

The ST10F296E also supocric single CAN bus multiple (dual) interfaces using the opendrain option of the CAN_ . x_{L} output as shown in Figure 68. Due to the OR-wired connection, only one ransceiver is required. In this case the design of the application must take into accour.it t. o wire length and the noise environment.

Figur-63. Connection to a single CAN bus via common CAN transceivers

17.4.2 Multiple CAN bus

The ST10F296E provides two CAN interfaces to support the bus configuration shown in Figure 69.

Figure 69. Connection to two different CAN buses (example for gateway application)

17.4.3 Parallel mode

A parallel mode configuration is also subrsied, as shown in Figure 70.
Figure 70. Connection to one CAN :us with internal parallel mode enabled

1. When P4.4 and P4.7 are not used as CAN functions, they can be used as general purpose I/Os, but, they cannot be used as external bus address lines. Refer to Section 13.6.2: Alternate functions of Port 4 on page 144 for more details.

17.5 System clock tolerance range

The CAN system clock for the different nodes in the network is typically derived from a different clock generator source. The actual CAN system clock frequency for each node (and consequently the actual bit time), is affected by a tolerance. The CAN system clock for the ST10F296E is derived (prescaled) from the CPU clock, typically generated by the onchip PLL multiplying the frequency of the main oscillator.

For communication to be effective, all CAN nodes in the network should sample the correct value for each transmitted bit. In addition, those nodes with the largest propagation delay (typically at opposite ends of the network), and working with system clocks that are at opposite limits of the frequency tolerance, must be able to correctly receive and decode every message transmitted on the network.

Considering the effect of the system clock discrepancy between two CAN nodes, an. 1 assuming no bus errors are detected (for example, due to electrical disturbanc ${ }^{\circ}$) , nit stuffing guarantees that, in the worst case condition for the accumulation of jhas error (during normal communication), the maximum time between two re-syn in ro ization edges is 10 bit periods (five dominant bits followed by five recessive bits ar= clu ays followed by a dominant bit).

Calling the CAN bit time, $\mathrm{t}_{\mathrm{B} T}$, the maximum time, t_{J}, betwenn tvo re-synchronization edges can be expressed as follows:

Equation 8

$\mathrm{t}_{\mathrm{J}}=10 \times \mathrm{t}_{\mathrm{BT}}$
Then, assuming that the two CAN nocias have opposite system clock generator tolerances for their respective system clocks, the accumulated phase error, $\Delta \mathrm{t}_{\mathrm{J}}$, at the resynchronization instant $b \in c$ (1m.s:

Equation 9

$\Delta t_{J}=\left(2 \times \mathrm{df} \div \div 10<\mathrm{t}_{\mathrm{BT}}\right.$
Where d^{+}is the system clock relative tolerance which can be calculated from Equation 10 :

```
Caletion 10
```

$d f=\left|f-f_{N}\right| / f_{N}$
$f=$ actual frequency and $f_{N}=$ nominal frequency.
The error in Equation 10 must be compensated. It must be less than the programmed resynchronization jump width (SJW). Calling $\mathrm{t}_{\mathrm{SJW}}$ the duration of the resynchronization segment (programmable from 1 to 4 time quanta), Equation 11 can be written.

Equation 11

$(2 \times \mathrm{df}) \times 10 \times \mathrm{t}_{\mathrm{BT}}<\mathrm{t}_{\mathrm{SJW}}$
Equation 11 can be seen as a condition for the CAN system clock tolerance, df, as shown in Equation 12.

Equation 12

$\mathrm{df}<\mathrm{t}_{\mathrm{SJW}} / 2 \times 10 \times \mathrm{t}_{\mathrm{BT}}$

However, considering that real systems typically operate in the presence of electrical disturbances, errors on the CAN bus may occur. If an error is detected, an error flag is transmitted on the bus. If the error is local, only the node which detected it transmits the error flag on the bus; the other nodes receive the error flag and transmit their own error flags as an echo. If the error is global, all nodes detect it within the same bit time and they transmit their own error flags simultaneously. In this way, each node can recognize if the error is local or global simply by detecting whether there is an echo. However, this is possible only if each node can sample the first bit after the error flag has been transmitted.

The error flag from an error active node is composed of six dominant bits. In the worst case situation of a bit stuffing error, an additional six dominant bits could be received before the error flag. This means that the first bit after the error flag is the $13^{\text {th }}$ bit after the last synchronization. This bit, must be correctly sampled.
Calling $t_{B T}$ the CAN bit time, the maximum time, t_{S} (with correct sampling), betweer, tw ρ resynchronization edges can be expressed as shown in Equation 13.

Equation 13

$t_{S}=13 \times t_{B T}-t_{P B 2}$
Where $t_{\text {PB2 }}$ corresponds to the duration of Phase_Seg2 (PB = phase buffer).
Assuming that the two CAN nodes have opposite systen clock generator tolerances for their respective system clocks, Equation 14 shows the ac.unnulated phase error, $\Delta \mathrm{t}_{\mathrm{J}}$, at the resynchronization instant.

Equation 14

$\Delta \mathrm{t}_{\mathrm{S}}=(2 \times \mathrm{df}) \times\left(13 \times \mathrm{t}_{\mathrm{BT}}-\mathrm{t}_{\mathrm{PB2} 2}\right)$
For correct sampling, the ac^{2} nilated phase error must not lead the re-synchronization edge outside the inter»al Firase_seg1 + Phase_Seg2. This condition can be expressed as shown in Equation 1.5.

Equation 15

$\mathrm{t}_{\mathrm{PB} 1}<(: \times \mathrm{df}) \times\left(13 \times \mathrm{t}_{\mathrm{BT}}-\mathrm{t}_{\text {Seg } 2}\right)<\mathrm{t}_{\mathrm{PB} 2}$
This expression can be translated to a condition for the CAN system clock tolerance, df, as shown in Equation 16.

Equation 16

$\mathrm{df}<\min \left(\mathrm{t}_{\mathrm{PB} 1}, \mathrm{t}_{\mathrm{PB} 2}\right) / 2 \times\left(13 \times \mathrm{t}_{\mathrm{BT}}-\mathrm{t}_{\mathrm{PB} 2}\right)$
In conclusion, there are two conditions to be satisfied on the CAN system clock tolerance.
If the CAN node generates its system clock through a PLL, the maximum clock tolerance allowed must also be a function of the PLL jitter. This results in a more severe quality requirement for the oscillator (crystal or resonator).
The phase error introduced by the PLL jitter is a function of the number of clock periods. In particular, the jitter increases with the clock period number up to a maximum saturation value which consists of the long term jitter. Refer to Section 24.8.7: Phase-locked loop (PLL) on page 315 for more details about the ST10F296E PLL jitter.

Considering the PLL effect, Equation 17 and Equation 18 below are modified for the two CAN conditions to give the phase error:

Equation 17

$\Delta \mathrm{t}_{\mathrm{J}}=2 \times\left(\mathrm{df} \times 10 \times \mathrm{t}_{\mathrm{BT}}+\delta_{\mathrm{PLL}}\right)$

Equation 18

$\Delta t_{S}=2 \times\left[\mathrm{df} \times\left(13 \times \mathrm{t}_{\mathrm{BT}}-\mathrm{t}_{\mathrm{PB} 2}\right)+\delta_{\mathrm{PLL}}\right]$
Where $\delta_{\text {PLL }}$ represents the absolute deviation introduced by the PLL jitter.
In Equation 17 and Equation 18 the value of $\delta_{\text {PLL }}$ must be evaluated for different numbers of clock periods. For the first clock period, the jitter corresponding to 10 bit time periods must be considered, while for the second clock period, the jitter corresponding to 13 bit time periods must be considered. The number of clock periods must be computed ta'in q ajcount of the baud rate prescaler setting. A factor of two, which multiplies the single CAid riode phase deviation, is considered to take account of the worst case scenar io w eere two communicating nodes are at the opposite limits of the specified frec;u?.cy tolerance.
From Equation 17 and Equation 18, the new constraints for th.o 'JA.V system clock tolerance can be translated into new quality requirements for the oscillatur as shown in Equation 19 and Equation 20.

Equation 19

$$
\mathrm{df}<\mathrm{t}_{\mathrm{SJW}}-2 \times \delta_{\mathrm{PLL}} / 2 \times 10 \times \mathrm{t}_{\mathrm{BT}}
$$

Equation 20

$\mathrm{df}<\min \left(\mathrm{t}_{\mathrm{PB} 1}, \mathrm{t}_{\mathrm{PB} 2}\right)-2 \times \delta_{\mathrm{PLL}}{ }^{\prime} 2 \times\left(13 \times \mathrm{t}_{\mathrm{BT}}-\mathrm{t}_{\mathrm{PB} 2}\right)$
It is obvious that the FLL ,ittei imposes more stringent constraints on oscillator tolerance than what can be accopted when no PLL is used. The ST10F296E PLL characteristics are such that the as .il ator requirements are acceptably impacted by the jitter for the majority of the wrisi C'A!! ous network configurations.

Ossillatcr tolerance range was increased when the CAN protocol was developed from io, sijn 1.1 to version 1.2 (version 1.0 was never implemented in silicon). The option to synchronize on edges from dominant to recessive became obsolete and only edges from recessive to dominant are now considered for synchronization. Protocol update to version 2.0 (A and B) has had no influence on oscillator tolerance.

It must be considered that SJW may not be larger than the smaller of the phase buffer segments and that the propagation time segment limits the part of the bit time that may be used for the phase buffer segments.
The combination below allows the largest possible frequency tolerance of 1.58% (in the absence of PLL jitter):

- Prop_Seg = 1
- Phase_Seg1 = Phase_Seg2 = SJW = 4

This combination with a propagation time segment of only 10% of the bit time is not suitable for short bit times. It can be used for bit rates of up to $125 \mathrm{Kbit} / \mathrm{s}$ (bit time $=8 \mu \mathrm{~s}$) with a bus length of 40 m .

17.6 Configuration of the CAN controller

In the C-CAN and in most CAN implementations, the bit timing configuration is programmed in two register bytes. The sum of Prop_Seg and Phase_Seg1 (as TSeg1) is combined with Phase_Seg2 (as TSeg2) in one byte, and SJW and BRP are combined in the second byte.
In these bit timing registers (CANxBTR), the four components TSeg1, TSeg2, SJW, and BRP have to be programmed to a numerical value that is one less than its functional value. Therefore, instead of values in the range of [1...n], values are programmed in the range [0...n-1]. Consequently, SJW (functional range of [1...4]) is represented by only two bits.

The length of the bit time is [TSeg1 + TSeg2 + 3] t_{q} (programmed values) or [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] t_{q} (functional values).
The data in the bit timing registers are the configuration input of the CAN protocol cortroller. The baud rate prescaler (configured by BRP) defines the length of the time quant/uniznc' the basic time unit of the bit time. The bit timing logic (configured by TSeg1, TSeg\%, ana SJW) defines the number of time quanta in the bit time.
Processing of the bit time, calculation of the position of the sample raint. and occasional synchronizations are controlled by the bit timing logic (BTL) staia menine, which is evaluated once each time quantum. The rest of the CAN protc col controller, the bit stream processor (BSP) state machine, is evaluated once each lst time, at the sample point.

The shift register serializes the messages to be sei t and parallelizes received messages. Its loading and shifting is controlled by the BSP.
The BSP translates messages into fratin al ci vice versa. It generates and discards the enclosing fixed format bits, inserts ari 1 ex tracts stuff bits, calculates and checks the cyclic redundancy check (CRC) code, performs the error management, and decides which type of synchronization is to be used. It :s evaluated at the sample point and processes the sampled bus input bit. The time $\mathrm{after}^{\mathrm{ft}} \mathrm{I}$, sample point that is needed to calculate the next bit to be sent (for example, dat a bi: URC bit, stuff bit, error flag, or idle) is called the information processing time :ITT,
 length, is hi lower limit of the programmed length of Phase_Seg2. In case of a synchronization, Phase_Seg2 may be shortened to a value less than IPT, which does not c fl ec bus timing.

17.7 Calculation of the bit timing parameters

Usually, the calculation of the bit timing configuration starts with a desired bit rate or bit time. The resulting bit time (1/ bit rate) must be an integer multiple of the system clock period.

The bit time may consist of four to 25 time quanta. The length of the time quantum, t_{q}, is defined by the baud rate prescaler, with $t_{q}=$ (baud rate prescaler) $/ f_{\text {sys }}$. Several combinations may lead to the desired bit time, allowing iterations of the steps described below.

The first part of the bit time to be defined is the Prop_Seg. Its length depends on the delay times measured in the system. A maximum bus length as well as a maximum node delay has to be defined for expandible CAN bus systems. The resulting time for Prop_Seg is converted into time quanta (rounded to the nearest integer multiple of t_{q}).
The Sync_Seg is $1 t_{\mathrm{q}}$ long (fixed), leaving (bit time - Prop_Seg - 1) t_{q} for the twc p^{n} ast buffer segments. If the number of the remaining t_{q} is even, the phase buffer soymonis have the same length:
Phase_Seg2 = Phase_Seg1
else:
Phase_Seg2 = Phase_Seg1 +1 .
The minimum nominal length of Phase_Seg2 has alv:o be considered. Phase_Seg2 should not be shorter than the CAN controller's nturmation processing time, which, depending on the actual implementation, is : ir, ir e range of [0...2] t_{q}.
The length of the synchronization jun 0 w drh is set to its maximum value, which is the minimum of four times quanta and the value defined by the Phase_Seg1.

The oscillator tolerance rencie $n \in$ cessary for the resulting configuration is calculated by the formulae given in Sectir, ;7.5: System clock tolerance range on page 196.

If more than one eni guration is possible, the configuration allowing the highest oscillator or PLL tolerancs rani,e should be chosen.

CAN i or as with different system clocks require different configurations to come to the same bit rate. The calculation of the propagation time in the CAN network, based on the nodes vil' the longest delay times, is made once for the whole network.
The CAN system's oscillator (or PLL) tolerance range is limited by the node with the lowest tolerance range.

The calculation may show that bus length or bit rate have to be decreased, or that the oscillator frequency stability has to be increased to find a protocol compliant configuration of the CAN bit timing.
The resulting configuration is written into the bit timing register:
(Phase_Seg2-1) \&
(Phase_Seg1 + Prop_Seg-1) \&
(SynchronisationJumpWidth - 1) \&
(Prescaler-1)

17.7.1 Example of bit timing at high baud rate

In this example, the CPU frequency (CAN module clock) is 10 MHz , BRP is 0 , and the bit rate is $1 \mathrm{Mbit} / \mathrm{s}$.
t_{q}
Delay of bus driver
Delay of receiver circuit
Delay of bus line (40 m)
$t_{\text {Prop }}$
$t_{\text {SJW }}$
$t_{\text {PB1 }}$
$t_{\text {Seg1 }}=t_{\text {Prop }}+t_{\text {PB1 }}$
$t_{\text {Seg2 }}=t_{\text {PB2 }}$
$t_{\text {Sync-Seg }}$
$t_{B T}$
Tolerance for CAN clock
$100 \mathrm{~ns}=\mathrm{t}_{\mathrm{CPU}}$
50 ns
30 ns
220 ns
$600 \mathrm{~ns}=6 \times \mathrm{t}_{\mathrm{q}}$
$100 \mathrm{~ns}=1 \times \mathrm{t}_{\mathrm{q}}$
$100 \mathrm{~ns}=1 \times \mathrm{t}_{\mathrm{q}}$
$700 \mathrm{~ns}=7 \times \mathrm{t}_{\mathrm{q}}$
$200 \mathrm{~ns}=$ Information processinc in . $0+1 \times \mathrm{t}_{\mathrm{q}}=2 \times \mathrm{t}_{\mathrm{q}}$
$100 \mathrm{~ns}=1 \times \mathrm{t}_{\mathrm{q}}$
$1000 \mathrm{~ns}=\mathrm{t}_{\text {Sync-Seg }}+\mathrm{t}_{\text {Seg }} \cdot+\mathrm{t}_{\text {Seg2 }}=10 \times \mathrm{t}_{\mathrm{q}}$
$0.39 \%=$

$$
\min \left(\mathrm{t}_{\mathrm{PB} 1}, \mathrm{t}_{\mathrm{PB} 2}\right) \div\left(13 \times \mathrm{t}_{\mathrm{BT}}-\mathrm{t}_{\mathrm{PB} 2}\right)=0.1(\mu \mathrm{~s}) / 2 \times(1 \mathrm{~s} \times 1(\mu \mathrm{~s})-0.2(\mu \mathrm{~s}))
$$

$\delta_{P L L}\left(13 \times t_{B T}=13 \times 10 \times t_{q}=130 t_{C P \prime} ; n=\right.$ - Data from PLL jitter characteristics
Tolerance for oscillator (no PLL effect, $030 \%=$
$\min \left(\mathrm{t}_{\mathrm{PB} 1}, \mathrm{t}_{\mathrm{PB} 2}\right)-2 \times \delta_{\mathrm{PLL}} / 2 \times\left(13 \times \mathrm{t}_{\mathrm{BT}}-\mathrm{t}_{\mathrm{PB} 2}\right)$
In this example, the con aioriated bit time parameters are $(2-1)_{3} \&(7-1)_{4} \&(1-1)_{2} \&(1-1)_{6}$, the bit timing register $\operatorname{IA} N \times B T R$ is programmed to $=0 \times 1600 \mathrm{~h}$.

17.7.2 Example of bit timing at low baud rate

In this example, the frequency of the CAN module clock is 2 MHz , BRP is 1 , the bit rate is $100 \mathrm{Kbit} / \mathrm{s}$.
t_{q}
Delay of bus driver
Delay of receiver circuit
Delay of bus line (40m)
$t_{\text {Prop }}$
$t_{\text {SJW }}$
$t_{\text {PB1 }}$
$t_{\text {Seg } 1}=t_{\text {Prop }}+t_{\text {PB1 }}$
$t_{\text {Seg2 }}=t_{\text {PB2 }}$
$t_{\text {Sync-Seg }}$
$t_{B T}$
Tolerance for CAN clock
$1 \mu \mathrm{~s}=2 \times \mathrm{t}_{\mathrm{CPU}}$
200 ns
80 ns
220 ns
$1 \mu \mathrm{~s}=1 \times \mathrm{t}_{\mathrm{q}}$
$4 \mu s=4 \times t_{q}$
$4 \mu \mathrm{~s}=4 \mathrm{xt}_{\mathrm{q}}$
$5 \mu \mathrm{~s}=5 \times \mathrm{t}_{\mathrm{q}}$
$4 \mu s=$ Information processing tin $f+3 \times \mathrm{t}_{\mathrm{q}}=4 \times \mathrm{t}_{\mathrm{q}}$
$1 \mu \mathrm{~s}=1 \mathrm{xt}_{\mathrm{q}}$
$10 \mu \mathrm{~s}=\mathrm{t}_{\text {Sync-Seg }}+\mathrm{t}_{\mathrm{Se}_{\mathrm{J}} 1}+\mathrm{t}_{\text {Seg } 2}=10 \times \mathrm{t}_{\mathrm{q}}$
$1.58 \%=$

$$
\min \left(\mathrm{t}_{\mathrm{PB} 1}, \mathrm{t}_{\mathrm{PB} 2}\right) \div\left(13 \times \mathrm{t}_{\mathrm{BT}}-\mathrm{t}_{\mathrm{PB} 2}\right)=4(\mu \mathrm{~s}) / 2 \times(3,10(\mu \mathrm{~s})-4(\mu \mathrm{~s}))
$$

Tolerance for oscillator (no PLL effect $157 \%=$
$\min \left(\mathrm{t}_{\mathrm{PB} 1}, \mathrm{t}_{\mathrm{PB} 2}\right)-2 \times \delta_{\mathrm{PLL}} / 2 \times\left(\mathrm{i} 3 \times \mathrm{t}_{\mathrm{BT}}-\mathrm{t}_{\mathrm{PB} 2}\right)$
In this example, the con aioriated bit time parameters are $(4-1)_{3} \&(5-1)_{4} \&(4-1)_{2} \&(2-1)_{6}$, the bit timing register $\operatorname{ZA} \mathrm{N} \times B T R$ is programmed to $=0 \times 34 \mathrm{C} 1 \mathrm{~h}$.

18 Real-time clock (RTC)

The RTC is an independent timer. It is directly derived from the clock oscillator on XTAL1 (main oscillator) input, so that it can be kept running even in idle or power-down mode (if it is enabled). Register access is implemented onto the XBus. This module is designed with the following characteristics:

- Generation of the current time and date for the system
- Cyclic time based interrupt on Port 2 external interrupts every 'RTC basic clock tick' and after n 'RTC basic clock ticks' if enabled (n is programmable).
- 58-bit timer for long-term measurements
- Capability to exit the ST10 chip from power-down mode (if the PWDCFG bit of tin:e SYSCON register is set) after a programmed delay.

The RTC is based on two main blocks of counters. The first block is a presce ter which generates a basic reference clock (for example a one-second period). This l'asic reference clock comes out of a 20-bit divider (4-bit MSB RTCDH counter and 15 bil LSB RTCDL counter). The 20-bit divider is driven by an input clock which is \sim 者 ved from the on-chip high frequency CPU clock and pre-divided by a $1 / 64$ fixed counter (see Figure 72). The divider is loaded at each basic reference clock period with the valu=1,f the 20-bit prescaler register (4bit MSB RTCPH register and 16-bit LSB RTCPL regioigi)
The value of the 20-bit RTCP register determin ϵ s i七 period of the basic reference clock. A timed interrupt request (RTCSI) may be cent on each basic reference clock period. The second block of the RTC is a 32 -bit c sunis -16 -bit RTCH and 16-bit RTCL). This counter may be initialized with the current sysırm, time. The RTCH/RTCL counter is driven with the basic reference clock signal. in provide an alarm function, the contents of the RTCH/RTCL counter is compared with a $\boldsymbol{\zeta}^{2}$-bit alarm register (16-bit RTCAH register and 16-bit RTCAL register). The alarm renitter may be loaded with a reference date. An alarm interrupt request (RTCAI), mev bf generated when the value of the RTCH/RTCL counter matches the reference drit of the RTCAH/RTCAL register.

The tim=d 2.TSI and the alarm RTCAI interrupt requests can trigger a fast external interrur: via the EXISEL register of port 2 and can wake-up the ST10 chip when running ocw.r-down mode. Using the RTCOFF bit of the RTCCON register, the user may switch off tre vock oscillator when entering power-down mode.

Since the RTC counter is driven by the main oscillator (powered by the main power supply), it cannot be maintained running in stand-by mode. The opposite is true in power-down mode, where the main oscillator can be maintained running to provide the reference to the RTC module (if not disabled).
Figure 71 below shows the ESFRs and port pins associated with the RTC.

Figure 71. ESFRs and port pins associated with the RTC

EXISEL, external interrupt source selection register, (Port 2)
One second timed interrupt request (RTCSI) triggers firq[2] and alarm interrupt request (RTCAI) triggers firq[3] RTC data and control registers are implemented onto the XBus.

Figure 72. RTC block diagram

18.1 RTC registers

RTC control register (RTCCON)

The functions of the RTC are controlled by the RTCCON control register (see register table and description below). If the RTOFF bit is set, the RTC dividers and counter clocks are disabled and the registers can be written. When the ST10 chip enters power-down mode, the clock oscillator is switched off. The RTC has two interrupt sources: One is triggered every basic clock period, the other is the alarm.

Note: \quad The RTC registers are not bit-addressable.
The RTCCON register includes an interrupt request flag and an interrupt enable bit for each interrupt source. This register is read and written via the XBus.

Table 124. RTCCON register description

Bit	Bit name	tion
7	RTCOFF ${ }^{(1)}$	RTC switc' 0 ot b^{-1} 0: Clock ces.ilator and RTC keep running even if ST10 is in powerdown mode. 1: if ST10 enters power-down mode, clock oscillator is switched off, ITC dividers and counters are stopped, and registers can be written.
3	Zic_EN	RTC alarm interrupt enable 0 : RTCAI is disabled 1: RTCAI is enabled; it is generated when the counters reach the alarm value.
1) 2	$\operatorname{RTCAIR}^{(2)(3)}$	RTC alarm interrupt request flag (when the alarm is triggered) 0 : RTCAIR bit is reset in less than an n basic clock tick. 1: An interrupt is triggered
1	RTCSEN	RTC second interrupt enable 0 : RTCSI is disabled 1: RTCSI is enabled; it is generated every basic clock tick
0	RTCSIR ${ }^{(2)(3)}$	RTC second interrupt request flag (every second) 0: RTCSIR bit is reset in less than an a basic clock tick. 1: An interrupt is triggered

1. The two RTC interrupt signals are connected to Port 2 to trigger an external interrupt that can wake up the chip when in power-down mode.
2. To clear the RTC interrupt request flags (bit 0 and bit 2 of the RTCCON register) it is necessary to write a 1 to the corresponding bit of the RTCCON register.
3. As the RTCCON register is not bit-addressable, the value of its bits must be read by checking their associated CCxIC register.

RTC prescaler registers (RTCPH and RTCPL)

The 20-bit programmable prescaler divider is loaded with two registers: The RTC prescaler high (RTCPH) and RTC prescaler low (RTCPL).
The four most significant bits are stored in the RTCPH and the 16 least significant bits are stored in the RTCPL.

To maintain the system clock, these registers are not reset. They are write protected by the RTCOFF bit of the RTCCON register. Write operation is allowed when RTCOFF is set.

RTCPH (ED08h)					XBus							Reset value: ---Xh			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved												RTCPH			

Note: \quad Bits 15 to 4 of the RTCPH are not used. When reading this register, the : गlrr, value of these bit is zero.

Figure 73. Prescaler registers

The value stored in RTCPH and RTCPL is called RTCP (coded on 20-bit). The dividing ratio of the prescaler divider is: $64 \times$ (RTCP).

RTC divider counter registers (RTCDH and RTCDL)

The divider counter registers (the basic reference clocks) include the RTC divider high (RTCDH) and RTC divider low (RTCDL). These registers are read-only. They are reloaded with the value stored in the prescaler registers, RTCPH and RTCPL. To get accurate time measurements, the value of the divider can be read by reading the RTCDH and RTCDL. When a bit is changed in the prescaler register, the value is loaded into the divider. When the divider increments to reach 00000h, the 20-bit word stored in RTCPH or RTCPL is loaded into it.

RTCDH (EDOCh)					XBus								Reset value: ---Xh		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved													RTCD		

Note: \quad Bits 15 to 4 of the RTCDH are not used. When reading this register, the : गlir, value of these bit is zero.

Note: \quad Neither the RTCDH nor the RTCDL counter registers can be reset.
Figure 74. Divider countt: egisters

RTC programmable counter registers (RTCH and RTCL)

The RTC has two x 16-bit programmable counters which are controlled by two counter registers: The RTC counter high register (RTCH) and the RTC counter low register (RTCL).
The count rate of the counters is based on a basic time reference (for example, 1 s). As the clock oscillator may be kept working, even in power-down mode, the RTC counters may be used as a system clock. In addition, RTC counters and registers are not modified at a system reset. The only way to force their value is to write them via the XBus.

The RTC counter registers are write protected. The RTCOFF bit of the RTCCON register (see Table 124) must be set (RTC dividers and counters are stopped) to enable a write operation on RTCH or RTCL.

A write operation on RTCH or RTCL register loads the corresponding counter directly. When reading, the current value in the counter (system date) is returned.
The counters keep running while the clock oscillator is working.

Note: \quad Neither the RTC!. no:- ite RTCH registers can be reset.

RTC alarn registers (RTCAH and RTCAL)

The R1 , alarm registers include the RTC alarm high (RTCAH) and RTC alarm low : $A^{T} \leftrightharpoons A L$). When the counters reach the 32-bit value stored in the RTCAH and RTCAL iejisters, an alarm is triggered and the interrupt request, RTAIR, is generated. These registers are not protected.

Note: \quad Neither the RTCAL nor the RTCAH registers can be reset.

18.2 Programming the RTC

RTC interrupt request signals are connected to Port 2, pad 10 (RTCSI) and pad 11 (RTCAI). An alternate function of Port 2 is to generate fast interrupts, firq[7:0]. To trigger firq[2] and firq[3] the EXICON register must be used. RTC interrupt requests are rising edge active and the EXICON register controls the external interrupt edge selection.
The EXISEL register enables Port 2 alternate sources. RTC interrupts are alternate sources 2 and 3.

The following Interrupt control registers are common with the CAPCOM1 unit: CC10IC (RTCSI) and CC11IC (RTCAI).

EXICON register

EXICON (F1COh/E0h)		ESFR				Rese: va'ue. 0000h	
1514	$13 \quad 12$	1110	98	76	54	32	0
EXI7ES	EXI6ES	EXI5ES	EXI4ES	EXI3ES ${ }^{(1)(2)}$	EXI2ES ${ }^{(1)(3)}$	FÁl1ES	EXIOES
R/W	R/W	R/W	R/W	R/W	Q/, V	R/W	R/W

1. EXI2ES and EXI3ES must be configured as 01 b because RTC inte rr:pt request lines are rising edge active.
2. Alarm interrupt request line (RTCAI) is linked with EXI3E.
3. Timed interrupt request line (RTCSI) is linked with EN12L

EXISEL register

1. Ala. m i ite rupt request (RTCAI) is linked with EXI3SS
2. Timea interrupt request (RTCSI) is linked with EXI2SS

Table 125. EXISEL register description

Bit	Bit name	Function
		External interrupt x source selection (x = 7 to 0)
00: Input from associated Port 2 pin		
$15-0$	EXIxSS	01: Input from 'alternate source'(1)
		10: Input from Port 2 pin ORed with 'alternate source'(1)
		$11:$ Input from Port 2 pin ANDed with 'alternate source'

[^0]
CCxIC registers

CC10IC: FF8Ch/C6h
CC11IC: FF8Eh/C7h

CCxIC				SFR									Reset value: --00h		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-	$\begin{gathered} \text { CCx } \\ \text { IR } \end{gathered}$	$\begin{array}{\|c} \hline \text { CCx } \\ \text { IE } \end{array}$		ILVL			GLVL	
-	-	-	-	-	-	-	-	RW	RW		RW		RW		

Table 126. Interrupt sources associated with the RTC

Source of interrupt	Request flag	Enable flag	Interrupt vector	Vector location	Tump number
External interrupt 2	CC10IR	CC10IE	CC10INT	00 'C0631.	$1 \mathrm{Ah} / 26$
External interrupt 3	CC11IR	CC11IE	CC11INT	00506 Ch	$1 \mathrm{Bh} / 27$

19 Watchdog timer

The watchdog timer is a fail-safe mechanism which prevents the microcontroller from malfunctioning over long periods of time.
The watchdog timer is always enabled after a reset of the chip and can only be disabled in the time interval until the EINIT (end of initialization) instruction has been executed.

Therefore, the chip start-up procedure is always monitored. Software must be designed to service the watchdog timer before it overflows. If, due to hardware or software related failures, the software fails to do so, the watchdog timer overflows and generates an internal hardware reset. It pulls the RSTOUT pin low to allow external hardware components to be reset.

Each of the different reset sources is indicated in the watchdog control register (IVロIOON).
The bits indicated in Table 127 are cleared with the EINIT instruction. The sourise of the reset can be identified during the initialization phase.

Watchdog control register (WDTCON)

Table 127. WDTCON register description

Bit	Bit name	Function
15-8	WDTREL	Watchdog reload value
5	PONR ${ }^{(1)(2)(3)}$	Power-on (asynchronous) reset indication flag Set by the input RSTIN if a power-on condition has been detected. Cleared by the EINIT instruction.
4	LHWR ${ }^{(1)(2)(3)}$	Long hardware reset indication flag Set by the input $\overline{\text { RSTIN. Cleared by the EINIT instruction. }}$
3	SHWR ${ }^{(1)(2)(3)}$	Short hardware reset indication flag Set by the input $\overline{\text { RSTIN. Cleared by the EINIT instruction. }}$
2	SWR ${ }^{(1)(2)(3)}$	Software reset indication flag Set by the SRST execution. Cleared by the EINIT instructi. n.
1	WDTR ${ }^{(1)(2)(3)}$	Watchdog timer reset indication flag Set by the watchdog timer on an overflow. Cleart $d \mathrm{l}$ y a hardware reset or by the SRVWDT instruction.
0	WDTIN	Watchdog timer input frequency selection 0 : Input frequency is $\mathrm{f}_{\mathrm{CPU}} / 2$. 1: Input frequency is $\mathrm{f}_{\mathrm{CPU}^{\prime}}{ }^{\prime 12}$.

1. More than one reset indication flag may be set. After FI.JIT ail flags are cleared.
2. Power-on is detected when a rising edge from $\mathrm{V}^{\prime} 8-n \mathrm{~V}^{\text {to }} \mathrm{V}_{18}>1.5 \mathrm{~V}$ is recognized on the internal 1.8 V supply.
3. Bit cannot be modified directly by software

The PONR flag of the WDTCの। ' register is set if the output voltage of the internal 1.8 V supply falls below the thee :hule of the power-on detection circuit (typically 1.5 V). This circuit can detect major failures of ihe external 5 V supply, but, if the internal 1.8 V supply does not drop below 1.5 V ihe ト'UNR flag is not set.

This could \cap;cı'। ivith a fast switch off/switch on of the 5 V supply. The time needed for such a sequer ct to activate the PONR flag depends on the value of the capacitors connected to the suplly and on the exact value of the internal threshold of the detection circuit.
ráole 128. WDTCON bit values on different resets

Reset source	PONR	LHWR	SHWR	SWR	WDTR
Power-on reset	X	X	X	X	
Power-on after partial supply failure	$(1)(2)$	X	X	X	
Long hardware reset		X	X	X	
Short hardware reset			X	X	
Software reset			X		
Watchdog reset			X	X	

1. PONR bit cannot be set because of a short supply failure.
2. For power-on reset and resets after supply partial failure, asynchronous resets must be used.

If a bidirectional reset is enabled, and if the $\overline{\text { RSTIN }}$ pin is latched low at the end of an internal reset sequence, a short hardware reset, a software reset or a watchdog reset triggers a long hardware reset. Thus, reset indications flags are set to indicate a long hardware reset.

The watchdog timer is 16 -bits in length and is clocked with the system clock divided by 2 or 128. The high byte of the watchdog timer register can be set to a prespecified reload value (stored in WDTREL).
Each time the high byte of the watchdog timer is serviced by the application software, it is reloaded. For security reasons, the WDTCON register should be rewritten each time before the watchdog timer is serviced
Table 129 and Table 130 show the watchdog time range for 40 MHz and 64 MHz CPU clock respectively.

Table 129. WDTREL reload value ($\mathrm{f}_{\mathrm{CPU}}=40 \mathrm{MHz}$)

Reload value in WDTREL	Prescaler for $\mathrm{f}_{\mathrm{CPU}}=\mathbf{4 0} \mathrm{Mh} \cdot \mathrm{H}$	
	$\mathbf{2}($ WDTIN $=\mathbf{0})$	$\mathbf{1 2 8}($ WDTIN = 1)
FFh	$12.8 \mu \mathrm{~s}$	$819.2 \mu \mathrm{~s}$
00 h	3.277 ms	209.7 ms

Table 130. WDTREL reload value ($\left.\mathrm{f}_{\mathrm{CPU}}=\mathrm{Ef} \mathrm{M}\right) \mathrm{lz}$)

Reload value in WDTREL	Prescaler for $\mathrm{f}_{\mathrm{CPU}}=\mathbf{6 4} \mathbf{~ M H z}$		
	$\mathbf{2}(\mathbf{W D T I N}=\mathbf{0})$	$\mathbf{1 2 8}($ WDTIN = 1)	
FFh	$8 \mu \mathrm{~s}$	$512 \mu \mathrm{~s}$	
00 h	2.048 ms	131.1 ms	

The watchdog $\mathrm{t}^{\top} \mathrm{m} \geqslant$, jeriod is calculated using the following formula:

Equat or 21

$P_{\text {V'JT }}=1 / \mathrm{f}_{\mathrm{CPU}} \times 512 \times(1+[\mathrm{WDTIN}] \times 63) \times(256-[W D T R E L])$

20 System reset

System reset initializes the MCU in a predefined state. There are six ways to activate a reset state. The system start-up configuration is different for each case as shown in Table 131

Table 131. Reset event definition

Reset source	Flag	RPD status	Conditions
Power-on reset	PONR	Low	Power-on
Asynchronous hardware reset	LHWR	Low	$t_{\text {RSTIN }}>500 \mathrm{~ns}$ and $>$ Port 0 set-up time ${ }^{(1)}$
Synchronous long hardware reset		High	$\mathrm{t}_{\text {RSTIN }}>(1032+12) \mathrm{TCL}+\max (4-1 / \mathrm{L}, 500 \mathrm{~ns})$
Synchronous short hardware reset	SHWR	High	$\begin{aligned} & t_{\text {RSTIN }}>\max (4 \text { TCL, } 500 \text { rs) } \\ & t_{\text {RSTIN }} \leq(1032+12) \text { TC- } \sqrt{\text { Rad }}(4 \text { TCL, } 500 \mathrm{~ns}) \end{aligned}$
Watchdog timer reset	WDTR	(2)	WDT overflow -- *
Software reset	SWR	(2)	SRST ins+risulon execution

1. The $\overline{\text { RSTIN }}$ pulse should be $>500 \mathrm{~ns}$ (filter) and $>$ Port $0 \mathrm{st}+$ - o me. If Port 0 set-up time is below 500 ns , there is no additional settling time. See Section 20.1 foı n ore details on minimum and reset pulse duration.
2. The RPD pin status has no influence unles, a live stıonal reset is activated (BDRSTEN bit in the SYSCON register). When RPD is low, bidi ectio lai resets on software and watchdog timer reset events are inhibited (that is, RSTIN is not activatea', Pfer to Section 20.4, Section 20.5 and Section 20.6).

20.1 Input filter

On the $\overline{\text { RSTIN }}$ ir. $r^{\prime \prime}{ }^{\prime}$ sin, an on-chip RC filter is implemented. It is sized to filter all the spikes shorter than \mathfrak{c}°. On the other side, a valid pulse must be longer than 500 ns so that the ST10 ec otnices a reset command. Between 50 ns and 500 ns , a pulse can either be filtered \urcorner r recognized as valid, depending on the operating conditions and process arid'ions.
!:or this reason, all minimum durations for the different types of reset events in this section, should be carefully evaluated taking account of the above requirements.
In particular, for the short hardware reset, where only 4 TCL is specified as the minimum input reset pulse duration, the operating frequency is a key factor. For example:

- For a CPU clock of $64 \mathrm{MHz}, 4 \mathrm{TCL}$ is 31.25 ns , so it is filtered: In this case, the minimum becomes the value imposed by the filter (500 ns).
- For a CPU clock of $4 \mathrm{MHz}, 4 \mathrm{TCL}$ is 500 ns : In this case, the minimum value from the formula (see conditions column in Table 131) is coherent with the limit imposed by the filter.

20.2 Asynchronous reset

An asynchronous reset is triggered when the $\overline{\text { RSTIN }}$ pin is pulled low while the RPD pin is at low level. The ST10F296E device is immediately (after the input filter delay) forced into a reset default state. It pulls the RSTOUT pin low, it cancels pending internal hold states (if any), it aborts all internal/external bus cycles, it switches buses (data, address and control signals) and I/O pin drivers to high-impedance, and it pulls the Port 0 pins high.

Note: If an asynchronous reset occurs in the internal memories during a read or write phase, the content of the memory itself could be corrupted. To avoid this, synchronous reset usage is strongly recommended.

20.2.1 Power-on reset

The asynchronous reset must be used during the power-on of the device. Dependiric or the crystal or resonator frequency, the on-chip oscillator needs about 1 ms to 10 me ti siabilize (refer to Section 24: Electrical characteristics), with an already stable V ${ }_{\text {Dr. }}$. Tie logic of the ST10F296E does not need a stabilized clock signal to detect an asynctwor.ns reset, so it is suitable for power-on conditions. To ensure a proper reset sequence, inc RSTIN pin and the RPD pin must be held low until the device clock signal is staL 'lizec' and the system configuration value on Port 0 has settled.
 phase of the different embedded modules.
In particular, the on-chip voltage regulatcr neus; at least 1 ms to stabilize the internal 1.8 V for the core logic. This time is compu'ed irm, when the external reference (V_{DD}) becomes stable inside the specification range ($\mathrm{i} \cdot \pm$. is at least 4.5 V). This is a constraint for the application hardware (externai voltage regulator). The $\overline{\text { RSTIN }}$ pin assertion must be extended to guarantee the loitace regulator stabilization.
A second constraint is innposed by the embedded Flash. When booting from the internal memory, starting fior tie $\overline{R S T I N}$ pin being released, the Flash needs a maximum of 1 ms for its initialization. before this, the internal reset (RST signal) is not released, so the CPU does $n r_{t}^{t} s^{\prime} a_{1}+$ code execution in internal memory.
Note: \quad The abcve is not true if the external memory is used (pin $\overline{E A}$ held low during reset phase). In :n.: case, once the $\overline{R S T I N}$ pin is released, and after a few CPU clock (filter delay plus 3... 8 TUL), the internal reset signal RST is released, afterwhich code execution can start immediately. Eventual access to the data in the internal Flash is forbidden before its initialization phase is complete. An eventual access during the starting phase returns FFFFh at the beginning and 009Bh later on (an illegal opcode trap can be generated).
At power-on, the $\overline{\text { RSTIN }}$ pin must be tied low for a minimum period of time that includes the start-up time of the main oscillator ($\mathrm{t}_{\text {STUP }}=1 \mathrm{~ms}$ for the resonator, 10 ms for the crystal) and the PLL synchronization time ($\mathrm{t}_{\text {PSUP }}=200 \mu \mathrm{~s}$). Consequently, if the internal Flash is used, the RSTIN pin could be released to recover some time in the start-up phase (Flash initialization needs a stable V_{18}, but, does not need a stable system clock since an internal dedicated oscillator is used) before the main oscillator and PLL are stable.

Warning: It is recommended to provide the external hardware with a current limitation circuitry. This is necessary to avoid permanent damage to the device during the power-on transient, when the capacitance on V_{18} pin is charged. For the on-chip voltage regulator functionality, 10 nF is sufficient. A maximum of 100 nF on the V_{18} pin should not generate problems of overcurrent (a higher value is allowed if the current is limited by the external hardware). External current limitation is also recommended to avoid risks of damage in case of temporary shorts between V_{18} and ground. The internal 1.8 V drivers are sized to drive currents of several tens of ampere, so, the current must be limited by the external hardware. The current limit is imposed by powet dissipation considerations (refer to Section 24: Elect'i*á characteristics).

Figure 75 and Figure 76 show the asynchronous power-on tiri.ing diagrams with boot from internal or external memory respectively. The reset phasextension that is introduced by the embedded Flash module, is highlighted.

Note: \quad Never power the device without keeping the $\overline{R . S} \Gamma^{-1}$ pin grounded as the device could enter unpredictable states which could permarenty camage it.

Figure 75. Asynchronous power-on reset $\overline{(\overline{E A}}=1)$

Figure 76. Asynchronous power-on reset $(\overline{E A}=0)$

Fr ree to eight TCL depending on clock source selection.

20.2.? Hardware reset

An asynchronous reset is used to recover from catastrophic situations of the application. It may be triggered by the hardware of the application. Internal hardware logic and application circuitry are described in Section 20.7: Reset circuitry on page 233 and in Figure 88, Figure 89 and Figure 91. Asynchronous resets occur when the RSTIN pin is low and the RPD pin is detected (or becomes) low.

20.2.3 Exit from asynchronous reset state

When the $\overline{\text { RSTIN }}$ pin is pulled high, the device restarts. If the internal Flash is used, restarting occurs after the embedded Flash initialization routine is completed. The system configuration is latched from Port 0 . ALE, $\overline{R D}$ and $\overline{W R} / \overline{W R L}$ pins are driven to their inactive level. The ST10F296E starts program execution from memory location 00'0000h in code segment 0 . This starting location typically points to the general initialization routine. Timing of asynchronous hardware reset sequences are summarized in Figure 77 and Figure 78.

Figure 77. Asynchronous hardware reset $(\overline{\mathrm{EA}}=1)$

1. Longer than Port 0 settling time + PLL synchronization (if needed, that is $\mathrm{PO}(15: 13)$ changed) Longer than 500 ns to take account of input filter on RSTIN pin.

Figure 78. Asynchronous hardware reset $(\overline{E A}=0)$

1. Longer than Port 0 settling time +PLI synchrunization (if needed, that is $\mathrm{PO}(15: 13)$ changed). Longer than 500 ns to take account of input filter on RSTIN pin.
2. Three to eight TCL dependir guillo k source selection.

20.3 Synchroncuis reset (warm reset)

A syn $n r$ ripus reset is triggered when the RSTIN pin is pulled low while the RPD pin is at high lev ?l. To activate the internal reset logic of the device, the $\overline{\text { RSTIN }}$ pin must be held low, .t 'er st, during 4 TCL (2 CPU clock periods). Refer to Section 20.1: Input filter on page 214 io, details on minimum reset pulse duration. The I/O pins are set to high impedance and the RSTOUT pin is driven low. Once the $\overline{\text { RSTIN }}$ level is detected, a short duration of 12 TCL maximum (6 CPU clock periods) elapses, during which time pending internal hold states are cancelled and the current internal access cycle (if any) is completed. The external bus cycle is aborted. The internal pull-down of RSTIN pin is activated if bit BDRSTEN of the SYSCON register was previously set by software. Note that this bit is always cleared at power-on or after a reset sequence.

20.3.1 Short and long synchronous reset

Once the first 16 TCL elapse (4 TCL + 12 TCL), the internal reset sequence, of 1024 TCL cycles, starts. When it is finished and when an additional 8 TCL have elapsed, the level of the $\overline{\text { RSTIN }}$ pin is sampled (after the filter, see $\overline{\text { RSTF }}$ in Figure 75 , Figure 76 , Figure 77 , and Figure 78). If the $\overline{\mathrm{RSTIN}}$ pin is high, a short reset is flagged (see Section 19: Watchdog timer for details on reset flags). If the $\overline{\mathrm{RSTIN}}$ pin is low, a long reset is flagged. The major difference between long and short resets is that during a long reset, $\mathrm{P} 0(15: 13)$ also become transparent, so it is possible to change the clock options.

Warning: When there is a short pulse on the $\overline{\text { RSTIN }}$ pin, and when a bidirectional reset is enabled, the RSTIN pin is held low by the internal circuitry. At the end of 1024 TCL cycles, the $\overline{\text { RTSIN }}$ pin is released, but due to the presence of the ir, $\boldsymbol{n} \cdot \mathrm{t}$ analog filter, the internal input reset signal (RSTF in Figure 75, Figure 76, Figure 77, and Figure 78) is role ased after it (50 to 500 ns after). This delay corresrsud!, with the additional 8 TCL. At the end of this del $2 y$, ti'ie irternal input reset line ($\overline{\mathrm{RSTF}}$) is sampled to elucidat : if the reset event is short or long.

Short or long reset events

- If 8 TCL delay is $>500 \mathrm{~ns}\left(\mathrm{~F}_{\mathrm{CPU}}<8 \mathrm{MHz}\right)$, the reset event is always recognized as short.
- If 8 TCL delay is $<500 \mathrm{nc}\left(\mathrm{F}_{\mathrm{CPU}}>8 \mathrm{MHz}\right)$, the reset event could be recognized as either short or long, depending on the real filter delay (between 50 and 500 ns) and the CPU frequency. I $\overline{\mathrm{FS}} \overline{\mathrm{TF}}$ samples high, a short reset is recognized. If $\overline{\mathrm{RSTF}}$ samples low, a long reset is recognized. Once the 8 TCL delay has elapsed with a long reset, the $\mathrm{PC}(15.10)$ pins become transparent, and the system clock can be re-configured. Arte ti e internal RSTF signal becomes high, Port 0 returns 3-4 TCL which are not traisparent.
7 h e o pins become transparent and Port 0 returns 3-4 TCL which are not transparent when a unidirectional reset is selected and when the $\overline{\text { RSTIN }}$ pin is held low untill the end of an internal sequence (1024 TCL + max 16 TCL) and released at that time.
When the device runs with a CPU frequency lower than 40 MHz , the minimum valid reset pulse recognized by the CPU (4 TCL) may be longer than the minimum analog filter delay (50 ns). Consequently, a short reset pulse may not be filtered by the analog input filter. However, this pulse is not long enough to trigger a CPU reset (as it is shorter than 4 TCL). It generates a Flash reset, but, not a system reset. In this condition, the Flash always answers with FFFFh, which leads to an illegal opcode and consequently a trap event is generated.

20.3.2 Exit from synchronous reset state

The reset sequence is extended until the $\overline{\text { RSTIN }}$ level becomes high. It is also internally prolonged by the Flash initialization when EA = 1 (internal memory selected). Then, the code execution restarts. The system configuration is latched from Port 0 , and the ALE, $\overline{\text { RD }}$ and $\overline{W R} / \overline{W R L}$ pins are driven to their inactive level. The device starts program execution from memory location 00'0000h in code segment 0 . This starting location typically points to the general initialization routine.

Figure 79 and Figure 80 show the timing of synchronous reset sequences when booting from internal or external memory respectively. They emphasize a short reset event degenerating into a long reset.

Figure 81 and Figure 82 shows the timing of a typical synchronous long reset when booting from internal or external memory respectively.

20.3.3 Synchronous reset and the RPD pin

When the RSTIN pin is pulled low (by external hardware or as a const quence of a bidirectional reset), the RPD internal weak pull-down is activatod. T he external capacitance (if any) on the RPD pin is slowly discharged through the inter, \approx woak pull-down. If the voltage level on the RPD pin reaches the input low threst.u'd (c. 2.5 V), the reset event becomes immediately asynchronous. If a short or long naıware reset occurs, the situation illustrated in Figure 77 takes place.
 synchronous reset normally, the capa iltan ee must be big enough to maintain the voltage on the RPD pin sufficiently high for the duraton of the internal reset sequence.
For software or watchdog reset ?vents, an active synchronous reset is completed regardless of the RPD status.

The signal that makes thai RPD status transparent under reset is the internal $\overline{\text { RSTF }}$ (after the noise filter).

Figure 79. Synchronous short/long hardware reset (EA =1)

1. $\overline{R S T I N}$ asser ior, cun. oe released here. See Section 21.1: Idle mode on page 240 for details on minimum pulse duration.
2. If $R\ulcorner\sqcup V$ ltc ge uiops below the threshold voltage (about 2.5 V for 5 V operation) during the reset condition ($\overline{\mathrm{RSTIN}}$ low), an asyn . . onous reset is entered immediately.
3. Te $\overline{R S} \overline{T I N}$ pin is pulled low if the BDRSTEN bit (of the SYSCON register) was previously set by software. The BDRSTEN 'sit 's cleared after reset.
The minimum RSTIN low pulse duration must be longer than 500 ns , to guarantee the pulse is not masked by the internal filter (see Section 21.1: Idle mode on page 240).

Figure 80. Synchronous short/long hardware reset $(\overline{E A}=0)$

1. $\overline{\text { RSTIN }}$ assertion :an he : eleased here. See Section 21.1: Idle mode on page 240 for details on minimum pulse duration.
2. If RPD voltr $g \geqslant d i$ po delow the threshold voltage (about 2.5 V for 5 V operation) during the reset condition ($\overline{\mathrm{RSTIN}}$ low), an asynsill n nus ${ }^{n}$ jet is entered immediately.
3. Thret oo eight TCL depending on clock source selection.
4. 1.e $\overline{R S} \overline{T I N}$ pin is pulled low if the BDRSTEN bit (of the SYSCON register) was previously set by software. The BDRSTEN oit is cleared after reset.
The minimum RSTIN low pulse duration must be longer than 500 ns , to guarantee the pulse is not masked by the internal filter (see Section 21.1: Idle mode on page 240).

Figure 81. Synchronous long hardware reset $(\overline{E A}=1)$

1. If RFU Ulhige شiops below the threshold voltage (about 2.5 V for 5 V operation) during the reset condition ($\overline{\mathrm{RSTIN}}$ low), an a: "..chro, ous reset is entered immediately. Even if RPD returns above teh threshold, the reset is taken as nsychr nous.
in ə minimum RSTIN low pulse duration must be longer than 500 ns , to guarantee the pulse is not masked by the internal tilter (see Section 21.1: Idle mode on page 240).

Figure 82. Synchronous long hardware reset $(\overline{E A}=0)$

1. If RPD voltage drofs 'elcw ins threshold voltage (about 2.5 V for 5 V operation) during the reset condition ($\overline{\mathrm{RSSTIN}}$ low), an asynchronous e_{\bullet} ic entered immediately.
2. The minimun $R_{i} \bar{\pi}$ Iow pulse duration must be longer than 500 ns , to guarantee the pulse is not masked by the internal filter 1) , "ectior 21.1: Idle mode on page 240).
3. Thre iv eignt TCL depending on clock source selection.

20.4 Software reset

A software reset sequence can be triggered at any time by the protected SRST (software reset) instruction. This instruction can be executed within a program, for example: On a hardware trap that reveals system failure or to leave bootstrap loader mode.
On execution of the SRST instruction, the internal reset sequence is started. The microcontroller behavior is the same as for a synchronous short reset, except that only bits P0.12...P0.8 are latched at the end of the reset sequence, while previously latched, bits P0.7...P0.2 are cleared (written at 1).

A software reset is always taken as synchronous. There is no influence on software reset behavior with RPD status. If a bidirectional reset is selected, a software reset event pulls the $\overline{\text { RSTIN }}$ pin low. This occurs only if RPD is high. If RPD is low, the $\overline{\text { RSTIN }}$ pin is not pulled low even though a bidirectional reset is selected.

See Figure 83 and Figure 84 which shows unidirectional software reset timing. See Figure 85, Figure 86, and Figure 87 for bidirectional software reset timing.

20.5 Watchdog timer reset

When the watchdog timer is not disabled during initialization, or if it is not serviced regularly during program execution, it overflows and triggers the reset sequence.

Unlike hardware and software resets, the watchdog reset completes a running external bus cycle if the bus cycle does not use $\overline{\text { READY, or if } \overline{\text { READY }} \text { is sampled active (low) after the }}$ programmed wait states.
When $\overline{R E A D Y}$ is sampled inactive (high) after the programmed wait states, the running external bus cycle is aborted. Then the internal reset sequence is started.

Bit P0.12...P0.8 are latched at the end of the reset sequence and bit P0.7...P0.2 are cleared (written at 1).

A watchdog reset is always taken as synchronous. There is no influence on watchd $\sim g$ ieset behavior with RPD status. If a bidirectional reset is selected, a watchdog reset vont ; ju.ls the $\overline{\text { RSTIN }}$ pin low. This occurs only if RPD is high. If RPD is low, the $\overline{\text { RSTIN }}$ fin is not pulled low even though a bidirectional reset is selected.
See Figure 83 and Figure 84 which shows unidirectional software r sse iming. See Figure 85, Figure 86, and Figure 87 for bidirectional software rese: timing.

Figure 83. Software/watchdog timer unidirectionair.set ($\overline{\mathrm{EA}}=1$)

Figure 84. Software/watchdog timer unidirectional reset $(\overline{\mathrm{EA}}=0)$

20.6 Bidirectional reset

The RSTOUT pin is driven active (low level) at the beginning of any reset sequence (synchronous/asynchronous hardware, software, and watchdog timer resets). It stays active low after the end of the initialization routine and until the protected EINIT instruction (End of Initialization) is completed.
The bidirectional reset function is useful when external devices require a reset signal, but, it cannot be connected to the RSTOUT pin, because the $\overline{\text { RSTOUT signal continues during }}$ initialization. In this case, the external memory can run the initialization routine before the execution of the EINIT instruction.

The bidirectional reset function is enabled by setting the BDRSTEN bit in the SYSCON register. It can only be enabled during the initialization routine, before the EINIT instruction is completed.

Once enabled, the open-drain of the $\overline{\text { RSTIN }}$ pin is activated, pulling the reset sigha'. aown for the duration of the internal reset sequence (synchronous/asynchronous haicivere, synchronous software, and synchronous watchdog timer resets). At the erid of the internal reset sequence the pull down is released and:

- If $\overline{\text { RSTF }}$ is sampled low (8 TCL periods after the internal ${ }^{r}$ sei sequence completion, see Figure 79 and Figure 80) after a short synchron'sis bidirectional hardware reset, the short reset becomes a long reset. On the contrir y; if RSTF is sampled high, the device simply exits reset state.
- After a software or watchdog bidirection 11 restt, the device exits from reset. If $\overline{\text { RSTF }}$ remains low for at least 4 TCL periにn : a ier exiting reset (minimum time to recognize a short hardware reset, see Figurt 85 and Figure 86), the software or watchdog reset become a short hardware reset. On the contrary, if RSTF remains low for less than 4 TCL, the device exits the rt set state.
The bidirectional reset is nct effective when RPD is held low or when a software or watchdog reset ever ${ }^{+}$oczurs. On the contrary, if a software or watchdog bidirectional reset event is active $\varepsilon . \mathrm{nt}^{\prime}$ R!-D becomes low, the RSTIN pin is immediately released, while the internal ress! s?yuence is completed regardless of the RPD status change (1024 TCL).
Note: \quad The birectional reset function is disabled by any reset sequence (when the BDRSTEN bit of tra S YSCON register is cleared). To be activated again, it must be enabled during the in itialization routine.

20．6．1 WDTCON flags

When a bidirectional reset is enabled，a short reset may degenerate into a long reset due to the presence of the internal filter on the RSTIN pin（see Section 20．3．1：Short and long synchronous reset on page 221）．When the RSTIN pin is released，the internal signal after the filter（see $\overline{\text { RSTF }}$ in Figure 75 to Figure 78）is delayed，so $\overline{\text { RSTIN }}$ remains active（low）for a while．Consequently，a short reset may be recognized as a long reset，depending on the internal clock speed．

When either a software or watchdog bidirectional reset event occurs，the RSTIN pin is released（at the end of the internal reset sequence），the RSTF internal signal（after the filter） remains low for a while，and $\overline{\text { RSTIN }}$ is recognized as high or low．Eight TCL after completion of the internal sequence，the level of the RSTF signal is sampled．If it is recognized as low，a hardware reset sequence starts，the WDTCON register flags this event，and masks the previous one（software or watchdog reset）．Typically，a short hardware reset is recosinized， unless the RSTIN pin（and consequently the internal RSTF signal）is held sufficiently ow by the external hardware to inject a long hardware reset．The initialization routir．e is chen unable to recognize a software or watchdog bidirectional reset event，くiぃふ i different source is flagged inside the WDTCON register．This phenomenon rio心 lot occur when internal Flash is selected during reset（ $\mathrm{EA}=1$ ），since the init＇ali ：a＇ion of the Flash itself extends the internal reset duration beyond the filter delay．

Figure 85，Figure 86，and Figure 87 show the timing for suiware and watchdog timer bidirectional reset events．Figure 87 shows the dọ $\frac{1}{2}:$ iation into a hardware reset．

Figure 85．Software／watchdog timer t dı ${ }^{\circ} \mathrm{C}$ tional reset（ $\overline{\mathrm{EA}}=1$ ）

Figure 86. Software/watchdog timer bidirectional reset ($\overline{\mathrm{EA}}=0$)

Figure 87. Software/watchdog timer bidirectional reset ($\overline{\mathrm{EA}}=0$) followed by a hardware reset

20.7 Reset circuitry

The internal reset circuitry is described in Figure 91. The $\overline{\text { RSTIN }}$ pin provides an internal pull-up resistor of $50 \mathrm{k} \Omega$ to $250 \mathrm{k} \Omega$ (the minimum reset time must be calculated using the lowest value).

The internal reset circuitry also provides a programmable (BDRSTEN bit of the SYSCON register) pull-down to output the internal reset state signal (synchronous reset, watchdog timer reset, or software reset).

This bidirectional reset function is useful in applications where external devices require a reset signal, but, it cannot be connected to the RSTOUT pin.
In this case, the external memory can run codes before the EINIT instruction is executed (end of initialization). The RSTOUT pin is pulled high only when EINIT is executed.

The RPD pin provides an internal weak pull-down resistor which discharges ar exterrai capacitor at a typical rate of $200 \mu \mathrm{~A}$. If the PWDCFG bit of the SYSCON register is set, an internal pull-up resistor is activated at the end of the reset sequence. Tr is pill-up charges any capacitor connected to the RPD pin.
The simplest way to reset the device is to insert a capacitor, C 1 ottween the $\overline{\text { RSTIN }}$ pin and V_{SS}, and a second capacitor, C0, between the RPD pin and $\mathrm{V}_{\mathrm{S}_{3}}$, with a pull-up resistor, R0, between the RPD pin and V_{DD}. The $\overline{\text { RSTIN }}$ input provic's a internal pull-up device equalling a resistor of $50 \mathrm{k} \Omega$ to $250 \mathrm{k} \Omega$ (the minimın ifset time must be determined by the lowest value). Selecting C1, produces a sufficie, it (lischarge time to permit the internal or external oscillator, and/or the internal PL': ariu he on-chip voltage regulator to stabilize.
To ensure correct power-up reset with cor trolled supply current consumption, in particular if the clock signal requires a long period of time to stabilize, an asynchronous hardware reset is required during power-up. So.nsequently, it is recommended to connect the external R0C0 circuit shown in Figure 8 t ts the RPD pin. On power-up, the logical low level on the RPD pin, forces an asynch oncus hardware reset when $\overline{\text { RSTIN }}$ is asserted low. The external pullup, R0, then cha. ${ }^{\text {? }}$ s the capacitor, C0. Note that an internal pull-down device on the RPD pin is turned $\approx \eta$ wlien the $\overline{\text { RSTIN }}$ pin is low, and causes the external capacitor, C0, to begin dischary $\eta 1 a^{+}+i$ typical rate of 100-200 $\mu \mathrm{A}$. With this mechanism, after power-up reset, short low pur-es applied on RSTIN produce synchronous hardware resets. If $\overline{\text { RSTIN }}$ is asserted loricer than the time needed for C 0 to be discharged by the internal pull-down device, the arvice is forced into an asynchronous reset. This mechanism ensures recovery from catastrophic failures.

Figure 88. Minimum external reset circuitry

The minimum reset circuit of Figure 88 is not adequate when ie $\overline{\mathrm{RSTIN}}$ pin is driven from the ST10F296E itself during software or watchdog trigne ed resets. This is because capacitor C 1 keeps the voltage on the $\overline{\text { RSTIN }}$ pin abcvt $l_{i: ~}^{\prime}$ after the end of the internal reset sequence, thus triggering an asynchronous resfisequence.
Figure 89 shows an example of a reset circuit he R1-C1 external circuit is used to generate power-up or manual reset a id $\mathrm{tt} \in 50-\mathrm{CO}$ circuit on RPD is used for power-up reset and to exit from power-down mode. D心む́e, D1, creates a wired-OR gate connection to the reset pin and may be replaceá by an open-collector Schmitt trigger buffer. Diode, D2, provides a faster cycle tirre en: repetitive power-on resets.
R2 is an optional pull-up ier iaster recovery and correct biasing of the TTL open collector drivers.

Figure -9. Eystem reset circuit

20.8 Reset application examples

Figure 90 and Figure 91 are timing diagrams that provide additional examples of bidirectional internal reset events (software and watchdog). They include the external capacitance charge and discharge transients. Figure 89 shows the external circuit scheme.

Figure 90. Example of software or watchdog bidirectional reset ($\overline{E A}=1$)

Figure 91. Example of software or watchdog bidirectional reset ($\overline{\mathrm{EA}}=0$)

20.9 Reset summary

Table 132 summarizes the different reset events.

Table 132. Reset events summary

Table 132. Reset events summary

1. A software hardware reset can degenerate into a long hardware reset and is consequer 'ly tas qea differently (see Section 20.3 for details).
2. When bidirectional reset is active (and RPD $=0$), it can be followed by a short herd varo reset and is consequently flagged differently (see Section 20.6 for details).

Table 133 and Figure 92 shows the start-up configurations alld jume system features that are selected on reset sequences. Table 133 describes the system cor.fyulations latched onto Port 0 in the six different reset modes. Figure 92 summarizes the state of the $F \mathrm{D}_{1}{ }^{+\prime} \mathrm{J}$ bits latched in the RPOH, SYSCON, and BUSCONO registers.

Table 133. Latched configurations of Por: 0 for the different reset events ${ }^{(1)}$

Sample over.t		음 응 믕 응										$\underset{\sim}{\boldsymbol{\sim}}$		$\begin{aligned} & \text { ס } \\ & \stackrel{2}{2} \\ & \mathbb{む} \\ & \underset{\sim}{0} \end{aligned}$		
	$\begin{aligned} & \text { N } \\ & \text { 중 } \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \mathbf{I} \\ \mathbf{O} \end{array}$		$\begin{aligned} & \text { d } \\ & \dot{B} \end{aligned}$		$\begin{aligned} & \text { M } \\ & \text { ָ } \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{\Gamma} \\ & \bar{O} \end{aligned}$	$\begin{aligned} & \hline \text { 오 } \\ & \text { I } \\ & \hline \mathbf{0} \end{aligned}$	ì	$\begin{aligned} & 0 \\ & \text { i } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { Bia } \end{aligned}$	$\begin{aligned} & \text { i } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O} \end{aligned}$	둥	인
Software reset	-	-	-	X	X	X	X	X	X	X	-	-	-	-	-	-
Watchdog reset	-	-	-	X	X	X	X	X	X	X	-	-	-	-	-	-
Synchronous short hardware reset	-	-	-	X	X	X	X	X	X	X	X	X	X	X	X	X
Synchronous long hardware reset	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Asynchronous hardware reset	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Asynchronous power-on reset	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

1. $X:$ Pin is sampled; -: Pin is not sampled.

Figure 92. Port 0 bits latched into the different registers after reset

21 Power reduction modes

Three different power reduction modes with different levels of power saving have been implemented in the ST10F296E. In idle mode, the CPU is stopped, but, peripherals still operate. In power-down mode, both the CPU and peripherals are stopped. In stand-by mode, the main power supply $\left(\mathrm{V}_{\mathrm{DD}}\right)$ can be turned off while a portion of the internal RAM remains powered via the dedicated power pin, $\mathrm{V}_{\text {STBY }}$.

Idle and power-down modes are software activated by a protected instruction and are terminated in different ways as described in the following sections.

Stand-by mode is entered by removing V_{DD} and holding the MCU under reset state.

21.1 Idle mode

Idle mode is entered by running the IDLE protected instruction. CPU oneration is stopped but, the peripherals continue to run.

Idle mode is terminated by any interrupt request. Whether the :iteırupt is serviced or not, the instruction following the IDLE instruction, is executed diter a return from the interrupt instruction (RETI). The CPU then resumes normal progiariiming.

Note that a PEC transfer keeps the CPU in idle r 10, v. If the PEC transfer does not succeed, idle mode is terminated. The watchdog timer ainst be properly programmed to avoid any disturbance during idle mode.

21.2 Power-down mode

Power-down mode ste rts wy running the PWRDN protected instruction. The internal clock is stopped, all MC^{\prime}; car. 3 , including the watchdog timer, are put on hold. The only exception is the RTC, if it nce reen opportunely programmed, and consequently, the main oscillator circuit’.

Wricn the RTC module is used, and the device is in power-down mode, a reference clock is rieuむed. Accordingly, the main oscillator is kept running (XTAL1/XTAL2 pins). In this way, the I3TC continues counting using the main oscillator clock signal as a reference.
There are two different operating power-down modes:

- Protected mode
- Interruptible mode

The internal RAM contents can be preserved through the voltage that is supplied via the V_{DD} pins. To verify RAM integrity, some dedicated patterns may be written before entering power-down mode which must be checked after power-down is resumed.

Power-down mode is entered by executing the PWRDN instruction. Before entering it, the VREGOFF bit in the XMISC register must be set. In this way, as soon as the PWRDN command is executed, the main voltage regulator is turned off, and only the low power voltage regulator remains active.
Note: \quad Leaving the main voltage regulator active during power-down may lead to unexpected behavior (example, CPU wake-up). Power consumption is also higher than that specified in Table 163: DC characteristics on page 295.

21.2.1 Protected power-down mode

This mode is selected when the PWDCFG bit of the SYSCON register is cleared. Protected power-down mode is only activated if the $\overline{\text { NMI }}$ pin is pulled low when executing the PWRDN instruction. This mode is only deactivated with an external hardware reset on the $\overline{\mathrm{RSTIN}}$ pin.

21.2.2 Interruptible power-down mode

This mode is selected when the PWDCFG bit of the SYSCON register is set (see Section 23: Register set on page 248).

Interruptible power-down mode is only activated if all the enabled fast external interrupt pins are at their inactive level (see Table 134: EXICON register description).
This mode is deactivated with an external reset applied to the $\overline{\text { RSTIN }}$ pin, with an inteirupt request applied to one of the fast external interrupt pins, with an interrupt generateut iy the RTC, or with an interrupt generated by activity on the interfaces of the CAN 2.na modules. To allow the internal PLL and clock to stabilize, the $\overline{\text { RSTIN }}$ pir mu: $乞 \mathrm{e}$ held low according the recommendations described in Section 20: System rest t.

EXICON register

EXICON (F1COh/E0h) ESFR		ESFR				Reset value: 0000h	
1514	$13 \quad 12$	1110	98	7	5	2	10
EXI7ES	EXI6ES	EXI5ES	EYITL ${ }^{\text {a }}$	EXI3ES	EXI2ES	EXI1ES	EXIOES
R/W	R/W	R/W	R/N	R/W	R/W	R/W	R/W

Table 134. EXICON registar ciescription

Bit	Bit name	1) Function
15.0		External interrupt x edge selection field ($x=7 \ldots 0$) 00: Fast external interrupts disabled (referred to as standard mode). The EXxIN pin is not taken into account for entering/exiting power-down mode. 01: Interrupt on positive edge (rising). Power-down mode is entered if EXilN $=0$ and exited if EXxIN = 1 (referred to as 'high' active level). 10: Interrupt on negative edge (falling). Power-down mode is entered if EXilN $=1$ and exited if $\mathrm{EXxIN}=0$ (referred to as 'low' active level). 11: Interrupt on any edge (rising or falling). Power-down mode is always entered and is exited if EXxIN level changes.

EXxIN inputs are normally sampled interrupt inputs. However, the power-down mode circuitry uses them as level-sensitive inputs.

An EXxIN ($x=3 \ldots 0$) interrupt enable bit (bit CCxIE in the CCxIC register) does not need to be set to bring the device out of power-down mode. An external RC circuit must be connected to the RPD pin, as shown in Figure 93.

Figure 93．External RC circuit on the $\overline{R P D}$ pin

To exit power－down mode with an external interrupt，an EXxIN（ $x=7 \ldots 0$ ）pin has to 0． asserted for at least 40 ns ．

This signal enables the internal oscillator and PLL circuitry．It also turns，or the weak pull－ down（see Figure 94）．

The discharge of the external capacitor provides a delay that ？iows the oscillator and PLL circuits to stabilize before the internal CPU and periphereiplocks are enabled．When the RPD voltage drops below the threshold voltage（abo＇it $\left\llcorner b^{\circ} \mathrm{V}\right.$ ），the Schmitt trigger clears Q2 flip－flop，the CPU and peripheral clocks are enabloc！，arid the device resumes code execution．

If the interrupt is enabled（CCxIE bit $=.1$ in the CCxIC register）before entering power－down mode，the device executes the interrupt service routine and resumes execution after the PWRDN instruction（see note helow）．
If the interrupt is disabled，the device executes the instruction following the PWRDN instruction and the intsiml request flag remains set（using the CCxIR bit in the CCxIC register）until it is clecucd by software．

Note：\quad Due to the ir te：nal pipeline，the instruction that follows the PWRDN instruction is executed befort th ョ ソドU performs a call of the interrupt service routine when exiting power－down mode．

Figure 94. Simplified power-down exit circuitry

1. Legend:
exit_pwrd = exit power-down internal signal
en_clk_n = clock enable signal (negated: active low),
Figure 95. Power-down exit sequance when using an external interrupt (PLL x 2)

21.3 Standby mode

In stand-by mode, the RAM array is maintained powered through the dedicated pin, $\mathrm{V}_{\mathrm{STB}} \mathrm{H}$, when the main power supply (V_{DD}) of the ST10F296E is turned off.

To enter stand-by mode, the device must be held under reset. In this way, the RAM is disabled (see XRAM2EN bit of XPERCON register, Table 5), and its digital interface is frozen to avoid any kind of data corruption. It is then possible to turn off the main $V_{D D}$ provided that $\mathrm{V}_{\text {STBY }}$ is on.

A dedicated embedded low-power voltage regulator is implemented to generate the internal low voltage supply to bias the portion of XRAM (16 Kbytes).

In normal running mode (when V_{DD} is on), the $\mathrm{V}_{\text {STBY }}$ pin can be tied to $\mathrm{V}_{S S}$ during reset, to exercise the $\overline{E A}$ functionality associated with the same pin. The voltage supply for the circuits which are usually biased with $\mathrm{V}_{\text {STBY }}$ is granted by the active $\mathrm{V}_{\text {DD }}$.

Standby mode can generate problems associated with the use of different po wer cupplies in CMOS systems. Particular attention must be paid when the ST10F296r i'O Ines are interfaced with other external CMOS integrated circuits. In standby m. ve, it the V_{DD} of the device falls below that of the output level forced by the I/O linfo o! ti.0 external integrated circuits, the device could be powered directly through the inhe ent diode existing on the device output driver circuit. The same is valid for the ST1 10 -296E when it is interfaced to active/inactive communication buses during standby 11 o,ve. Current injection can be generated through the inherent diode.
In addition, the sequence of turning on/oft th ς a fferent voltages could be critical for the system. The device standby mode cu rer.t ('stBY) may vary while the V_{DD} to $\mathrm{V}_{\text {STBY }}$ transition occurs (and vice versa) as siree current flows between the V_{DD} and $\mathrm{V}_{\mathrm{STBY}}$ pins. System noise on both the V_{DD} ana $\mathrm{V}_{\text {STBY }}$ pins can increase this phenomenon.

21.3.1 Entering standby mode

To enter standb; , nore, the XRAM2EN bit in the XPERCON register must be cleared (this bit is autome tic aily reset by any kind of reset event, see Section 20: System reset). This allows th: RAiM interface to be frozen immediately, thereby avoiding any data corruption. As a conse juence of a reset event, the RAM power supply is switched to the internal low. 0 arge supply, $\mathrm{V}_{18 \mathrm{SB}}$ (derived from $\mathrm{V}_{\text {STBY }}$ through the low-power voltage regulator). The RiM interface remains frozen until the XRAM2EN bit is set again by the software initialization routine (at the next exit from $V_{D D}$ power-on reset sequence).

When V_{18} falls (as a result of V_{DD} being turning off), the XRAM2EN bit is no longer be able to guarantee its content (logic 0), because the XPERCON register is powered by internal V_{18}. This does not generate a problem because the standby mode switching dedicated circuit continues to confirm that the RAM interface is freezing, irrespective of the XRAM2EN bit content. The XRAM2EN bit status is considered once more when the internal V_{18} starts again and replaces the internal stand-by reference $\mathrm{V}_{18 \mathrm{SB}}$.

If internal V_{18} falls below the internal stand-by reference $\left(\mathrm{V}_{18 \mathrm{SB}}\right)$ by about 0.3 to 0.45 V when the XRAM2EN bit is set, the RAM supply switching circuit is inactive. If there is a temporary drop on the internal V_{18} voltage versus internal $\mathrm{V}_{18 \mathrm{SB}}$ during normal code execution, no spurious standby mode switching can occur (the RAM is not frozen and can still be accessed).

The ST10F296E core module, which generates the RAM control signals, is powered by the internal V_{18} supply. During turning off transient phase these control signals follow the V_{18}, while RAM is switched to $\mathrm{V}_{18 \mathrm{SB}}$ internal reference. A high level of RAM write strobe from the ST10F296E core (active low signal), may be low enough to be recognized as a logic 0 by the RAM interface (due to V_{18} being lower than $\mathrm{V}_{18 \mathrm{SB}}$). The bus status may contain a valid address for the RAM and an unwanted data corruption may occur. For this reason, an extra interface, powered by the switched supply, is used to prevent the RAM from such potential corruption mechanisms.

Warning: During power-off phase, the external hardware must maintain a stable ground level on the $\overline{\text { RSTIN }}$ pin, with no glitches, to avoid spurious exits from reset status due to an unstable power supply.

21.3.2 Exiting standby mode

The procedure to exit standby mode consists of a standard pcever-on sequence where the RAM is powered through the $\mathrm{V}_{18 \mathrm{SB}}$ internal reference (d fir ;ed irom the $\mathrm{V}_{\text {STBY }}$ pin external voltage).
It is recommended to hold the device under reset ($\overline{\mathrm{T}} \overline{\mathrm{S}} \mathrm{r} \overline{\mathrm{N}}$ pin forced low) until the external $V_{D D}$ voltage pin is stable. At the beginnin q ? $\left.t i t\right)$ power-on phase, the device is maintained under reset by the internal low voltag; $\mathrm{d} \epsilon^{+} \epsilon^{\wedge t}$ or circuit (implemented inside the main voltage regulator) until the internal V_{18} beconias nigher than about 1.0 V . Despite this, there is no warranty that the device staj's under reset status if RSTIN is at high level during power ramp up.
It is imperative that tine exiornal hardware guarantees a stable ground level on the $\overline{\text { RSTIN }}$ pin aloni the puwer-on phase, without any temporary glitches.

The externa' $n_{c}{ }^{\prime}$ ivare is responsible for driving the $\overline{\text { RSTIN }}$ pin low until the V_{DD} is stable, even t'iong'ר tire internal LVD is active. An additional time period of at least 1 ms is also reauest ad to allow the internal voltage regulator to stabilize before releasing the $\overline{\text { RSTIN }}$ pin. ${ }^{\text {r.is is necessary because the internal Flash has to begin its initialization phase (which }}$ starts when the RSTIN pin is released) with a stable V_{18}.

Once the internal reset signal goes low, the power supply of the RAM (which is still frozen) is switched to the main V_{18}.
At this point, all voltages are stable, and the execution of the initialization routines can start. The XRAM2EN bit can be set and the RAM can be enabled.

21.4 Power reduction modes summary

Table 135 provides a summary of the different power reduction modes
Table 135. Power reduction modes summary

Mode	V_{DD}	$\mathrm{V}_{\text {STBY }}$	CPU	Peripherals	RTC	Main OSC	STBY XRAM	XRAM
Idle	On	On	Off	On	Off	Run	Biased	Biased
	On	On	Off	On	On	Run	Biased	Biased
Power-down	On	On	Off	Off	Off	Off	Biased	Biased
	On	On	Off	Off	On	On	Biased	Siased
	On	On	Off	Off	On	Off	Biased	Siajed
Standby	Off	On	Off	Off	Off	Off	Bias эd	Off

22 Programmable output clock divider

A specific register mapped on the XBus allows the division factor on the CLKOUT signal (P3.15) to be chosen. This register, XCLKOUTDIV, is mapped on the XMiscellaneous memory address range.

XCLKOUTDICV register

Table 136. XCLKOUTDIV register description

Bit	Bit name	Function
$7-0$	DIV	Clock divider setting 00h: $F_{\text {CLKOUT }}=F_{\text {CPU } / D I V+1 ~}^{2}$

The CPU clock is output on P3.15, by default, wher : if, CLKOUT function is enabled (setting the CLKEN bit of the SYSCON registar)

By setting the XMISCEN and XPEN ris 2 th e XPERCON and SYSCON registers respectively, the clock prescaling factor con be programmed. In this way, a prescaled value of the CPU clock can be output on P3.15.

When the CLKOUT function : 5 not enabled (clearing the CLKEN bit of the SYSCON on P3.15), P3.15 does nct cutput a clock signal, even though the XCLKOUTDIV register is programmed.

23 Register set

This section summarizes the registers implemented in the ST10F296E，and explains the function and layout of the SFRs．
The registers（except the general purpose registers）are organized：
－By address，to check which register a given address references．
－By register name，to find the location of a specific register．

23．1 Register description format

Throughout the document，registers are laid out and described as follows：

Word registers

REG＿NAME（A16h／A8h）					SFR／ESFR／XBus					Reset value：＊＊＊＊h 4 3 2 1 0			
15	14	13	12	11	10	9	8	7	6				
Reserved					Write only bit	$\begin{gathered} \text { HW } \\ \text { bit } \end{gathered}$	Read only bit	$\begin{array}{\|c} \hline \text { STD } \\ \text { Bii } \end{array}$		Bitfield Bitfield			
－					W	RW	R	FW RW		RW RW			

Table 137．Word register descript on

Bit	Bit name		Function
Bit（field） number in register	bit（field） name	こうoler．ation of bit（field）name	
Description of the functions controlled by the bit（field）			

Byte registers

Byte $r \in{ }^{1}$ ィsters do not contain reserved areas nor read－only／write－only bits．

Elements

REG_NAME: Name of the register
A16h/A8h: Long address (16-bit)/ Short address (8-bit)
SFR/ESFR/XBus: Register space (SFR, ESFR or XBus register)
(* *) * Register contents after reset
0/1: Defined
X: Undefined after power up)
U: Unchanged
HW bit: Bits that are set/cleared by hardware
STD bit: \quad Standard 'normal' bit (software rather than hardware bit)

23.2 General purpose registers (GPRs)

The GPRs form the register bank that the CPU works with. 7, is re gister bank may be located anywhere within the internal RAM via the context phinter (CP). Due to the addressing mechanism, GPR banks can only reside minhin 'he internal RAM. All GPRs are bit-addressable.

Table 138. General purpose registers $\mathrm{GOPB}_{\text {I }}$

Name	Physical address	8-bit address	Description	Reset value
R0	(CP) +0	FO!	CPU general purpose (word) register R0	UUUUh
R1	$(\mathrm{CP})+$?	Fih	CPU general purpose (word) register R1	UUUUh
R2	(C'	F2h	CPU general purpose (word) register R2	UUUUh
R3	($(P)+6$	F3h	CPU general purpose (word) register R3	UUUUh
R4	(CP) +8	F4h	CPU general purpose (word) register R4	UUUUh
5	$(C P)+10$	F5h	CPU general purpose (word) register R5	UUUUh
R6	$(\mathrm{CP})+12$	F6h	CPU general purpose (word) register R6	UUUUh
R7	(CP) + 14	F7h	CPU general purpose (word) register R7	UUUUh
R8	$(\mathrm{CP})+16$	F8h	CPU general purpose (word) register R8	UUUUh
) R9	$(\mathrm{CP})+18$	F9h	CPU general purpose (word) register R9	UUUUh
R10	(CP) +20	FAh	CPU general purpose (word) register R10	UUUUh
R11	(CP) +22	FBh	CPU general purpose (word) register R11	UUUUh
R12	$(\mathrm{CP})+24$	FCh	CPU general purpose (word) register R12	UUUUh
R13	$(\mathrm{CP})+26$	FDh	CPU general purpose (word) register R13	UUUUh
R14	$(\mathrm{CP})+28$	FEh	CPU general purpose (word) register R14	UUUUh
R15	$(\mathrm{CP})+30$	FFh	CPU general purpose (word) register R15	UUUUh

The first eight GPRs (R7 to R0) may also be accessed byte wise. Writing to a GPR byte (except for SFRs) does not affect other bytes of the respective GPR. The respective halves of the byte-accessible registers receive special names listed in Table 139.

Table 139. General purpose registers (GPRs) bit wise addressing

Name	Physical address	8-bit address	Description	Reset value
RLO	(CP) + 0	FOh	CPU general purpose (byte) register RLO	UUh
RH0	(CP) + 1	F1h	CPU general purpose (byte) register RH0	UUh
RL1	(CP) + 2	F2h	CPU general purpose (byte) register RL1	UUh
RH1	(CP) + 3	F3h	CPU general purpose (byte) register RH1	IJUh
RL2	(CP) + 4	F4h	CPU general purpose (byte) register RL2	נlh
RH2	(CP) + 5	F5h	CPU general purpose (byte) register RH2	UUh
RL3	$(\mathrm{CP})+6$	F6h	CPU general purpose (byte) register R Lo	UUh
RH3	(CP) + 7	F7h	CPU general purpose (byte) revii.te: F.H3	UUh
RL4	(CP) + 8	F8h	CPU general purpose (bvte) rigister RL4	UUh
RH4	$(\mathrm{CP})+9$	F9h	CPU general purpco? (byıd) register RH4	UUh
RL5	(CP) +10	FAh	CPU general 'uipose (byte) register RL5	UUh
RH5	(CP) + 11	FBh	CPU ¢ ¢rlal , jurpose (byte) register RH5	UUh
RL6	$(\mathrm{CP})+12$	FCh	C, ${ }^{\text {U }}$ g eneral purpose (byte) register RL6	UUh
RH6	$(C P)+13$	FLh	CPU general purpose (byte) register RH6	UUh
RL7	$(\mathrm{CP})+14$	Fer	CPU general purpose (byte) register RL7	UUh
RH7	$(C P)+{ }^{+5}$	FFh	CPU general purpose (byte) register RH7	UUh

23.3 SFRs ordered by name

Table 140 lists all SFR registers which are implemented in the ST10F296E. They are ordered by name in alphabetical order.

Bit-addressable SFRs are indicated by the bolded letter 'b' in the 'Name' column.
SFRs within the ESFR space are indicated by the bolded letter 'E' in the 'Physical address' column.

Table 140. SFRs ordered by name

Name	Physical address	8-bit address	Description	Reset value
ADCIC (b)	FF98h	CCh	ADC end of conversion interrupt control register	--0nh
ADCON (b)	FFAOh	DOh	ADC control register	couoh
ADDAT	FEAOh	50h	ADC result register	0000h
ADDAT2	FOAOh (E)	50h	ADC 2 result register	0000h
ADDRSEL1	FE18h	OCh	Address select register 1	0000h
ADDRSEL2	FE1Ah	ODh	Address select register 2	0000h
ADDRSEL3	FE1Ch	OEh	Address select register 3	0000h
ADDRSEL4	FE1Eh	OFh	Address select regisior 4	0000h
ADEIC (b)	FF9Ah	CDh	ADC ove, rur. trrer interrupt control register	--00h
BUSCONO (b)	FFOCh	86h	Bus configuration register 0	0xx0h
BUSCON1 (b)	FF14h	8Ah	Bu: configuration register 1	0000h
BUSCON2 (b)	FF16h	8Bh	Bus configuration register 2	0000h
BUSCON3 (b)	FF18h	8 Ch	Bus configuration register 3	0000h
BUSCON4 (b)	FF1Ah	8Dh	Bus configuration register 4	0000h
CAPREL	r. F_{-}- Ar_{1}	25h	GPT2 capture/reload register	0000h
CC0	FE80h	40h	CAPCOM register 0	0000h
CCOIC (L)	FF78h	BCh	CAPCOM register 0 interrupt control register	--00h
CC1	FE82h	41h	CAPCOM register 1	0000h
C, 11C (b)	FF7Ah	BDh	CAPCOM register 1 interrupt control register	--00h
CC2	FE84h	42h	CAPCOM register 2	0000h
CC2IC (b)	FF7Ch	BEh	CAPCOM register 2 interrupt control register	--00h
CC3	FE86h	43h	CAPCOM register 3	0000h
CC3IC (b)	FF7Eh	BFh	CAPCOM register 3 interrupt control register	--00h
CC4	FE88h	44h	CAPCOM register 4	0000h
CC4IC (b)	FF80h	COh	CAPCOM register 4 interrupt control register	--00h
CC5	FE8Ah	45h	CAPCOM register 5	0000h
CC5IC (b)	FF82h	C1h	CAPCOM register 5 interrupt control register	--00h
CC6	FE8Ch	46h	CAPCOM register 6	0000h

Table 140. SFRs ordered by name (continued)

Name	Physical address	8-bit address	Description	Reset value
CC6IC (b)	FF84h	C2h	CAPCOM register 6 interrupt control register	--00h
CC7	FE8Eh	47h	CAPCOM register 7	0000h
CC7IC (b)	FF86h	C3h	CAPCOM register 7 interrupt control register	--00h
CC8	FE90h	48h	CAPCOM register 8	0000h
CC8IC (b)	FF88h	C4h	CAPCOM register 8 interrupt control register	--00h
CC9	FE92h	49h	CAPCOM register 9	0000h
CC9IC (b)	FF8Ah	C5h	CAPCOM register 9 interrupt control register	--00i.
CC10	FE94h	4Ah	CAPCOM register 10	9000,
CC10IC (b)	FF8Ch	C6h	CAPCOM register 10 interrupt control register	--00h
CC11	FE96h	4Bh	CAPCOM register 11	0000h
CC11IC (b)	FF8Eh	C7h	CAPCOM register 11 interrupt con ${ }^{+}$. ${ }^{\text {r }}$ ¢ gisier	--00h
CC12	FE98h	4Ch	CAPCOM register 12	0000h
CC12IC (b)	FF90h	C8h	CAPCOM register 12 interr. p control register	--00h
CC13	FE9Ah	4Dh	CAPCOM register 16	0000h
CC13IC (b)	FF92h	C9h	CAPCOM $\simeq 0$ ster 13 interrupt control register	--00h
CC14	FE9Ch	4Eh	CAPCOn ${ }^{1}$ reyister 14	0000h
CC14IC (b)	FF94h	CAh	C, 1 PCOM register 14 interrupt control register	--00h
CC15	FE9Eh	4Fh	CAPCOM register 15	0000h
CC15IC (b)	FF96h	C3,	CAPCOM register 15 interrupt control register	--00h
CC16	FE60h	30h	CAPCOM register 16	0000h
CC16IC (b)	-1f0r (E)	B0h	CAPCOM register 16 interrupt control register	--00h
CC17	FEô2h	31 h	CAPCOM register 17	0000h
CC17IC 'bi	F162h (E)	B1h	CAPCOM register 17 interrupt control register	--00h
CC19	FE64h	32h	CAPCOM register 18	0000h
CC IolC (b)	F164h (E)	B2h	CAPCOM register 18 interrupt control register	--00h
CC19	FE66h	33h	CAPCOM register 19	0000h
CC19IC (b)	F166h (E)	B3h	CAPCOM register 19 interrupt control register	--00h
CC20	FE68h	34h	CAPCOM register 20	0000h
CC20IC (b)	F168h (E)	B4h	CAPCOM register 20 interrupt control register	--00h
CC21	FE6Ah	35h	CAPCOM register 21	0000h
CC21IC (b)	F16Ah (E)	B5h	CAPCOM register 21 interrupt control register	--00h
CC22	FE6Ch	36h	CAPCOM register 22	0000h
CC22IC (b)	F16Ch (E)	B6h	CAPCOM register 22 interrupt control register	--00h
CC23	FE6Eh	37h	CAPCOM register 23	0000h

Table 140. SFRs ordered by name (continued)

253/346

Table 140. SFRs ordered by name (continued)

Name	Physical address	8-bit address	Description	Reset value
DP4 (b)	FFCAh	E5h	Port 4 direction control register	--00h
DP6 (b)	FFCEh	E7h	Port 6 direction control register	--00h
DP7 (b)	FFD2h	E9h	Port 7 direction control register	--00h
DP8 (b)	FFD6h	EBh	Port 8 direction control register	--00h
DPP0	FE00h	00h	CPU data page pointer 0 register (10-bit)	0000h
DPP1	FE02h	01h	CPU data page pointer 1 register (10-bit)	0001h
DPP2	FE04h	02h	CPU data page pointer 2 register (10-bit)	000̇\% ${ }^{\text {¢ }}$
DPP3	FE06h	03h	CPU data page pointer 3 register (10-bit)	90113.
EMUCON	FE0Ah	05h	Emulation control register	--XXh
EXICON (b)	F1C0h (E)	EOh	External interrupt control register	0000h
EXISEL (b)	F1DAh (E)	EDh	External interrupt source selection ec s. or	0000h
IDCHIP	F07Ch (E)	3Eh	Device identifier register (n is tr.a device revision)	128nh
IDMANUF	F07Eh (E)	3Fh	Manufacturer identifier reg1\% ¢ $^{\text {- }}$	0403h
IDMEM	F07Ah (E)	3Dh	On-chip memory ide tiil e: register	30D0h
IDPROG	F078h (E)	3Ch	Programming voiáaje identifier register	0040h
IDX0 (b)	FF08h	84h	MAC uniı adr,ress pointer 0	0000h
IDX1 (b)	FFOAh	85h	Ni.AC unit address pointer 1	0000h
MAH	FE5Eh	2Fh	AIAC unit accumulator - high word	0000h
MAL	FE5Ch	2 F	MAC unit accumulator - low word	0000h
MCW (b)	FFDCh	CEh	MAC unit control word	0000h
MDC (b)	FFl El	87h	CPU multiply divide control register	0000h
MDH	FEJCh	06h	CPU multiply divide register - high word	0000h
MDL	FEOEh	07h	CPU multiply divide register - low word	0000h
MRIN (b)	FFDAh	EDh	MAC unit repeat word	0000h
MEVV (b)	FFDEh	EFh	MAC unit status word	0200h
ODP2 (b)	F1C2h (E)	E1h	Port 2 open-drain control register	0000h
ODP3 (b)	F1C6h (E)	E3h	Port 3 open-drain control register	0000h
ODP4 (b)	F1CAh (E)	E5h	Port 4 open-drain control register	--00h
ODP6 (b)	F1CEh (E)	E7h	Port 6 open-drain control register	--00h
ODP7 (b)	F1D2h (E)	E9h	Port 7 open-drain control register	--00h
ODP8 (b)	F1D6h (E)	EBh	Port 8 open-drain control register	--00h
ONES (b)	FF1Eh	8Fh	Constant value 1's register (read-only)	FFFFh
POL (b)	FFOOh	80h	Port 0 low register (lower half of Port 0)	--00h
POH (b)	FF02h	81h	Port 0 high register (upper half of Port 0)	--00h

Table 140．SFRs ordered by name（continued）

Name	Physical address	8－bit address	Description	Reset value
P1L（b）	FF04h	82h	Port 1 low register（lower half of Port 1）	－－00h
P1H（b）	FF06h	83h	Port 1 high register（upper half of Port 1）	－－00h
P2（b）	FFCOh	EOh	Port 2 register	0000h
P3（b）	FFC4h	E2h	Port 3 register	0000h
P4（b）	FFC8h	E4h	Port 4 register（8－bit）	－－00h
P5（b）	FFA2h	D1h	Port 5 register（read－only）	XXXXh
P6（b）	FFCCh	E6h	Port 6 register（8－bit）	－－00i．
P7（b）	FFDOh	E8h	Port 7 register（8－bit）	－unt．
P8（b）	FFD4h	EAh	Port 8 register（8－bit）	－－00h
P5DIDIS（b）	FFA4h	D2h	Port 5 digital disable register	0000h
PECCO	FECOh	60h	PEC channel 0 control register	0000h
PECC1	FEC2h	61 h	PEC channel 1 control register	0000h
PECC2	FEC4h	62h	PEC channel 2 control re抑扎	0000h
PECC3	FEC6h	63h	PEC channel 3 cont ol eyister	0000h
PECC4	FEC8h	64h		0000h
PECC5	FECAh	65h	PEC cha．${ }^{\text {ne＇}} 5$ control register	0000h
PECC6	FECCh	66h	PLCC channel 6 control register	0000h
PECC7	FECEh	67h	「ECC channel 7 control register	0000h
PICON（b）	F1C4h（E）	E．？	Port input threshold control register	－－00h
PP0	F038h（E）	1 Ch	PWM module period register 0	0000h
PP1	$\bigcirc 0 \% A_{1}$（E）	1Dh	PWM module period register 1	0000h
PP2	F03Ch（E）	1Eh	PWM module period register 2	0000h
PP3	F03Eh（E）	1Fh	PWM module period register 3	0000h
PS＇＾1（b）	FF10h	88h	CPU program status word	0000h
P10	F030h（E）	18h	PWM module up／down counter 0	0000h
PT1	F032h（E）	19h	PWM module up／down counter 1	0000h
PT2	F034h（E）	1Ah	PWM module up／down counter 2	0000h
PT3	F036h（E）	1Bh	PWM module up／down counter 3	0000h
PW0	FE30h	18h	PWM module pulse width register 0	0000h
PW1	FE32h	19h	PWM module pulse width register 1	0000h
PW2	FE34h	1Ah	PWM module pulse width register 2	0000h
PW3	FE36h	1Bh	PWM module pulse width register 3	0000h
PWMCONO（b）	FF30h	98h	PWM module control register 0	0000h
PWMCON1（b）	FF32h	99h	PWM module control register 1	0000h

Table 140. SFRs ordered by name (continued)

Name	Physical address	8-bit address	Description	Reset value
PWMIC (b)	F17Eh (E)	BFh	PWM module interrupt control register	--00h
QRO	F004h (E)	02h	MAC unit offset register R0	0000h
QR1	F006h (E)	03h	MAC unit offset register r1	0000h
QX0	F000h (E)	00h	MAC unit offset register x0	0000h
QX1	F002h (E)	01h	MAC unit offset register x1	0000h
RPOH (b)	F108h (E)	84h	System start-up configuration register (read-only)	--XXh
SOBG	FEB4h	5Ah	Serial channel 0 baud rate generator reload register	000ch
SOCON (b)	FFBOh	D8h	Serial channel 0 control register	TuIOn
SOEIC (b)	FF70h	B8h	Serial channel 0 error interrupt control register	--00h
SORBUF	FEB2h	59h	Serial channel 0 receive buffer register (read- min^{\prime},)	--XXh
SORIC (b)	FF6Eh	B7h	Serial channel 0 receive interrupt conto reyister	--00h
SOTBIC (b)	F19Ch (E)	CEh	Serial channel 0 transmit buffer interrupt control register	-00h
SOTBUF	FEB0h	58h	Serial channel 0 transmit id fter register (write-only)	0000h
SOTIC (b)	FF6Ch	B6h	Serial channel 0 trar sm it interrupt control register	--00h
SP	FE12h	09h	CPU systom, tack wointer register	FC00h
SSCBR	F0B4h (E)	5Ah	SSC baur re.e register	0000h
SSCCON (b)	FFB2h	D9h	SEC control register	0000h
SSCEIC (b)	FF76h	BBh	SSC error interrupt control register	--00h
SSCRB	F0B2h (E)	5?\%	SSC receive buffer (read-only)	XXXXh
SSCRIC (b)	FF74h	BAh	SSC receive interrupt control register	--00h
SSCTB	$\bigcirc \mathrm{OFO}$	58h	SSC transmit buffer (write-only)	0000h
SSCTIC (b)	FF72h	B9h	SSC transmit interrupt control register	--00h
STKOV	FE14h	OAh	CPU stack overflow pointer register	FA00h
STKIJV	FE16h	OBh	CPU stack underflow pointer register	FC00h
SYSCON (b)	FF12h	89h	CPU system configuration register	$0 x \times 0{ }^{(1)}$
T0	FE50h	28h	CAPCOM timer 0 register	0000h
T01CON (b)	FF50h	A8h	CAPCOM timer 0 and timer 1 control register	0000h
TOIC (b)	FF9Ch	CEh	CAPCOM timer 0 interrupt control register	--00h
TOREL	FE54h	2Ah	CAPCOM timer 0 reload register	0000h
T1	FE52h	29h	CAPCOM timer 1 register	0000h
T1IC (b)	FF9Eh	CFh	CAPCOM timer 1 interrupt control register	--00h
T1REL	FE56h	2Bh	CAPCOM timer 1 reload register	0000h
T2	FE40h	20h	GPT1 timer 2 register	0000h
T2CON (b)	FF40h	AOh	GPT1 timer 2 control register	0000h

Table 140. SFRs ordered by name (continued)

Name	Physical address	8-bit address	Description	Reset value
T2IC (b)	FF60h	B0h	GPT1 timer 2 interrupt control register	--00h
T3	FE42h	21h	GPT1 timer 3 register	0000h
T3CON (b)	FF42h	A1h	GPT1 timer 3 control register	0000h
T3IC (b)	FF62h	B1h	GPT1 timer 3 interrupt control register	--00h
T4	FE44h	22h	GPT1 timer 4 register	0000h
T4CON (b)	FF44h	A2h	GPT1 timer 4 control register	0000h
T4IC (b)	FF64h	B2h	GPT1 timer 4 interrupt control register	--00i.
T5	FE46h	23h	GPT2 timer 5 register	2000n
T5CON (b)	FF46h	A3h	GPT2 timer 5 control register	0000h
T5IC (b)	FF66h	B3h	GPT2 timer 5 interrupt control register	--00h
T6	FE48h	24h	GPT2 timer 6 register	0000h
T6CON (b)	FF48h	A4h	GPT2 timer 6 control register	0000h
T6IC (b)	FF68h	B4h	GPT2 timer 6 interrupt cc.11.0, register	--00h
T7	F050h (E)	28h	CAPCOM timer 7 re, visiər	0000h
T78CON (b)	FF20h	90h	CAPCOM $\pm r_{1} \times r$; und 8 control register	0000h
T7IC (b)	F17Ah (E)	BDh	CAPCOn ${ }^{\wedge}$ tir.er 7 interrupt control register	--00h
T7REL	F054h (E)	2Ah	C, 1 PCOM timer 7 reload register	0000h
T8	F052h (E)	29h	CAF'COM timer 8 register	0000h
T8IC (b)	F17Ch (E)	B.EV	CAPCOM timer 8 interrupt control register	--00h
T8REL	F056h (E)	2Bh	CAPCOM timer 8 reload register	0000h
TFR (b)	-FFCis	D6h	Trap flag register	0000h
WDT	FEAEh	57 h	Watchdog timer register (read-only)	0000h
WDTCCN $\mathrm{n}_{\boldsymbol{\prime}}$	FFAEh	D7h	Watchdog timer control register	$00 x x^{(2)}$
XARFS3	F01Ch (E)	OEh	XPER address select register 3	800Bh
XF Gic (b)	F186h (E)	C3h	See Section 9.1: XPeripheral interrupt	--00h ${ }^{(3)}$
XP1IC (b)	F18Eh (E)	C7h	See Section 9.1: XPeripheral interrupt	--00h ${ }^{(3)}$
XP2IC (b)	F196h (E)	CBh	See Section 9.1: XPeripheral interrupt	--00h ${ }^{(3)}$
XP3IC (b)	F19Eh (E)	CFh	See Section 9.1: XPeripheral interrupt	--00h ${ }^{(3)}$
XPERCON	F024h (E)	12h	XPER configuration register	--05h
ZEROS (b)	FF1Ch	8Eh	Constant value 0's register (read-only)	0000h

1. System configuration is selected during reset. The SYSCON reset value is $00000 \times x 0 \times 0000000 \mathrm{~b}$.
2. The reset value depends on different triggered reset events.
3. The XPnIC interrupt control register control interrupt requests from the integrated XBus peripherals. Some software controlled interrupt requests may be generated by setting the XPnIR bits (of the XPnIC register) of the unused XPeripheral nodes.

23.4 SFRs ordered by address

Table 141 lists all SFR registers which are implemented in the ST10F296E, ordered by their physical address.
Bit-addressable SFRs are indicated by the bolded letter 'b' in the 'Name' column.
SFRs within the ESFR space are indicated by the bolded letter ' E ' in the 'Physical address' column.

Table 141. SFRs ordered by address

Name	Physical address	8-bit address	Description	Reset value
QX0	F000h (E)	00h	MAC unit offset register X0	000 ${ }^{\text {¢ }}$
QX1	F002h (E)	01h	MAC unit offset register X1	O20Gil
QR0	F004h (E)	02h	MAC unit offset register R0	0000h
QR1	F006h (E)	03h	MAC unit offset register R1	0000h
XADRS3	F01Ch (E)	OEh	XPER address select register 3	800Bh
XPERCON	F024h (E)	12h	XPER configuration register	--05h
PT0	F030h (E)	18h	PWM module up/down c)	0000h
PT1	F032h (E)	19h	PWM module up/d owi s ounter 1	0000h
PT2	F034h (E)	1Ah	PWM moriule ${ }^{1} 1$	0000h
PT3	F036h (E)	1Bh	PWM moduie up/down counter 3	0000h
PP0	F038h (E)	1Ch	-Wi 1 module period register 0	0000h
PP1	F03Ah (E)	1Dh	PWM module period register 1	0000h
PP2	F03Ch (E)	1E'	PWM module period register 2	0000h
PP3	F03Eh ($\mathrm{r}=$)	1Fh	PWM module period register 3	0000h
T7	Fisuh (E)	28h	CAPCOM timer 7 register	0000h
T8	F052h (E)	29h	CAPCOM timer 8 register	0000h
T7REL	F054h (E)	2Ah	CAPCOM timer 7 reload register	0000h
T8で,	F056h (E)	2Bh	CAPCOM timer 8 reload register	0000h
:n:PROG	F078h (E)	3Ch	Programming voltage identifier register	0040h
IDMEM	F07Ah (E)	3Dh	On-chip memory identifier register	30D0h
IDCHIP	F07Ch (E)	3Eh	Device identifier register (n is the device revision)	128nh
IDMANUF	F07Eh (E)	3Fh	Manufacturer identifier register	0403h
ADDAT2	FOAOh (E)	50h	ADC 2 result register	0000h
SSCTB	FOBOh (E)	58h	SSC transmit buffer (write-only)	0000h
SSCRB	F0B2h (E)	59h	SSC receive buffer (read-only)	XXXXh
SSCBR	F0B4h (E)	5Ah	SSC baud rate register	0000h
DPOL (b)	F100h (E)	80h	POL direction control register	--00h
DPOH (b)	F102h (E)	81h	POH direction control register	--00h

Table 141. SFRs ordered by address (continued)

Name	Physical address	8-bit address	Description	Reset value
DP1L (b)	F104h (E)	82h	P1L direction control register	--00h
DP1H (b)	F106h (E)	83h	P1H direction control register	--00h
RPOH (b)	F108h (E)	84h	System startup configuration register (read-only)	--XXh
CC16IC (b)	F160h (E)	B0h	CAPCOM register 16 interrupt control register	--00h
CC17IC (b)	F162h (E)	B1h	CAPCOM register 17 interrupt control register	--00h
CC18IC (b)	F164h (E)	B2h	CAPCOM register 18 interrupt control register	--00h
CC19IC (b)	F166h (E)	B3h	CAPCOM register 19 interrupt control register	--00h
CC20IC (b)	F168h (E)	B4h	CAPCOM register 20 interrupt control register	- Oun
CC21IC (b)	F16Ah (E)	B5h	CAPCOM register 21 interrupt control register	--00h
CC22IC (b)	F16Ch (E)	B6h	CAPCOM register 22 interrupt control register	--00h
CC23IC (b)	F16Eh (E)	B7h	CAPCOM register 23 interrupt control 13 c islo.	--00h
CC24IC (b)	F170h (E)	B8h	CAPCOM register 24 interrupt control :egister	--00h
CC25IC (b)	F172h (E)	B9h	CAPCOM register 25 inter ust O - - trol register	--00h
CC26IC (b)	F174h (E)	BAh	CAPCOM register 26 interiupt control register	--00h
CC27IC (b)	F176h (E)	BBh	CAPCOM r=nl: tel 2 ? interrupt control register	--00h
CC28IC (b)	F178h (E)	BCh	CAPCOM reeister 28 interrupt control register	--00h
T7IC (b)	F17Ah (E)	BDh	CA ${ }^{\text {P COM }}$ timer 7 interrupt control register	--00h
T8IC (b)	F17Ch (E)	BEh	C \sim PCOM timer 8 interrupt control register	--00h
PWMIC (b)	F17Eh (E)	Bir.	PWM module interrupt control register	--00h
CC29IC (b)	F184h (E)	こ2h	CAPCOM register 29 interrupt control register	--00h
XPOIC (b)	F 818 (${ }^{\prime}$)	C3h	See Section 9.1: XPeripheral interrupt	--00h
CC30IC (b)	F18Ch (E)	C6h	CAPCOM register 30 interrupt control register	--00h
XP1IC (a)	F18Eh (E)	C7h	See Section 9.1: XPeripheral interrupt	--00h
CC? $1 . C$ b)	F194h (E)	CAh	CAPCOM register 31 interrupt control register	--00h
XF 2 ic (b)	F196h (E)	CBh	See Section 9.1: XPeripheral interrupt	--00h
SOTBIC (b)	F19Ch (E)	CEh	Serial channel 0 transmit buffer interrupt control register	--00h
XP3IC (b)	F19Eh (E)	CFh	See Section 9.1: XPeripheral interrupt	--00h
EXICON (b)	F1C0h (E)	E0h	External interrupt control register	0000h
ODP2 (b)	F1C2h (E)	E1h	Port 2 open-drain control register	0000h
PICON (b)	F1C4h (E)	E2h	Port input threshold control register	--00h
ODP3 (b)	F1C6h (E)	E3h	Port 3 open-drain control register	0000h
ODP4 (b)	F1CAh (E)	E5h	Port 4 open-drain control register	--00h
ODP6 (b)	F1CEh (E)	E7h	Port 6 open-drain control register	--00h
ODP7 (b)	F1D2h (E)	E9h	Port 7 open-drain control register	--00h

259/346

Table 141．SFRs ordered by address（continued）

Name	Physical address	8－bit address	Description	Reset value
ODP8（b）	F1D6h（E）	EBh	Port 8 open－drain control register	－－00h
EXISEL（b）	F1DAh（E）	EDh	External interrupt source selection register	0000h
DPP0	FE00h	00h	CPU data page pointer 0 register（10－bit）	0000h
DPP1	FE02h	01h	CPU data page pointer 1 register（10－bit）	0001h
DPP2	FE04h	02h	CPU data page pointer 2 register（10－bit）	0002h
DPP3	FE06h	03h	CPU data page pointer 3 register（10－bit）	0003h
CSP	FE08h	04h	CPU code segment pointer register（read－only）	0000rir
EMUCON	FE0Ah	05h	Emulation control register	－\times x n
MDH	FEOCh	06h	CPU multiply divide register－high word	0000h
MDL	FE0Eh	07h	CPU multiply divide register－low word	0000h
CP	FE10h	08h	CPU context pointer register	FC00h
SP	FE12h	09h	CPU system stack pointer registこ：	FC00h
STKOV	FE14h	OAh	CPU stack overflow pointe register	FAOOh
STKUN	FE16h	OBh	CPU stack underflow 00 nier register	FC00h
ADDRSEL1	FE18h	OCh	Address selen，reçicier 1	0000h
ADDRSEL2	FE1Ah	ODh	Address siler，register 2	0000h
ADDRSEL3	FE1Ch	OEh	Aaさress select register 3	0000h
ADDRSEL4	FE1Eh	OFh	へ́idress select register 4	0000h
PW0	FE30h	18 h	PWM module pulse width register 0	0000h
PW1	FE32h	19 h	PWM module pulse width register 1	0000h
PW2	$F=3 \mathrm{~h}$	1Ah	PWM module pulse width register 2	0000h
PW3	FE＇sôh	1 Bh	PWM module pulse width register 3	0000h
T2	FE40h	20 h	GPT1 timer 2 register	0000h
T3	FE42h	21h	GPT1 timer 3 register	0000h
T4	FE44h	22h	GPT1 timer 4 register	0000h
T5	FE46h	23h	GPT2 timer 5 register	0000h
T6	FE48h	24h	GPT2 timer 6 register	0000h
CAPREL	FE4Ah	25h	GPT2 capture／reload register	0000h
T0	FE50h	28h	CAPCOM timer 0 register	0000h
T1	FE52h	29h	CAPCOM timer 1 register	0000h
TOREL	FE54h	2Ah	CAPCOM timer 0 reload register	0000h
T1REL	FE56h	2Bh	CAPCOM timer 1 reload register	0000h
MAL	FE5Ch	2Eh	MAC unit accumulator－low word	0000h
MAH	FE5Eh	2Fh	MAC unit accumulator－high word	0000h

Table 141. SFRs ordered by address (continued)

Name	Physical address	8-bit address	Description	Reset value
CC16	FE60h	30h	CAPCOM register 16	0000h
CC17	FE62h	31 h	CAPCOM register 17	0000h
CC18	FE64h	32 h	CAPCOM register 18	0000h
CC19	FE66h	33h	CAPCOM register 19	0000h
CC20	FE68h	34h	CAPCOM register 20	0000h
CC21	FE6Ah	35h	CAPCOM register 21	0000h
CC22	FE6Ch	36h	CAPCOM register 22	0000 r ,
CC23	FE6Eh	37h	CAPCOM register 23	couor
CC24	FE70h	38h	CAPCOM register 24	0000h
CC25	FE72h	39h	CAPCOM register 25	0000h
CC26	FE74h	3Ah	CAPCOM register 26	0000h
CC27	FE76h	3Bh	CAPCOM register 27	0000h
CC28	FE78h	3Ch	CAPCOM register 28	0000h
CC29	FE7Ah	3Dh	CAPCOM register 29	0000h
CC30	FE7Ch	3Eh		0000h
CC31	FE7Eh	3Fh	CAPCOM recister 31	0000h
CC0	FE80h	40h	CA. ${ }^{\text {P }}$ COM register 0	0000h
CC1	FE82h	41h	CAPCOM register 1	0000h
CC2	FE84h	$4{ }^{2}$	CAPCOM register 2	0000h
CC3	FE86h	43h	CAPCOM register 3	0000h
CC4	$F=8,{ }^{\prime}$	44h	CAPCOM register 4	0000h
CC5	FESAh	45h	CAPCOM register 5	0000h
CC6	FE8Ch	46h	CAPCOM register 6	0000h
CC7	FE8Eh	47h	CAPCOM register 7	0000h
CCO	FE90h	48h	CAPCOM register 8	0000h
CC9	FE92h	49h	CAPCOM register 9	0000h
CC10	FE94h	4Ah	CAPCOM register 10	0000h
CC11	FE96h	4Bh	CAPCOM register 11	0000h
CC12	FE98h	4Ch	CAPCOM register 12	0000h
CC13	FE9Ah	4Dh	CAPCOM register 13	0000h
CC14	FE9Ch	4Eh	CAPCOM register 14	0000h
CC15	FE9Eh	4Fh	CAPCOM register 15	0000h
ADDAT	FEAOh	50h	ADC result register	0000h
WDT	FEAEh	57h	Watchdog timer register (read-only)	0000h

Table 141. SFRs ordered by address (continued)

Name	Physical address	8-bit address	Description	Reset value
SOTBUF	FEBOh	58h	Serial channel 0 transmit buffer register (write-only)	0000h
SORBUF	FEB2h	59h	Serial channel 0 receive buffer register (read-only)	--XXh
SOBG	FEB4h	5Ah	Serial channel 0 baud rate generator reload register	0000h
PECC0	FECOh	60h	PEC channel 0 control register	0000h
PECC1	FEC2h	61h	PEC channel 1 control register	0000h
PECC2	FEC4h	62h	PEC channel 2 control register	0000h
PECC3	FEC6h	63h	PEC channel 3 control register	0000 ${ }^{\text {r }}$
PECC4	FEC8h	64h	PEC channel 4 control register	coutir
PECC5	FECAh	65h	PEC channel 5 control register	0000h
PECC6	FECCh	66h	PEC channel 6 control register	0000h
PECC7	FECEh	67h	PEC channel 7 control register	0000h
POL (b)	FFOOh	80h	Port 0 low register (lower half of Cort C)	--00h
POH (b)	FF02h	81h	Port 0 high register (upper if. It ot Port 0)	--00h
P1L (b)	FF04h	82h	Port 1 low register (lo ve, half of Port 1)	--00h
P1H (b)	FF06h	83h	Port 1 high :nc; stt ${ }^{\prime}$ ' 'upper half of Port 1)	--00h
IDX0 (b)	FF08h	84h	MAC unit cddress pointer 0	0000h
IDX1 (b)	FF0Ah	85h	Mヶ¢ unit address pointer 1	0000h
BUSCONO (b)	FFOCh	86h	R's S configuration register 0	0xx0h
MDC (b)	FFOEh	8in	CPU multiply divide control register	0000h
PSW (b)	FF10h	138h	CPU program status word	0000h
SYSCON (b)	F-1; h	89h	CPU system configuration register	0xx0h
BUSCON1 (b)	FF14h	8Ah	Bus configuration register 1	0000h
BUSCON2 (r)	FF16h	8Bh	Bus configuration register 2	0000h
BUCCOI 3 (b)	FF18h	8Ch	Bus configuration register 3	0000h
BL ScON4 (b)	FF1Ah	8Dh	Bus configuration register 4	0000h
ZEROS (b)	FF1Ch	8Eh	Constant value 0's register (read-only)	0000h
ONES (b)	FF1Eh	8Fh	Constant value 1's register (read-only)	FFFFh
T78CON (b)	FF20h	90h	CAPCOM timer 7 and 8 control register	0000h
CCM4 (b)	FF22h	91h	CAPCOM mode control register 4	0000h
CCM5 (b)	FF24h	92h	CAPCOM mode control register 5	0000h
CCM6 (b)	FF26h	93h	CAPCOM mode control register 6	0000h
CCM7 (b)	FF28h	94h	CAPCOM mode control register 7	0000h
PWMCON0 (b)	FF30h	98h	PWM module control register 0	0000h
PWMCON1 (b)	FF32h	99h	PWM module control register 1	0000h

Table 141. SFRs ordered by address (continued)

Name	Physical address	8-bit address	Description	Reset value
T2CON (b)	FF40h	AOh	GPT1 timer 2 control register	0000h
T3CON (b)	FF42h	A1h	GPT1 timer 3 control register	0000h
T4CON (b)	FF44h	A2h	GPT1 timer 4 control register	0000h
T5CON (b)	FF46h	A3h	GPT2 timer 5 control register	0000h
T6CON (b)	FF48h	A4h	GPT2 timer 6 control register	0000h
T01CON (b)	FF50h	A8h	CAPCOM timer 0 and timer 1 control register	0000h
CCM0 (b)	FF52h	A9h	CAPCOM mode control register 0	0000rı
CCM1 (b)	FF54h	AAh	CAPCOM mode control register 1	count
CCM2 (b)	FF56h	ABh	CAPCOM mode control register 2	0000h
CCM3 (b)	FF58h	ACh	CAPCOM mode control register 3	0000h
T2IC (b)	FF60h	B0h	GPT1 timer 2 interrupt control regist $^{\text {er }}$	--00h
T3IC (b)	FF62h	B1h	GPT1 timer 3 interrupt control rfsister	--00h
T4IC (b)	FF64h	B2h	GPT1 timer 4 interrupt corirt/ egister	--00h
T5IC (b)	FF66h	B3h	GPT2 timer 5 interrup curitrol register	--00h
T6IC (b)	FF68h	B4h	GPT2 timer $\leqslant 1:$ te, rupt control register	--00h
CRIC (b)	FF6Ah	B5h	GPT2 CAı ${ }^{\text {RF }}$ L interrupt control register	--00h
SOTIC (b)	FF6Ch	B6h	Se,ial channel 0 transmit interrupt control register	--00h
SORIC (b)	FF6Eh	B7h	Esrial channel 0 receive interrupt control register	--00h
SOEIC (b)	FF70h	Bit.	Serial channel 0 error interrupt control register	--00h
SSCTIC (b)	FF72h	39h	SSC transmit interrupt control register	--00h
SSCRIC (b)	F-7.h	BAh	SSC receive interrupt control register	--00h
SSCEIC (b)	FF\%ôh	BBh	SSC error interrupt control register	--00h
CCOIC ($)$	FF78h	BCh	CAPCOM register 0 interrupt control register	--00h
CC+IC (t)	FF7Ah	BDh	CAPCOM register 1 interrupt control register	--00h
CCくic (b)	FF7Ch	BEh	CAPCOM register 2 interrupt control register	--00h
ССЗIC (b)	FF7Eh	BFh	CAPCOM register 3 interrupt control register	--00h
CC4IC (b)	FF80h	COh	CAPCOM register 4 interrupt control register	--00h
CC5IC (b)	FF82h	C1h	CAPCOM register 5 interrupt control register	--00h
CC6IC (b)	FF84h	C2h	CAPCOM register 6 interrupt control register	--00h
CC7IC (b)	FF86h	C3h	CAPCOM register 7 interrupt control register	--00h
CC8IC (b)	FF88h	C4h	CAPCOM register 8 interrupt control register	--00h
CC9IC (b)	FF8Ah	C5h	CAPCOM register 9 interrupt control register	--00h
CC10IC (b)	FF8Ch	C6h	CAPCOM register 10 interrupt control register	--00h
CC11IC (b)	FF8Eh	C7h	CAPCOM register 11 interrupt control register	--00h

263/346

Table 141. SFRs ordered by address (continued)

Name	Physical address	8-bit address	Description	Reset value
CC12IC (b)	FF90h	C8h	CAPCOM register 12 interrupt control register	--00h
CC13IC (b)	FF92h	C9h	CAPCOM register 13 interrupt control register	--00h
CC14IC (b)	FF94h	CAh	CAPCOM register 14 interrupt control register	--00h
CC15IC (b)	FF96h	CBh	CAPCOM register 15 interrupt control register	--00h
ADCIC (b)	FF98h	CCh	ADC end of conversion interrupt control register	--00h
ADEIC (b)	FF9Ah	CDh	ADC overrun error interrupt control register	--00h
TOIC (b)	FF9Ch	CEh	CAPCOM timer 0 interrupt control register	--00h
T1IC (b)	FF9Eh	CFh	CAPCOM timer 1 interrupt control register	-oun
ADCON (b)	FFAOh	DOh	ADC control register	0000h
P5 (b)	FFA2h	D1h	Port 5 register (read-only)	XXXXh
P5DIDIS (b)	FFA4h	D2h	Port 5 digital disable register	0000h
TFR (b)	FFACh	D6h	Trap flag register	0000h
WDTCON (b)	FFAEh	D7h	Watchdog timer control resis:e,	00xxh
SOCON (b)	FFB0h	D8h	Serial channel 0 conti ol ejister	0000h
SSCCON (b)	FFB2h	D9h		0000h
P2 (b)	FFCOh	EOh	Port 2 register	0000h
DP2 (b)	FFC2h	E1h	Poi +2 direction control register	0000h
P3 (b)	FFC4h	E2h	Pert 3 register	0000h
DP3 (b)	FFC6h	Eir.	Port 3 direction control register	0000h
P4 (b)	FFC8h	E4h	Port 4 register (8-bit)	--00h
DP4 (b)	F-C Ar	E5h	Port 4 direction control register	--00h
P6 (b)	FFCCh	E6h	Port 6 register (8-bit)	--00h
DP6 (b)	FFCEh	E7h	Port 6 direction control register	--00h
P7 (b)	FFDOh	E8h	Port 7 register (8-bit)	--00h
DF^{7} (b)	FFD2h	E9h	Port 7 direction control register	--00h
P8 (b)	FFD4h	EAh	Port 8 register (8-bit)	--00h
DP8 (b)	FFD6h	EBh	Port 8 direction control register	--00h
MRW (b)	FFDAh	EDh	MAC unit repeat word	0000h
MCW (b)	FFDCh	EEh	MAC unit control word	0000h
MSW (b)	FFDEh	EFh	MAC unit status word	0200h

23.5 X registers ordered by name

Table 142 lists all XBus registers which are implemented in the ST10F296E ordered by their name. The Flash control registers are physically mapped on the XBus memory space, but, are listed in Section 23.7: Flash registers ordered by name. The X registers are not bitaddressable.

Table 142. X registers ordered by name

Table 142. X registers ordered by name (continued)

Name	Physical address	Description	Reset value
CAN1MV1	EFBOh	CAN1 message valid 1	0000h
CAN1MV2	EFB2h	CAN1 message valid 2	0000h
CAN1ND1	EF90h	CAN1 new data 1	0000h
CAN1ND2	EF92h	CAN1 new data 2	0000h
CAN1SR	EF02h	CAN1 status register	0000h
CAN1TR	EFOAh	CAN1 test register	00x0h
CAN1TR1	EF80h	CAN1 transmission request 1	0000ヶ
CAN1TR2	EF82h	CAN1 transmission request 2	Ouorn
CAN2BRPER	EE0Ch	CAN2 BRP extension register	0000h
CAN2BTR	EE06h	CAN2 bit timing register	2301h
CAN2CR	EE00h	CAN2 CAN control register	0001h
CAN2EC	EE04h	CAN2 error counter	0000h
CAN2IF1A1	EE18h	CAN2 IF1 arbitratio	0000h
CAN2IF1A2	EE1Ah	CAN2 IF1 arbi raio.n 2	0000h
CAN2IF1CM	EE12h	CAN! $1: 1$ ccormand mask	0000h
CAN2IF1CR	EE10h	CA.V2 ${ }^{-1} 1$ command request	0001h
CAN2IF1DA1	EE1Eh	CAN2 IF1 data A 1	0000h
CAN2IF1DA2	EEz? h	CAN2 IF1 data A 2	0000h
CAN2IF1DB1	E-つ ${ }^{\text {ch }}$	CAN2 IF1 data B 1	0000h
CAN2IF1DB2	EE24h	CAN2 IF1 data B 2	0000h
CAN2F1U:	EE14h	CAN2 IF1 mask 1	FFFFh
C Ai'2IFM2	EE16h	CAN2 IF1 mask 2	FFFFh
CAN2IF1MC	EE1Ch	CAN2 IF1 message control	0000h
CAN2IF2A1	EE48h	CAN2 IF2 arbitration 1	0000h
CAN2IF2A2	EE4Ah	CAN2 IF2 arbitration 2	0000h
CAN2IF2CM	EE42h	CAN2 IF2 command mask	0000h
CAN2IF2CR	EE40h	CAN2 IF2 command request	0001h
CAN2IF2DA1	EE4Eh	CAN2 IF2 data A 1	0000h
CAN2IF2DA2	EE50h	CAN2 IF2 data A 2	0000h
CAN2IF2DB1	EE52h	CAN2 IF2 data B 1	0000h
CAN2IF2DB2	EE54h	CAN2 IF2 data B 2	0000h
CAN2IF2M1	EE44h	CAN2 IF2 mask 1	FFFFh
CAN2IF2M2	EE46h	CAN2 IF2 mask 2	FFFFh
CAN2IF2MC	EE4Ch	CAN2 IF2 message control	0000h

Table 142. X registers ordered by name (continued)

Name	Physical address	Description	Reset value
CAN2IP1	EEAOh	CAN2 interrupt pending 1	0000h
CAN2IP2	EEA2h	CAN2 interrupt pending 2	0000h
CAN2IR	EE08h	CAN2 interrupt register	0000h
CAN2MV1	EEBOh	CAN2 message valid 1	0000h
CAN2MV2	EEB2h	CAN2 message valid 2	0000h
CAN2ND1	EE90h	CAN2 new data 1	0000h
CAN2ND2	EE92h	CAN2 new data 2	000ch
CAN2SR	EE02h	CAN2 status register	Ou)\%h
CAN2TR	EEOAh	CAN2 test register	00x0h
CAN2TR1	EE80h	CAN2 transmission request 1	0000h
CAN2TR2	EE82h	CAN2 transmission request?	0000h
I2CCCR1	EA06h	$\mathrm{I}^{2} \mathrm{C}$ clock control register :	0000h
I2CCCR2	EAOEh	$1^{2} \mathrm{C}$ clock control resر15 \ddagger :	0000h
I2CCR	EA00h	$\mathrm{I}^{2} \mathrm{C}$ control reg ster	0000h
I2CDR	EAOCh	$1^{2} \mathrm{C}$ datc re yiuier	0000h
I2COAR1	EA08h	$1^{2} \mathrm{C}$ ow 1 address register 1	0000h
I2COAR2	EAOAh	$1^{2} \mathrm{C}$ own address register 2	0000h
I2CSR1	EAC)h	$1^{2} \mathrm{C}$ status register 1	0000h
I2CSR2	E0\%h	$1^{2} \mathrm{C}$ status register 2	0000h
RTCAH	ED14h	RTC alarm register high byte	XXXXh
RTCA -	ED12h	RTC alarm register low byte	XXXXh
RTCCOIN	EDOOH	RTC control register	000Xh
hTCDH	EDOCh	RTC divider counter high byte	XXXXh
RTCDL	EDOAh	RTC divider counter low byte	XXXXh
RTCH	ED10h	RTC programmable counter high byte	XXXXh
RTCL	EDOEh	RTC programmable counter low byte	XXXXh
RTCPH	ED08h	RTC prescaler register high byte	XXXXh
RTCPL	ED06h	RTC prescaler register low byte	XXXXh
XCLKOUTDIV	EB02h	CLKOUT divider control register	- - 00h
XDP9	EB86h	XPort 9 direction control register	0000h
XDP9CLR	EB8Ah	XPort 9 direction control register clear	0000h
XDP9SET	EB88h	XPort 9 direction control register set	0000h
XEMUO	EB76h	XBus emulation register 0 (write-only)	XXXXh
XEMU1	EB78h	XBus emulation register 1 (write-only)	XXXXh

Table 142. X registers ordered by name (continued)

Name	Physical address	Description	Reset value
XEMU2	EB7Ah	XBus emulation register 2 (write-only)	XXXXh
XEMU3	EB7Ch	XBus emulation register 3 (write-only)	XXXXh
XIR0CLR	EB14h	XInterrupt 0 clear register (write-only)	0000h
XIROSEL	EB10h	XInterrupt 0 selection register	0000h
XIROSET	EB12h	XInterrupt 0 set register (write-only)	0000h
XIR1CLR	EB24h	XInterrupt 1 clear register (write-only)	0000h
XIR1SEL	EB20h	XInterrupt 1 selection register	0000h
XIR1SET	EB22h	XInterrupt 1 set register (write-only)	Ouorn
XIR2CLR	EB34h	XInterrupt 2 clear register (write-only)	0000h
XIR2SEL	EB30h	XInterrupt 2 selection register	0000h
XIR2SET	EB32h	XInterrupt 2 set register (writr,-0 11.1	0000h
XIR3CLR	EB44h	XInterrupt 3 clear selectic, regıster (write-only)	0000h
XIR3SEL	EB40h	XInterrupt 3 selertic,n $: \in$ 2ister	0000h
XIR3SET	EB42h	XInterrupt $3 \mathrm{stt} \mathrm{silection} \mathrm{register} \mathrm{(write-only)}$	0000h
XMISC	EB46h	XBı п n. sc, lianeous features register	0000h
XODP9	EB8Ch	XF -rts open-drain control register	0000h
XODP9CLR	EB90h	XPort 9 open-drain control register clear	0000h
XODP9SET	EB8ᄃ. r .	XPort 9 open-drain control register set	0000h
XP10	ELCoh	XPort 10 register	0000h
XP10DIDIS	EBD2h	XPort 10 digital disable control register	0000h
XP10.IDISSEI	EBD4h C	XPort 10 digital disable control register set	0000h
X ${ }^{\text {PijDIDISCLR }}$	EBD6h	XPort 10 digital disable control register clear	0000h
入? \times	EB80h	XPort 9 register	0000h
XP9CLR	EB84h	XPort 9 register clear	0000h
XP9SET	EB82h	XPort 9 register set	0000h
XPEREMU	EB7Eh	XPERCON copy for emulation (write-only)	XXXXh
XPICON	EB26h	Extended port input threshold control register	-- 00h
XPICON10	EBD8h	XPort 10 input control register	0000h
XPICON10CLR	EBDCh	XPort 10 input control register clear	0000h
XPICON10SET	EBDAh	XPort 10 input control register set	0000h
XPICON9	EB98h	XPort 9 input control register	0000h
XPICON9CLR	EB9Ch	XPort 9 input control register clear	0000h
XPICON9SET	EB9Ah	XPort 9 input control register set	0000h
XPOLAR	EC04h	XPWM module channel polarity register	0000h

Table 142. X registers ordered by name (continued)

Name	Physical address	Description	Reset value
XPP0	EC20h	XPWM module period register 0	0000h
XPP1	EC22h	XPWM module period register 1	0000h
XPP2	EC24h	XPWM module period register 2	0000h
XPP3	EC26h	XPWM module period register 3	0000h
XPT0	EC10h	XPWM module up/down counter 0	0000h
XPT1	EC12h	XPWM module up/down counter 1	0000h
XPT2	EC14h	XPWM module up/down counter 2	0000h
ХРТ3	EC16h	XPWM module up/down counter 3	Ounr,
XPW0	EC30h	XPWM module pulse width register 0	0000h
XPW1	EC32h	XPWM module pulse width register 1	0000h
XPW2	EC34h	XPWM module pulse width re.ylster	0000h
XPW3	EC36h	XPWM module pulse width register 3	0000h
XPWMCON0	EC00h	XPWM module con'rr! 1 gister 0	0000h
XPWMCONOCLR	EC08h	XPWM modult Cl 3ar control register 0 (write-only)	0000h
XPWMCONOSET	EC06h	XPYM, 1 no vuid set control register 0 (write-only)	0000h
XPWMCON1	EC02h	XF VM module control register 1	0000h
XPWMCON1CLR	ECOCh	XPWM module clear control register 0 (write-only)	0000h
XPWMCON1SET	ECCAt.	XPWM module set control register 0 (write-only)	0000h
XPWMPORT	E- 20.0	XPWM module port control register	0000h
XS1BG	E906h	XASC baud rate generator reload register	0000h
XS1C JN	E900h	XASC control register	0000h
Xs,	E904h	XASC clear control register (write-only)	0000h
入S1CONSET	E902h	XASC set control register (write-only)	0000h
XS1PORT	E980h	XASC port control register	0000h
XS1RBUF	E90Ah	XASC receive buffer register	0000h
XS1TBUF	E908h	XASC transmit buffer register	0000h
XSSCBR	E80Ah	XSSC baud rate register	0000h
XSSCCON	E800h	XSSC control register	0000h
XSSCCONCLR	E804h	XSSC clear control register (write-only)	0000h
XSSCCONSET	E802h	XSSC set control register (write-only)	0000h
XSSCPORT	E880h	XSSC port control register	0000h
XSSCRB	E808h	XSSC receive buffer	XXXXh
XSSCTB	E806h	XSSC transmit buffer	0000h
XTCR	EB50h	XTimer control register	0000h

Table 142. X registers ordered by name (continued)

Name	Physical address	Description	Reset value
XTCVR	EB56h	XTimer current value register	0000 h
XTEVR	EB54h	XTimer end value register	0000 h
XTSVR	EB52h	XTimer start value register	0000 h

23.6 $\quad X$ registers ordered by address

Table 143 lists all XBus registers which are implemented in the ST10F296E ordered by their physical address. The Flash control registers are physically mapped on the XBus m.on. ory space, but, are listed in Section 23.7: Flash registers ordered by name. The X eviste;s are not bit-addressable.

Table 143. X registers ordered by address

Name	Physical address	Descriptic.	Reset value
XSSCCON	E800h	XSSC control renistel	0000h
XSSCCONSET	E802h	XSSC set cont oor ${ }^{\text {r }}$ gister ((write-only)	0000h
XSSCCONCLR	E804h	XSSC. ८'ea control register (write-only)	0000h
XSSCTB	E806h	XS C $^{+}$a ${ }^{\text {ansmit buffer }}$	0000h
XSSCRB	E808h	XSSC receive buffer	XXXXh
XSSCBR	E8C^r.	XSSC baud rate register	0000h
XSSCPORT	Ei81 h	XSSC port control register	0000h
XS1CON	E900h	XASC control register	0000h
XS1C'JNSLT	E902h	XASC set control register (write-only)	0000h
XS:COI JCLR	E904h	XASC clear control register (write-only)	0000h
λ SIBG	E906h	XASC baud rate generator reload register	0000h
XS1TBUF	E908h	XASC transmit buffer register	0000h
XS1RBUF	E90Ah	XASC receive buffer register	0000h
XS1PORT	E980h	XASC port control register	0000h
I2CCR	EA00h	$1^{2} \mathrm{C}$ control register	0000h
I2CSR1	EA02h	$\mathrm{I}^{2} \mathrm{C}$ status register 1	0000h
I2CSR2	EA04h	$\mathrm{I}^{2} \mathrm{C}$ status register 2	0000h
I2CCCR1	EA06h	$1^{2} \mathrm{C}$ clock control register 1	0000h
I2COAR1	EA08h	$1^{2} \mathrm{C}$ own address register 1	0000h
I2COAR2	EAOAh	$\mathrm{I}^{2} \mathrm{C}$ own address register 2	0000h
I2CDR	EAOCh	$1^{2} \mathrm{C}$ data register	0000h
I2CCCR2	EAOEh	$1^{2} \mathrm{C}$ clock control register 2	0000h

Table 143．X registers ordered by address（continued）

Name	Physical address	Description	Reset value
XCLKOUTDIV	EB02h	CLKOUT divider control register	－－00h
XIROSEL	EB10h	XInterrupt 0 selection register	0000h
XIROSET	EB12h	XInterrupt 0 set register（write－only）	0000h
XIROCLR	EB14h	XInterrupt 0 clear register（write－only）	0000h
XIR1SEL	EB20h	XInterrupt 1 selection register	0000h
XIR1SET	EB22h	XInterrupt 1 set register（write－only）	0000h
XIR1CLR	EB24h	XInterrupt 1 clear register（write－only）	000？h
XPICON	EB26h	Extended port input threshold control register	－－0Jh
XIR2SEL	EB30h	XInterrupt 2 selection register	0000h
XIR2SET	EB32h	XInterrupt 2 set register（write－only）	0000h
XIR2CLR	EB34h	XInterrupt 2 clear register（write orly，	0000h
XIR3SEL	EB40h	XInterrupt 3 selection reșister	0000h
XIR3SET	EB42h	XInterrupt 3 set sels；c：0．っ register（write－only）	0000h
XIR3CLR	EB44h	XInterrupt 3 clatar selection register（write－only）	0000h
XMISC	EB46h	$X B ı$ misculiüneous features register	0000h
XTCR	EB50h	XT，ner control register	0000h
XTSVR	EB52h	XTimer start value register	0000h
XTEVR	EB5 ${ }^{\text {¢ }}$／	XTimer end value register	0000h
XTCVR	ご25\％h	XTimer current value register	0000h
XEMU0	EB76h	XBus emulation register 0 （write－only）	XXXXh
XEML 1	EB78h	XBus emulation register 1 （write－only）	XXXXh
X「－iv ${ }^{\text {¢ }}$	EB7Ah	XBus emulation register 2 （write－only）	XXXXh
入든U3	EB7Ch	XBus emulation register 3 （write－only）	XXXXh
XPEREMU	EB7Eh	XPERCON copy for emulation（write－only）	XXXXh
XP9	EB80h	XPort 9 register	0000h
XP9SET	EB82h	XPort 9 register set	0000h
XP9CLR	EB84h	XPort 9 register clear	0000h
XDP9	EB86h	XPort 9 direction control register	0000h
XDP9SET	EB88h	XPort 9 direction control register set	0000h
XDP9CLR	EB8Ah	XPort 9 direction control register clear	0000h
XODP9	EB8Ch	XPort 9 open－drain control register	0000h
XODP9SET	EB8Eh	XPort 9 open－drain control register set	0000h
XODP9CLR	EB90h	XPort 9 open－drain control register clear	0000h
XPICON9	EB98h	XPort 9 input control register	0000h

Table 143． X registers ordered by address（continued）

Name	Physical address	Description	Reset value
XPICON9SET	EB9Ah	XPort 9 input control register set	0000h
XPICON9CLR	EB9Ch	XPort 9 input control register clear	0000h
XP10	EBCOh	XPort 10 register	0000h
XP10DIDIS	EBD2h	XPort 10 digital disable control register	0000h
XP10DIDISSET	EBD4h	XPort 10 digital disable control register set	0000h
XP10DIDISCLR	EBD6h	XPort 10 digital disable control register clear	0000h
XPICON10	EBD8h	XPort 10 input control register	000？h
XPICON10SET	EBDAh	XPort 10 Input Control Register Set	OuO h
XPICON10CLR	EBDCh	XPort 10 input control register clear	0000h
XPWMCON0	EC00h	XPWM module control register 0	0000h
XPWMCON1	EC02h	XPWM module control registr，i	0000h
XPOLAR	EC04h	XPWM module channel re＇arity register	0000h
XPWMCONOSET	EC06h	XPWM module sot ©o tiol register 0 （write－only）	0000h
XPWMCONOCLR	EC08h	XPWM modult cluar control register 0 （write－only）	0000h
XPWMCON1SET	ECOAh	XPY＾！． 1 ：no，lü＇d set control register 0 （write－only）	0000h
XPWMCON1CLR	ECOCh	XP ，NM module clear control register 0 （write－only）	0000h
XPT0	EC10h	XPWM module up／down counter 0	0000h
XPT1	ECinh	XPWM module up／down counter 1	0000h
XPT2	Eご h	XPWM module up／down counter 2	0000h
XPT3	EC16h	XPWM module up／down counter 3	0000h
XPPC	EC20h	XPWM module period register 0	0000h
X「「1	EC22h	XPWM module period register 1	0000h
λ \P2	EC24h	XPWM module period register 2	0000h
XPP3 \bigcirc	EC26h	XPWM module period register 3	0000h
XPW0	EC30h	XPWM module pulse width register 0	0000h
XPW1	EC32h	XPWM module pulse width register 1	0000h
XPW2	EC34h	XPWM module pulse width register 2	0000h
XPW3	EC36h	XPWM module pulse width register 3	0000h
XPWMPORT	EC80h	XPWM module port control register	0000h
RTCCON	ED00H	RTC control register	000Xh
RTCPL	ED06h	RTC prescaler register low byte	XXXXh
RTCPH	ED08h	RTC prescaler register high byte	XXXXh
RTCDL	EDOAh	RTC divider counter low byte	XXXXh
RTCDH	ED0Ch	RTC divider counter high byte	XXXXh

Table 143. X registers ordered by address (continued)

Table 143. X registers ordered by address (continued)

Name	Physical address	Description	Reset value
CAN2TR2	EE82h	CAN2 transmission request 2	0000h
CAN2ND1	EE90h	CAN2 new data 1	0000h
CAN2ND2	EE92h	CAN2 new data 2	0000h
CAN2IP1	EEAOh	CAN2 interrupt pending 1	0000h
CAN2IP2	EEA2h	CAN2 interrupt pending 2	0000h
CAN2MV1	EEBOh	CAN2 message valid 1	0000h
CAN2MV2	EEB2h	CAN2 message valid 2	006?h
CAN1CR	EF00h	CAN1 CAN control register	Oun in
CAN1SR	EF02h	CAN1 status register	0000h
CAN1EC	EF04h	CAN1 error counter	0000h
CAN1BTR	EF06h	CAN1 bit timing register	2301h
CAN1IR	EF08h	CAN1 interrupt register	0000h
CAN1TR	EFOAh	CAN1 test register	00x0h
CAN1BRPER	EF0Ch	CAN1 BRP ex en ion register	0000h
CAN1IF1CR	EF10h	CAN! 1:1 ccirmand request	0001h
CAN1IF1CM	EF12h	CA.V1, $=1$ command mask	0000h
CAN1IF1M1	EF14h	CAN1 IF1 mask 1	FFFFh
CAN1IF1M2	EF1:h	CAN1 IF1 mask 2	FFFFh
CAN1IF1A1	- -15 h	CAN1 IF1 arbitration 1	0000h
CAN1IF1A2	EF1Ah	CAN1 IF1 arbitration 2	0000h
CAN1F1 M?	EF1Ch	CAN1 IF1 message control	0000h
C^i11FiDA1	EF1Eh	CAN1 IF1 data A 1	0000h
C.AN1IF1DA2	EF20h	CAN1 IF1 data A 2	0000h
CAN1IF1DB1	EF22h	CAN1 IF1 data B 1	0000h
CAN1IF1DB2	EF24h	CAN1 IF1 data B 2	0000h
CAN1IF2CR	EF40h	CAN1 IF2 command request	0001h
CAN1IF2CM	EF42h	CAN1 IF2 command mask	0000h
CAN1IF2M1	EF44h	CAN1 IF2 mask 1	FFFFh
CAN1IF2M2	EF46h	CAN1 IF2 mask 2	FFFFh
CAN1IF2A1	EF48h	CAN1 IF2 arbitration 1	0000h
CAN1IF2A2	EF4Ah	CAN1 IF2 arbitration 2	0000h
CAN1IF2MC	EF4Ch	CAN1 IF2 message control	0000h
CAN1IF2DA1	EF4Eh	CAN1 IF2 data A 1	0000h
CAN1IF2DA2	EF50h	CAN1 IF2 data A 2	0000h

Table 143. X registers ordered by address (continued)

Name	Physical address	Resestiption value	
CAN1IF2DB1	EF52h	CAN1 IF2 data B 1	0000 h
CAN1IF2DB2	EF54h	CAN1 IF2 data B 2	0000 h
CAN1TR1	EF80h	CAN1 transmission request 1	0000 h
CAN1TR2	EF82h	CAN1 transmission request 2	0000 h
CAN1ND1	EF90h	CAN1 new data 1	0000 h
CAN1ND2	EF92h	CAN1 new data 2	0000 h
CAN1IP1	EFA0h	CAN1 interrupt pending 1	0002 h
CAN1IP2	EFA2h	CAN1 interrupt pending 2	000 mh
CAN1MV1	EFB0h	CAN1 message valid 1	0000 h
CAN1MV2	EFB2h	CAN1 message valid 2	0000 h

23．7 Flash registers ordered by name

Table 144 lists all Flash control registers which are implemented in the ST10F296E ordered by their name．As these registers are physically mapped on the XBus，they are not bit－ addressable．

Table 144．Flash registers ordered by name

Name	Physical address	Description	Reset value
FARH	0x000E 0012	Flash address register high	0000h
FARL	0x000E 0010	Flash address register low	0000h
FCROH	0x000E 0002	Flash control register 0 －high	0000i？
FCROL	0x000E 0000	Flash control register 0－low	フ0こう
FCR1H	0x000E 0006	Flash control register 1 －high	0000h
FCR1L	0x000E 0004	Flash control register 1 －low	0000h
FDROH	0x000E 000A	Flash data register 0 －high	FFFFh
FDROL	0x000E 0008	Flash data register 0－low	FFFFh
FDR1H	0x000E 000E	Flash data register i－nigh	FFFFh
FDR1L	0x000E 000C	Flash data registe ${ }^{-1}$－Iow	FFFFh
FER	0x000E 0014	Flash Ericr rec ister	0000h
FNVAPR0	0x000E DFB8	Flash ıこr，volatile access protection register 0	ACFFh
FNVAPR1H	0x000E DFBE	ᄃlash non volatile access protection register 1 －high	FFFFh
FNVAPR1L	0x000E D．B？	Flash non volatile access protection register 1 －low	FFFFh
FNVWPIRH	0，070：こ．－B6	Flash non volatile protection I register high	FFFFh
FNVWPIRL	1，VJ0E DFB4	Flash non volatile protection I register low	FFFFh
FNVV＇D．RI！	0x000E DFB2	Flash non volatile protection X register high	FFFFh
F＇NUNPXRL	0x000E DFB0	Flash non volatile protection X register low	FFFFh
XrICR	0x000E E000	XFlash interface control register	000Fh

23．8 Flash registers ordered by address

Table 145 lists all Flash control registers which are implemented in the ST10F296E ordered by their physical address．As these registers are physically mapped on the XBus，they are not bit－addressable．

Table 145．Flash registers ordered by address

Name	Physical address	Description	Reset value
FCROL	0x000E 0000	Flash control register 0 －low	0000h
FCROH	0x000E 0002	Flash control register $0-$ high	0000h
FCR1L	0x000E 0004	Flash control register 1 －low	0006i
FCR1H	0x000E 0006	Flash control register 1－high	つcこuh
FDROL	0x000E 0008	Flash data register 0 －low	FFFFh
FDROH	0x000E 000A	Flash data register 0 －high	FFFFh
FDR1L	0x000E 000C	Flash data register 1 －low	FFFFh
FDR1H	0x000E 000E	Flash data register 1 －hiar	FFFFh
FARL	0x000E 0010	Flash address regis ter！ow	0000h
FARH	0x000E 0012	Flash addrese ie ais er high	0000h
FER	0x000E 0014	Flast elij：register	0000h
FNVWPXRL	0x000E DFB0	Flash ：こぃ volatile protection X register low	FFFFh
FNVWPXRH	0x000E DFB2	Flash non volatile protection X register high	FFFFh
FNVWPIRL	0x000E LFL4	Flash non volatile protection I register low	FFFFh
FNVWPIRH	セxา0vヒ 「FB6	Flash non volatile protection I register high	FFFFh
FNVAPR0	ขvj00E DFB8	Flash non volatile access protection register 0	ACFFh
FNVA，？${ }^{\text {P／L }}$	0x000E DFBC	Flash non volatile access protection register 1 －low	FFFFh
F＇V：APR1H	0x000E DFBE	Flash non volatile access protection register 1 －high	FFFFh
｜XrICR	0x000E E000	XFlash interface control register	000Fh

23.9 Identification registers

The ST10F296E has four identification registers, mapped in the ESFR space. These registers contain:

- A manufacturer identifier
- A chip identifier with its revision
- A internal Flash and size identifier
- Programming voltage description

IDMANUF register

Table 146. IDMANUF register description

Bit	Bit name	Furcion
$15-5$	MANUF	Manufacturer identifier 020h: STMicroelectronic S I lanufacturer (JTAG worldwide normalization).

IDCHIP register

Ta'.i: 1ヶ7. IDCHIP register description

Bit	Bit name	Function
$15-14$	PCONF	Peripheral configuration 00: (E) Enhanced (ST10F296E) 01: (B) Basic 10: (D) Dedicated 11: Reserved
$13-4$	IDCHIP	Device identifier 128h: ST10F296E identifier (128h = 296)
$3-0$	REVID	Device revision identifier Xh: According to revision number

IDMEM register

IDMEM (F07Ah/3Dh)				ESFR								Reset value: 30DOh			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MEMTYP				MEMSIZE											
				R											

Table 148. IDMEM register description

Bit	Bit name	Function
	MEMTYP	Internal memory type Oh: ROM-less 1h: (M) ROM memory 2h: (S) Standard Flash memory 3h: (H) High performance Flash memory (ST10F296E, 4h...Fh: Reserved
	MEMSIZE	Internal memory size Internal memory size is 4 x (MEMSIZE, In KDyte). The ODOh for the ST10F296E is 832 Kbytes

IDPROG register

Table 149. IDP:Zล) register description

Bit	Bi name	Function
i5-8	PROGVPP	Programming V_{PP} voltage (no need of external V_{PP}) - 00h No need for external VPP (00h)
	PROGVDD	Programming V_{DD} voltage When programming EPROM or Flash devices, V_{DD} voltage is calculated using the following formula for 5 V ST10F296E devices: $V_{D D}=20 \times[P R O G V D D] / 256 \text { (volts) - 40h }$

Note:
All identification registers are read-only registers.
The values written inside different identification register bits are valid only after the Flash initialization phase has been completed. When code execution starts from the internal memory (pin $\overline{E A}$ held high during reset), the Flash has completed initialization and the identification register bits can be read. When code execution starts from the external memory (pin EA held low during reset), Flash initialization has not been completed and the identification register bits cannot be read. The user can poll bits 15 and 14 of the IDMEM register. When both these bits are read low, Flash initialization can be completed and all identification register bits can be read.

Before Flash initialization completion, the default settings of the different identification registers are as follows:

- IDMANUF: 0403h
- IDCHIP: 128xh (x = silicon revision)
- IDMEM: FODOh
- IDPROG: 0040h

23.10 System configuration registers

This section lists and describes 12 registers which are used for configuring various aspects of the ST10F296E system.

System configuration register (SYSCON)

1. SYSCON reset value is: $00000 \times x 00 \times 000000 \mathrm{~b}$.

Table 150. SYSCON register descriptic?

Bit	Bit name	Function
15-13	STKSZ	Sy ctam stack size Selects the size of the system stack (in the internal IRAM) from 32 to 1024 words.
12	$\mathrm{F} . \mathrm{ON}$	Internal memory mapping 0 : Internal memory area mapped to segment 0 ($00^{\prime} 0000 \mathrm{~h} . . .00^{\prime} 7 \mathrm{FFFh}$). 1: Internal memory area mapped to segment 1 ($01^{\prime} 0000 \mathrm{~h} . . .01^{\prime} 7 \mathrm{FFFh}$).
11	SGTDIS	Segmentation disable/enable control 0: Segmentation enabled (CSP is saved/restored during interrupt entry/exit). 1: Segmentation disabled (only the IP is saved/restored).
	ROMEN ${ }^{(1)}$	Internal memory enable (set according to the $\overline{\mathrm{EA}}$ pin during reset) 0 : Internal memory disabled. Accesses to the IFlash memory area is made through the external bus. 1: Internal memory enabled.
9	BYTDIS ${ }^{(1)}$	Disable/enable control for the BHE pin (set according to data bus width) 0 : $\overline{\mathrm{BHE}}$ pin enabled. 1: $\overline{B H E}$ pin disabled. Pin may be used for general purpose I/O.
8	CLKEN	System clock output enable (CLKOUT) 0 : CLKOUT disabled. Pin may be used for general purpose I/O. 1: CLKOUT enabled. Pin outputs the system clock signal or a prescaled value of the system clock according to the XCLKOUTDIV register setting.

Table 150．SYSCON register description（continued）

	Bit	Bit name	Function
	7	WRCFG ${ }^{(1)}$	Write configuration control（inverted copy of the WRC bit of the RPOH register） 0 ：$\overline{\mathrm{WR}}$ and $\overline{\mathrm{BHE}}$ pins retain their normal function． 1：$\overline{\mathrm{WR}}$ and $\overline{\mathrm{BHE}}$ pins behave as the $\overline{\mathrm{WRL}}$ and $\overline{\mathrm{WRH}}$ pins respectively
	6	CSCFG	Chip select configuration control 0 ：Latched chip select lines，$\overline{\mathrm{CSx}}$ changes 1 TCL after rising edge of ALE 1：Unlatched chip select lines，$\overline{\mathrm{CSx}}$ changes with rising edge of ALE
	5	PWDCFG	Power－down mode configuration control 0：Power－down mode can only be entered during PWRDN instruction execution if NMI pin is low，otherwise，the instruction has n ）tiie st．To exit power－down mode，an external reset must occur k ； $\mathrm{a}_{i} \mathrm{ser}$ rting the RSTIN pin． 1：Power－down mode can only be entered durirg ，っV：＇RDN instruction execution if all enabled fast external interrur t E $\lambda_{\wedge} \mathrm{N}$ pins are in their inactive level．Exiting this mode can kecol．o by asserting one enabled EXxIN pin．
	4	OWDDIS	Oscillator watchdog disable conti ว 0 ：Oscillator watchdog（ $n_{i} v_{L}$ ！）is enabled．If PLL is bypassed，the OWD monitors XTA＇－1 १c ivity．If there is no activity on XTAL1 for at least $1 \mu \mathrm{~s}$ ，the 「「디 frequency（ 25 C ト＇こ to 4 MHz ）． 1：OWD is cicioled．If the PLL is bypassed，the CPU clock is always dri＇en by the XTAL1 signal．The PLL is turned off to reduce power sunpiy current．
	3	BCREVIEN	Bidirectional reset enable $0: \overline{\text { RSTIN }}$ pin is an input pin only．SW reset or WDT reset have no effect on this pin． 1：$\overline{\text { RSTIN }}$ pin is a bidirectional pin．This pin is pulled low during 1024 TCL during reset sequence．
		XPEN	XBus peripheral enable bit 0 ：Access to the on－chip XPeripherals and their functions are disabled． 1：The on－chip XPeripherals are enabled and can be accessed．
		VISIBLE	Visible mode control 0 ：Access to the XBus peripherals is made internally． 1：Access to the XBus peripherals is made visible on the external pins．
	0	XPERSHARE	XBus peripheral share mode control 0 ：External access to the XBus peripherals is disabled． 1：XRAM1 and XRAM2 are accessible via the external bus during hold mode．External access to other XBus peripherals is not guaranteed in terms of AC timings．

1．Bits are set directly or indirectly during the rest sequence according to Port 0 and the $\overline{E A}$ pin configuration．

BUSCONO register

BUSCONO (FFOCh/86h)					SFR						Reset value: 0xx0h			
15	14	13	12	11	10	9	8	76	5	4	3	2	1	0
$\begin{aligned} & \text { CSW } \\ & \text { ENO } \end{aligned}$	$\begin{aligned} & \text { CSR } \\ & \text { ENO } \end{aligned}$	$\begin{aligned} & \text { RDY } \\ & \text { POLO } \end{aligned}$	$\begin{aligned} & \text { RDY } \\ & \text { ENO } \end{aligned}$	-	$\begin{aligned} & \text { BUS } \\ & \text { ACTO } \end{aligned}$	$\begin{gathered} \text { ALE } \\ \text { CTLO } \end{gathered}$	-	BTYP	$\begin{gathered} \text { MTT } \\ \text { CO } \end{gathered}$	$\begin{array}{\|c} \text { RWD } \\ \text { C0 } \end{array}$		MCTC		
RW	RW	RW	RW		RW	RW		RW	RW	RW				

BUSCON1 register

BUSCON2 register

BUSCON3 register

BUSCON4 register

Table 151. BUSCONx register description

Bit	Bit name	Function
15	CSWENx	Write chip select enable 0 : The $\overline{\mathrm{CS}}$ signal is independent of the write command ($\overline{\mathrm{WR}}, \overline{\mathrm{WRL}}$, WRH). 1: The $\overline{\mathrm{CS}}$ signal is generated for the duration of the write command.
14	CSRENx	Read chip select enable 0 : The $\overline{\mathrm{CS}}$ signal is independent of the read command ($\overline{\mathrm{RD}}$). 1: The $\overline{\mathrm{CS}}$ signal is generated for the duration of the read command.
13	RDYPOLx	Ready active level control 0 : Active level on the READY pin is low and he bus cycle terminates with an 0 on this pin. 1: Active level on the READY pin is high and the bus cyc'e ermiates with a 1 on this pin.
12	RDYENx	READY input enable 0: External bus cycle is controlled by the MC, 心. bit field. 1: External bus cycle is controlled by inf $F \bar{E} \overline{\operatorname{Au}} \overline{\mathrm{Y}}$ input signal.
10	BUSACTx	Bus active control 0 : External bus disabled. 1: External bus enabled (wniv, the respective address window, see ADDRSEL register.
9	ALECTLx	ALE lengther:icic on rul 0 : Normal .ALE signal. 1: Lengthened ALE signal.
	BTYP	E) ternel bus configuration OU: 8-bit demultiplexed bus 01: 8-bit multiplexed bus 10: 16 -bit demultiplexed bus 11: 16-bit multiplexed bus Note 1: BTYP bits of BUSCONO are defined via Port 0 during reset. They are set according to the configuration of bit 6 and 7 of Port 0 latched at the end of the reset sequence. Note 2: If the $\overline{E A}$ pin is high during reset, the BUSCONO register is initialized with 0000h. If $\overline{E A}$ pin is low during reset, the BUSACTO and ALECTLO bits are set (1) and the BTYP bit field is loaded with the bus configuration selected via Port 0.
5	MTTCx	Memory tristate time control $0: 1$ wait state. 1: No wait state.
4	RWDCx	Read/write delay control for BUSCONx 0 : With read/write delay, the CPU inserts 1 TCL after falling edge of ALE. 1: No read/write delay; $\overline{\text { RW }}$ is activated after falling edge of ALE.
3-0	MCTC	Memory cycle time control (number of memory cycle time wait states) 0000: 15 wait states (number of wait states $=15-$ [MCTC]). 1111: No wait states.

RPOH register

RPOH is a read-only register.

RPOH (F108h/84h)				ESFR								Reset value: --XXh	
15	14	13	12	11	10	9	8		6	5	43	21	0
-	-	-	-	-	-	-	-	CLKSEL			SALSEL	CSSEL	WRC
-	-	-	-	-	-	-	-		$\mathrm{R}^{(1)(2)}$		$\mathrm{R}^{(2)}$	$\mathrm{R}^{(2)}$	$\mathrm{R}^{(2)}$

1. Bits 7 to 5 of the RPOH register are loaded only during a long hardware reset. As pull-up resistors are active on each Port POH pins during reset, the RPOH default value is FFh.
2. Bits 7 to 0 of the RPOH register are set according to Port 0 configuration during any reset sequence.

Table 152. RPOH register description

Bit	Bit name	Function
7-5	CLKSEL	System clock selection $\begin{aligned} & 000: \mathrm{f}_{\mathrm{CPU}}=16 \times \mathrm{f}_{\mathrm{OSC}} \\ & 001: \mathrm{f}_{\mathrm{CPU}}=0.5 \times \mathrm{f}_{\mathrm{OSC}} \\ & 010: \mathrm{f}_{\mathrm{CPU}}=10 \times \mathrm{f}_{\mathrm{OSC}} \\ & 011: \mathrm{f}_{\mathrm{CPU}}=\mathrm{f}_{\mathrm{OSC}} \\ & 100: \mathrm{f}_{\mathrm{CPU}}=5 \times \mathrm{f}_{\mathrm{OSC}} \\ & 101: \mathrm{f}_{\mathrm{CPU}}=8 \times \mathrm{f}_{\mathrm{OSC}} \\ & 110: \mathrm{f}_{\mathrm{CPU}}=3 \times \mathrm{f}_{\mathrm{CL}} \\ & 111: \mathrm{f}_{\mathrm{CPU}}=4, \text { 心SC } \end{aligned}$
4-3	SALSEL	Segment address line selection (number of active segment address outpu:s) 20. 4 - bit segment addresses, A19 to A16. 11: No segment address lines. 10: 8-bit segment addresses, A23 to A16. 11: 2-bit segment address, A17 and A16 (default without pull-downs).
<1	CSSEL	Chip select line selection (number of active $\overline{\mathrm{CS}}$ outputs) 00: Three $\overline{\mathrm{CS}}$ lines, $\overline{\mathrm{CS}} 2$ to $\overline{\mathrm{CS}} 0$. 01: Two $\overline{\mathrm{CS}}$ lines, $\overline{\mathrm{CS}} 1$ and $\overline{\mathrm{CS}} 0$. 10: No $\overline{\mathrm{CS}}$ lines. 11: Five $\overline{\mathrm{CS}}$ lines, $\overline{\mathrm{CS}} 4$ to $\overline{\mathrm{CS}} 0$ (default without pull-downs)
0	WRC	Write configuration control 0 : $\overline{\mathrm{WR}}$ and $\overline{\mathrm{BHE}}$ pins behave as $\overline{\mathrm{WRL}}$ and $\overline{\mathrm{WRH}}$ pins respectively. 1: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{BHE}}$ pins retain their normal functioning.

EXICON register

EXICON (F1COh/E0h)		ESFR				Reset value: 0000h	
1514	$13 \quad 12$	1110	98	76	54	32	10
EXI7ES	EXI6ES	EXI5ES	EXI4ES	EXI3ES ${ }^{(1)(2)}$	EXI2ES ${ }^{(1)(3)}$	EXI1ES	EXIOES
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

1. EXI2ES and EXI3ES must be configured as 01b because RTC interrupt request lines are rising edge active.
2. Alarm interrupt request line (RTCAI) is linked with EXI3ES
3. Timed interrupt request line (RTCSI) is linked with EXI2ES

Table 153. EXICON register description

Bit	Bit name	Function
15-0	$\begin{aligned} & \text { EXIxES } \\ & (x=7 \text { to } 0) \end{aligned}$	External interrupt x edge selection field ($x=7 \ldots 0$) 00: Fast external interrupts disabled (standard no '.e). EXxIN pin not taken into account for entering/exiting n上ver-drwn mode. 01: Interrupt on positive rising edge. I^{r}, wer down mode is entered if EXilN $=0$ and exited if $\mathrm{EXxIN}=1$ 'refeıred as 'high' active level). 10: Interrupt on negative falling edse. Power-down mode is entered if EXilN $=1$ and exited if $E \times$ ' $x:$: $=0$ (referred as 'low' active level). 11: Interrupt on any x qe (rising or falling). Power-down mode is always enterec' 'i' 's e'ited if the EXxIN level changes.

EXISEL register

EXISEL (F1DAh/EDh)		ESFR				Reset value: 0000h	
1514	$13 \quad 12$	1110	98	76	54	32	10
EXI7SS	EXI6SS	EXI5SS	EXI4SS	EXI3SS ${ }^{(1)}$	EXI2SS ${ }^{(2)}$	EXI1SS	EXIOSS
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

1. Alarm interrupt request (RTCAI) is linked with EXI3SS
2. Timed interrupt request (RTCSI) is linked with EXI2SS

Table 154. EXISEL register description

Bit	Bit name	Function
15-0	EXIxSS	External interrupt x source selection ($x=7$ to 0) 00: Input from associated Port 2 pin. 01: Input from 'alternate source'(1). 10: Input from Port 2 pin ORed with 'alternate 2 Irc 5 (i). 11: Input from Port 2 pin ANDed with 'alłarnaie s surce'.

1. Advised configuration

Table 155. External interrupt selection

EXIxSS	Port 2 pin	Alternate source	
0	P2.8	CAN1_RxD	P4.5
1	P2.9	CAN2_RxD/SCL	P4.4
2	P2.10	RTCSI (second)	Internal MUX
3	F2.11	RTCAI (alarm)	Internal MUX
4 to 7	P2.12 to 15	Not used (zero)	-

XP3IC register

This register has the same bit field as the xxIC interrupt register (see below).

xxIC register

Table 156. xxIC register description

Bit	Bit name	Forrion
7	xxIR	Interrupt request flag 0 : No request pending 1: This source hes sivesd an interrupt request
6	xxIE	Interrupt enab، ? cc.atrol bit (individually enables/disables a specific source) 0 : inte rupt request is disabled 1: Inter upt request is enabled
5-2	$\therefore V$	nterrupt priority level Defines the priority level for the arbitration of requests. Fh: Highest priority level Oh: Lowest priority level
$1-0$	GLVL	Group level Defines the internal order for simultaneous requests of the same priority. 3: Highest group priority 0 : Lowest group priority

XPERCON register

XPERCON (F024h/12h) ESFR													Reset value: 005h		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	$\begin{gathered} \text { XPORT } \\ \text { EN } \end{gathered}$	XMISC EN	$\begin{gathered} \mathrm{XI2C} \\ \mathrm{EN} \end{gathered}$	$\begin{gathered} \text { XSSC } \\ \text { EN } \end{gathered}$	$\begin{gathered} \text { XASC } \\ \text { EN } \end{gathered}$	XPWM EN	XFLASH EN	$\begin{gathered} \text { XRTC } \\ \text { EN } \end{gathered}$	$\begin{aligned} & \text { XRAM } \\ & \text { 2EN } \end{aligned}$	$\begin{gathered} \text { XRAM } \\ \text { 1EN } \end{gathered}$	$\begin{aligned} & \text { CAN } \\ & 2 E N \end{aligned}$	$\begin{aligned} & \text { CAN } \\ & \text { 1EN } \end{aligned}$
				RW											

Table 157. XPERCON register description

	Blt	Bit name	Function
	11	XPORTEN	XPort 9 and XPort 10 enable bit 0 : Access to the on-chip XPort 9 and XPort 10 modules is di:iaule J . Address range 00'EB80h to 00'EBFFh is directed to the extirnial memory only if CAN1EN, CAN2EN, XRTCEN, XASCEN,. SSCEN, XPWMEN, XI2CEN and XMISCEN are also 0. 1: The on-chip XPort 9 and XPort 10 are enalle, and can be accessed.
	10	XMISCEN	XBus additional features and XTimer ena ie bir 0 : Access to the additional miscel'ar,eous features is disabled. Address range $00^{\prime} E B 00 \mathrm{~h}$ to $00^{\prime} E B$? Fr is c'irected to the external memory only if CAN1EN, CAN2EN, XRTNEへ, , $\operatorname{CASCEN,~XSSCEN,~XPWMEN,~XI2CEN~}$ and XPORTEN are a'so ?. 1: The additionai 'eatur's and XTimer are enabled and can be accessed.
	9	XI2CEN	$1^{2} \mathrm{C}$ enable bit 0 : $\hat{\text { ricc }}$?ss to the on-chip $\mathrm{I}^{2} \mathrm{C}$ is disabled, external access performed. 4adrass range 00'EAOOh to 00'EAFFh is directed to the external memory only if CAN1EN, CAN2EN, XRTCEN, XASCEN, XSSCEN, XPWMEN, XMISCEN and XPORTEN are also 0. 1: The on-chip $I^{2} \mathrm{C}$ is enabled and can be accessed.
	3	XSSCEN	SSC1 enable bit 0 : Access to the on-chip SSC1 is disabled, external access performed. Address range $00^{\prime} E 800 \mathrm{~h}$ to $00^{\prime} E 8 \mathrm{FFh}$ is directed to the external memory only if CAN1EN, CAN2EN, XRTCEN, XASCEN, XI2CEN, XPWMEN, XMISCEN and XPORTEN are also 0. 1: The on-chip SSC1 is enabled and can be accessed.
${ }^{5}$	7	XASCEN	ASC1 enable bit 0 : Access to the on-chip ASC1 is disabled, external access performed. Address range $00^{\prime} E 900 \mathrm{~h}$ to $00^{\prime} \mathrm{E} 9 \mathrm{FFh}$ is directed to the external memory only if CAN1EN, CAN2EN, XRTCEN, XASCEN, XI2CEN, XPWMEN, XMISCEN and XPORTEN are also 0. 1: The on-chip ASC1 is enabled and can be accessed.
	6	XPWMEN	XPWM enable 0 : Access to the on-chip PWM1 module is disabled, external access is performed. Address range 00^{\prime} ECOOh to 00^{\prime} ECFF is directed to the external memory only if CAN1EN, CAN2EN, XASCEN, XSSCEN, XI2CEN, XRTCEN, XMISCEN and XPORTEN are also 0. 1: The on-chip PWM1 module is enabled and can be accessed.

Table 157. XPERCON register description

Blt	Bit name	Function
5	XFLASHEN	XFlash enable bit 0 : Access to the on-chip XFlash is disabled, external access is performed. Address range 09'0000h to 0E'FFFFh is directed to the external memory only if XRAM2EN is also 0 . 1: The on-chip XFlash is enabled and can be accessed.
4	XRTCEN	RTC enable 0 : Access to the on-chip RTC module is disabled, external access is performed. Address range $00^{\prime} E D 00 \mathrm{~h}$ to 00^{\prime} EDFF is directed to the external memory only if CAN1EN, CAN2EN, XASCEN, XSSCEN, XI2CEN, XPWMEN, XMISCEN and XPORTEN are also 0. 1: The on-chip RTC module is enabled and can be accessed.
3	XRAM2EN	XRAM2 enable bit 0 : Access to the on-chip 64 KByte XRAM is disablod, Exır, 1 al access is performed. Address range 0F'0000h to OF'FFFF'ルに ci:ected to the external memory only if XFLASHEN is also ? 1: The on-chip 64 Kbyte XRAM is ena' ller ána can be accessed.
2	XRAM1EN	XRAM1 enable bit 0 : Access to the on-chip $2 \mathrm{KP}^{2}+{ }^{+} \mathrm{X}_{\mathrm{n}} \mathrm{AM}$ is disabled. Address range $00^{\prime} E 000 \mathrm{~h}$ to $00^{\prime} E 7 F F h$ is $\lambda_{1}, e+t$, d to the external memory. 1: The on-chip 2 Kby $\pm=$ ' R MM is enabled and can be accessed.
1	CAN2EN	CAN2 enable rit 0 : Access to the on-chip CAN2 XPeripheral and its functions is disabled (P4 4 and P4.7 pins can be used as general purpose IOs, but, address rar.je 00^{\prime} ECOOh to $00^{\prime} E F F F$ h is directed to the external memory only if CANIEN, XRTCEN, XASCEN, XSSCEN, XI2CEN, XPWMEN, X_{i} IISCEN and XPORTEN are also 0). 1: The on-chip CAN2 XPeripheral is enabled and can be accessed.
	CAN1EN	CAN1 enable bit 0 : Access to the on-chip CAN1 XPeripheral and its functions is disabled (P4.5 and P4.6 pins can be used as general purpose IOs, but, address range $00^{\prime} E C 00 \mathrm{~h}$ to $00^{\prime} E F F F \mathrm{~F}$ is directed to the external memory only if CAN2EN, XRTCEN, XASCEN, XSSCEN, XI2CEN, XPWMEN an XMISCEN are also 0). 1: The on-chip CAN1 XPeripheral is enabled and can be accessed.

When CAN1, CAN2, RTC, ASC1, SSC1, $I^{2} \mathrm{C}, \mathrm{PWM} 1$, XBus additional features, XTimer and XPort modules are disabled via XPERCON settings, any access in the address range 00'E800h to 00'EFFFh is directed to the external memory interface, using the BUSCONx register associated with the ADDRSELx register matching the target address. All pins involved with the XPeripherals can be used as general purpose IOs whenever the related module is not enabled.

The default XPER selection after reset is identical to configuration of the XBus in the ST10F280. CAN1 and XRAM1 are enabled, CAN2 and XRAM2 are disabled, all other XPeripherals are disabled after reset.
the XPERCON register cannot be changed after globally enabling the XPeripherals (after setting the XPEN bit in the SYSCON register).

In emulation mode, all XPeripherals are enabled (all XPERCON bits are set). The access to the external memory and/or the XBus is controlled by the bondout chip.

Reserved bits of the XPERCON register must always be written to 0 .
When the RTC is disabled (RTCEN = 0) the main clock oscillator is switched off if the ST10 enters power-down mode. When the RTC is enabled, the RTCOFF bit of the RTCCON register allows the power-down mode of the main clock oscillator to be chosen (eee Section 18: Real-time clock (RTC) on page 203).

Table 158 summarizes the address range mapping on segment 8 for programming the ROMEN and XPEN bits (of the SYSCON register) and the XRAM2EN and XFLASHEN bits (of the XPERCON register).

Table 158. Segment 8 address range mapping

ROMEN	XPEN	XRAM2EN	XFLASHEN	Segmet \div -
0	0	$\mathrm{x}^{(1)}$	$\mathrm{x}^{(1)}$	Exaerná inmmory
0	1	0	0	E, te nal memory
0	1	1	$\mathrm{x}^{(1)}$	Reserved
0	1	$\mathrm{x}^{(1)}$	1	Reserved
1	$\mathrm{x}^{(1)}$	$\mathrm{x}^{(1)}$: 1	IFlash (B1F1)

1. Don't care

23.10.1 XPEREMU register

The XPEREMU register is a wite-only register that is mapped on the XBus memory space at address EB7Eh. It contra ${ }^{ \pm}=u$ ith the XPERCON register, a read/write ESFR register, which must be programned to enable the single XBus modules separately.
Once the XPEN inio oi the SYSCON register is set and at least one of the XPeripherals (except the mano ies) is activated, the XPEREMU register must be written with the same content.cs thこ $\angle P E R C O N$ register. This is to allow a correct emulation of the new set of feature, introduced on the XBus for the new ST10 generation. The following instructions mus, be added inside the initialization routine:

```
if (SYSCON.XPEN && (XPERCON & OxO7D3))
then { XPEREMU = XPERCON }
```

XPEREMU must be programmed after both the XPERCON and SYSCON registers in such a way that the final configuration for the XPeripherals is stored in the XPEREMU register and used for the emulation hardware setup.

XPEREMU bit descriptition follows the XPERCON register (see Table 5 and Table 157).

23.11 Emulation dedicated registers

Four write-only registers of the ST10F296E are described briefly below. These registers are used for emulation purposes only.

XEMUO (EB76h)				XBus								Reset value: xxxxh			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
XEMU0(15:0)															
W															
XEMU1 (EB78h)								XBus					set	ue:	xxh
15		13	12	11	10	9	8	7	6	5	4	3	2		0
XEMU1(15:0)															
W															
XEM	2 (EB	7Ah)						XBus					et	ue:	
15			12	11	10	9	8	7	6			3			0
XEMU2(15.))															
XEMU3 (EB7Ch) XBus Reset value: x xxxh															
15	14	13	12	11	10	9		7		5	4	3	2	1	0
XEMU3(15:0)															

24 Electrical characteristics

24.1 Absolute maximum ratings

Table 159. Absolute maximum ratings

Symbol	Parameter	Value	Unit
$V_{\text {DD }}$	Voltage on V_{DD} pins with respect to ground ($\mathrm{V}_{\text {SS }}$)	-0.3 to +6.5	V
$\mathrm{V}_{\text {STBY }}$	Voltage on $\mathrm{V}_{\text {STBY }}$ pin with respect to ground ($\mathrm{V}_{\text {SS }}$)		
$\mathrm{V}_{\text {AREF }}$	Voltage on $\mathrm{V}_{\text {AREF }}$ pin with respect to ground ($\mathrm{V}_{\text {SS }}$)	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
$\mathrm{V}_{\text {AGND }}$	Voltage on $\mathrm{V}_{\text {AGND }}$ pin with respect to ground (V_{SS})	$\mathrm{V}_{S S}$	
V_{IO}	Voltage on any pin with respect to ground (V_{SS})	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	
lov	Input current on any pin during overload condition	+10	A
$\mathrm{I}_{\text {TOV }}$	Absolute sum of all input currents during overload condition	1751	
$\mathrm{T}_{\text {ST }}$	Storage temperature	- 65 to +150	${ }^{\circ} \mathrm{C}$
ESD	ESD susceptibility (human body model)	2000	V

Stresses above those listed under 'Absolute maxir, $\iota_{r_{11}}$ ratings' may cause permanent damage to the device. This is a stress rating oniv end functional operation of the device at these or any other conditions above thos? incic:sted in the operational sections of this datasheet is not implied. Exposure tc absc'we maximum rating conditions for extended periods may affect device reliability. Durir. voltage on pins with respect to ground $\left(\mathrm{V}_{\mathrm{SS}}\right)$ must not exceed the values defined by the absolute maximum rating s.

During power-on and sonor-off transients (including standby entering/exiting phases), the relationship betw əen vitages applied to the device and the main V_{DD} must always be respected. In Γ_{c} rti cular, power-on and power-off of $\mathrm{V}_{\text {AREF }}$ must be coherent with the V_{DD} transierii i) cwid undesired current injection through the on-chip protection diodes.

24．2 Recommended operating conditions

Table 160．Recommended operating conditions

Symbol	Parameter	Min	Max	Unit
$V_{\text {DD }}$	Operating supply voltage	4.5	5.5	V
$\mathrm{V}_{\text {STBY }}$	Operating standby supply voltage ${ }^{(1)}$			
$V_{\text {AREF }}$	Operating analog reference voltage ${ }^{(2)}$	0	$V_{D D}$	
T_{A}	Ambient temperature under bias	－40	＋125	${ }^{\circ} \mathrm{C}$
T_{J}	Junction temperature under bias		＋150	

1．The value of the $\mathrm{V}_{\text {STBY }}$ voltage is in the range 4.5 to 5.5 volts．It is acceptable to exceed the upper limit ，up to 6.0 volts）for a maximum of 100 hours over 300000 hours（about 30 years），which represents ths， lifetime of the device．When $V_{S T B Y}$ voltage is lower than main $V_{D D}$ ，the input section of $V_{S T B Y}{ }^{\prime} \overline{F /}$ pin c an generate a spurious static consumption on $V_{D D}$ power supply（in the range of a tenth of a $\mu \mathcal{A}^{\prime}$ ，
2．For details on operating conditions concerning the use of the ADC，refer to Section $27.7:$ ィ．ノへ characteristics．

24．3 Power considerations

The average chip－junction temperature，T_{J} ，in degiers silsius，may be calculated using the following equation：

Equation 22

$$
T_{J}=T_{A}+\left(P_{D} \times \Theta_{J A}\right)
$$

Where：
T_{A} is the ambient temrorature in ${ }^{\circ} \mathrm{C}$ ．
Θ_{JA} is the packana iul ction－to－ambient thermal resistance，in ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ．
P_{D} is the suln of $P_{I N T}$ and $P_{I / O}\left(P_{D}=P_{I N T}+P_{I / O}\right)$ ．
$P_{I N T}$ is ne product of $I_{D D}$ and $V_{D D}$ ，expressed in Watts．This is the chip internal power．
$r^{1 / u}$ ：epresents the power dissipation on the input and output pins which is user determined．
Usually， $\mathrm{P}_{\mathrm{I} / \mathrm{O}}<\mathrm{P}_{\mathrm{INT}}$ can be neglected． $\mathrm{P}_{\mathrm{I} / \mathrm{O}}$ may be significant if the device is configured to drive external modules and／or memories continuously．

An approximate relationship between P_{D} and T_{J}（if $P_{/ / O}$ is neglected）is given by：

Equation 23

$$
P_{D}=K /\left(T_{J}+273^{\circ} \mathrm{C}\right)
$$

Solving Equation 22 and Equation 23 gives Equation 24:

Equation 24

$K=P_{D} \times\left(T_{A}+273^{\circ} \mathrm{C}\right)+\Theta_{J A} \times P_{D}^{2}$
Where:
K is a constant for the particular part, which may be determined from Equation 24 by measuring P_{D} (at equilibrium) for a known T_{A}. Using this value of K, the values of P_{D} and T_{J} may be obtained by solving Equation 22 and Equation 23 iteratively for any value of T_{A}.

Table 161. Thermal characteristics

Symbol	Description	Value (typical)	Unit
Θ_{JA}	Thermal resistance junction-ambient PBGA 208 package $(23 \times 23 \times 1.96 \mathrm{~mm})$	30	$0 / \mathrm{W}$

Based on thermal characteristics of the package and with reference to $\ldots \in$ D \quad wer consumption values provided in Table 163: DC characteristics and Figi"o 97: Supply current versus the operating frequency (run and idle modes)), the prc uu:t lassification in Table 162 is suggested. The exact power consumption of the device insice the application must be computed according to different working conditions, thern'al profiles, real thermal resistance of the system (including the printed circuit board C^{r} (itre, substrata), I/O activity, and so on.

Table 162. Package characteristics

Package	Ambie t tel nperature range	CPU frequency range
PBGA 208	-40 to $125^{\circ} \mathrm{C}$	1 to 64 MHz

24.4 Parameter interretation

The parame ers :isted in Table 163: DC characteristics represent characteristics of the ST10F.2C $0 \mathrm{~L}^{-}$and its demands on the system.
W'It:e the ST10F296E logic provides signals with their respective timing characteristics, the s, 'rinol for controller characteristics (CC) is included in the 'Symbol' column. Where the external system must provide signals with their respective timing characteristics to the ST10F296E, the symbol for system requirement (SR) is included in the 'Symbol' column.

24.5 DC characteristics

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$
Table 163. DC characteristics

Symbol	Parameter	Test condition	Limit values		Unit
			Min	Max	
V_{IL} (SR)	Input low voltage (TTL mode) (except RSTIN, EA, $\overline{\mathrm{NMI}}, \mathrm{RPD}$, XTAL1, READY)	-	-0.3	0.8	V
$\mathrm{V}_{\text {ILS }}(\mathrm{SR})$	Input low voltage (CMOS mode) (except $\overline{R S T I N}, \overline{\mathrm{EA}}, \overline{\mathrm{NMI}, ~ R P D, ~}$ XTAL1, READY)	-	-0.3	$0.3 \mathrm{~V}_{\mathrm{DC}}$	
$\mathrm{V}_{\text {IL1 }}$ (SR)	Input low voltage RSTIN, EA, NMI, RPD	-	-0.3	2.2 $V_{D D}$	
$\mathrm{V}_{\text {IL2 }}(\mathrm{SR})$	Input low voltage XTAL1 (CMOS only)	Direct drive mode	0.2	$0.3 \mathrm{~V}_{\mathrm{DD}}$	
$\mathrm{V}_{\text {IL3 }}(\mathrm{SR})$	Input low voltage READY (TTL only)		-0.3	0.8	
V_{IH} (SR)	Input high voltage (TTL mode) (except RSTIN, EA, NMI, RPD, XTAL1)		2.0	$V_{D D}+0.3$	
$\mathrm{V}_{\mathrm{IHS}}$ (SR)	Input high voltage (CMOS $\quad \mathrm{M}$ こde) (except RSTIN, E, XTAL1)		$0.7 \mathrm{~V}_{\mathrm{DD}}$	$V_{D D}+0.3$	
$\mathrm{V}_{\mathrm{IH} 1}(\mathrm{SR})$	Input hig', viltase $\overline{\operatorname{RSTIN},} \overline{\mathrm{EA}}$, NKT1, R? ${ }^{2}$,	$0.7 \mathrm{~V}_{\mathrm{DD}}$	$V_{D D}+0.3$	
$\mathrm{V}_{\mathrm{IH} 2}$ (SR)	in, vu. high voltage XTAL1 ('心MOS only)	Direct drive mode	$0.7 \mathrm{~V}_{\mathrm{DD}}$	$V_{D D}+0.3$	V
$\mathrm{V}_{\mathrm{HS}}(\mathrm{SF})$	Input high voltage READY (TTL only)	-	2.0	$V_{D D}+0.3$	
VHYS (CC)	Input hysteresis (TTL mode) (except RSTIN, EA, $\overline{\mathrm{NMI}}, \mathrm{XTAL1}$, RPD)	(1)	400	700	mV
VHYSS (CC)	Input hysteresis (CMOS mode) (except $\overline{\mathrm{RSTIN}}, \overline{\mathrm{EA}}, \overline{\mathrm{NMI}}, \mathrm{XTAL1}$, RPD)	(1)	750	1400	
VHYS1 (CC)	Input hysteresis $\overline{\mathrm{RSTIN}}, \overline{\mathrm{EA}}, \overline{\mathrm{NMI}}$	(1)	750	1400	
VHYS2 (CC)	Input hysteresis XTAL1	(1)	0	50	
VHYS3 (CC)	Input hysteresis READY (TTL only)	(1)	400	700	
VHYS4 (CC)	Input hysteresis RPD	(1)	500	1500	

Table 163. DC characteristics (continued)

Symbol	Parameter	Test condition	Limit values		Unit	
			Min	Max		
$\mathrm{V}_{\text {OL }}(\mathrm{CC})$	Output low voltage (P6[7:0], ALE, $\overline{R D}, \overline{W R} / \overline{W R L}$, BHE/WRH, CLKOUT, RSTIN, RSTOUT)	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA} \end{aligned}$	-	$\begin{gathered} 0.4 \\ 0.05 \end{gathered}$		
$\mathrm{V}_{\mathrm{OL} 1}(\mathrm{CC})$	Output low voltage (PO[15:0], P1[15:0], P2[15:0], P3[15,13:0], P4[7:0], P7[7:0], P8[7:0])	$\begin{gathered} \mathrm{I}_{\mathrm{OL} 1}=4 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL} 1}=0.5 \mathrm{~mA} \end{gathered}$	-	$\begin{gathered} 0.4 \\ 0.05 \end{gathered}$		
$\mathrm{V}_{\mathrm{OL} 2}(\mathrm{CC})$	Output low voltage RPD	$\begin{aligned} & \mathrm{I}_{\mathrm{OL} 2}=85 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL} 2}=80 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL} 2}=60 \mu \mathrm{~A} \end{aligned}$	-	$\begin{gathered} \left.V_{D I}\right) \\ 0.5 V_{L D} \\ \left(1.3 V_{D D}\right. \end{gathered}$	V	
$\mathrm{V}_{\mathrm{OH}}(\mathrm{CC})$	Output high voltage (P6[7:0], ALE, $\overline{R D}, \overline{W R} / \overline{W R L}$, BHE/WRH, CLKOUT, RSTOUT)	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{D D}-n, z \\ & v_{\text {L. }}-7.1 \end{aligned}$	y		
$\mathrm{V}_{\mathrm{OH} 1}(\mathrm{CC})$	Output high voltage ${ }^{(2)}$ (P0[15:0], P1[15:0], P2[15:0], P3[15,13:0], P4[7:0], P7[7:0], P8[7:0])	$\begin{gathered} \mathrm{I}_{\mathrm{OH} 1}=-4 \mathrm{n} . \Delta \\ \mathrm{I}_{\mathrm{OH} 1}=05 \mathrm{~mA} \end{gathered}$	$\begin{gathered} V_{D D}-0.8 \\ V_{D D}-0.08 \end{gathered}$	\sqrt{S}		
$\mathrm{V}_{\mathrm{OH} 2}(\mathrm{CC})$	Output high voltage RPD	$\begin{aligned} & \mathrm{IOH} 2=-2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH} 2}=-750 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH} 2}=-150 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 0 \\ 0.3 \mathrm{~V}_{\mathrm{DD}} \\ 0.5 \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	-		
$\left\|\mathrm{l}_{\mathrm{Oz1}}\right\|$ (CC)	Input leakage c'ıreıt (P5[15:0]) ${ }^{(3)}$	0	-	± 0.2		
\| Iozz	(CC)	Input lea'arje current 	-	-	± 0.5	$\mu \mathrm{A}$
I loz3: 160	input leakage current (P2.0) ${ }^{(4)}$	-	-	$\begin{aligned} & +1.0 \\ & -0.5 \end{aligned}$		
$1 \square^{41}$ (CC)	Input leakage current (RPD)	-	-	± 3.0		
$1, \overline{\mathrm{O} \mathrm{V}_{1} \mid \text { (SR) }}$	Overload current (all except P2.0)	(1)(5)	-	± 5	mA	
$\left\|\mathrm{l}_{\mathrm{OV} 2}\right\|$ (SR)	Overload current (P2.0) ${ }^{(4)}$	(1)(5)	-	$\begin{aligned} & +5 \\ & -1 \end{aligned}$	mA	
$\mathrm{R}_{\mathrm{RST}}$ (CC)	$\overline{\text { RSTIN }}$ pull-up resistor	$100 \mathrm{k} \Omega$ nominal	50	250	k Ω	
$\mathrm{I}_{\text {RWH }}$	Read/write inactive current ${ }^{(6)(7)}$	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$	-	-40		
$\mathrm{I}_{\text {RWL }}$	Read/write active current ${ }^{(6)(8)}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	-500	-		
${ }^{\text {I ALEL }}$	ALE inactive current ${ }^{(6)(7)}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	20	-		
$\mathrm{I}_{\text {ALEH }}$	ALE active current ${ }^{(6)(8)}$	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$	-	300	$\mu \mathrm{A}$	
$\mathrm{IP6H}$	Port 6 inactive current (P6[4:0]) ${ }^{(6)(7)}$	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$	-	-40		
$\mathrm{I}_{\text {P6L }}$	Port 6 active current (P6[4:0]) ${ }^{(6)(8)}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	-500	-		

Table 163. DC characteristics (continued)

Symbol	Parameter	Test condition	Limit values		Unit
			Min	Max	
$\mathrm{IPOH}^{(7)}$	Port 0 configuration current ${ }^{(6)}$	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$	-	-10	$\mu \mathrm{A}$
$\mathrm{IPOL}^{(8)}$		$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	-100	-	
$\mathrm{C}_{1 \mathrm{O}}(\mathrm{CC})$	Pin capacitance (digital inputs/outputs)	(1)(6)	-	10	pF
$\mathrm{I}_{\mathrm{CC} 1}$	Run mode power supply current (execution from internal RAM) ${ }^{(9)}$	-	-	$20+2 \mathrm{f} \mathrm{CPU}$	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Run mode power supply current (execution from internal Flash) ${ }^{(1)(9)}$	-	-	$20+1.8 \mathrm{f}_{\text {CDII }}$	mA
IID	Idle mode supply current ${ }^{(10)}$	-	-	$2 \mathrm{c}+5.6 \mathrm{f} \mathrm{CPU}$	mA
$\mathrm{I}_{\text {PD1 }}$	Power-down supply current (RTC off, oscillators off, main voltage regulator off) ${ }^{(11)}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	mA
		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$			
$\mathrm{I}_{\text {PD2 }}$	Power-down supply current ${ }^{(11)}$ (RTC on, main oscillator on, main voltage regulator off)	$\mathrm{T}_{\mathrm{A}}=2!9$.		8	mA
		$T_{n}=i=0^{\circ} \mathrm{C}$		10	
$\mathrm{I}_{\text {SB1 }}$	Standby supply current (RTC Jff, main oscillator off, V_{DD} off, $\mathrm{V}_{\text {STBY }}$ on) ${ }^{(11)}$	$\begin{gathered} \mathrm{STBY}=5.5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=25^{\circ} \mathrm{C} \end{gathered}$		250	$\mu \mathrm{A}$
		$\begin{gathered} \mathrm{V}_{\mathrm{STBY}}=5.5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=125{ }^{\circ} \mathrm{C} \end{gathered}$	-	500	
		$\begin{aligned} & V_{\text {STBY }}=5.5 \mathrm{~V} \\ & T_{J}=150^{\circ} \mathrm{C}^{(4)} \end{aligned}$	-	700	
$\mathrm{I}_{\text {SB3 }}$	Sarair, supply current (VD t_{1} aıısient condition) $^{(1)(11)}$	-	-	2.5	mA

1. Not $\quad \omega \%$ iested, guaranteed by design characterization.
?. T. is specification is not valid for outputs which are switched to open-drain mode. In this case the :sspective output floats and the voltage is imposed by the external circuitry.
'3. Port 5 and XPort 10 leakage values are granted for unselected ADC channels. One channel is always selected (by default, after reset, P5.0 is selected). For the selected channel the leakage value is similar to that of other port pins.
2. The leakage of P2.0 is higher than other pins due to the additional logic (pass gates active only in specific test modes) implemented on its input path. Do not stress P2.0 input pin with negative overload beyond the specified limits as failures in Flash reading may occur (sense amplifier perturbation). Refer to Figure 96 for a scheme of the input circuitry.
3. Overload conditions occur if the standard operating conditions are exceeded, that is, the voltage on any pin exceeds the specified range ($\mathrm{V}_{\mathrm{OV}}>\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{OV}}<-0.3 \mathrm{~V}$). The absolute sum of input overload currents on all port pins must not exceed 50 mA . The supply voltage must remain within the specified limits.
4. This specification is only valid during reset, or during hold or adapt mode. Port 6 pins are only affected if they are used for $\overline{\mathrm{CS}}$ output and the open drain function is not enabled.
5. The maximum current may be drawn while the respective signal line remains inactive.
6. The minimum current must be drawn to drive the respective signal line active.
7. The power supply current is a function of the operating frequency ($\mathrm{f}_{\mathrm{CPU}}$ is expressed in MHz). This dependency is illustrated in Figure 97 below. This parameter is tested at $\mathrm{V}_{\mathrm{DDmax}}$ and at maximum CPU clock frequency with all outputs disconnected, all inputs at V_{IL} or V_{HH}, and RSTIN pin at $\mathrm{V}_{\mathrm{HH} 1 \mathrm{~min}}$: This implies that I/O current is not considered. The device does the following:

- Fetches code from IRAM and XRAM1, read and write accesses both XRAM modules
- Enables watchdog timer and services it regularly
- RTC runs with main oscillator clock as reference, generating a tick interrupt every 192 clock cycles
- Four XPWM channels run (wave periods: 2, 2.5, 3, and 4 CPU clock cycles): No output toggling
- Five general purpose timers run in timer mode with prescaler equal to 8 (T2, T3, T4, T5, and T6)
- ADC is in auto scan continuous conversion mode on all 16 channels of Port 5
- All interrupts generated by XPWM, RTC, timers and ADC are not serviced

10. The idle mode supply current is a function of the operating frequency (f_{CP} is expressed in MHz). This dependency is illustrated in Figure 97 below. These parameters are tested at maximum CPU clock with all outputs disconnected, all inputs at V_{IL} or V_{IH}, and the RSTIN pin at $\mathrm{V}_{\mathrm{IH} 1 \text { min }}$.
11. Testing of this parameter includes leakage currents. All inputs (including pins configured as inputs) are at 0 to 0.1 V or at $\mathrm{V}_{\mathrm{DD}}-0.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {AREF }}=0 \mathrm{~V}$, all outputs (including pins configured as outputs) are disconnected. The main voltage regulator is assumed to be off. If this is not the case, an additional 1 mA must be assumed.

Figure 96. Port 2 test mode structure

1. For the complets st sc.ure of Port 2, see Figure 37 in Section 13.4

Figure 97. Supply current versus the operating frequency (run and idle modes)

24.6 Flash characteristics

$V_{D D}=5 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}$
Table 164. Flash characteristics

Parameter	Typical $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \text { Maximum } \\ \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{gathered}$		Unit	Notes
	0 cycles ${ }^{(1)}$	0 cycles ${ }^{(1)}$	100 k cycles ${ }^{(2)}$		
Word program (32-bit) ${ }^{(3)}$	35	80	290	$\mu \mathrm{s}$	-
Double word program (64-bit) ${ }^{(3)}$	60	150	570	$\mu \mathrm{s}$	-
Maximum word program (32-bit)	-	560	1385	$\mu \mathrm{s}$	
Maximum double word program (64-bit)	-	1160	2760	$\mu \mathrm{s}$	$+55$
Bank 0 program (384 Kbyte) (double word program)	2.9	7.4	28.0	s	,
Bank 1 program (128 Kbyte) (double word program)	1.0	2.5	9.3	S	$-(51$
Bank 2 program (192 Kbyte) (double word program)	1.5	3.7	$i \leftrightharpoons$	s	
Bank 3 program (128 Kbyte) (double word program)	1.0	25	9.3	s	-
Sector erase (8 Kbyte)	$\begin{aligned} & 0.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \text { u. } \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.9 \end{aligned}$	s	Not preprogrammed Preprogrammed
Sector erase (32 Kbyte)	1.1 -8	$\begin{aligned} & 2.0 \\ & 1.8 \end{aligned}$	$\begin{array}{r} 2.7 \\ 2.5 \end{array}$	s	Not preprogrammed Preprogrammed
Sector erase (64K)	$\begin{aligned} & 1.7 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.7 \end{aligned}$	s	Not preprogrammed Preprogrammed
Bank 0 erase ($384 \mathrm{KL}, \mathrm{te})^{(4)}$	$\begin{aligned} & 8.2 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 20.2 \\ & 17.7 \end{aligned}$	$\begin{aligned} & 28.6 \\ & 26.1 \end{aligned}$	s	Not preprogrammed Preprogrammed
Bank 1 ¢ ${ }^{\text {a }}=$ ¢ 128 Kbyte$)^{(4)}$	$\begin{aligned} & 3.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 9.0 \end{aligned}$	s	Not preprogrammed Preprogrammed
Be $n^{k} 2$ erase (192 Kbyte) ${ }^{(4)}$	$\begin{aligned} & 4.3 \\ & 3.1 \end{aligned}$	$\begin{gathered} 10.3 \\ 9.1 \end{gathered}$	$\begin{aligned} & \hline 14.5 \\ & 13.3 \end{aligned}$	s	Not preprogrammed Preprogrammed
Bank 3 erase (128 Kbyte) ${ }^{(4)}$	$\begin{aligned} & 3.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 9.0 \end{aligned}$	s	Not preprogrammed Preprogrammed
Imodule erase (512 Kbyte) ${ }^{(5)}$	$\begin{gathered} 11.2 \\ 7.6 \end{gathered}$	$\begin{aligned} & 27.2 \\ & 23.5 \end{aligned}$	$\begin{aligned} & 38.4 \\ & 34.7 \end{aligned}$	s	Not preprogrammed Preprogrammed
Xmodule erase (320 Kbyte) ${ }^{(5)}$	$\begin{aligned} & 7.3 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 17.3 \\ & 14.8 \end{aligned}$	$\begin{aligned} & 24.3 \\ & 21.8 \end{aligned}$	s	Not preprogrammed Preprogrammed
Chip erase (832 Kbyte) ${ }^{(6)}$	$\begin{aligned} & 18.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 44.4 \\ & 37.9 \end{aligned}$	$\begin{aligned} & 62.6 \\ & 56.1 \end{aligned}$	s	Not preprogrammed Preprogrammed
Recovery from power-down (tpD)	-	40	40	$\mu \mathrm{s}$	(7)
Program suspend latency ${ }^{(7)}$	-	10	10	$\mu \mathrm{s}$	

Table 164. Flash characteristics (continued)

Parameter	Typical $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$		Maximum $\mathbf{T}_{\mathbf{A}}=125{ }^{\circ} \mathrm{C}$		Unit

1. Values are after about 100 cycles due to testing routines (0 cycles for the final customer).
2. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.
3. Word and double word programming times are provided as average values derived from a full sector programinir g ums. The absolute value of a word or double word programming time may be longer than the provided average val.! t
4. Bank erase is obtained through a multiple sector erase operation (setting bits related to all sectors of th? b, \cdots, \therefore.
5. Module erase is obtained through a sequence of two bank erase operations (since each module ic com posed of two banks).
6. Chip erase is obtained through a sequence of two module erase operations on the Imoa Is anc' Xmodule.
7. Not 100% tested, guaranteed by design characterization.

Table 165. Data retention characteristics

Number of program/erase cycles$\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}\right)$	Data retention time ídverage ambient temperature $60^{\circ} \mathrm{C}$)	
	832 Kbyte (code store)	$\begin{gathered} 64 \text { Kbyte } \\ \text { (EEPROM emulation) }{ }^{(1)} \end{gathered}$
0-100	>20 years	> 20 years
1000	\bigcirc	> 20 years
19.150	-	10 years
(100,000 ()	-	1 year

1. I vo 64 Kbyte Flash sectors may be typically used to emulate up to 4 , 8 , or 16 Kbytes of EEPROM. frerefore, in case of an emulation of a 16 Kbyte EEPROM, 100000 Flash program/erase cycles are equivalent to 800000 EEPROM program/erase cycles. For an efficient use of the read while write feature and/or EEPROM emulation, please refer to the dedicated application note (AN2061, EEPROM Emulation with ST10F2xx) on www.st.com.

24.7 ADC characteristics

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$,
$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {AREF }} \leq \mathrm{V}_{\mathrm{DD}}$,
$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{AGND}} \leq \mathrm{V}_{\mathrm{SS}}+0.2 \mathrm{~V}$
Table 166. ADC characteristics

Symbol	Parameter	Test condition	Limit values		Unit
			Min	Max	
$\mathrm{V}_{\text {AREF }}$ (SR)	Analog reference voltage ${ }^{(1)}$		4.5	V_{DD}	V
$\mathrm{V}_{\text {AGND }}$ (SR)	Analog ground voltage		$\mathrm{V}_{S S}$	$\mathrm{V}_{\text {SS }}+0.2$	V
$\mathrm{V}_{\text {AIN }}(\mathrm{SR})$	Analog input voltage ${ }^{(2)}$		$\mathrm{V}_{\text {AGND }}$	$\mathrm{V}_{\text {AliEr }}$	V
$\mathrm{I}_{\text {AREF }}$ (CC)	Reference supply current	Running mode ${ }^{(3)}$ Power-down mode			$\begin{gathered} \mathrm{mA} \\ \mu \mathrm{~A} \end{gathered}$
$\mathrm{t}_{\mathrm{S}}(\mathrm{CC})$	Sample time	(4)	$!$	-	$\mu \mathrm{s}$
t_{C} (CC)	Conversion time	(5)	3		$\mu \mathrm{s}$
DNL (CC)	Differential nonlinearity ${ }^{(6)}$	No overload	-1	1	LSB
INL (CC)	Integral nonlinearity ${ }^{(6)}$	No overloar	-1.5	1.5	LSB
OFS (CC)	Offset error ${ }^{(6)}$	No cverciad	-1.5	1.5	LSB
TUE (CC)	Total unadjusted error ${ }^{(6)}$	-	-2.0	2.0	LSB
K (CC)	Coupling factor between inputs ${ }^{(3)(7)}$	On both Port 5 and XPort 10	-	10^{-6}	-
$\mathrm{C}_{\mathrm{P} 1}$ (CC)	Input pir. cap acitance ${ }^{(3)(8)}$	5	-	3	pF
$\mathrm{C}_{\mathrm{P} 2}(\mathrm{CC})$		Port 5 XPort 10	-	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
$\mathrm{CSS}_{\text {(}}$ (C)	Se.npling capacitance ${ }^{(3)(8)}$		-	3.5	pF
$\mathrm{R}_{\mathrm{sin}}(\mathrm{CC})$	Analog switch resistance ${ }^{(3)(8)}$	Port 5 XPort 10		$\begin{gathered} 600 \\ 1600 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
$\mathrm{R}_{\text {AD }}(\mathrm{CC})$			-	1300	Ω

1. $V_{\text {AREF }}$ can be tied to ground when $A D C$ is not in use: An extra consumption (around $200 \mu \mathrm{~A}$) on main V_{DD} is added because the internal analog circuitry is not completely turned off. It is suggested to maintain the $V_{\text {AREF }}$ at $V_{\text {DD }}$ level even when not in use, and to eventually switch off the ADC circuitry setting bit, ADOFF, in the ADCON register.
2. $\mathrm{V}_{\text {AIN }}$ may exceed $\mathrm{V}_{\text {AGND }}$ or $\mathrm{V}_{\text {AREF }}$ up to the absolute maximum ratings. However, the conversion result in these cases is $0 \times 000_{H}$ or $0 \times 3 \mathrm{FF}_{\mathrm{H}}$, respectively.
3. Not 100% tested, guaranteed by design characterization.
4. During the sample time, t_{s}, the input capacitance, $\mathrm{C}_{\text {AIN }}$, can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{s}. After the end of the sample time, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock, t_{s}, depend on programming and can be taken from Table 167.
5. This parameter includes the sample time, t_{s}, the time for determining the digital result, and the time to load the result register with the conversion result. Values for the conversion clock, t_{cc}, depend on programming and can be taken from Table 167.
6. DNL, INL, OFS and TUE are tested at $\mathrm{V}_{\text {AREF }}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$. They are guaranteed by design characterization for all other voltages within the defined voltage range. 'LSB' has a value of $\mathrm{V}_{\text {AREF }} / 1024$. The specified TUE ($\pm 2 \mathrm{LSB}$) is also guaranteed with an overload condition (see I_{OV} specification) occurring on a maximum of two unselected analog input pins if the absolute sum of input overload currents on all analog input pins does not exceed 10 mA .
7. The coupling factor is measured on a channel while the overload condition occurs on the adjacent unselected channels with the overload current within the different specified ranges (for both positive and negative injection current).
8. Refer to Figure 99

24.7.1 Conversion timing control

When a conversion starts, the capacitances of the converter are first loaded via the respective analog input pin to the current analog input voltage. The time to load the capacitances is referred to as the sample time. Next, the sampled voltage is converted into a digital value in several successive steps which corresponds to the 10-bit resolution si the ADC. During these steps the internal capacitances are repeatedly charged ar. dincnarged via the $\mathrm{V}_{\text {AREF }}$ pin.
 depends on the duration of each step because the capacitor " u it isach their final voltage level as close to the given time as possible. However, the max mum current that a source can deliver depends on its internal resistance.

The amount of time that sampling and converting lit es auring conversion can be programmed within a certain range in the $S T 19!=2 \vdots 6 \mathrm{E}$ relative to the CPU clock. The absolute time consumed by the different cri'ersion steps is therefore independent from the general speed of the controller. This allov's t'ie device ADC to be adjusted to the properties of the system.

Fast conversion can be ach:iev?d by programming the respective times to their absolute possible minimum. This is prefarable for scanning high frequency signals. However, the internal resistance of he inalog source and analog supply must be sufficiently low.
High internal r ssistance can be achieved by programming the respective times to a higher value or to th ei possible maximum. This is preferable when using analog sources and suppli's with a high internal resistance to keep the current as low as possible. However, the con!'ersion rate in this case may be considerably lower.
Tire conversion times are programmed via the upper four bits of the ADCON register. Bit rields ADCTC and ADSTC define the basic conversion time and in particular the partition between the sample phase and comparison phases. Table 167 lists the possible combinations. The timings refer to the unit TCL, where $f_{C P U}=1 / 2$ TCL. A complete conversion time includes the conversion itself, the sample time and the time required to transfer the digital value to the result register.

Table 167. ADC programming

ADCTC	ADSTC	Sample	Comparison	Extra	Total conversion
00	00	TCL * 120	TCL * 240	TCL * 28	TCL * 388
00	01	TCL * 140	TCL * 280	TCL * 16	TCL * 436
00	10	TCL * 200	TCL * 280	TCL * 52	TCL * 532
00	11	TCL * 400	TCL * 280	TCL * 44	TCL * 724
11	00	TCL * 240	TCL * 480	TCL * 52	TCL * 772
11	01	TCL * 280	TCL * 560	TCL * 28	TCL * 868
11	10	TCL * 400	TCL * 560	TCL * 100	TCL * 1060
11	11	TCL * 800	TCL * 560	TCL * 52	TCL * 1447
10	00	TCL * 480	TCL * 960	TCL * 100	?CL*1540
10	01	TCL * 560	TCL * 1120	TCL * 52	ICL * 1732
10	10	TCL * 800	TCL * 1120	TCL * 196	TCL * 2116
10	11	TCL * 1600	TCL * 1120	iフL* 64	TCL * 2884

Note: \quad The total conversion time is compatible with the form'.'a vaild for the ST10F280, while the meaning of the bit fields ADCTC and ADSTC is no l nijer compatible: The minimum conversion time is 388 TCL , which at 40 MHz C. ll trequency corresponds to $4.85 \mu \mathrm{~s} \mu$ (see ST10F280).

24.7.2 ADC conversion accuracy

The ADC compares the ana!'s voltage sampled on the selected analog input channel to its analog reference volteye ($V_{\text {MREF }}$) and converts it into 10-bit digital data item. The absolute accuracy of the $A D$ c.n»arsion is the deviation between the input analog value and the output digital vélut, $A D C$ conversion accuracy includes the following errors:

- Cifise. error (OFS)
- Gain error (GE)

Quantization error

- Nonlinearity error (differential and integral)

These errors are explained below using Figure 98.

Offset error

Offset error is the deviation between actual and ideal AD conversion characteristics when the digital output value changes from the minimum zero voltage, 00 , to 01 (see OFS in Figure 98).

Gain error

Gain error is the deviation between the actual and ideal AD conversion characteristics when the digital output value changes from 3FE to 3FF, after subtracting offset error. Gain error combined with offset error represents full-scale error (see OFS + GE in Figure 98).

Quantization error

Quantization error is the intrinsic error of the ADC and is expressed as $1 / 2$ LSB.

Nonlinearity error

Nonlinearity error is the deviation between the actual and the best-fitting AD conversion characteristics (see Figure 98):

- Differential nonlinearity error is the actual step dimension versus the ideal one ($1 \mathrm{LSB}_{\text {IDEAL }}$).
- Integral nonlinearity error is the distance between the center of the actual step and the center of the bisector line, in the actual characteristics. Note that for integral nonlinearity error, the effects of offset, gain and quantization errors are not included.

Note: \quad The bisector characteristic is obtained by drawing a line from 1/2 LSB to a point before the first step of the real characteristic, and another line from 1/2 LSB to a point after the last step of the real characteristic (see Figure 98).

Total unadjusted error

The total unadjusted error (TUE) specifies the maximum deviation from tha deal characteristic. The value provided in this datasheet represents the nctirıum error with respect to the entire characteristic. It is a combination of the csist, gain and integral linearity errors. The different errors may compensate each other deper ding on the relative sign of the offset and gain errors (see TUE in Figure 98).

Figure 98. AD conversion characteristic

1. Legend:
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differential Nonlinearity Error (DNL)
(4) Integral Nonlinearity Error (INL)
(5) Center of a step of the actual transfer curve
(6) Quantization Error (1/2 LSB)
(7) Total Unadjusted Error (TUE)

24.7.3 Analog reference pins

The accuracy of the ADC converter depends on the accuracy of its analog reference. A noise in the reference results in the same proportion of error in a conversion. A low pass filter on the ADC converter reference source (supplied through the $\mathrm{V}_{\text {AREF }}$ and $\mathrm{V}_{\text {AGND }}$ pins), is recommended to clean the signal thereby minimizing the noise. A simple capacitive bypassing may be sufficient in most cases. In the presence of high RF noise energy, inductors or ferrite beads may be necessary.

In the ST10F296E architecture, the $\mathrm{V}_{\text {AREF }}$ and $\mathrm{V}_{\text {AGND }}$ pins also represent the power supply of the analog circuitry of the ADC. An effective DC current is required from the reference voltage to the internal resistor string in the R-C DAC array and to the rest of the analog circuitry.

An external resistance on $\mathrm{V}_{\text {AREF }}$ could introduce error under certain conditions. For this reason, series resistance is not advisable. Any series devices in the filter network siro ald be designed to minimize the DC resistance.

24.7.4 Analog input pins

To improve the accuracy of the ADC, analog input pins must っこve iow AC impedance. Placing a capacitor with good high frequency characteristius at the input pin of the device can be effective. The capacitor should be as large as n.sitie, ideally infinite. This capacitor contributes to attenuating the noise present on the ir, it pin. Moreover, the source of the capacitor charges during the sampling phase, whe the analog signal source is a highimpedance source.

A real filter is typically obtained by usira 2 . series resistance with a capacitor on the input pin (simple RC filter). RC filtering may je limited according to the value of the impedance source of the transducer or vichit supplying the analog signal to be measured. The filter at the input pins must be $c a s$ gried io account for the dynamic characteristics of the input signal (bandwidth).

Figure 99. Ar ${ }^{2}$ input pins scheme

1. Legend:
R_{S} : Source impedance
R_{F} : Filter resistance
C_{F} : Filter capacitance
R_{L} : Current limiter resistance
R_{Sw} : Channel selection switch impedance
R_{AD} : Sampling switch impedance
c_{p} : Pin capacitance (two contributions, CP1 and CP2)
C_{s} : Sampling capacitance
V_{A} : Source voltage

Input leakage and external circuit

The series resistor used to limit the current to a pin (see R_{L} in Figure 99), in combination with a large source of impedance, can lead to a degradation of the ADC accuracy when input leakage is present.
Data about maximum input leakage current at each pin is provided in Section 24.5: DC characteristics. Input leakage is greatest at high operating temperatures and generally decreases by one half a degree for each $10^{\circ} \mathrm{C}$ decrease in temperature.
Considering that one count of a 10-bit ADC is about 5 mV (assuming $\mathrm{V}_{\text {AREF }}=5 \mathrm{~V}$), an input leakage of 100 nA acting though an $R_{L}=50 \mathrm{k} \Omega$ of external resistance, leads to an error of exactly one count (5 mV). If the resistance is $100 \mathrm{k} \Omega$, the error is two counts (10 mV).

Additional leakage due to external clamping diodes must also be taken into account in computing the total leakage affecting the ADC measurements. Another contributior, in the total leakage is represented by the charge sharing effects with the sampling ca, la The sampling capacitance, C_{S}, is essentially a switched capacitance with a f_{i} əq evency equal to the conversion rate of a single channel (maximum when the fixed chane continuous conversion mode is selected). It can be seen as a resistive path to jrivina. For instance, assuming a conversion rate of 250 kHz and a C_{S} of 4 pF , a resis tance of $1 \mathrm{M} \Omega$ is obtained ($R_{E Q}=1 / f_{C} C_{S}$, where f_{C} represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning k ? voltage on C_{S}) and the sum of $R_{S}+R_{F}+R_{L}+R_{S w}+R_{A D}$, the external circuit must be designed to respect the following relation:

Equation 25

$V_{A} \times\left(R_{S}+R_{F}+R_{L}+R_{S W}+R_{A D}\right) / R_{\text {EQ }}<(1 / 2) L S B$
Equation 25 places constrai its (n the external network design, in particular on the resistive path.

A second aspeci of tirt Japacitance network must be considered. Assuming the three capacitances $C_{F} P_{P 1}$ and $C_{P 2}$, are initially charged at the source voltage V_{A} (see Figure ${ }^{\text {99) }} \mathbf{v}$:hf n the sampling phase is started (ADC switch closed), a charge-sharing pheno.n ná begins (see Figure 100).
ric:ue 100. Charge sharing timing diagram during sampling phase

Two different transient periods can be distinguished in Figure 100. They are described below.

First transient period

This is a quick charge transfer from the internal capacitances, $\mathrm{C}_{\mathrm{P}_{1}}$ and $\mathrm{C}_{\mathrm{P} 2}$, to the sampling capacitance, C_{S} (initially C_{S} is supposed to be completely discharged). Considering the worst case scenario (since the time constant in reality is faster) in which $\mathrm{C}_{\mathrm{P} 2}$ is in parallel to $C_{P 1}$ (call $C_{P}=C_{P 1}+C_{P 2}$), the two capacitances, C_{P} and C_{S}, are in series and the time constant is:

Equation 26

$\tau_{1}=\left(R_{S W}+R_{A D}\right) \times\left(C_{P} \times C_{S} / C_{P}+C_{S}\right)$
Equation 26 can be simplified if only C_{S} is considered as an additional worst condition. In reality, the transient is faster, but the ADC circuitry has been designed to be robust in the worst case situations. The sampling time, T_{S}, is always much longer than the internal ime constant as in Equation 27.

Equation 27

$$
\tau_{1}<\left(R_{S W}+R_{A D}\right) \times C_{S}<T_{S}
$$

The charge of $C_{P 1}$ and $C_{P 2}$ is also redistributed on C_{S}, which ir, erinines a new value for the $\mathrm{V}_{\mathrm{A} 1}$ voltage on the capacitance according to Equation 28

Equation 28

$\mathrm{V}_{\mathrm{A} 1} \times\left(\mathrm{C}_{\mathrm{S}}+\mathrm{C}_{\mathrm{P} 1}+\mathrm{C}_{\mathrm{P} 2}\right)=\mathrm{V}_{\mathrm{A}} \times\left(\mathrm{C}_{\mathrm{P} 1}+\mathrm{C}_{\mathrm{P} 2}\right)$

Second transient period

A second charge transfer also involves C_{F} (that is typically greater than the on-chip capacitance) through the revisiance R_{L}. Consideringagain the worst case scenario in which $C_{P 2}$ and C_{S} are in para'l't 心 $C_{P 1}$ (since the time constant in reality is faster), the time constant is:

Equatinn ©

$$
\tau_{2}<R_{L} \cdot\left(C_{S}+C_{P 1}+C_{P 2}\right)
$$

In Equation 29, the time constant depends on the external circuit. In particular, if the ${ }^{t}$ ransient is completed well before the end of the sampling time, T_{S}, a constraint on R_{L} sizing is obtained, as shown in Equation 30.

Equation 30

$10 \times \tau_{2}=10 \times R_{L} \times\left(C_{S}+C_{P 1}+C_{P 2}\right) \leq T_{S}$
R_{L} must also be sized, according to the current limitation constraints, in combination with R_{S} (source impedance) and R_{F} (filter resistance). As C_{F} is greater than $C_{P 1}, C_{P 2}$ and C_{S}, the final voltage, $\mathrm{V}_{\mathrm{A} 2}$ (at the end of the charge transfer transient), is much higher than $\mathrm{V}_{\mathrm{A} 1}$. Equation 31 (the charge balance) must be respected assuming that C_{S} is already charged at $\mathrm{V}_{\mathrm{A} 1}$.

Equation 31

$$
\mathrm{V}_{\mathrm{A} 2} \times\left(\mathrm{C}_{\mathrm{S}}+\mathrm{C}_{\mathrm{P} 1}+\mathrm{C}_{\mathrm{P} 2}+\mathrm{C}_{\mathrm{F}}\right)=\mathrm{V}_{\mathrm{A}} \times \mathrm{C}_{\mathrm{F}}+\mathrm{V}_{\mathrm{A} 1} \times\left(\mathrm{C}_{\mathrm{P} 1}+\mathrm{C}_{\mathrm{P} 2}+\mathrm{C}_{\mathrm{S}}\right)
$$

Transient periods one and two are not influenced by the voltage source that cannot provide the extra charge to compensate for the voltage drop on C_{S} with respect to the ideal source V_{A} (due to the presence of the $R_{F} C_{F}$ filter). The time constant $R_{F} C_{F}$ of the filter is very high with respect to the sampling time (T_{S}). The filter is typically designed to be anti-aliasing (see Figure 101).

If f_{0} is the bandwidth of the source signal (and consequently is also the cut-off frequency of the anti-aliasing filter, f_{F}), then according to Nyquist's theorem, the conversion rate, f_{C}, must be at least $2 f_{0}$. This means that the constant time of the filter is greater than or equal to twice the conversion period $\left(T_{C}\right)$. The conversion period, T_{C}, is longer than the sampling time, T_{S}, even when fixed channel continuous conversion mode is selected (the fastest conversion rate at a specific channel). In conclusion, the time constant of the filter $R_{F} C_{F}$ is much higher than the sampling time, T_{S}, so the charge level on C_{S} cannot be modified by the analog signal source during the time in which the sampling switch is closed.

Figure 101. Anti-aliasing filter and conversion rate

1. $T C \leq 2 R_{F} C_{F}$ (coiv $v r_{1}, 1$, iate vs. filter pole).
2. $f_{F}=f_{0}$ (anti-alia in(tırering condition).
3. $2 \mathrm{fO} \leq f=$ (riy ruis t's theorem).

The co isiderations above impose new constraints on the external circuit. Accuracy error, due io the voltage drop on C_{s}, must be reduced. Based on Equation 30 and Equation 31 airove, Equation 32 is derived to explain the relationship between the ideal and real sampled voltage on C_{S}.

Equation 32

$\mathrm{V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{A} 2}=\left(\mathrm{C}_{\mathrm{P} 1}+\mathrm{C}_{\mathrm{P} 2}+\mathrm{C}_{\mathrm{F}}\right) /\left(\mathrm{C}_{\mathrm{P} 1}+\mathrm{C}_{\mathrm{P} 2}+\mathrm{C}_{\mathrm{F}}+\mathrm{C}_{\mathrm{S}}\right)$
In the worst case scenario $\left(\mathrm{V}_{\mathrm{A}}=5 \mathrm{~V}\right)$, Equation 32 assumes a maximum error of half a count $(\sim 2.44 \mathrm{mV})$ which leads to a constraint on the C_{F} value as shown in Equation 33.

Equation 33

$C_{F}>2048 \times C_{S}$

24.7.5 Example of external network sizing

This section provides an example of how to design an external network, based on realistic values for the internal parameters and on a hypothesis concerning the characteristics of the analog signal to be sampled.

The following hypothesis is formulated to design the external network on the ADC input pins:

- Analog signal source bandwidth (f_{0}): 10 kHz
- Conversion rate (f_{C}): $\quad 25 \mathrm{kHz}$
- Sampling time $\left(T_{\mathrm{S}}\right)$: $1 \mu \mathrm{~s}$
- Pin input capacitance $\left(\mathrm{C}_{\mathrm{P}_{1}}\right)$: 5 pF
- Pin input routing capacitance ($\mathrm{C}_{\mathrm{P} 2}$): 1 pF
- Sampling capacitance $\left(\mathrm{C}_{\mathrm{S}}\right)$: 4 pF
- Maximum input current injection $\left(l_{\mathrm{INJ}}\right): 3 \mathrm{~mA}$
- Maximum analog source voltage (V_{AM} : 12 V
- Analog source impedance (R_{S}): 100Ω
- Channel switch resistance (R_{SW}): 500Ω
- Sampling switch resistance (R_{AD}): 200Ω

If designing a filter with the pole at the maximum freaul of the filter is given in Equation 34:

Equation 34

$R_{C} C_{F}=1 /\left(2 \pi f_{0}\right)=15.9 \mu \mathrm{~s}$
Using the relationship between, C_{F} and C_{S} (Equation 33) and taking some margin (4000 instead of 2048), it is possit's +o define C_{F} as shown in Equation 35.

Equation 35

$C_{F}=4000 \times C_{i}=16 \mathrm{nF}$
Equal.or 34. and Equation 35 allow the RC to be calculated as shown in Equation 36.

Lqロtion 36
$R_{F}=1 /\left(2 \pi f_{0} C_{F}\right)=995 \Omega \cong 1 \mathrm{k} \Omega$
Total series resistance can be calculated using Equation 37 where the current injection limitation is considered and it is assumed that the source can go up to 12 V .

Equation 37

$R_{S}+R_{F}+R_{L}=V_{A M} / I_{I N J}=4 k \Omega$
Equation 37 allows a value for R_{L} to be defined as shown in Equation 38.

Equation 38

$R_{L}=\left(V_{A M} / I_{I N J}\right)-R_{F}-R_{S}=2.9 k \Omega$
Equation 36, and Equation 38 define respectively the three elements of an external circuit, $R_{F} C_{F}$ and R_{L}. Next, some conditions which are used to size the circuit must be verified.
The first of these is a calculation which allows the accuracy error, introduced by the switched capacitance equivalent resistance, to be minimized. This is given in Equation 39.

Equation 39
$R_{E Q}=1 / f_{C} C_{S}=10 M \Omega$
The error due to the voltage partitioning between the real resistive path and C_{S} is less then half a count if considering the worst case when $\mathrm{V}_{\mathrm{A}}=5 \mathrm{~V}$ (see Equation 40).

Equation 40

$V_{A} \times\left(R_{S}+R_{F}+R_{L}+R_{S W}+R_{A D}\right) / R_{E Q}=2.35 \mathrm{mV}<(1 / 2) L S B$
The other conditions to verify are if the time constants of the transieints a'e shorter than the sampling period duration, T_{S}, and whether the distance is sigr.iliant. ? hese calculations are given in Equation 41 and Equation 42.

Equation 41

$\tau_{1}=\left(R_{S W}+R_{A D}\right) \times C_{S}=2.8 n s<T_{S}=1 \mu \mathrm{~s}$

Equation 42

$10 \times \tau_{2}=10 \times R_{L} \times\left(C_{S}+C_{P 1}+C_{P \ll}\right)=290 \mathrm{~ns}<T_{S}=1 \mu \mathrm{~s}$
For a complete set of pare m.otsr sharacterization of the ST10F296E ADC equivalent circuit, refer to Table 166: ADC incracteristics on page 302.

24.8 AC chäacteristics

24.8.1 Tesi waveforms

Figure 102. Input/output waveforms

[^1]Figure 103．Float waveforms

1．For timing purposes，a port pin is no longer floating when $V_{\text {LOAD }}$ changes of $\pm 100 \mathrm{mV}$ occur．
2． $\mathrm{V}_{\mathrm{LOAD}}$ begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs $\left(\mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OI}}=\right.$ ？ 0 mm ）

24．8．2 Definition of internal timing

The internal operation of the ST10F296E is controlled by the ：nis．na！UPU clock $f_{C P U}$ ．Both edges of the CPU clock can trigger internal（for example，pipe＇ne）or external（for example， bus cycle）operations．

The specification of the external timing（AC charac ${ }^{\prime} \epsilon^{\prime}$＇is＇ics）depends on the time（TCL） between two consecutive edges of the CPU clock．

The CPU clock signal can be generatsu＇$!$ ，a fierent mechanisms．The duration of TCL and its variation（and also the derived externa，tıming）depends on the mechanism used to generate $\mathrm{f}_{\mathrm{CPU}}$ ．

The $\mathrm{f}_{\mathrm{CPU}}$ influence must ke $\mathrm{m}_{\mathrm{s}} \mathrm{a}$ aded when calculating the timings for the ST10F296E．
The example for PLI．speriation shown in Figure 104 refers to a PLL factor of four．
The mechanism レニビニ to generate the CPU clock is selected during reset by the logic levels on pins P0 15－ 0 （POH．7－5）．

Figure 104. Generation mechanisms for the CPU clock

24.8.3 Clock generation modes

Figure 168 associates combinations of the $\mathrm{P} 0.15,-13(\mathrm{POH} .7-5)$ bits with the respective clock generation mode.

Table 168. On-chip clock generatc ${ }^{\text {r selections }}$

$\begin{aligned} & \text { P0.15-13 } \\ & \text { (POH.7-5) } \end{aligned}$	CPU frequency $f_{\mathrm{CPU}}=\mathrm{f}_{\mathrm{YT}, \mathrm{L}}: \because^{-}$	External clock input range	Notes
$1 \begin{array}{lll}1 & 1\end{array}$	$F_{\text {X }}{ }^{\text {AII }} \times 4$	4 to 8 MHz	Default configuration
110	- Xtal $\times 3$	5.3 to 10.6 MHz	
1001	$\mathrm{F}_{\text {XTAL }} \times 8$	4 to 8 MHz	
100	$\mathrm{F}_{\text {XTAL }} \times 5$	6.4 to 12 MHz	
し 11	$F_{\text {XTAL }} \times 1$	1 to 64 MHz	Direct drive (oscillator bypassed) ${ }^{(1)}$
$0 \begin{array}{lll}0 & 1 & 0\end{array}$	$\mathrm{F}_{\text {XTAL }} \times 10$	4 to 6.4 MHz	
0001	$\mathrm{F}_{\text {XTAL }} / 2$	4 to 12 MHz	CPU clock via prescaler ${ }^{(1)}$
$0 \bigcirc 0$	$\mathrm{F}_{\text {XTAL }} \times 16$	4 MHz	

1. The maximum frequency of the external clock depends on the duty cycle of the external clock signal. When 64 MHz is used, 50% duty cycle is granted (low phase = high phase $=7.8 \mathrm{~ns}$). When 32 MHz is selected, a 25% duty cycle can be accepted (minimum, high or low phase $=7.8 \mathrm{~ns}$).

The external clock input range refers to a CPU clock range of 1 to 64 MHz . In addition, PLL use is limited to $4-12 \mathrm{MHz}$ input frequency range. All configurations need a crystal (or ceramic resonator) to generate the CPU clock through the internal oscillator amplifier (apart from direct drive). On the contrary, the clock can be forced through an external clock source only in direct drive mode (on-chip oscillator amplifier disabled, so no crystal or resonator can be used).

The limits on input frequency are $4-12 \mathrm{MHz}$ since use of the internal oscillator amplifier is required. When the PLL is not used and the CPU clock corresponds to $F_{X T A L} / 2$, an external crystal or resonator must be used. It is not possible to force any clock though an external clock source.

24.8.4 Prescaler operation

When pins P0.15-13 (POH.7-5) equal 001 during reset, the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of $f_{C P U}$ is half the frequency of $f_{X T A L}$ and the high and low time of $f_{C P U}$ (duration of an individual TCL) is defined by the period of the input clock $f_{X T A L}$.
The timings listed in this section that refer to TCL can be calculated using the $\mathrm{f}_{\text {XTAL }}$ period for any TCL.

If the OWDDIS bit in the SYSCON register is cleared, the PLL runs on its free-r ir, ining frequency and delivers the clock signal for the oscillator watchdog. If the OW Γ IS bit is set, the PLL is switched off.

24.8.5 Direct drive

When pins P0.15-13 (POH.7-5) equal 011 during reset, th. H n-chip PLL is disabled, the onchip oscillator amplifier is bypassed and the CPU cic sik is directly driven by the input clock signal on the XTAL1 pin.

The frequency of the CPU clock ($\mathrm{f}_{\mathrm{CP}} \mathrm{I}^{\prime}$, di^{2} ? Ci^{\prime} ' follows the frequency of $\mathrm{f}_{\mathrm{XTAL}}$, so, the high and low time of $\mathrm{f}_{\mathrm{CPU}}$ (duration of an individual TCL) is defined by the duty cycle of the input clock $\mathrm{f}_{\mathrm{XTAL}}$.
Therefore, the timings given in tt is section refer to the minimum TCL. This minimum value can be calculated using Élation 43.

Equation 43

$\mathrm{TCL}_{\text {mi }} / \mathrm{f}_{\text {KTAL }} \times \mathrm{DC}_{\text {min }}$
Where $\mathrm{LC}=$ Duty cycle.
F \because iwo consecutive TCLs, the deviation caused by the duty cycle of $f_{X T A L}$ is compensated, so, the duration of 2 TCL is always $1 / \mathrm{f}_{\mathrm{XTAL}}$.

The minimum value, TCL $_{\text {min }}$, is used only once for timings that require an odd number of TCLs ($1,3, \ldots$). Timings that require an even number of TCLs ($2,4, \ldots$) may use Equation 44.

Equation 44

$2 T C L=1 / f_{X T A L}$
The address float timings in multiplexed bus mode (t_{11} and t_{45}) use the maximum duration of TCL (TCL $\left.\max =1 / f_{\text {XTAL }} \times D C_{\max }\right)$ instead of $\mathrm{TCL}_{\text {min }}$.

If the OWDDIS bit in the SYSCON register is cleared, the PLL runs on its free-running frequency and delivers the clock signal for the oscillator watchdog. If the OWDDIS bit is set, the PLL is switched off.

24．8．6 Oscillator watchdog（OWD）

An on－chip watchdog oscillator is implemented in the ST10F296E．This feature is used for safety reasons with an external crystal oscillator（available only when using direct drive mode with or without prescaler，so the PLL is not used to generate the CPU clock multiplying the frequency of the external crystal oscillator）．The watchdog oscillator operates as follows：

The reset default configuration enables the watchdog oscillator．It can be disabled by setting the OWDDIS bit（bit 4）of the SYSCON register．
When the OWD is enabled，the PLL runs at its free－running frequency and it increments the watchdog counter．At each transition of the external clock，the watchdog counter is cleared． If an external clock failure occurs，the watchdog counter overflows（after 16 PLL clock cycles）．

When overflow occurs，the CPU clock signal is switched to the PLL free－running ciocir signal and the oscillator watchdog interrupt request is flagged．The CPU clock does not switch back to the external clock even if a valid external clock exits on the XT／iL1 nin．Only a hardware reset（or bidirectional software／watchdog reset）can switc＇になじにU clock source back to direct clock input．

When the OWD is disabled，the CPU clock is always the external oscillator clock（in direct drive or prescaler operation）and the PLL is switched ati tu decrease consumption supply current．

24．8．7 Phase－locked loop（PLL）

For all combinations of pins P0．15－13（ $\overline{\mathrm{V}} \mathrm{H} .7-5$ ）other than 011，during reset，the on－chip PLL is enabled and it provides ihe CPU clock（see Table 168）．The PLL multiplies the input frequency by the factor＇F whith is selected via the combination of pins P0．15－13（ $\mathrm{f}_{\mathrm{CPU}}=$ $\mathrm{f}_{\mathrm{XTAL}} \times \mathrm{F}$ ）．With every ？＇t t tiansition of $\mathrm{f}_{\mathrm{XTAL}}$ ，the PLL circuit synchronizes the CPU clock to the input clock．This s．vichronization is done smoothly，so the CPU clock frequency does not change abruptly：
Due tc in＇s syrichronization with the input clock，the frequency of f_{CPU} is constantly adjusted so it is incked to $\mathrm{f}_{\mathrm{XTAL}}$ ．The resulting slight variation causes a jitter of $\mathrm{f}_{\mathrm{CPU}}$ which also effects ＂he deration of individual TCLs．

The timings listed in this section that refer to TCLs must be calculated using the minimum possible TCL under the respective circumstances．
The minimum value for TCL depends on the jitter of the PLL．The PLL tunes the $\mathrm{f}_{\mathrm{CPU}}$ to keep it locked on $\mathrm{f}_{\text {XTAL }}$ ．The relative deviation of TCL is the maximum when it is referred to one TCL period．
This is especially important for bus cycles using wait states and for the operation of timers，serial interfaces，etc．For all slower operations and longer periods（such as，pulse train generation or measurement，lower baud rates，etc）the deviation caused by the PLL jitter is negligible．Refer to Section 24．8．9：PLL jitter for more details．

24.8.8 Voltage controlled oscillator

The ST10F296E implements a PLL which combines different levels of frequency dividers with a voltage controlled oscillator (VCO) working as a frequency multiplier. Table 169 presents a summary of the internal PLL settings and VCO frequencies.

Table 169. Internal PLL divider mechanism

$\begin{aligned} & \text { P0.15-13 } \\ & \text { (POH.7-5) } \end{aligned}$			XTAL frequency	Input prescaler	PLL		Output prescaler	CPU frequency $\mathrm{f}_{\mathrm{CPU}}=\mathrm{f}_{\mathrm{XTAL}} \times \mathrm{F}$	
			Multiply by		Divide by				
1	1	1		4 to 8 MHz	$\mathrm{F}_{\text {XTAL }} / 4$	64	4	-	$\mathrm{F}_{\text {XTAL }} \times 4$
1	1	0	5.3 to 10.6 MHz	$\mathrm{F}_{\text {XTAL }} / 4$	48	4	-	$F_{\text {XTAL }} \times 3$	
1	0	1	4 to 8 MHz	$\mathrm{F}_{\text {XTAL }} / 4$	64	2	-	$\mathrm{F}_{\mathrm{X}, \therefore 1} \mathrm{Y}$	
	0	0	6.4 to 12 MHz	$\mathrm{F}_{\text {XTAL }} / 4$	40	2	-	「こTAL $\times 5$	
	1	1	1 to 64 MHz	-	PLL bypassed			$\mathrm{F}_{\text {XTAL }} \times 1$	
	1	0	4 to 6.4 MHz	$\mathrm{F}_{\text {XTAL }} / 2$	40	2		$\mathrm{F}_{\text {XTAL }} \times 10$	
0	0		4 to 12 MHz	-	PLL bypassed		$\mathrm{F}_{\mathrm{PLL}} / 2$	$\mathrm{F}_{\text {XTAL }} / 2$	
	0		4 MHz	$\mathrm{F}_{\text {XtaL }} / 2$	64	2	-	$F_{\text {XTAL }} \times 16$	

The PLL input frequency range is limited to 1 to $3 . \mathrm{F}^{-}: / 1 \mathrm{~Hz}$, while the VCO oscillation range is 64 to 128 MHz . The CPU clock frequency raı: ̧c wnen PLL is used is 16 to 64 MHz .

Example 1

- $\quad F_{X T A L}=4 \mathrm{MHz}$
- $P 0(15: 13)=1^{11} 0$ (mutiplication by 3)
- PLL input frequency $=1 \mathrm{MHz}$
- VCO fiex'sncy $=48 \mathrm{MHz}=>$ Not valid
- PL . cutput frequency = Not Valid
$-\quad F_{\text {CPU }}=$ Not Valid

Exänple 2

$-\quad F_{X T A L}=8 \mathrm{MHz}$

- $P 0(15: 13)=100$ (multiplication by 5$)$
- PLL input frequency $=2 \mathrm{MHz}$
- \quad VCO frequency $=80 \mathrm{MHz}$
- PLL output frequency $=40 \mathrm{MHz}$ (VCO frequency divided by 2)
$-\quad \mathrm{F}_{\mathrm{CPU}}=40 \mathrm{MHz}$ (no effect of output prescaler)

24.8.9 PLL jitter

Two kinds of PLL jitter are defined:

Self referred single period jitter

Also called 'period jitter'. It can be defined as the difference between the $T_{\max }$ and $T_{\min }$, where $T_{\max }$ is the maximum time period of the PLL output clock and $T_{\min }$ is the minimum time period of the PLL output clock.

Self referred long term jitter

Also called ' N period jitter'. It can be defined as the difference of $T_{\text {max }}$ and $T_{\text {min }}$, where $T_{\text {max }}$ is the maximum time difference between $N+1$ clock rising edges and $T_{\text {min }}$ is the minimum time difference between $N+1$ clock rising edges. N should be kept sufficiently large to have obtain long term jitter. $\mathrm{N}=1$ becomes the single period jitter.

Jitter at the PLL output is caused by:

- Jitter in the input clock
- Noise in the PLL loop

24.8.10 Jitter in the input clock

The PLL acts as a low pass filter for any jitter in the ir.nıt cu'.uck. Input clock jitter, with the frequencies within the PLL loop bandwidth, is pass? +) the PLL output and higher frequency jitter (frequency > PLL bandwidth) : ic cttenuated at $20 \mathrm{~dB} / \mathrm{decade}$.

24.8.11 Noise in the PLL loop

Noise is attributed to the following sources:

- Device noise of the circult in the PLL
- Noise in the suprly aind substrate

Device nois? of the circuit in the PLL

Long i ?r: n jitter is inversely proportional to the bandwidth of the PLL. The wider the loop bar. ${ }^{2}$ wicth, the lower the jitter, due to noise in the loop. Moreover, long term jitter is pract.cally independent of the multiplication factor.
The most noise sensitive circuit in the PLL is the VCO. There are two main sources of noise: Thermal (random and frequency independent noise) and flicker (low frequency noise, 1/f). For the frequency characteristics of the VCO circuitry, the effect of the thermal noise results in a $1 / f^{2}$ region in the output noise spectrum, while the flicker noise results in $1 / f^{3}$. Assuming a noiseless PLL input and supposing that the VCO is dominated by its $1 / \mathrm{f}^{2}$ noise, the root mean square value of the accumulated jitter is proportional to the square root of N , where N is the number of clock periods within the considered time interval.

On the contrary, assuming a noiseless PLL input and supposing that the VCO is dominated by its $1 / f^{3}$ noise, the RMS value of the accumulated jitter is proportional to N, where N is the number of clock periods within the considered time interval.

The jitter in the PLL loop can be modeled as being dominated by the $i 1 / f^{2}$ noise for N smaller than a 'certain' value that depends on the PLL output frequency and on the bandwidth characteristics of the program loop. Above this 'certain' value, the jitter becomes dominated by the $\mathrm{i} 1 / \mathrm{f}^{3}$ noise component. For N greater than a second value of N , the jitter does not increase with a longer time interval due to an apparent saturation effect (the jitter is stable, thereby increasing the number of clock periods, N). The PLL loop acts as a high pass filter for any noise in the loop, with a cutoff frequency equal to the bandwidth of the PLL. The saturation value corresponds to self referred long term jitter of the PLL. Figure 105 shows the maximum jitter trend versus the number of clock periods N (for some typical CPU frequencies). The curves represent the worst case situations, as they are computed taking into account all temperature ranges, power supplies and process variations. 'Real' jitter is always measured well below the given worst case value.

Noise in supply and substrate

Digital supply noise adds determining elements to PLL output jitter, independori ${ }^{+}{ }^{f}$ the multiplication factor. Its effect is strongly reduced thanks to the particular cárt ${ }^{\prime}$ taken when integrating and implementing the PLL module inside the device. In add'itic r_{1}, ihe contribution of digital noise to global jitter is widely taken into account in the cur es provided in Figure 105.

Figure 105. ST10F296E PLL jitter

24.8.12 PLL lock/unlock

If the PLL is unlocked for any reason during normal operation, an interrupt request to the CPU is generated and the reference clock (oscillator) is automatically disconnected from the PLL input. In this way, the PLL goes into free-running mode, providing the system with a backup clock signal (free running frequency $F_{\text {free }}$). This feature allows the device to recover from a crystal failure occurrence without risking entering an undefined configuration. The system is provided with a clock allowing the execution of the PLL unlock interrupt routine in a safe mode.

The path between the reference clock and PLL input can be restored only by a hardware reset or by a bidirectional software or watchdog reset event that forces the RSTIN pin low.

Note: \quad The external RC circuit on the $\overline{R S T I N}$ pin must be the right size to extend the duration of the low pulse that locks the PLL before the level at the $\overline{R S T I N}$ pin is recognized as beina hish. A bidirectional reset internally drives the $\overline{R S T I N}$ pin low for 1024 TCL (which is nct suilicent to lock the PLL when starting from free-running mode).
Conditions: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40 / 125^{\circ} \mathrm{C}$.
Table 170. PLL lock/unlock timing

Symbol	Parameter	Conaitiors	Value		Unit
			Min	Max	
$\mathrm{T}_{\text {PSUP }}$	PLL start-up time ${ }^{(1)}$	Stable $V_{\text {LD }}$ and reference clock	-	300	
TLOCK	PLL lock-in time	Siaile V_{DD} and reference clock, c.arting from free-running mode	-	250	$\mu \mathrm{s}$
$\mathrm{T}_{\text {JIT }}$	Single period jitter ${ }^{(1)}$ (cycle to cycle $=2 \pi \mathrm{TL}$)	6 sigma time period variation (peak to peak)	-500	+500	ps
$\mathrm{F}_{\text {free }}$	PLL f:ee rirning frequency	Multiplication factors: 3, 4 Multiplication factors: 5, 8, 10, 16	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & 2000 \\ & 4000 \end{aligned}$	kHz

1. Not $100 \% \mathrm{t}$:stt a , guaranteed by design characterization.

24.8.13 Main cscillator specifications

Cunditions: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40 / 125^{\circ} \mathrm{C}$
Table 171. Main oscillator specifications

	Parameter	Conditions	Value			Unit
			Min	Typ	Max	
g_{m}	Oscillator transconductance		8	17	35	mA / V
$\mathrm{V}_{\text {OSC }}$	Oscillation amplitude ${ }^{(1)}$	Peak to peak	-	$\mathrm{V}_{\mathrm{DD}}-0.4$	-	V
V_{AV}	Oscillation voltage level ${ }^{(1)}$	Sine wave middle	-	$\mathrm{V}_{\mathrm{DD}} / 2-0.25$	-	
$\mathrm{t}_{\text {Stup }}$	Oscillator start-up time ${ }^{(1)}$	Stable V_{DD} - crystal	-	3	4	ms
		Stable V_{DD}, resonator	-	2	3	

[^2]Figure 106. ST10F296ECrystal oscillator and resonator connection diagram

Table 172. Negative resistance (absolute min value @125 ${ }^{\circ} \mathrm{C}$ M' $^{\prime} \boldsymbol{n}^{\prime}=4.5 \mathrm{~V}$)

$\mathbf{C}_{\mathbf{A}}$ (pF)	$\mathbf{1 2}$	$\mathbf{1 5}$	$\mathbf{1 8}$	$\mathbf{2 2}$	$\mathbf{2 7}$	$\mathbf{3 3}$	$\mathbf{3 9}$	$\mathbf{4 7}$
4 MHz	460Ω	550Ω	675Ω	800Ω	$\mathbf{- 4} \Omega$	1000Ω	1180Ω	1200Ω
8 MHz	380Ω	460Ω	540Ω	640Ω	560Ω	-	-	-
12 MHz	370Ω	420Ω	360Ω	-	-	-	-	-

The given values of C_{A} do not include the stray capacitance of the package or of the printed circuit board. The negative resistarice values are calculated assuming an additional 5 pF to the values in Table 172. The crysital shunt capacitance $\left(\mathrm{C}_{0}\right)$, the package, and the stray capacitance between $X A_{L} 1$ und XTAL2 pins is globally assumed to be 4 pF .

The external resistarisc 'jetween XTAL1 and XTAL2 does not have to be taken into account, since it is alreatly resent on the silicon.

24.8.14 Exterial clock drive XTAL1

W /h.e.ı direct drive configuration is selected during reset, it is possible to drive the CPU clock directly from the XTAL1 pin, without any particular restrictions on the maximum frequency, since the on-chip oscillator amplifier is bypassed. The speed limit is imposed by internal logic that targets a maximum CPU frequency of 64 MHz .

In all other clock configurations (direct drive with prescaler or PLL use) the on-chip oscillator amplifier is not bypassed, so it determines the input clock speed limit. In this case, an external clock source can be used, but it is limited in the range of frequencies defined for the use of crystal and resonator (see Table 168 on page 313).

External clock drive timing conditions: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $125{ }^{\circ} \mathrm{C}$.

Table 173. External clock drive timing

Symbol	Parameter	Direct drive$f_{\mathrm{CPU}}=\mathrm{f}_{\mathrm{XTAL}}$		Direct drive with prescaler $\mathbf{f}_{\mathrm{CPU}}=\mathrm{f}_{\mathrm{XTAL}} / 2$		PLL use$f_{\mathrm{CPU}}=\mathrm{f}_{\mathrm{XTAL}} \times \mathrm{F}$		Unit
		Min	Max	Min	Max	Min	Max	
tosc (SR)	XTAL1 period $^{(1)}$	15.625	-	83.3	250	83.3	250	ns
t_{1} (SR)	High time ${ }^{(2)}$	6	-	3	-	6	-	
t_{2} (SR)	Low time ${ }^{(2)}$							
$\mathrm{t}_{3}(\mathrm{SR})$	Rise time ${ }^{(2)}$	-	2	-	2	-		
t_{4} (SR)	Fall time ${ }^{(2)}$							

1. The minimum value for the XTAL1 signal period is considered as the theoretical minimum. The re al minimum value depends on the duty cycle of the input clock signal.
2. The input clock signal must reach the defined levels $\mathrm{V}_{\mathrm{IL} 2}$ and $\mathrm{V}_{\mathrm{IH} 2}$.

The input frequency range is $4-12 \mathrm{MHz}$ when using an external clor, in s 1, rce. With an external clock source, 64 MHz can be applied only when Direct $\overline{\mathrm{J}}$.ivi mode is selected. In this case, the oscillator amplifier is bypassed so it does not lin.'t the input frequency.

Figure 107. External clock drive XTAL1

1. When direct $\lambda_{r i}$ 'e i . selected, an external clock source can be used to drive XTAL1. The maximum frequency c ${ }^{f}$ th 3 external clock source depends on the duty cycle. When 64 MHz is used, 50% duty cycle is C ani \ni ((lowv phase = high phase $=7.8 \mathrm{~ns}$). When 32 MHz is used, a 25% duty cycle can be accepted (min. \cdot ıum, high or low phase $=7.8 \mathrm{~ns}$).

24.8.15 $M^{\prime \prime}$ finory cycle variables

Table 174 describes how three variables derived from the BUSCONx registers are computed. These variables represent special characteristics of the programmed memory cycle.

Table 174. Memory cycle variables

Symbol	Description	Values
t_{A}	ALE extension	$T C L \times[\mathrm{ALECTL}]$
t_{C}	Memory cycle time wait states	$2 \mathrm{TCL} \times(15-[\mathrm{MCTC}])$
t_{F}	Memory tri-state time	$2 \mathrm{TCL} \times(1-[\mathrm{MTTC}])$

24.8.16 External memory bus timing

The next sections, Multiplexed bus timings and Demultiplexed bus timings, describe the external memory bus timings. The given values are computed for a maximum CPU clock of 40 MHz .

It is clear that when a higher CPU clock frequency is used (up to 64 MHz), some numbers in the timing formulas become zero or negative, which in most cases is not acceptable or meaningful. In these cases, the speed of the bus settings t_{A}, t_{C} and t_{F} must be correctly adjusted.
Note: \quad All external memory bus timings and SSC timings presented in the following tables are given by design characterization and not fully tested in production.

Multiplexed bus timings

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,
ALE cycle time $=6 \mathrm{TCL}+2 \mathrm{t}_{\mathrm{A}}+\mathrm{t}_{\mathrm{C}}+\mathrm{t}_{\mathrm{F}}$ (75 ns at 40 MHz CPU clock without wait staiə).
Table 175. Multiplexed bus timings

Symbol	Parameter	$\begin{aligned} \mathrm{F}_{\mathrm{CPU}} & =40 \mathrm{MHz} \\ \mathrm{TCL} & =12.5 \mathrm{~ns} \end{aligned}$		Varıble CPU clock $1: 2$ TCL = 1 to 64 MHz		Unit
		Min	Max	Min	Max	
t_{5} (CC)	ALE high time	$4+\mathrm{t}_{\mathrm{A}}$		TCL - $8.5+\mathrm{t}_{\mathrm{A}}$	-	
t_{6} (CC)	Address setup to ALE	$1.5+\mathrm{t}_{\mathrm{A}}$		TCL $-11+\mathrm{t}_{\mathrm{A}}$		
t_{7} (CC)	Address hold after ALE	$4+t_{A}$		TCL $-8.5+\mathrm{t}_{\mathrm{A}}$		
$\mathrm{t}_{8}(\mathrm{CC})$	ALE falling edge to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ (with R/W delay)	$4 \cdot \mathrm{t}_{\mathrm{A}}$	-	TCL $-8.5+\mathrm{t}_{\text {A }}$	-	
$\mathrm{t}_{9}(\mathrm{CC})$	ALE falling edge to $\overline{\mathrm{R}} \bar{n}^{\mathrm{n}}$, nc: $\overline{W R}$ (no R/W dele: ${ }^{\text {¹ }}$,	$-8.5+t_{\text {t }}$		$-8.5+t_{\text {A }}$		
t_{10} (CC)	Address i. a^{\prime} aiter RD and $\overline{W R}$ (with K, W delay) ${ }^{(1)}$	())	6		6	
t_{11} (CC)	Ada:eso float after $\overline{\mathrm{RD}}$ and $\overline{\mathrm{V}} \mathrm{F}$ (no R/W delay) ${ }^{(1)}$		18.5		TCL + 6	
i1c) (c)	$\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ low time (with R/W delay)	$15.5+t_{C}$		$2 \mathrm{TCL}-9.5+\mathrm{t}_{\mathrm{C}}$		ns
$t_{13}(C C)$	$\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ low time (no R/W delay)	$28+t_{C}$		3 TCL $-9.5+\mathrm{t}_{\mathrm{C}}$	-	
t_{14} (SR)	$\overline{\mathrm{RD}}$ to valid data in (with R/W delay)		$6+t_{C}$		2 TCL $-19+t_{\text {c }}$	
t_{15} (SR)	$\overline{\mathrm{RD}}$ to valid data in (no R/W delay)	-	$18.5+\mathrm{t}_{\mathrm{C}}$	-	3 TCL - $19+\mathrm{t}_{\mathrm{C}}$	
t_{16} (SR)	ALE low to valid data in		$17.5+\mathrm{t}_{\mathrm{A}}+\mathrm{t}_{\mathrm{C}}$		$3 T C L-20+t_{A}+t_{C}$	
t_{17} (SR)	Address/unlatched $\overline{\mathrm{CS}}$ to valid data in		$20+2 t_{A}+t_{C}$		$4 \mathrm{TCL}-30+2 \mathrm{t}_{\mathrm{A}}+\mathrm{t}_{\mathrm{C}}$	
t_{18} (SR)	Data hold after $\overline{\mathrm{RD}}$ rising edge	0	-	0	-	

Table 175. Multiplexed bus timings (continued)

Symbol	Parameter	$\begin{aligned} \mathrm{F}_{\mathrm{CPU}} & =40 \mathrm{MHz} \\ \mathrm{TCL} & =12.5 \mathrm{~ns} \end{aligned}$		Variable CPU clock $1 / 2$ TCL = 1 to 64 MHz		Unit
		Min	Max	Min	Max	
t_{19} (SR)	Data float after $\overline{\mathrm{RD}}^{(1)}$	-	$16.5+t_{F}$	-	$2 \mathrm{TCL}-8.5+\mathrm{t}_{\mathrm{F}}$	ns
t_{22} (CC)	Data valid to $\overline{W R}$	$10+t_{C}$	-	$2 \mathrm{TCL}-15+\mathrm{t}_{\mathrm{C}}$	-	
t_{23} (CC)	Data hold after $\overline{W R}$	$4+\mathrm{t}_{\mathrm{F}}$		$2 \mathrm{TCL}-8.5+\mathrm{t}_{\mathrm{F}}$		
t_{25} (CC)	ALE rising edge after $\overline{R D}$ and WR	$15+t_{\text {F }}$		$2 T C L-10+t_{F}$		
t_{27} (CC)	Address/unlatched $\overline{\mathrm{CS}}$ hold after $\overline{R D}$ and $\overline{W R}$	$10+t_{F}$		$2 \mathrm{TCL}-15+\mathrm{t}_{\mathrm{F}}$		
t_{38} (CC)	ALE falling edge to latched $\overline{C S}$	$-4-t_{\text {A }}$	$10-t_{A}$	$-4-t_{A}$	$c-t_{A}$	
$\mathrm{t}_{39}(\mathrm{SR})$	Latched $\overline{\mathrm{CS}}$ low to valid data in	-	$16.5+t_{C}+2 t_{A}$	-	$31-21+t_{C}+2 t^{\prime}$	
t_{40} (CC)	Latched $\overline{\mathrm{CS}}$ hold after $\overline{\mathrm{RD}}$ and WR	$27+t_{F}$		$3 T C L-匹 5+t_{F}$		
t_{42} (CC)	ALE falling edge to RdCS and WrCS (with R/W delay)	$7+t_{\text {A }}$	C	CLL $-5.5+t_{\text {A }}$		
t_{43} (CC)	ALE falling edge to $\overline{\operatorname{RdCS}}$ and $\overline{\text { WrCS (no R/W delay) }}$	$-5.5+t_{\text {d }}$		$-5.5+t_{A}$		
t_{44} (CC)	Address float after RdCS and WrCS (with R/W delay) ${ }^{(1)}$		1.5	8	1.5	
t_{45} (CC)	Address float after RdCS ar.i. WrCS (no R/W delay)		14		TCL + 1.5	
t_{46} (SR)	RdCS to valid dat= in (with R/W N'، 'á!)		$4+t_{C}$		$2 \mathrm{TCL}-21+\mathrm{t}_{\mathrm{C}}$	
t_{47} (SR)	$\overline{\mathrm{RdCS}}$ to va id data in (nc R \because delay)		$16.5+t_{C}$		$3 T C L-21+t_{c}$	
$\mathrm{t}_{48}(\mathrm{C}$ 」)	$\overline{\mathrm{I}} \mathrm{d} \overline{\mathrm{jS}}$ and $\overline{\mathrm{WrCS}}$ low time (with R/W delay)	$15.5+t_{c}$		$2 \mathrm{TCL}-9.5+\mathrm{t}_{\mathrm{C}}$		
$1 . y$ (CC)	$\overline{\mathrm{RdCS}}$ and $\overline{\mathrm{WrCS}}$ low time (no R/W delay)	$28+t_{C}$	-	$3 \mathrm{TCL}-9.5+\mathrm{t}_{\mathrm{C}}$	-	
t_{50} (CC)	Data valid to WrCS	$10+t_{C}$		$2 \mathrm{TCL}-15+\mathrm{t}_{\mathrm{C}}$		
t_{51} (SR)	Data hold after RdCS	0		0		
t_{52} (SR)	Data float after $\mathrm{RdCS}^{(1)}$	-	$16.5+t_{F}$	-	$2 \mathrm{TCL}-8.5+\mathrm{t}_{\mathrm{F}}$	
t_{54} (CC)	Address hold after RdCS and WrCS	$6+t_{F}$	-	$2 \mathrm{TCL}-19+\mathrm{t}_{\mathrm{F}}$	-	
t_{56} (CC)	Data hold after $\overline{\mathrm{WrCS}}$					

1. Partially tested, guaranteed by design characterization.

The following figures (Figure 108 to Figure 111) present the different configurations of the external memory cycle for a multiplxed bus.

Figure 108. Multiplexed bus with/without R/W delay and normal ALE

Figure 109. Multiplexed bus with/without R/W delay and extended ALE

Figure 110. Multiplexed bus with/without R/W delay, normal ALE, R/W $\overline{\mathbf{C S}}$

Figure 111. Multiplexed bus with/without R/ W delay, extended ALE, R/W $\overline{\mathbf{C S}}$

Demultiplexed bus timings

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ ，
ALE cycle time $=4 \mathrm{TCL}+2 \mathrm{t}_{\mathrm{A}}+\mathrm{t}_{\mathrm{C}}+\mathrm{t}_{\mathrm{F}}$（ 50 ns at 40 MHzCPU clock without wait states）．
Table 176．Demultiplexed bus

Symbol	Parameter	$\begin{aligned} \mathrm{F}_{\mathrm{CPU}} & =40 \mathrm{MHz} \\ \mathrm{TCL} & =12.5 \mathrm{~ns} \end{aligned}$		Variable CPU clock $1 / 2$ TCL＝ 1 to 64 MHz		Unit
		Min	Max	Min	Max	
t_{5}（CC）	ALE high time	$4+t_{\text {A }}$	－	TCL－8．5＋ $\mathrm{t}_{\text {A }}$	－	ns
t_{6}（CC）	Address setup to ALE	$1.5+t_{\text {A }}$	－	TCL $-11+\mathrm{t}_{\mathrm{A}}$	－	ns
t_{80}（CC）	Address／unlatched $\overline{C S}$ setup to $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ （with R／W delay）	$12.5+2 \mathrm{t}_{\mathrm{A}}$	－	$2 \mathrm{TCL}-12.5+2 \mathrm{t}_{\mathrm{A}}$		ns
t_{81}（CC）	Address／unlatched $\overline{C S}$ setup to $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ （no R／W delay）	$0.5+2 \mathrm{t}_{\mathrm{A}}$	－	$\text { TCL }-12+2 \mathrm{t}$		ns
t_{12}（CC）	$\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ low time（with R／W delay）	$15.5+t_{C}$	－	$2^{\top} C^{\prime} \cdot y .5+t_{c}$		ns
t_{13}（CC）	RD and WR low time （no R／W delay）	$28+t_{C}$	－	$3 T C L-9.5+t_{c}$	\bigcirc－	ns
t_{14}（SR）	$\overline{\mathrm{RD}}$ to valid data in （with R／W delay）	－	$\stackrel{\sim}{+} t_{C}$	$+3$	$2 \mathrm{TCL}-19+\mathrm{t}_{\mathrm{C}}$	ns
t_{15}（SR）	$\overline{\mathrm{RD}}$ to valid data in （no R／W delay）	5	$18.5+t_{C}$	，	$3 T C L-19+t_{c}$	ns
t_{16}（SR）	ALE low to valid data r_{1}	－	$17.5+t_{A}+t_{C}$	－	$3 T C L-20+t_{A}+t_{C}$	ns
t_{17}（SR）	Address／unlatch ：d ご valid data in	-1	$20+2 t_{A}+t_{C}$	－	$4 \mathrm{TCL}-30+2 \mathrm{t}_{\mathrm{A}}+\mathrm{t}_{\mathrm{C}}$	ns
t_{18}（SR）	Data＇ル＇d aiier $\overline{R D}$ ricir． $\begin{aligned} \text { arige }\end{aligned}$	0	－	0	－	ns
$\mathrm{t}_{20}(\mathrm{~S}, 3)$	＇Jata float after $\overline{\mathrm{RD}}$ rising edge（with R／W delay）${ }^{(1)}$	－	$16.5+t_{F}$	－	$2 \mathrm{TCL}-8.5+\mathrm{t}_{\mathrm{F}}+2 \mathrm{t}_{\mathrm{A}}$	ns
t_{21}（SR）	Data float after RD rising edge（no R／W delay）${ }^{(1)}$	－	$4+t_{F}$	－	TCL $-8.5+\mathrm{t}_{\mathrm{F}}+2 \mathrm{t}_{\mathrm{A}}$	ns
$\mathrm{t}_{22}(\mathrm{CC})$	Data valid to $\overline{W R}$	$10+t_{C}$	－	$2 \mathrm{TCL}-15+\mathrm{t}_{\mathrm{C}}$	－	ns
t_{24}（CC）	Data hold after WR	$4+\mathrm{t}_{\mathrm{F}}$	－	TCL－ $8.5+\mathrm{t}_{\mathrm{F}}$	－	ns
$\mathrm{t}_{26}(\mathrm{CC})$	ALE rising edge after $\overline{\mathrm{RD}}$ and WR	$-10+t_{F}$	－	$-10+t_{F}$	－	ns
t_{28}（CC）	Address／unlatched $\overline{\mathrm{CS}}$ hold after $\overline{\mathrm{RD}}$ and $\overline{W R}^{(2)}$	$0+t_{F}$	－	$0+t_{F}$	－	ns
$\mathrm{t}_{28 \mathrm{~h}}$（CC）	Address／unlatched $\overline{\mathrm{CS}}$ hold after $\overline{\text { WRH }}$	$-5+t_{F}$	－	$-5+t_{F}$	－	ns

Table 176. Demultiplexed bus (continued)

Symbol	Parameter	$\begin{aligned} & \mathrm{F}_{\mathrm{CPU}}=40 \mathrm{MHz} \\ & \mathrm{TCL}=12.5 \mathrm{~ns} \end{aligned}$		Variable CPU clock $1 / 2 \mathrm{TCL}=1$ to 64 MHz		Unit
		Min	Max	Min	Max	
$t_{38}(C C)$	ALE falling edge to latched $\overline{C S}$	$-4-t_{A}$	$6-t_{\text {A }}$	$-4-t_{A}$	$6-t_{\text {A }}$	ns
$\mathrm{t}_{39}(\mathrm{SR})$	Latched $\overline{\mathrm{CS}}$ low to valid data in	-	$16.5+t_{C}+2 t_{\text {A }}$	-	$3 T C L-21+t_{C}+2 t_{A}$	ns
t_{41} (CC)	Latched $\overline{\mathrm{CS}}$ hold after $\overline{\mathrm{RD}}$ and $\overline{W R}$	$2+t_{F}$	-	TCL $-10.5+\mathrm{t}_{\mathrm{F}}$	-	ns
t_{82} (CC)	Address setup to $\overline{\mathrm{RdCS}}$ and $\bar{W} \mathrm{CCS}$ (with R/W delay)	$14+2 \mathrm{t}_{\mathrm{A}}$	-	$2 \mathrm{TCL}-11+2 t_{\mathrm{A}}$		ns
t_{83} (CC)	Address setup to RdCS and WrCS (no R/W delay)	$2+2 t_{\text {A }}$	-	TCL - $10.5+2 \mathrm{t}_{\mathrm{A}}$		ns
t_{46} (SR)	$\overline{\text { RdCS }}$ to valid data in (with R/W delay)	-	$4+t_{C}$		$2 T C L-21+t_{C}$	ns
t_{47} (SR)	$\overline{\mathrm{RdCS}}$ to valid data in (no R/W delay)	-	$16.5+t_{C}$	P	$3 T C L-21+t_{c}$	ns
t_{48} (CC)	$\overline{\mathrm{RdCS}}$ and $\overline{\mathrm{WrCS}}$ low time (with RW-delay)	$15.5+t_{C}$	\bigcirc	$2 \mathrm{TCL}-9.5+\mathrm{t}_{\mathrm{c}}$	- -	ns
t_{49} (CC)	RdCS and WrCS low time (no R/W delay)	$28+t_{c}$		$3 \text { TCL }-9.5+t_{C}$	-	ns
t_{50} (CC)	Data valid to WrCS	$10 \times{ }^{\circ} \mathrm{c}$	-	$2 \mathrm{TCL}-15+\mathrm{t}_{\mathrm{C}}$	-	ns
t_{51} (SR)	Data hold after RdCS	0	-	0	-	ns
t_{53} (SR)	Data float after RdC; (with R/W dela;)		$16.5+t_{F}$	-	$2 \mathrm{TCL}-8.5+\mathrm{t}_{\mathrm{F}}$	ns
t_{68} (SR)	Data float iter $\overline{\mathrm{RdCS}}$ (n P P v' delay)		$4+t_{F}$	-	TCL-8.5 $+\mathrm{t}_{\mathrm{F}}$	ns
t_{55} (CC)	4fidress hold after RdCS and $\overline{\mathrm{WrCS}}$	$-8.5+t_{F}$	-	$-8.5+t_{F}$	-	ns
55, (Oこ)	Data hold after WrCS	$2+t_{F}$	-	TCL - $10.5+\mathrm{t}_{\mathrm{F}}$	-	ns

1. R / W delay and t_{A} refer to the next bus cycle.
2. Read data is latched with the same clock edge that triggers the address change and the rising $\overline{\mathrm{RD}}$ edge. Therefore address changes which occur before the end of RD have no impact on read cycles.

The following figures (Figure 112 to Figure 115) present the different configurations of external memory cycle for a demultiplxed bus.

Figure 112. Demultiplexed bus with/without read/write delay and normal ALE

1. Unlatched $C S x=t_{41 u}=t_{41} T C L=10.5+t_{F}$.

Figure 113. Demultiplexed bus with/without R/W delay and extended ALE

Figure 114. Demultiplexed bus with ALE and R/W $\overline{\mathbf{C S}}$

Figure 115. Demultiplexed bus no R/W delay, extended ALE, R/W $\overline{\mathbf{C S}}$

24.8.17 $\overline{\text { READY }}$ and CLKOUT

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.
Table 177. $\overline{\text { READY }}$ and CLKOUT

Symbol	Parameter	$\begin{aligned} & \mathrm{F}_{\mathrm{CPU}}=40 \mathrm{MHz} \\ & \mathrm{TCL}=12.5 \mathrm{~ns} \end{aligned}$		Variable CPU clock $1 / 2 \mathrm{TCL}=1$ to 64 MHz		Unit
		Min	Max	Min	Max	
t_{29} (CC)	CLKOUT cycle time	25	25	2 TCL	2 TCL	ns
t_{30} (CC)	CLKOUT high time	9		TCL-3.5		
t_{31} (CC)	CLKOUT low time	10		TCL-2.5		
$\mathrm{t}_{32}(\mathrm{CC})$	CLKOUT rise time	-	4	-		
t_{33} (CC)	CLKOUT fall time				N)	
t_{34} (CC)	CLKOUT rising edge to ALE falling edge	$-2+t_{A}$	$8+t_{\text {A }}$	$-2+ \pm$.	$8+t_{\text {A }}$	
t_{35} (SR)	Synchronous READY setup time to CLKOUT	17		- 17		
t_{36} (SR)	Synchronous READY hold time after CLKOUT	2	18	2		
t_{37} (SR)	Asynchronous READY Iow time	25		$2 \text { TCL + } 10$	-	
t_{58} (SR)	Asynchronous READY setup time ${ }^{(1)}$	17	12	17		
t_{59} (SR)	Asynchronous $\overline{\mathrm{R}} \overline{\mathrm{E}} \overline{\mathrm{AE}} \overline{\mathrm{Y}}$ hold time ${ }^{(1)}$	2		2		
$\mathrm{t}_{60}(\mathrm{SP})$	Asvr ch:o.ious READY h sla time after RD and VK high (demultiplexed bus) ${ }^{(2)}$	0	$2 t_{A}+t \mathrm{C}+\mathrm{t}_{\mathrm{F}}$	0	$2 t_{A}+t_{C}+t_{F}$	

1. Tiese timings are given for characterization purposes only, to assure recognition at a specific clock edge.
2. Demultiplexed bus is the worst case scenario. For a multiplexed bus, 2TCLs must be added to the maximum values. This adds even more time for deactivating READY. $2 t_{A}$ and t_{C} refer to the next bus cycle and t_{F} refers to the current bus cycle

Figure 116. $\overline{\text { READY }}$ and CLKOUT

1. Cycle as programmed, includina MiOTC wait states (example shows OMCTC wait states).
2. The leading edge of the resk eciivf command depends on R/W delay.
3. $\overline{R E A D Y}$ sampled high it thi` sampling point generates a READY controlled wait state, $\overline{R E A D Y}$ sampled low at this sampling p
4. $\overline{\mathrm{READY}}$ may be de quiivated in response to the trailing (rising) edge of the corresponding command ($\overline{\mathrm{RD}}$ or WR).
5. If the a yı shronous READY signal does not fulfill the indicated setup and hold times with respect to CLKiUT (tor example, because CLKOUT is not enabled), it must fulfill t_{37} to be safely synchronized. This is guaranteed if READY is removed in response to the command (see Note 4).
6. Wiultiplexed bus modes have a MUX wait state added after a bus cycle, and an additional MTTC wait state may be inserted here. For a multiplexed bus with MTTC wait state this delay is 2 CLKOUT cycles. For a demultiplexed bus without MTTC wait state this delay is zero.
7. The next external bus cycle may start here.

24.8.18 External bus arbitration

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.
Table 178. External bus arbitration

Figure 117. External bus arbitration (releasir.q he bus)

1. The ST10F296E completes the current running bus cycle before granting bus access.
2. This is the first possibility for $\overline{\mathrm{BREQ}}$ to become active.
3. The $\overline{\mathrm{CS}}$ outputs are resistive high (pull-up) after t_{64}.

Figure 118. External bus arbitration (regaining the bus)

1. This is the last chance for $\overline{B R E Q}$ to trigger the indicatoc res ain sequence. Even if $\overline{B R E Q}$ is activated earlier, the regain sequence is initiated by HOLD no.ny hiyn. Note that HOLD may also be deactivated without the ST10F296E requesting the bus
2. The next ST10F296E driven bus cycle ma.' star . here.

24.8.19 High-speed synchronous serial interface (SSC) timing modes

Master mode

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

Table 179. Master mode

1. Maxim in , r,duc' rate is 8 Mbaud and can be reached with 64 MHz CPU clock and <SSCBR> set to 3h, or with 48 MHz CPU cloc $^{1}: \rightarrow r, y$ SSCBR $>$ set to 2 h . When 40 MHz CPU clock is used, the maximum baud rate cannot be higher than 6.6 Mbaud $(-\mathrm{S} 3 \mathrm{C} 3 \mathrm{~K}>=2 \mathrm{~h}$) due to the limited granularity of $<\mathrm{SSCBR}>$. A value of 1 h for $<$ SSCBR $>$ may be used only with a CPU こ. v k equal to (or lower than) 32 MHz (after checking that timings are in line with the target slave).
$\therefore \quad$ The formula for the SSC clock cycle time is:
$t_{300}=4$ TCL $x(<S S C B R>+1)$
Where <SSCBR> represents the content of the SSC baud rate register, taken as an unsigned 16-bit integer. The minimum limit allowed for t_{300} is 125 ns (corresponding to 8 Mbaud).

Figure 119. SSC master timing

1. The phase and polarity of the shift and latch edges of SCLK are programmable. Figi: , :1s uses the leading clock edge as the shift edge with the latch on the trailing edge (SSCPH = $n \mathrm{k}$). 7 ?e idle clock line is low and the leading clock edge is low-to-high transition (SSCPO = 0b).
2. The bit timing is repeated for all bits that have to be transmitted or recei ord.

Slave mode

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Table 180. Slave mode

1. Maximum baud rate is 8 Mbaud and can be reached with 64 MHz CPU clock and <SSCBR> set to 3 h , or with 48 MHz CPU clock and <SS , E. $\mathrm{i}>$ set to 2 h . When 40 MHz CPU clock is used, the maximum baud rate cannot be higher than 6.6 Mbaud (<SSCBR> $=2$,) , ue to the limited granularity of <SSCBR $>$. A value of 1 h for $<$ SSCBR $>$ may be used only with a CPU clock iun $\xlongequal{2}$,haı, 32 MHz (after checking that timings are in line with the target slave).
2. The for mula for the SSC clock cycle time is:
$2 \operatorname{win}^{-}+\mathrm{TCL}^{*}(<$ SSCBR $>+1)$
Vit.ere <SSCBR> represents the content of the SSC baud rate register, taken as an unsigned 16-bit integer. The minimum imit allowed for t_{310} is 125 ns (corresponding to 8 Mbaud).

Figure 120. SSC slave timing

1. The phase and polarity of the shift and latch edges of SCLK are programmable. Fivire 120 uses the leading clock edge as the shift edge with the latch on the trailing edge ($S \subset こ P^{\prime} 1=0$,). The idle clock line is low and the leading clock edge is low-to-high transition (SSCPO = Ob).
2. The bit timing is repeated for all bits that have to be transmitted or roceiveci.

25 Package mechanical data

To meet environmental requirements, ST offers the device in ECOPACK ${ }^{\circledR}$ packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK ${ }^{\circledR}$ specifications are available at www.st.com..
Figure 121. PBGA 208 ($23 \times 23 \times 1.96 \mathrm{~mm}$) outline

1. PBGA stands for plastic ball grid array.
2. The terminal A1 corner of the package must be identified on the top surface by using a corner chamfer, ink or metallized marking, identation or other feature of the package body or an integral heastslug. A distinguishing feature is also allowable on the bottom of the package to identify the terminal A1 corner. The exact shape and size of this feature is optional.

Table 181. PBGA $208(23 \times 23 \times 1.96 \mathrm{~mm})$ mechanical data

Dimensions	Millimeters			Inches (approx) ${ }^{(1)}$		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
A		1.960			0.0772	
A1	0.500	0.600	0.700	0.0197	0.0236	0.0276
A2		1.360			0.0535	
A3		0.560			0.0220	
$\phi \mathrm{b}$	0.600	0.760	0.900	0.0236	0.0299	0.0354
D	22.900	23.000	23.100	0.9016	0.9055	0.9094
D1		20.320			0.8000	O
E	22.900	23.000	23.100	0.9016	0.9055	c. 9094
E1		20.320			5.2000	
e		1.270			0.0500	\bigcirc
f	1.240	1.340	1.440	0.04،8	0.0528	0.0567

1. Values in inches are converted from mm and rounded to four doc. m^{\prime} ' digits.

26 Ordering information

Table 182. Order codes

Order codes	Package	Packing	Temperature range $\left({ }^{\circ} \mathbf{C}\right)$	CPU frequency range $(\mathbf{M H z})$
ST10F296	PBGA208	Tray	-40 to 125	1 to 64
		Tape and reel		

27 Revision history

Table 183. Document revision history

Date	Revision	Changes
24-Jan-2005	1	Initial release.
20-Oct-2008	2	Initial public release. Document reformatted; content of Features reworked to fit into one page (no technical changes); content of remaining document reworked to improve readability (no technical changes). Updated Table 1: Device summary. Section 7: Central processing unit (CPU): Removed sections on the SYSCON register and MAC features; amended Sectior i 3; removed table entitled MAC coprocessor specific ins cruc:iols and replaced with Table 46; removed tables entitleci Foir $t_{\text {t }}$ postmodification combinations for Rwn and ILIXI and MAC registers referenced as 'CoReg'. Section 9: Interrupt system: Update $\sqrt{\top}$ intrcductory text; removed sections on Extrenal interrupts aid Irierrupt control register, removed some text from Seciic.n 1.1: XPeripheral interrupt. Section 24: Electrical cı, a, acieristics: Updated Table 164, Table 172, Table 176, Figure תs, ar a Figure 120. Section $25 \cdot$ ドon 7 cs mechanical data: Added ECOPACK text. Table 181: Pt'GA 208 ($23 \times 23 \times 1.96 \mathrm{~mm}$) mechanical data: Convertea values in inches to four decimal places.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its suinsidia. ' ϵ : ' ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and ser icts v 。scribed herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and sices described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services τ_{ϵ} :cr sed herein.
No license, express or implied, by estoppel or otherwise, to any intellectual propertv in is s granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a cel se grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a \because a ranty covering the use in any manner whatsoever of such third party products or services or any intellectual property containe i ul

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE ANLIUR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FCD A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMERI O: AVY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN V'RITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OF W/ RHANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRCD JC 'S OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PI OP ERTY UR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE L'SED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of $S^{-}+$oc ucts with provisions different from the statements and/or technical features set forth in this document shall immediately void any war an, / yranted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

> The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

[^0]: 1. Advised configuration
[^1]: 1. AC inputs during testing are driven at 2.4 V for a logic 1 and at 0.4 V for a logic 0 .
 2. Timing measurements are made at $V_{I H}$ min. for a logic 1 and $V_{I L}$ max for a logic 0 .
[^2]: 1. Not 100% tested, guaranteed by design characterization
