
October 2017 DocID029621 Rev 3 1/24

1

STM32F413xG/xH STM32F423xH
Errata sheet

STM32F413xG/xH and STM32F423xH device limitations

Applicability

This document applies to the part numbers of STM32F413/423xx devices listed in Table 1
and their variants shown in Table 2.

Section 1 gives a summary and Section 2 a description of / workaround for device
limitations, with respect to the device datasheet and reference manual RM0430.

Table 1. Device summary

Reference Part numbers

STM32F413xG/xH
STM32F413CG STM32F413MG STM32F413RG STM32F413VG
 STM32F413ZG STM32F413CH STM32F413MH STM32F413RH
 STM32F413VH STM32F413ZH

STM32F423xH
STM32F423CH STM32F423MH STM32F423RH STM32F423VH
 STM32F423ZH

Table 2. Device variants

Reference
Silicon revision codes

Device marking(1)

1. Refer to the device data sheet for how to identify this code on different types of package.

REV_ID(2)

2. REV_ID[15:0] bit field of DBGMCU_IDCODE register. Refer to the reference manual.

STM32F413/423xx A 0x1000

www.st.com

http://www.st.com

Contents STM32F413xG/xH STM32F423xH

2/24 DocID029621 Rev 3

Contents

1 Summary of device limitations . 4

2 Description of device limitations . 6

2.1 Core . 6

2.1.1 Cortex-M4 interrupted loads to stack pointer can cause
erroneous behavior . 6

2.1.2 VDIV or VSQRT instructions might not complete correctly
when very short ISRs are used of the limitation here 7

2.2 System . 7

2.2.1 Debugging Sleep/Stop mode with WFE/WFI entry 7

2.2.2 Wakeup sequence from Standby mode when using more than
one wakeup source . 8

2.2.3 Full JTAG configuration without NJTRST pin cannot be used 8

2.2.4 MPU attribute to RTC and IWDG registers could be managed
incorrectly . 8

2.2.5 Delay after an RCC peripheral clock enabling . 9

2.2.6 Internal noise impacting the ADC accuracy . 9

2.2.7 In some specific cases, DMA2 data corruption occurs when managing
AHB and APB2 peripherals in a concurrent way 9

2.3 FSMC . 10

2.3.1 Dummy read cycles inserted when reading synchronous memories . . . 10

2.4 QUADSPI . 10

2.4.1 First nibble of data is not written after a dummy phase 10

2.4.2 Wrong data can be read in memory-mapped after an indirect mode
operation . 11

2.5 ADC . 12

2.5.1 ADC sequencer modification during conversion 12

2.6 DAC . 12

2.6.1 DMA underrun flag management . 12

2.6.2 DMA request not automatically cleared by DMAEN=0 12

2.7 IWDG . 13

2.7.1 RVU and PVU flags are not reset in STOP mode 13

2.8 I2C . 13

2.8.1 SMBus standard not fully supported . 13

2.8.2 Start cannot be generated after a misplaced Stop 13

DocID029621 Rev 3 3/24

STM32F413xG/xH STM32F423xH Contents

3

2.8.3 Mismatch on the “Setup time for a repeated Start condition” timing
parameter . 14

2.8.4 Data valid time (tVD;DAT) violated without the OVR flag being set 14

2.8.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C bus
higher than ((VDD+0.3) / 0.7) V . 15

2.9 FMPI2C . 15

2.9.1 Wrong data sampling when data set-up time (tSU;DAT) is smaller
one FMPI2CCLK period . 15

2.10 USART . 16

2.10.1 Idle frame is not detected if receiver clock speed is deviated 16

2.10.2 In full duplex mode, the Parity Error (PE) flag can be cleared by
writing to the data register . 16

2.10.3 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection . 16

2.10.4 Break frame is transmitted regardless of nCTS input line status 16

2.10.5 nRTS signal abnormally driven low after a protocol violation 17

2.10.6 Start bit detected too soon when sampling for NACK signal
from the smartcard . 17

2.10.7 Break request can prevent the Transmission Complete flag (TC)
from being set . 18

2.10.8 Guard time is not respected when data are sent on TXE events 18

2.10.9 nRTS is active while RE or UE = 0 . 18

2.11 SPI . 18

2.11.1 Wrong CRC calculation when the polynomial is even 18

2.11.2 BSY bit may stay high at the end of a data transfer in slave mode 19

2.11.3 Corrupted last bit of data and/or CRC, received in Master mode
with delayed SCK feedback . 19

2.11.4 CRC can be corrupted when full duplex is handled by DMA and
reception DMA channel is set to number of data frames plus CRC
length . 20

2.12 SDIO . 21

2.12.1 Wrong CCRCFAIL status after a response without CRC is received . . . 21

2.12.2 No underrun detection with wrong data transmission 21

2.13 bxCAN . 22

2.13.1 bxCAN time triggered communication mode not supported 22

3 Revision history . 23

Summary of device limitations STM32F413xG/xH STM32F423xH

4/24 DocID029621 Rev 3

1 Summary of device limitations

The following table gives a quick references to all documented device limitations of
STM32F413/423xx and their status:

A = workaround available

N = no workaround available

P = partial workaround available

Applicability of a workaround may depend on specific conditions of target application.
Adoption of a workaround may cause restrictions to target application. Workaround for a
limitation is deemed partial if it only reduces the rate of occurrence and/or consequences of
the limitation, or if it is fully effective for only a subset of instances on the device or in only a
subset of operating modes, of the function concerned.

Table 3. Summary of device limitations

Function Section Limitation

Status

Rev.
A

Core 2.1.1 Cortex-M4 interrupted loads to stack pointer can cause erroneous behavior A

Core 2.1.2
VDIV or VSQRT instructions might not complete correctly when very short
ISRs are used of the limitation here

A

System 2.2.1 Debugging Sleep/Stop mode with WFE/WFI entry A

System 2.2.2
Wakeup sequence from Standby mode when using more than one wakeup
source

A

System 2.2.3 Full JTAG configuration without NJTRST pin cannot be used A

System 2.2.4 MPU attribute to RTC and IWDG registers could be managed incorrectly A

System 2.2.5 Delay after an RCC peripheral clock enabling A

System 2.2.6 Internal noise impacting the ADC accuracy A

System 2.2.7
In some specific cases, DMA2 data corruption occurs when managing AHB
and APB2 peripherals in a concurrent way

A

FSMC 2.3.1 Dummy read cycles inserted when reading synchronous memories N

QUADSPI 2.4.1 First nibble of data is not written after a dummy phase A

QUADSPI 2.4.2 Wrong data can be read in memory-mapped after an indirect mode operation A

ADC 2.5.1 ADC sequencer modification during conversion A

DAC 2.6.1 DMA underrun flag management A

DAC 2.6.2 DMA request not automatically cleared by DMAEN=0 A

IWDG 2.7.1 RVU and PVU flags are not reset in STOP mode A

I2C 2.8.1 SMBus standard not fully supported A

I2C 2.8.2 Start cannot be generated after a misplaced Stop A

DocID029621 Rev 3 5/24

STM32F413xG/xH STM32F423xH Summary of device limitations

5

I2C 2.8.3 Mismatch on the “Setup time for a repeated Start condition” timing parameter A

I2C 2.8.4 Data valid time (tVD;DAT) violated without the OVR flag being set A

I2C 2.8.5
Both SDA and SCL maximum rise time (tr) violated when VDD_I2C bus higher
than ((VDD+0.3) / 0.7) V

A

FMPI2C 2.9.1
Wrong data sampling when data set-up time (tSU;DAT) is smaller one
FMPI2CCLK period

A

USART 2.10.1 Idle frame is not detected if receiver clock speed is deviated N

USART 2.10.2
In full duplex mode, the Parity Error (PE) flag can be cleared by writing to the
data register

A

USART 2.10.3
Parity Error (PE) flag is not set when receiving in Mute mode using address
mark detection

N

USART 2.10.4 Break frame is transmitted regardless of nCTS input line status N

USART 2.10.5 nRTS signal abnormally driven low after a protocol violation A

USART 2.10.6 Start bit detected too soon when sampling for NACK signal from the smartcard A

USART 2.10.7 Break request can prevent the Transmission Complete flag (TC) from being set A

USART 2.10.8 Guard time is not respected when data are sent on TXE events A

USART 2.10.9 nRTS is active while RE or UE = 0 A

SPI 2.11.1 Wrong CRC calculation when the polynomial is even A

SPI 2.11.2 BSY bit may stay high at the end of a data transfer in slave mode A

SPI 2.11.3
Corrupted last bit of data and/or CRC, received in Master mode with delayed
SCK feedback

A

SPI 2.11.4
CRC can be corrupted when full duplex is handled by DMA and reception
DMA channel is set to number of data frames plus CRC length

A

SDIO 2.12.1 Wrong CCRCFAIL status after a response without CRC is received A

SDIO 2.12.2 No underrun detection with wrong data transmission A

bxCAN 2.13.1 bxCAN time triggered communication mode not supported A

Table 3. Summary of device limitations (continued)

Function Section Limitation

Status

Rev.
A

Description of device limitations STM32F413xG/xH STM32F423xH

6/24 DocID029621 Rev 3

2 Description of device limitations

The following sections describe device limitations and provide workarounds if available.
They are grouped by device functions.

2.1 Core

Errata notices for the Arm® Cortex® cores are available from http://infocenter.arm.com.

The limitations described in this section are related to the revision r0p1-v1 of the
Cortex®-M4 FPU core.

Table 4 summarizes these limitations and their implications on the behavior of
STM32F413/423xx devices.

2.1.1 Cortex-M4 interrupted loads to stack pointer can cause
erroneous behavior

This limitation is registered under Arm ID number 75419 as Cat2, with minor impact to the
silicon devices using this Arm core.

Description

An interrupt occurring during the data-phase of a single word load to the stack pointer
(SP/R13) can cause an erroneous behavior of the device. In addition, returning from the
interrupt results in the load instruction being executed an additional time.

For all the instructions performing an update of the base register, the base register is
erroneously updated on each execution, resulting in the stack pointer being loaded from an
incorrect memory location.

The instructions affected by this limitation are the following:

• LDR SP, [Rn],#imm

• LDR SP, [Rn,#imm]!

• LDR SP, [Rn,#imm]

• LDR SP, [Rn]

• LDR SP, [Rn,Rm]

Workaround

As of today, no compiler generates these particular instructions. This limitation can only
occur with hand-written assembly code.

Table 4. Cortex-M4 core limitations and impact on microcontroller behavior

Arm ID
Arm

category
Arm summary of errata

Impact on
STM32F413/423xx

752770 Cat B
Interrupted loads to SP can cause erroneous
behavior

Minor

776924 Cat B
VDIV or VSQRT instructions might not complete
correctly when very short ISRs are used

Minor

DocID029621 Rev 3 7/24

STM32F413xG/xH STM32F423xH Description of device limitations

22

Both limitations can be solved by replacing the direct load to the stack pointer by an
intermediate load to a general-purpose register followed by a move to the stack pointer.

Example:

Replace LDR SP, [R0] by

LDR R2,[R0]

MOV SP,R2

2.1.2 VDIV or VSQRT instructions might not complete correctly
when very short ISRs are used of the limitation here

Description

On Cortex-M4 with FPU core, 14 cycles are required to execute a VDIV or VSQRT
instruction.

This limitation is present when the following conditions are met:

• A VDIV or VSQRT is executed

• The destination register for VDIV or VSQRT is one of s0 - s15

• An interrupt occurs and is taken

• The ISR being executed does not contain a floating point instruction

• 14 cycles after the VDIV or VSQRT is executed, an interrupt return is executed

In this case, if there are only one or two instructions inside the interrupt service routine, then
the VDIV or VQSRT instruction does not complete correctly and the register bank and
FPSCR are not updated, meaning that these registers hold incorrect out-of-date data.

Workaround

Two workarounds are applicable:

• Disable lazy context save of floating point state by clearing LSPEN to 0 (bit 30 of the
FPCCR at address 0xE000EF34).

• Ensure that every ISR contains more than 2 instructions in addition to the exception
return instruction.

2.2 System

2.2.1 Debugging Sleep/Stop mode with WFE/WFI entry

Description

When the Sleep debug or Stop debug mode is enabled (DBG_SLEEP bit or DBG_STOP bit
are set in the DBGMCU_CR register), this allows software debugging during Sleep or Stop
mode. After wakeup some unreachable instructions could be executed if the following
condition are met:

• If the application software disables the Prefetch queue

• The number of wait state configured on Flash interface is higher than 0

• And Linker place WFE or WFI instructions on 4-bytes aligned addresses
(0x080xx_xxx4)

Description of device limitations STM32F413xG/xH STM32F423xH

8/24 DocID029621 Rev 3

Workaround

• Add three NOPs after WFI/WFE instruction

• Keep one AHB master active during sleep (example keep DMA1 or DMA2 RCC clock
enable bit set)

• Execute WFI/WFE instruction from routines inside the SRAM

2.2.2 Wakeup sequence from Standby mode when using more than
one wakeup source

Description

The various wakeup sources are logically OR-ed in front of the rising-edge detector which
generates the wakeup flag (WUF). The WUF needs to be cleared prior to Standby mode
entry, otherwise the MCU wakes up immediately.

If one of the configured wakeup sources is kept high during the clearing of the WUF (by
setting the CWUF bit), it may mask further wakeup events on the input of the edge detector.
As a consequence, the MCU might not be able to wake up from Standby mode.

Workaround

To avoid this problem, the following sequence should be applied before entering
Standby mode:

• Disable all used wakeup sources,

• Clear all related wakeup flags,

• Re-enable all used wakeup sources,

• Enter Standby mode

Note: Be aware that, when applying this workaround, if one of the wakeup sources is still kept
high, the MCU enters Standby mode but then it wakes up immediately generating a power
reset.

2.2.3 Full JTAG configuration without NJTRST pin cannot be used

Description

When using the JTAG debug port in debug mode, the connection with the debugger is lost if
the NJTRST pin (PB4) is used as a GPIO. Only the 4-wire JTAG port configuration is
impacted.

Workaround

Use the SWD debug port instead of the full 4-wire JTAG port.

2.2.4 MPU attribute to RTC and IWDG registers could be managed
incorrectly

Description

If the MPU is used and the non bufferable attribute is set to the RTC or IWDG memory map
region, the CPU access to the RTC or IWDG registers could be treated as bufferable,
provided that there is no APB prescaler configured (AHB/APB prescaler is equal to 1).

DocID029621 Rev 3 9/24

STM32F413xG/xH STM32F423xH Description of device limitations

22

Workaround

If the non bufferable attribute is required for these registers, the software could perform a
read after the write to guaranty the completion of the write access.

2.2.5 Delay after an RCC peripheral clock enabling

Description

A delay between an RCC peripheral clock enable and the effective peripheral enabling
should be taken into account in order to manage the peripheral read/write to registers.

This delay depends on the peripheral’s mapping:

• If the peripheral is mapped on AHB: the delay should be equal to 2 AHB cycles.

• If the peripheral is mapped on APB: the delay should be equal to 1 + (AHB/APB
prescaler) cycles.

Workarounds

1. Use the DSB instruction to stall the Cortex-M4 CPU pipeline until the instruction is
completed.

2. Insert “n” NOPs between the RCC enable bit write and the peripheral register writes
(n = 2 for AHB peripherals, n = 1 + AHB/APB prescaler in case of APB peripherals).

2.2.6 Internal noise impacting the ADC accuracy

Description

An internal noise generated on VDD supplies and propagated internally may impact the ADC
accuracy.

This noise is always active whatever the power mode of the MCU (RUN or Sleep).

Workarounds

To adapt the accuracy level to the application requirements, set one of the following options:

• Option1

Set the ADCDC1 bit in the PWR_CR register.

• Option2

Set the corresponding ADCxDC2 bit in the SYSCFG_PMC register.

Only one option can be set at a time.

For more details on option 1 and option2 mechanisms, refer to AN4073.

2.2.7 In some specific cases, DMA2 data corruption occurs when managing
AHB and APB2 peripherals in a concurrent way

Description

When the DMA2 is managing concurrent requests of AHB and APB2 peripherals, the
transfer on the AHB could be performed several times.

Description of device limitations STM32F413xG/xH STM32F423xH

10/24 DocID029621 Rev 3

Impacted peripheral are:

• Quad-SPI: indirect mode read and write transfers

• FSMC: read and write operation with external device having FIFO

• GPIO: DMA2 transfers to GPIO registers (in memory-to-peripheral transfer mode).The
transfers from GPIOs register are not impacted.

The data corruption is due to multiple DMA2 accesses over AHB peripheral port impacting
peripherals embedding a FIFO.

For transfer to the internal SRAM through the DMA2 AHB peripheral port the accesses
could be performed several times but without data corruptions in cases of concurrent
requests.

Workaround

• The DMA2 AHB memory port must be used when reading/writing from/to Quad-SPI
and FSMC instead of DMA2 AHB default peripheral port.

• The DMA2 AHB memory port must be used when writing to GPIOs instead of DMA2
AHB default peripheral port.

Refer to application note AN4031 section “Take benefits of DMA2 controller and system
architecture flexibility” for more details about DMA controller feature.

2.3 FSMC

2.3.1 Dummy read cycles inserted when reading synchronous memories

Description

When performing a burst read access to a synchronous memory, two dummy read accesses
are performed at the end of the burst cycle whatever the type of AHB burst access.
However, the extra data values which are read are not used by the FSMC and there is no
functional failure.

Workaround

None.

2.4 QUADSPI

2.4.1 First nibble of data is not written after a dummy phase

Description:

• The first nibble of data to be written to an external flash is lost if:

• QUADSPI is used in indirect write mode, and

• at least one dummy cycle is used

Workaround

Do not use dummy cycles for creating latency between address phase and data phase, in

indirect write mode. Instead, use alternate bytes to substitute the dummy cycles. The same

DocID029621 Rev 3 11/24

STM32F413xG/xH STM32F423xH Description of device limitations

22

latency can be achieved if the number of dummy cycles to substitute with alternate-byte

cycles is an integer multiple of the number of cycles required for transferring one alternate

byte, as shown in the table:

For example, the latency corresponding to eight dummy cycles can be exactly substituted
with one single alternate byte in 1-data-line SDR mode, but two alternate bytes are required
in 2-data-line SDR mode. One single dummy cycle can only exactly be substituted in
4-data-line DDR mode, using one alternate byte.

Note: This is also applicable to dual-flash memory mode.

2.4.2 Wrong data can be read in memory-mapped after an indirect mode
operation

Description

Wrong data can be read with the first memory-mapped read request in the following
condition:

Quad-SPI peripheral entered memory-mapped mode with both LSB bits in the address
register QUADSPI_AR[1:0] not reset.

Workaround

QUADSPI_AR register must be reset just before entering memory-mapped mode.

Depending on the current Quad-SPI operating mode, one of the two workarounds listed
below can be used:

• Indirect read mode: reset address register then do an abort request to stop reading and
clear busy bit. Then enter to memory-mapped mode.

• Indirect write mode: reset the address register then enter to memory-mapped mode.

Note: User should take care to not write to QUADSPI_DR register after resetting address register.

QUADSPI mode Number of cycles per alternative byte

4-data-line DDR 1

4-data-line SDR 2

2-data-line SDR 4

1-data-line SDR 8

Description of device limitations STM32F413xG/xH STM32F423xH

12/24 DocID029621 Rev 3

2.5 ADC

2.5.1 ADC sequencer modification during conversion

Description

If an ADC conversion is started by software (writing the SWSTART bit), and if the
ADC_SQRx or ADC_JSQRx registers are modified during the conversion, the current
conversion is reset and the ADC does not restart a new conversion sequence automatically.

If an ADC conversion is started by hardware trigger, this limitation does not apply. The ADC
restarts a new conversion sequence automatically.

Workaround

When an ADC conversion sequence is started by software, a new conversion sequence can
be restarted only by setting the SWSTART bit in the ADC_CR2 register.

2.6 DAC

2.6.1 DMA underrun flag management

Description

If the DMA is not fast enough to input the next digital data to the DAC, as a consequence,
the same digital data is converted twice. In these conditions, the DMAUDR flag is set, which
usually leads to disable the DMA data transfers. This is not the case: the DMA is not
disabled by DMAUDR=1, and it keeps servicing the DAC.

Workaround

To disable the DAC DMA stream, reset the EN bit (corresponding to the DAC DMA stream)
in the DMA_SxCR register.

2.6.2 DMA request not automatically cleared by DMAEN=0

Description

If the application wants to stop the current DMA-to-DAC transfer, the DMA request is not
automatically cleared by DMAEN=0, or by DACEN=0.

If the application stops the DAC operation while the DMA request is high, the DMA request
will be pending while the DAC is reinitialized and restarted; with the risk that a spurious
unwanted DMA request is serviced as soon as the DAC is re-enabled.

Workaround

To stop the current DMA-to-DAC transfer and restart, the following sequence should be
applied:

DocID029621 Rev 3 13/24

STM32F413xG/xH STM32F423xH Description of device limitations

22

1. Check if DMAUDR is set.

2. Clear the DAC/DMAEN bit.

3. Clear the EN bit of the DAC DMA/Stream

4. Reconfigure by software the DAC, DMA, triggers etc.

5. Restart the application.

2.7 IWDG

2.7.1 RVU and PVU flags are not reset in STOP mode

Description

The RVU and PVU flags of the IWDG_SR register are set by hardware after a write access
to the IWDG_RLR and the IWDG_PR registers, respectively. If the Stop mode is entered
immediately after the write access, the RVU and PVU flags are not reset by hardware.

Before performing a second write operation to the IWDG_RLR or the IWDG_PR register,
the application software must wait for the RVU or PVU flag to be reset. However, since the
RVU/PVU bit is not reset after exiting the Stop mode, the software goes into an infinite loop
and the independent watchdog (IWDG) generates a reset after the programmed timeout
period.

Workaround

Wait until the RVU or PVU flag of the IWDG_SR register is reset before entering the Stop
mode. Limitation described here.

2.8 I2C

2.8.1 SMBus standard not fully supported

Description

The I2C peripheral is not fully compliant with the SMBus v2.0 standard since It does not
support the capability to NACK an invalid byte/command.

Workaround

A higher-level mechanism should be used to verify that a write operation is being performed
correctly at the target device, such as:

1. Using the SMBAL pin if supported by the host

2. the alert response address (ARA) protocol

3. the Host notify protocol

2.8.2 Start cannot be generated after a misplaced Stop

Description

If a master generates a misplaced Stop on the bus (bus error), the peripheral cannot
generate a Start anymore.

Description of device limitations STM32F413xG/xH STM32F423xH

14/24 DocID029621 Rev 3

Workaround

In the I²C standard, it is allowed to send a Stop only at the end of the full byte (8 bits +
acknowledge), so this scenario is not allowed. Other derived protocols like CBUS allow it,
but they are not supported by the I²C peripheral.

A software workaround consists in asserting the software reset using the SWRST bit in the
I2C_CR1 control register.

2.8.3 Mismatch on the “Setup time for a repeated Start condition” timing
parameter

Description

In case of a repeated Start, the “Setup time for a repeated Start condition” (named Tsu;sta in
the I²C specification) can be slightly violated when the I²C operates in Master Standard
mode at a frequency between 88 kHz and 100 kHz.

The limitation can occur only in the following configuration:

• in Master mode

• in Standard mode at a frequency between 88 kHz and 100 kHz (no limitation in Fast-
mode)

• SCL rise time:

– If the slave does not stretch the clock and the SCL rise time is more than 300 ns (if
the SCL rise time is less than 300 ns, the limitation cannot occur)

– If the slave stretches the clock

The setup time can be violated independently of the APB peripheral frequency.

Workaround

Reduce the frequency down to 88 kHz or use the I²C Fast-mode, if supported by the slave.

2.8.4 Data valid time (tVD;DAT) violated without the OVR flag being set

Description

The data valid time (tVD;DAT, tVD;ACK) described by the I²C standard can be violated (as well
as the maximum data hold time of the current data (tHD;DAT)) under the conditions described
below. This violation cannot be detected because the OVR flag is not set (no transmit buffer
underrun is detected).

This limitation can occur only under the following conditions:

• in Slave transmit mode

• with clock stretching disabled (NOSTRETCH=1)

• if the software is late to write the DR data register, but not late enough to set the OVR
flag (the data register is written before)

Workaround

If the master device allows it, use the clock stretching mechanism by programming the bit
NOSTRETCH=0 in the I2C_CR1 register.

DocID029621 Rev 3 15/24

STM32F413xG/xH STM32F423xH Description of device limitations

22

If the master device does not allow it, ensure that the software is fast enough when polling
the TXE or ADDR flag to immediately write to the DR data register. For instance, use an
interrupt on the TXE or ADDR flag and boost its priority to the higher level.

2.8.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C bus
higher than ((VDD+0.3) / 0.7) V

Description

When an external legacy I2C bus voltage (VDD_I2C) is set to 5 V while the MCU is powered
from VDD, the internal 5-Volt tolerant circuitry is activated as soon the input voltage (VIN)
reaches the VDD + diode threshold level. An additional internal large capacitance then
prevents the external pull-up resistor (RP) from rising the SDA and SCL signals within the
maximum timing (tr) which is 300 ns in fast mode and 1000 ns in Standard mode.

The rise time (tr) is measured from VIL and VIH with levels set at 0.3VDD_I2C and
0.7VDD_I2C.

Workaround

The external VDD_I2C bus voltage should be limited to a maximum value of
((VDD+0.3) / 0.7) V. As a result, when the MCU is powered from VDD=3.3 V, VDD_I2C
should not exceed 5.14 V to be compliant with I2C specifications.

2.9 FMPI2C

2.9.1 Wrong data sampling when data set-up time (tSU;DAT) is smaller
one FMPI2CCLK period

Description

The I2C bus specification and user manual specifies a minimum data set-up time (tSU;DAT)

at:

• 250ns in Standard-mode,

• 100 ns in Fast-mode,

• 50 ns in Fast-mode Plus.

The I2C SDA line is not correctly sampled when tSU;DAT is smaller than one FMPI2CCLK
(FMPI2C clock) period: the previous SDA value is sampled instead of the current one. This
can result in a wrong slave address reception, a wrong received data byte, or a wrong
received acknowledge bit.

Workaround

Increase the I2CCLK frequency to get I2CCLK period smaller than the transmitter minimum
data set-up time. Or, if it is possible, increase the transmitter minimum data set-up time.

Description of device limitations STM32F413xG/xH STM32F423xH

16/24 DocID029621 Rev 3

2.10 USART

2.10.1 Idle frame is not detected if receiver clock speed is deviated

Description

If the USART receives an idle frame followed by a character, and the clock of the transmitter
device is faster than the USART receiver clock, the USART receive signal falls too early
when receiving the character start bit, with the result that the idle frame is not detected
(IDLE flag is not set).

Workaround

None.

2.10.2 In full duplex mode, the Parity Error (PE) flag can be cleared by
writing to the data register

Description

In full duplex mode, when the Parity Error flag is set by the receiver at the end of a
reception, it may be cleared while transmitting by reading the USART_SR register to check
the TXE or TC flags and writing data to the data register.

Consequently, the software receiver can read the PE flag as '0' even if a parity error
occurred.

Workaround

The Parity Error flag should be checked after the end of reception and before transmission.

2.10.3 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection

Description

The USART receiver is in Mute mode and is configured to exit the Mute mode using the
address mark detection. When the USART receiver recognizes a valid address with a parity
error, it exits the Mute mode without setting the Parity Error flag.

Workaround

None.

2.10.4 Break frame is transmitted regardless of nCTS input line status

Description

When CTS hardware flow control is enabled (CTSE = 1) and the Send Break bit (SBK) is
set, the transmitter sends a break frame at the end of the current transmission regardless of
nCTS input line status.

Consequently, if an external receiver device is not ready to accept a frame, the transmitted
break frame is lost.

DocID029621 Rev 3 17/24

STM32F413xG/xH STM32F423xH Description of device limitations

22

Workaround

None

2.10.5 nRTS signal abnormally driven low after a protocol violation

Description

When RTS hardware flow control is enabled, the nRTS signal goes high when data is
received. If this data was not read and new data is sent to the USART (protocol violation),
the nRTS signal goes back to low level at the end of this new data.

Consequently, the sender gets the wrong information that the USART is ready to receive
further data.

On USART side, an overrun is detected, which indicates that data has been lost.

Workaround

Workarounds are required only if the other USART device violates the communication
protocol, which is not the case in most applications.

Two workarounds can be used:

• After data reception and before reading the data in the data register, the software takes
over the control of the nRTS signal as a GPIO and holds it high as long as needed. If
the USART device is not ready, the software holds the nRTS pin high, and releases it
when the device is ready to receive new data.

• The time required by the software to read the received data must always be lower than
the duration of the second data reception. For example, this can be ensured by treating
all the receptions by DMA mode.

2.10.6 Start bit detected too soon when sampling for NACK signal
from the smartcard

Description

In the ISO7816, when a character parity error is incorrect, the Smartcard receiver shall
transmit a NACK error signal at (10.5 +/- 0.2) etu after the character START bit falling edge.
In this case, the USART transmitter should be able to detect correctly the NACK signal by
sampling at (11.0 +/-0.2) etu after the character START bit falling edge.

The USART peripheral used in Smartcard mode doesn't respect the (11 +/-0.2) etu timing,
and when the NACK falling edge arrives at 10.68 etu or later, the USART might misinterpret
this transition as a START bit even if the NACK is correctly detected.

Workaround

None

Description of device limitations STM32F413xG/xH STM32F423xH

18/24 DocID029621 Rev 3

2.10.7 Break request can prevent the Transmission Complete flag (TC)
from being set

Description

After the end of transmission of a data (D1), the Transmission Complete (TC) flag will not be
set if the following conditions are met:

• CTS hardware flow control is enabled.

• D1 is being transmitted.

• A break transfer is requested before the end of D1 transfer.

• nCTS is de-asserted before the end of D1 data transfer.

Workaround

If the application needs to detect the end of a data transfer, the break request should be
issued after checking that the TC flag is set.

2.10.8 Guard time is not respected when data are sent on TXE events

Description

In smartcard mode, when sending a data on TXE event, the programmed guard time is not
respected i.e. the data written in the data register is transferred on the bus without waiting
the completion of the guardtime duration corresponding to the previous transmitted data.

Workaround

Write the data after TC is set because in smartcard mode, the TC flag is set at the end of the
guard time duration.

2.10.9 nRTS is active while RE or UE = 0

Description

The nRTS line is driven low as soon as RTSE bit is set even if the USART is disabled (UE =
0) or if the receiver is disabled (RE=0) i.e. not ready to receive data.

Workaround

Configure the I/O used for nRTS as an alternate function after setting the UE and RE bits.

2.11 SPI

2.11.1 Wrong CRC calculation when the polynomial is even

Description

When the CRC is enabled, the CRC calculation will be wrong if the polynomial is even.

Work-around:

Use odd polynomial.

DocID029621 Rev 3 19/24

STM32F413xG/xH STM32F423xH Description of device limitations

22

2.11.2 BSY bit may stay high at the end of a data transfer in slave mode

Description

BSY flag may sporadically remain high at the end of a data transfer in Slave mode. The
issue appears when an accidental synchronization happens between internal CPU clock
and external SCK clock provided by master.

This is related to the end of data transfer detection while the SPI is enabled in Slave mode.

As a consequence, the end of data transaction may be not recognized when software needs
to monitor it (e.g. at the end of session before entering the low-power mode or before
direction of data line has to be changed at half duplex bidirectional mode). The BSY flag is
unreliable to detect the end of any data sequence transaction.

Workaround

There are next possible workarounds in dependency on the SPI mode:

• When NSS hardware management is applied and NSS signal is provided by master,
the end of a transaction can be detected by the NSS polling by slave.

• If SPI receiving mode is enabled, the end of a transaction with master can be detected
by the corresponding RXNE event signalizing the last data transfer completion.

• In SPI transmit mode, user can check the BSY under timeout corresponding to the time
necessary to complete the last data frame transaction. The timeout should be
measured from TXE event signalizing the last data frame transaction start (it is raised
once the second bit transaction is ongoing). Either BSY becomes low normally or the
timeout expires when the synchronization issue happens.

When upper workarounds are not applicable, the following sequence can be used to
prevent the synchronization issue at SPI transmit mode.

1. Write last data to data register

2. Poll TXE until it becomes high to ensure the data transfer has started

3. Disable SPI by clearing SPE while the last data transfer is still ongoing

4. Poll the BSY bit until it becomes low

5. The BSY flag works correctly and can be used to recognize the end of the transaction.

Note: This sequence preventing the issue can be used only when CPU has enough performance
to disable SPI after TXE event is detected while the data frame transfer is still ongoing. It is
impossible to achieve it when ratio between CPU and SPI clock is low and data frame is
short especially. In this specific case timeout can be measured from TXE, while calculating
fixed number of CPU clock periods corresponding to the time necessary to complete the
data frame transaction.

2.11.3 Corrupted last bit of data and/or CRC, received in Master mode
with delayed SCK feedback

Description

In receive transaction, in both I2S and SPI Master modes, the last bit of the transacted
frame is not captured when the signal provided by internal feedback loop from the SCK pin
exceeds a critical delay. The lastly transacted bit of the stored data then keeps the value
from the pattern received previously. As a consequence, the last receive data bit may be

Description of device limitations STM32F413xG/xH STM32F423xH

20/24 DocID029621 Rev 3

wrong and/or the CRCERR flag can be unduly asserted in the SPI mode if any data under
check sum and/or just the CRC pattern is wrongly captured.

In SPI mode, data are synchronous with the APB clock. A delay of up to two APB clock
periods can thus be tolerated for the internal feedback delay. The I2S mode is more
sensitive than the SPI mode since the SCK clock is not synchronized with the APB. In this
case, the margin of the internal feedback delay is lower than one APB clock period.

The main factors contributing to the delay increase are low VDD level, high temperature,
high SCK pin capacitive load and low SCK I/O output speed. The SPI communication speed
has no impact.

Workaround

The following workaround can be adopted, jointly or individually:

• Decrease the APB clock.

• Configure the IO pad of the SCK pin to be faster.

Table 5 gives the maximum allowable APB frequency versus GPIOx_OSPEEDR output
speed control field setting for the SCK pin, at 30 pF of capacitive load.

2.11.4 CRC can be corrupted when full duplex is handled by DMA and
reception DMA channel is set to number of data frames plus CRC
length

Description

When SPI is handled by DMA and configured at full duplex master or slave mode with CRC
enabled, the CRC computation can be corrupted when it is frozen temporary under specific
condition for an ongoing frame. This can happen when DMA counters for data reception and
transmission are mis-balanced and DMA receive counter reaches zero just when the
transaction is completed. It makes an internal signal dedicated normally for receive only
mode not properly cleared and pending. This happens when DMA reception counter
includes CRC pattern length additionally. Consequently, during a next transaction session,
whenever the DMA TXE event service comes too late (due to some other BUS matrix
activity e.g. when the DMA is servicing request from another channel) then the pending
internal signal is wrongly propagated into the unexpected CRC freezing even in full duplex
mode.

Table 5. Maximum allowable APB frequency at 30 pF load

Setting of OSPEEDR bits [1:0]
for the SCK pin

Maximum APB frequency
for SPI [MHz]

Maximum APB frequency
for I2S [MHz]

Very High (11) 100
84

(100 if VDD > 2.7 V)

High (10) 100 60

Medium (01) 80 30

Low (00) 28 14

DocID029621 Rev 3 21/24

STM32F413xG/xH STM32F423xH Description of device limitations

22

Workaround

Possible workarounds are focused to assure clearing of the internal CRC freezing signal
dedicated for receive only mode before a transaction starts. This can be done by

- Setting of the DMA data counters for reception and transmission equal to assure proper
clearing of the signal at the end of every transaction (while CRC pattern is performed). At
this case, the received CRC data reading is not handled by DMA and user has to handle
reading out this information from data register by software.

- Performing HW reset of the SPI prior a transaction starts via peripheral reset register (if
applicable)

2.12 SDIO

2.12.1 Wrong CCRCFAIL status after a response without CRC is received

Description

The CRC is calculated even if the response to a command does not contain any CRC field.
As a consequence, after the SDIO command IO_SEND_OP_COND (CMD5) is sent, the
CCRCFAIL bit of the SDIO_STA register is set.

Workaround

The CCRCFAIL bit in the SDIO_STA register shall be ignored by the software. CCRCFAIL
must be cleared by setting CCRCFAILC bit of the SDIO_ICR register after reception of the
response to the CMD5 command.

2.12.2 No underrun detection with wrong data transmission

Description

In case there is an ongoing data transfer from the SDIO host to the SD card and the
hardware flow control is disabled (bit 14 of the SDIO_CLKCR is not set), if an underrun
condition occurs, the controller may transmit a corrupted data block (with wrong data word)
without detecting the underrun condition when the clock frequencies have the following
relationship:

[3 x period(PCLK2) + 3 x period(SDIOCLK)] >= (32 / (BusWidth)) x period(SDIO_CK)

Workaround

Avoid the above-mentioned clock frequency relationship, by:

• Incrementing the APB frequency

• or decreasing the transfer bandwidth

• or reducing SDIO_CK frequency

Description of device limitations STM32F413xG/xH STM32F423xH

22/24 DocID029621 Rev 3

2.13 bxCAN

2.13.1 bxCAN time triggered communication mode not supported

Description

The time triggered communication mode described in the reference manual is not
supported. As a result timestamp values are not available. TTCM bit must be kept cleared in
the CAN_MCR register (time triggered communication mode disabled).

Workaround

None

DocID029621 Rev 3 23/24

STM32F413xG/xH STM32F423xH Revision history

23

3 Revision history

Table 6. Document revision history

Date Revision Changes

12-Oct-2016 1 Initial release.

21-Nov-2016 2

Changed confidentiality level from ST Restricted to
Public.

Updated:

– Table 4: Summary of silicon limitations

– Section 2.11.2: BSY bit may stay high at the end of a
data transfer in slave mode

– Section 2.11.3: Corrupted last bit of data and/or CRC,
received in Master mode with delayed SCK feedback

Added:

Table 5: Maximum allowable APB frequency at 30 pF
load

12-Oct-2017 3

Added:

– Section 2.11.4: CRC can be corrupted when full
duplex is handled by DMA and reception DMA
channel is set to number of data frames plus CRC
length

– Section 2.4.2: Wrong data can be read in memory-
mapped after an indirect mode operation

Modified:

– Section 2.4.1: First nibble of data is not written after a
dummy phase

STM32F413xG/xH STM32F423xH

24/24 DocID029621 Rev 3

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	Table 1. Device summary
	Table 2. Device variants
	1 Summary of device limitations
	Table 3. Summary of device limitations

	2 Description of device limitations
	2.1 Core
	Table 4. Cortex-M4 core limitations and impact on microcontroller behavior
	2.1.1 Cortex-M4 interrupted loads to stack pointer can cause erroneous behavior
	2.1.2 VDIV or VSQRT instructions might not complete correctly when very short ISRs are used of the limitation here

	2.2 System
	2.2.1 Debugging Sleep/Stop mode with WFE/WFI entry
	2.2.2 Wakeup sequence from Standby mode when using more than one wakeup source
	2.2.3 Full JTAG configuration without NJTRST pin cannot be used
	2.2.4 MPU attribute to RTC and IWDG registers could be managed incorrectly
	2.2.5 Delay after an RCC peripheral clock enabling
	2.2.6 Internal noise impacting the ADC accuracy
	2.2.7 In some specific cases, DMA2 data corruption occurs when managing AHB and APB2 peripherals in a concurrent way

	2.3 FSMC
	2.3.1 Dummy read cycles inserted when reading synchronous memories

	2.4 QUADSPI
	2.4.1 First nibble of data is not written after a dummy phase
	2.4.2 Wrong data can be read in memory-mapped after an indirect mode operation

	2.5 ADC
	2.5.1 ADC sequencer modification during conversion

	2.6 DAC
	2.6.1 DMA underrun flag management
	2.6.2 DMA request not automatically cleared by DMAEN=0

	2.7 IWDG
	2.7.1 RVU and PVU flags are not reset in STOP mode

	2.8 I2C
	2.8.1 SMBus standard not fully supported
	2.8.2 Start cannot be generated after a misplaced Stop
	2.8.3 Mismatch on the “Setup time for a repeated Start condition” timing parameter
	2.8.4 Data valid time (tVD;DAT) violated without the OVR flag being set
	2.8.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C bus higher than ((VDD+0.3) / 0.7) V

	2.9 FMPI2C
	2.9.1 Wrong data sampling when data set-up time (tSU;DAT) is smaller one FMPI2CCLK period

	2.10 USART
	2.10.1 Idle frame is not detected if receiver clock speed is deviated
	2.10.2 In full duplex mode, the Parity Error (PE) flag can be cleared by writing to the data register
	2.10.3 Parity Error (PE) flag is not set when receiving in Mute mode using address mark detection
	2.10.4 Break frame is transmitted regardless of nCTS input line status
	2.10.5 nRTS signal abnormally driven low after a protocol violation
	2.10.6 Start bit detected too soon when sampling for NACK signal from the smartcard
	2.10.7 Break request can prevent the Transmission Complete flag (TC) from being set
	2.10.8 Guard time is not respected when data are sent on TXE events
	2.10.9 nRTS is active while RE or UE = 0

	2.11 SPI
	2.11.1 Wrong CRC calculation when the polynomial is even
	2.11.2 BSY bit may stay high at the end of a data transfer in slave mode
	2.11.3 Corrupted last bit of data and/or CRC, received in Master mode with delayed SCK feedback
	Table 5. Maximum allowable APB frequency at 30 pF load

	2.11.4 CRC can be corrupted when full duplex is handled by DMA and reception DMA channel is set to number of data frames plus CRC length

	2.12 SDIO
	2.12.1 Wrong CCRCFAIL status after a response without CRC is received
	2.12.2 No underrun detection with wrong data transmission

	2.13 bxCAN
	2.13.1 bxCAN time triggered communication mode not supported

	3 Revision history
	Table 6. Document revision history

