

ST offering in Wearable

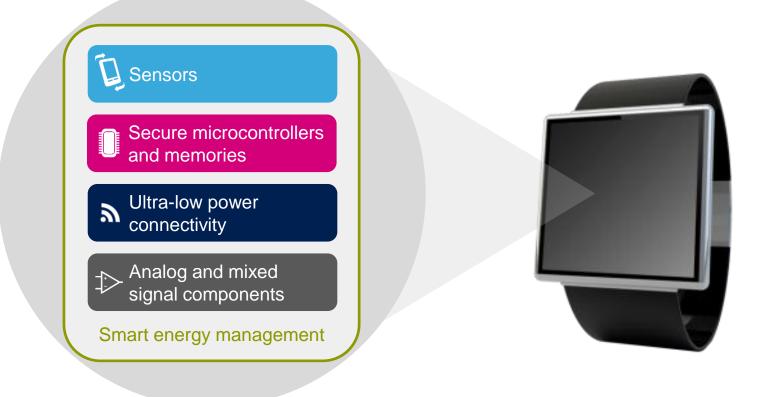
Analog and Mixed Signal Portfolio

March 2014

Wearable devices attributes 2

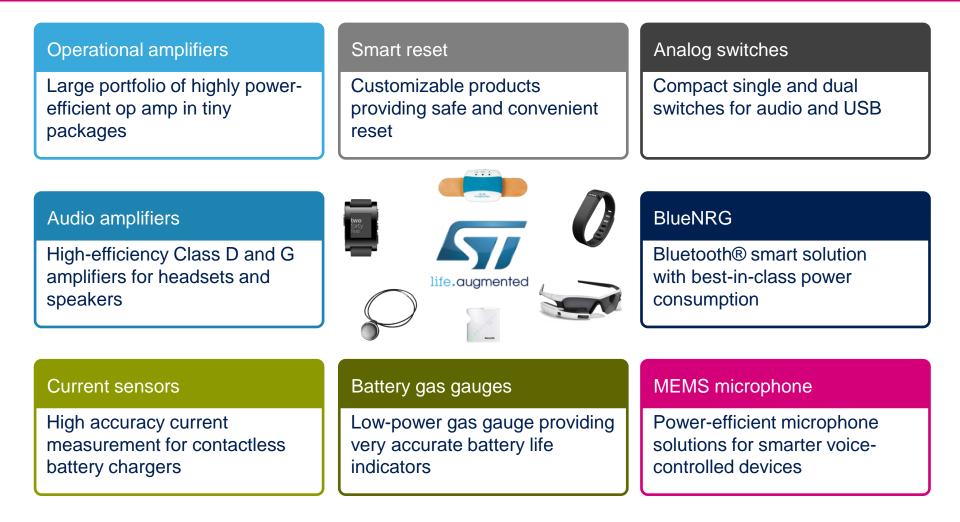
Devices being worn for an extended period of time with the user experience significantly enhanced as a result

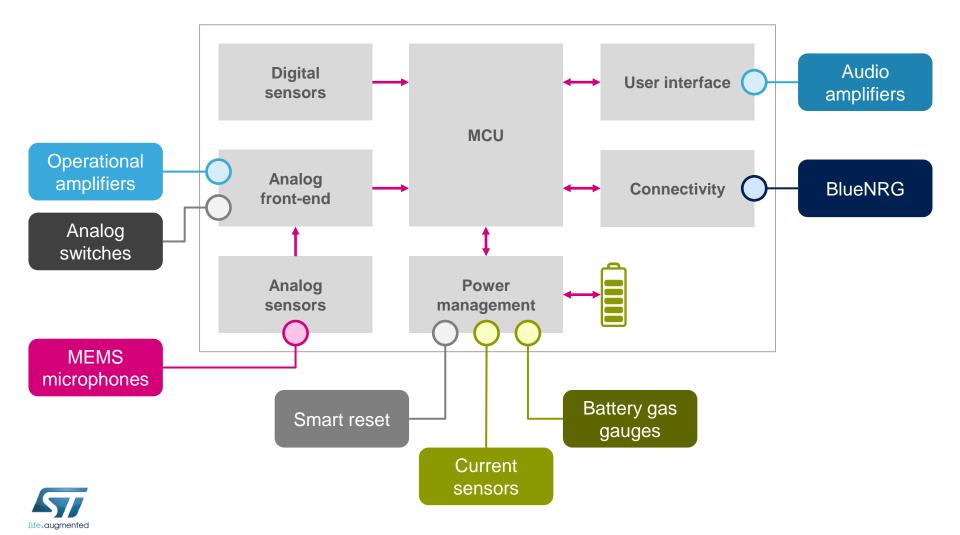
Market and Applications


Fitness and Wellness – monitor activity and emotions

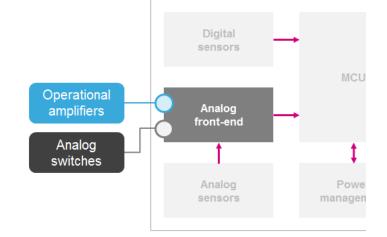
- Activity monitors, foot pods and pedometers, sleep sensors, heart rate monitors
- Emotional measurement
- Smart clothing, smart watches, heads-up displays
- Healthcare and Medical monitor vital signs
 - Blood pressure monitors, ECG monitors, continuous alucose monitoring
 - Insulin pumps, drug delivery products
- **Infotainment** entertain and enhance lifestyle
 - Headsets
 - Smart glasses, smart watches
- **Industrial** receive/transmit real-time data
 - Hand-worn terminals, heads-up displays, smart clothing, wearable detection devices

ST Offering for Wearable


The only company to offer a complete smart system


ST Analog and Mixed signal portfolio for wearable devices

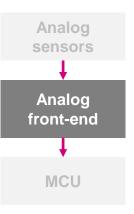
The most complete set of building blocks for wearable devices



Wearable devices Analog and mixed signal products partitioning

6

Solutions for Analog Front-End



 \mathbf{i}

Analog Front-End

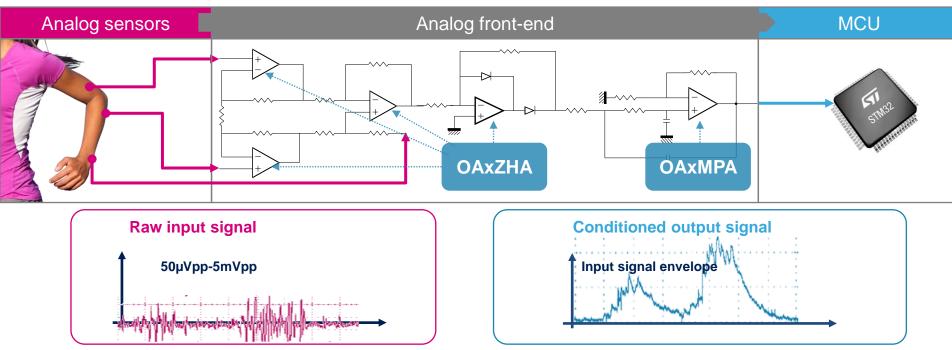
Analog transducers, getting the best from your sensor

Analog sensors need signal transducers to deliver the information to the MCU

- Accurate and stable to guarantee the maximum precision of the information
- Low power to guarantee a longer user experience
- Small to be integrated in the most stylish and thin designs

ST offers a **dedicated set** of op amp to deliver **the best match** of current consumption and precision, for a wide range of applications

	Input offset voltage [µV]	Input offset voltage drift [µV]	Supply current [µA]	GBP [kHz]	Supply voltage [V]
OAxNP Very low power	100	5	0.6	8	1.5 – 5.5
OAxMPA Low power precision	50	10	9	120	1.5 – 5.5
OAxZHA High precision zero drift	1	0.01	28	400	1.8 – 5.5



http://www.st.com/web/en/catalog/sense_power/FM123/SC61

Analog Front-End

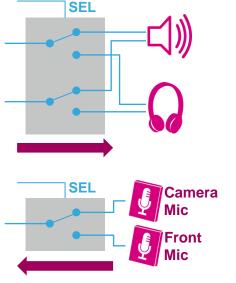
Signal transducers application: electromyography

A **low input offset voltage with zero drift** amplifier is mandatory. Otherwise the electrodes information would be less accurate or lost

OAxZHA family is the perfect match offering:

- V_{IO}= 1µV
- $\Delta V_{IO} / \Delta T = 0.010 \mu V$

Once the signal dynamic has been restored **precision** and **micro power consumption** amplifiers are needed before the signal is fed to the MCU


OAxMPA is the perfect match offering:

- V_{IO}= 50µV
- I_{CC} = 9µA

Analog switches

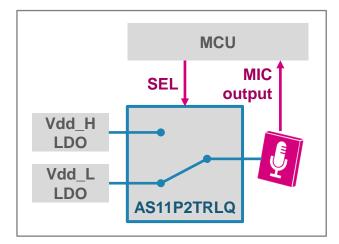
Analog Front-End Switches

In portable applications, switches are used to route a great variety of signal – audio to the speaker or the headphones, or other signal from and towards sensors

- Guarantee a simple yet efficient system implementation
- Compatibility with high-speed signals, for USB 2.0 applications

ST analog switches line up is meant **to cover all the possible signal** typologies from audio to USB, to fit most of the applications

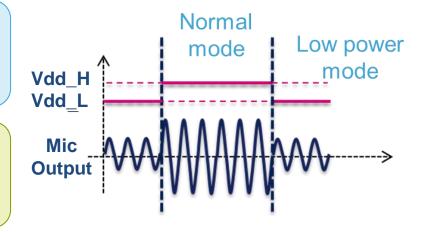
	Supply voltage [V]	Supply current [µA]	Off isolation [dB]	X-Talk [dB]	Bandwidth [MHz]
AS11P2TLRQ SPDT single	1.65 - 4.5	0.1 (max)	-75 @ 100Hz	-80 @100Hz	150
AS21P2TLRQ SPDT dual	1.65 - 4.3	0.05	-72 @ 100 Hz	-66 @100 Hz	55
AS21P2THBQ SPDT Dual	1.65 - 4.3	0.2 (max)	-78 @ 1 MHz	-78 @1 MHz	800


http://www.st.com/web/catalog/sense_power/FM1961/SC650

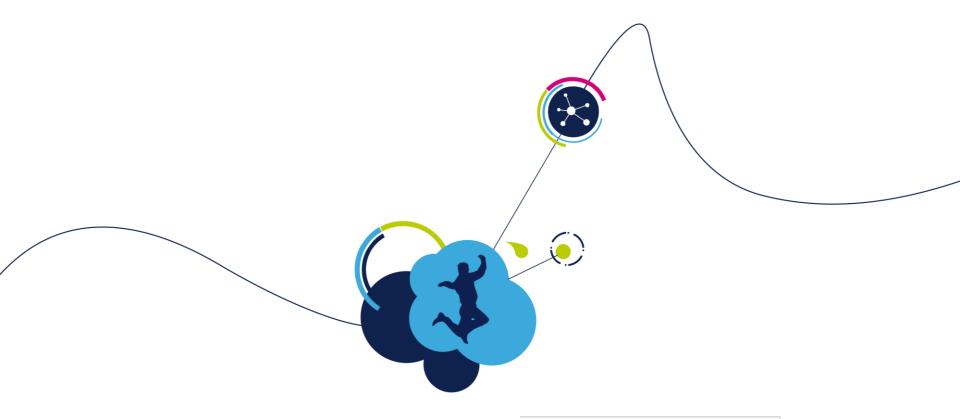
Analog Front-End

Switches application: dual mode microphones

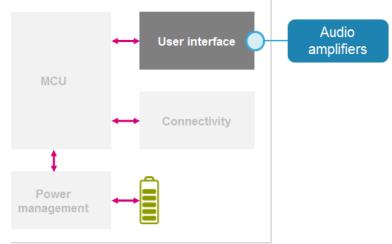
AS11P2TLRQ analog switch can be used to supply the mic with different voltage level so to enable the different operating modes depending on the MCU needs thus enabling voice activity detection features



High Supply voltage Vdd_H


Normal mode: the acoustical parameters are set to the optimal level for voice control applications

Low power voltage Vdd_L


Sniffing mode: the device reduces the power consumption at minimum whilst guaranteeing an adequate set of performances for voice activity detection

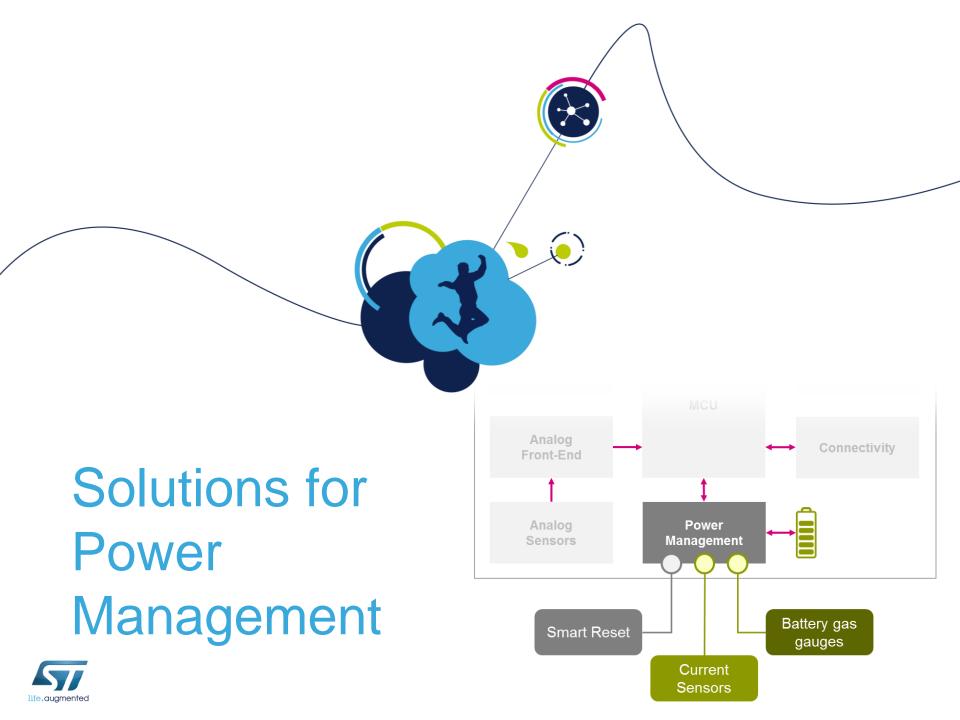
Solutions for User Interface

User Interface Answering the user

ST offers **highly-efficient** devices capable of delivering **high quality** audio into **small**, **low power** solutions

CLASS G HEADPHONE AMPLIFIER

A22H165 A22H165M (μ-less)


- Power supply range 2.3 V 4.8 V
- Low stand by current 0.6 µA
- Vout = **0.8 Vrms into 16** Ω, at 1 % THD+N, VCC = 3.6 V
- SNR = 100 dB @ 1 kHz
- Reduced external BOM
- Flip-chip package

3W CLASS **D** MONO SPEAKER AMPLIFIER

		A21SP16J
	Low power	Power supply range 2.4 V - 5.5 V
		 Low stand by current <1 μA
	High quality	 Pout = 0.8 W into 8 Ω, at 10 % THD+N, VCC = 3 V
		 SNR = 85 dB @ 1 kHz
		Reduced external BOM
J	Small size	Small flip-chip package

http://www.st.com/web/catalog/sense_power/FM125/CL1503/SC977

Power Management Intelligent battery monitoring

ST offers an **integrated** solution combining **current integration** and **voltage variation** over the time thus providing **the most accurate** battery status measurement

	GG25LJ - Gas gauge IC with alarm output for wearable devices
	Coulomb counter mode, voltage mode and mixed mode operations
Accuracy	 0.25 % accuracy battery voltage monitoring
Robustness	Analog and temperature compensation
	Internal temperature sensor
Flexibility	 Low battery level alarm output with programmable thresholds
	Custom battery OCV curve
Low power	 2 μA in standby, 45 μA in operating
Small size	 Flip chip, 2.01 x 1.37 x 0.6 mm, 10 bumps, 0.4 mm pitch

http://www.st.com/web/catalog/sense_power/FM142/CL848/SC274

Power Management Current sensing

Power management in wearable devices

Wired or wireless battery chargers

Precision current sources from sensors

Photovoltaic systems

ST current sensing ICs portfolio cover most of the application needs

- Independent supply and common mode voltages
- Wide supply voltage range
- Selectable gains
- Low power solutions

	Independent V _{IO} and V _{CC}	Common mode operating range [V]	Supply voltage range [V]	Supply current [µA]	Gain [V/V]
CS30	\checkmark	2.8 - 30.0	4.0 - 24.0	165	20. 50, 100 fixed internally
CS70	\checkmark	2.9 - 70.0 -2.1 - 65.0	2.7 - 5.5	200	20, 50, 100 pin selectable

http://www.st.com/web/en/catalog/sense_power/FM123/SC1264

Power Management

Current sensing application: wireless battery charging

Application example

When swimming water pressure can reach up to 5 atm

Wearable technology **needs to be sealed**. All the electrical connections with the external have to be removed

Wireless battery charging is mandatory

High side current sensing through the transmitter coil

19V power source CS70 Digital controller Digital controller Transmitter / Base station Transmitter / Base station

Power Management Smart resetting

🛕 Sorry!

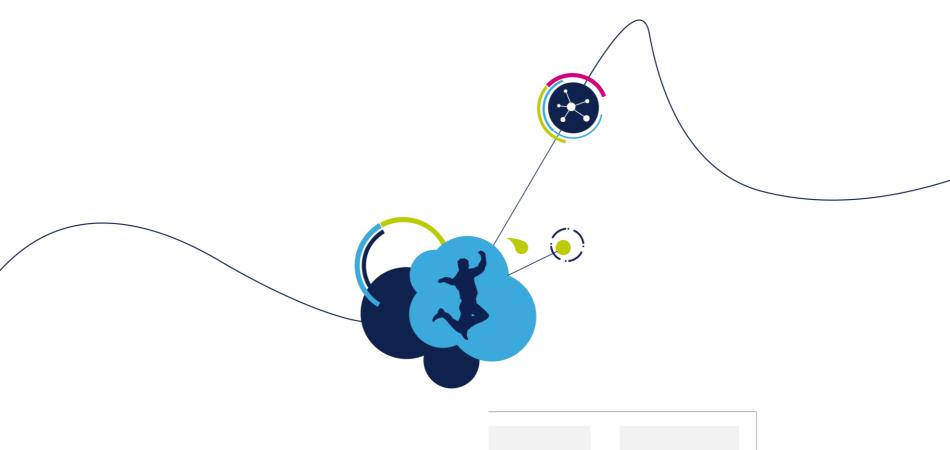
Force close

The application Launcher (process com.android. launcher2) has stopped unexpectedly. Please try again.

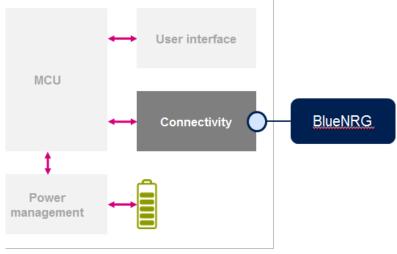
Report

Wearable devices getting **smarter**, software **complexity grows** exponentially

The possibility of and **end-user misuse** of the product **increases accordingly**

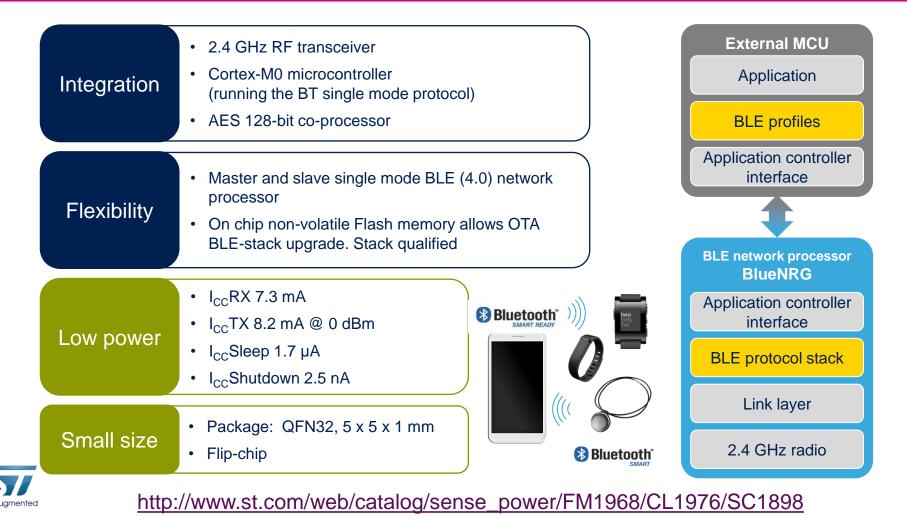

System crashes are likely to happen and it is mandatory to provide an escape sequence to restart the application and maintain a perception of quality

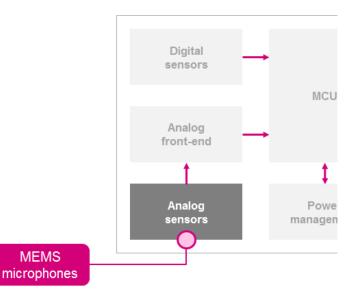
ST smart reset IC line up provide a full set of functionalities guaranteeing an escape sequence from OS or application failures


	# of RST button	# of PWR button	Supply voltage range [V]	Supply current [µA]	RST assertion time
SR1 Smart reset	1	-	2.0 - 5.5	0.4	fixed at factory
SR2 Smart reset	2	-	1.65 - 5.5	1.1	fixed at factory
SRC0 Smart power and reset	1	1	1.6 - 5.5	0.6	selectable via ext condenser

http://www.st.com/web/en/catalog/sense_power/FM1946/SC1296 http://www.st.com/web/catalog/sense_power/FM1946/SC1753

Solutions for Connectivity





BlueNRG the Bluetooth® SMART solution

Single mode Bluetooth® SMART wireless network processor

Solutions for Analog Sensors

 \mathbf{i}

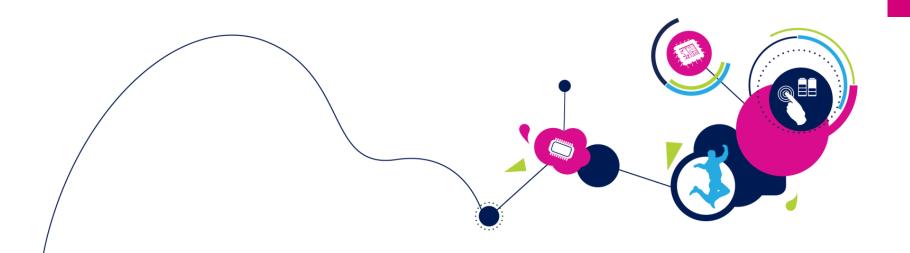
MEMS microphones

MEMS microphones The voice control enablers

It enables fashionable designs by reducing the number of button.

Next microphones trend is to allow dual mode operations:

Normal mode: the acoustical parameters are set to the optimal level for voice control applications **Sniffing mode**: the device reduces the power consumption at minimum whilst guaranteeing an adequate set of performances for voice activity detection


ST MEMS Microphones pave the road toward **smarter** and **efficient voice-controlled** devices combining performances, small size and low power consumption

	Sensitivity [dBV]	SNR [dB]	AOP [dB]	Supply voltage range [V]	Supply current [µA]	Dual mode
MP23AB02B	-38±3	64	125	4.0.00	150	-
MP23ABE03 *	-38±1	64	125	1.6 - 3.6	140	-
MP23ABE03DM *	-38±1	64	125	1.6 - 3.6	140 (normal) 26 (sniff)	\checkmark

* Q3 2014

http://www.st.com/web/en/catalog/sense_power/FM89/SC1922

ST stands for olife.augmented

