www.ti.com

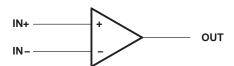
SLLS633C-OCTOBER 2004-REVISED NOVEMBER 2006

FEATURES

- Dual-Supply Operation . . . ±5 V to ±18 V
- Low Noise Voltage . . . 4.5 nV/√Hz
- Low Input Offset Voltage . . . 0.15 mV
- Low Total Harmonic Distortion . . . 0.002%
- High Slew Rate . . . 7 V/μs
- High-Gain Bandwidth Product . . . 16 MHz
- High Open-Loop AC Gain . . . 800 at 20 kHz
- Large Output-Voltage Swing . . . 14.1 V to –14.6 V
- Excellent Gain and Phase Margins

OUT1 1 8 V_{CC+} IN1- 3 6 N2V_{CC-} 4 5 N2+

DESCRIPTION/ORDERING INFORMATION


The MC33078 is a bipolar dual operational amplifier with high-performance specifications for use in quality audio and data-signal applications. This device operates over a wide range of single- and dual-supply voltages and offers low noise, high-gain bandwidth, and high slew rate. Additional features include low total harmonic distortion, excellent phase and gain margins, large output voltage swing with no deadband crossover distortion, and symmetrical sink/source performance.

ORDERING INFORMATION

T _A	PACKAGE	(1)	ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽²⁾	
	PDIP – P	Tube of 50	MC33078P	MC33078P	
	SOIC - D	Tube of 75	MC33078D	M22070	
-40°C to 85°C		Reel of 2500	MC33078DR	M33078	
	VOCODINACOD DOV	Reel of 2500	MC33078DGKR	MV	
	VSSOP/MSOP – DGK	Reel of 250	MC33078DGKT	MY_	

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SYMBOL (EACH AMPLIFIER)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

⁽²⁾ DGK: The actual top-side marking has one additional character that designates the assembly/test site.

MC33078

DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER

SLLS633C-OCTOBER 2004-REVISED NOVEMBER 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC+}	Supply voltage ⁽²⁾			18	V
V _{CC} -	Supply voltage ⁽²⁾			-18	V
$V_{CC+} - V_{CC-}$	Supply voltage			36	V
	Input voltage, either input ⁽²⁾⁽³⁾		V	_{CC+} or V _{CC}	V
	Input current ⁽⁴⁾			±10	mA
	Duration of output short circuit ⁽⁵⁾			Unlimited	
		D package		97	
θ_{JA}	Package thermal impedance, junction to free air (6)(7)	DGK package		172	°C/W
		P package		85	
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values, except differential voltages, are with respect to the midpoint between \dot{V}_{CC+} and \dot{V}_{CC-} .
- 3) The magnitude of the input voltage must never exceed the magnitude of the supply voltage.
- (4) Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs, unless some limiting resistance is used.
- (5) The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.
- (6) Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- (7) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions

		MIN	MAX	UNIT
V _{CC} -	Supply voltage	- 5	-18	\/
V _{CC+}	Supply voltage	5	18	V
T _A	Operating free-air temperature range	-40	85	°C

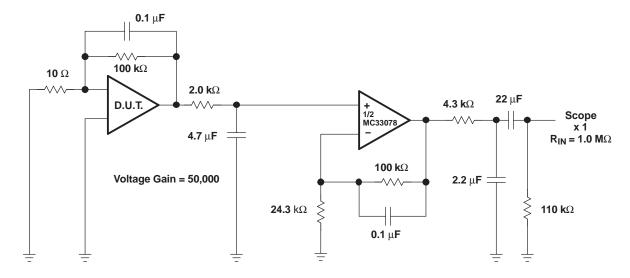
SLLS633C-OCTOBER 2004-REVISED NOVEMBER 2006

DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER

Electrical Characteristics

 V_{CC-} = -15 V, V_{CC+} = 15 V, T_A = 25°C (unless otherwise noted)

	PARAMETER		TEST COND	ITIONS	MIN	TYP	MAX	UNIT	
V _{IO}	Input offset voltage	Vo = 0. Rs =	10 Ω, V _{CM} = 0	T _A = 25°C		0.15	2	mV	
*10	mpar onoor voltage	v0 = 0, 115 =	10 11, VCIVI — 0	$T_A = -40^{\circ}C$ to $85^{\circ}C$			3		
αV_{IO}	Input offset voltage temperature coefficient	$V_O = 0, R_S =$	10 Ω , $V_{CM} = 0$	$T_A = -40^{\circ}C$ to $85^{\circ}C$		2		μV/°C	
	Input bigg ourrent	$V_{\rm O} = 0, V_{\rm CM}$	_ 0	$T_A = 25^{\circ}C$		300	750	nA	
I _{IB}	Input bias current	$v_O = 0, v_{CM}$	= 0	$T_A = -40^{\circ}C$ to $85^{\circ}C$			800	ПА	
	Innut offeet ourrent	$V_{\rm O} = 0$, $V_{\rm CM}$	0	$T_A = 25^{\circ}C$		25	150	~ ^	
I _{IO}	Input offset current	$v_O = 0, v_{CM}$	= 0	$T_A = -40^{\circ}C$ to $85^{\circ}C$			175	nA	
V _{ICR}	Common-mode input voltage range	$\Delta V_{IO} = 5 \text{ mV},$	V _O = 0		±13	±14		V	
۸	Large-signal differential	$R_1 \ge 2 \text{ k}\Omega, V_{\Omega} = \pm 10 \text{ V}$		T _A = 25°C	90	110		dB	
A_{VD}	voltage amplification	$R_L \geq 2 \text{ KS2}, V_O$	= ±10 V	$T_A = -40^{\circ}C$ to $85^{\circ}C$	85			uБ	
			$R_1 = 600 \Omega$	V _{OM+}		10.7			
			$R_L = 600 \Omega$	V _{OM} -		-11.9		- V	
M	Maximum autout valtage aving		D 01.0	V _{OM+}	13.2	13.8			
V_{OM}	Maximum output voltage swing	V _{ID} = ±1 V	$R_L = 2k \Omega$	V _{OM} -	-13.2	-13.7			
İ			$R_1 = 10k \Omega$	V _{OM+}	13.5	14.1			
			K _L = 10K 22	V _{OM} -	-14	-14.6			
CMMR	Common-mode rejection ratio	$V_{IN} = \pm 13 \text{ V}$			80	100		dB	
k _{SVR} ⁽¹⁾	Supply-voltage rejection ratio	$V_{CC+} = 5 \text{ V to}$	15 V, V _{CC} = -5 \	′ to –15 V	80	105		dB	
1	Output abort airquit aurrent	IV 1 = 1 V O:	italit to CND	Source current	15	29		mA	
Ios	Output short-circuit current	V _{ID} = 1 V, Ou	alput to GND	Sink current	-20	-37		IIIA	
1	Cupply ourrent (per phenoal)	V - 0		T _A = 25°C		2.05	2.5	mΛ	
Icc	Supply current (per channel)	$V_O = 0$		$T_A = -40^{\circ}C$ to $85^{\circ}C$			2.75	mA	


⁽¹⁾ Measured with $V_{\text{CC}\pm}$ differentially varied at the same time

Operating Characteristics

 V_{CC-} = -15 V, V_{CC+} = 15 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST (CONDITIONS	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$A_{VD} = 1$, $V_{IN} = -10$ V to	$A_{VD} = 1$, $V_{IN} = -10$ V to 10 V, $R_L = 2$ k Ω , $C_L = 100$ pF				V/μs
GBW	Gain bandwidth product	f = 100 kHz		10	16		MHz
B ₁	Unity gain frequency	Open loop			9		MHz
(C-ii-	D 01:0	$C_L = 0 pF$		-11		٩D
G _m	Gain margin	$R_L = 2 k\Omega$	C _L = 100 pF		-6		dB
.	Discouración	D 01:0	$C_L = 0 pF$	55		dog	
Φ_{m}	Phase margin	$R_L = 2 k\Omega$	C _L = 100 pF		40		deg
	Amp-to-amp isolation	f = 20 Hz to 20 kHz			-120		dB
	Power bandwidth	$V_O = 27 V_{(PP)}, R_L = 2 k\Omega$	2, THD ≤ 1%		120		kHz
THD	Total harmonic distortion	$V_{O} = 3 V_{rms}, A_{VD} = 1, R_{L}$	_ = 2 kΩ, f = 20 Hz to 20 kHz		0.002		%
Z _o	Open-loop output impedance	V _O = 0, f = 9 MHz			37		Ω
r _{id}	Differential input resistance	$V_{CM} = 0$	V _{CM} = 0				kΩ
C _{id}	Differential input capacitance	V _{CM} = 0		12		pF	
V_n	Equivalent input noise voltage	$f = 1 \text{ kHz}, R_S = 100 \Omega$		4.5		nV/√ Hz	
In	Equivalent input noise current	f = 1 kHz			0.5		pA/√ Hz

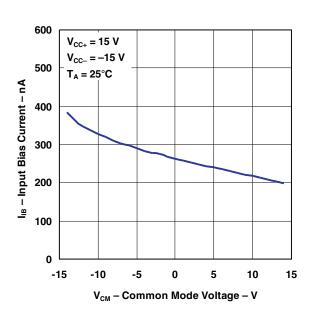
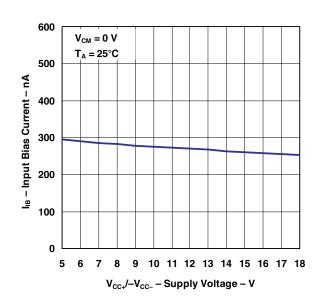
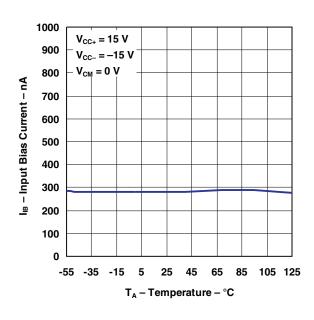
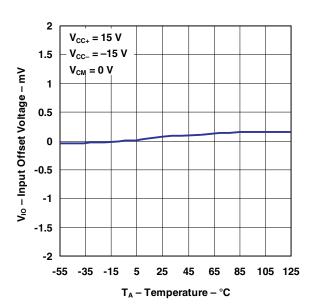

NOTE: All capacitors are non-polarized.

Figure 1. Voltage Noise Test Circuit (0.1 Hz to 10 Hz)

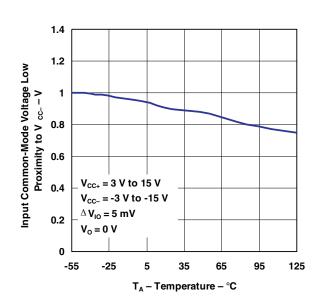


TYPICAL CHARACTERISTICS

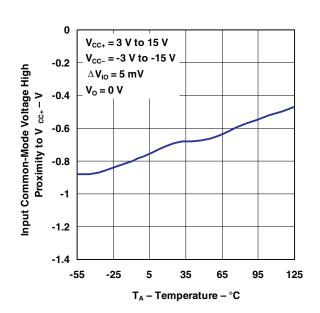

INPUT BIAS CURRENT vs COMMON-MODE VOLTAGE

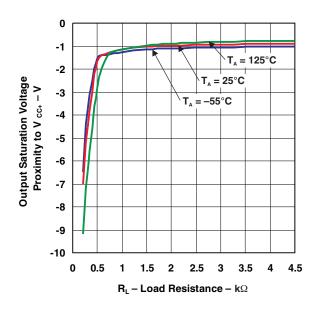

INPUT BIAS CURRENT VS SUPPLY VOLTAGE

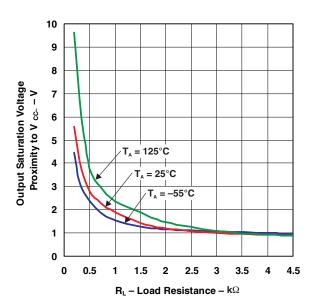
INPUT BIAS CURRENT vs TEMPERATURE



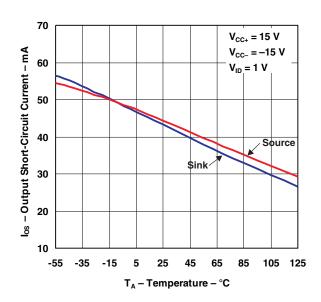
INPUT OFFSET VOLTAGE vs TEMPERATURE



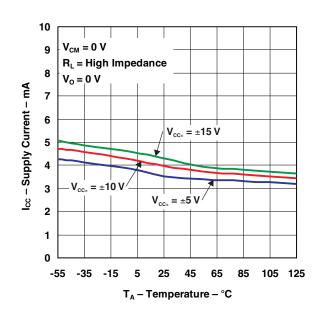


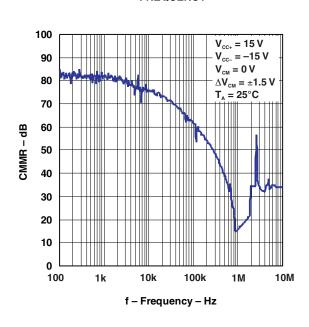

INPUT COMMON-MODE VOLTAGE HIGH PROXIMITY TO V_{CC+} vs TEMPERATURE

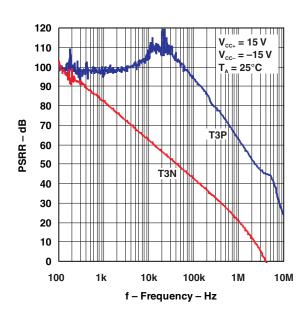
OUTPUT SATURATION VOLTAGE PROXIMITY TO V_{CC+} vs LOAD RESISTANCE



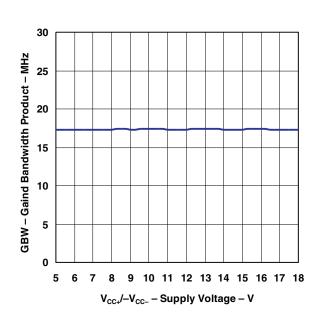
OUTPUT SATURATION VOLTAGE PROXIMITY TO V_{CC}-VS LOAD RESISTANCE



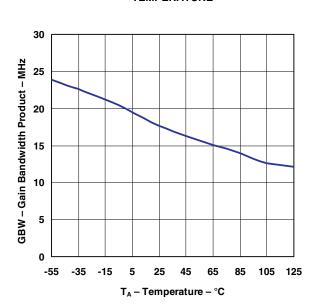

OUTPUT SHORT-CIRCUIT CURRENT vs TEMPERATURE

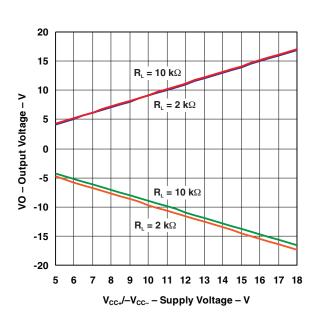

SUPPLY CURRENT vs
TEMPERATURE

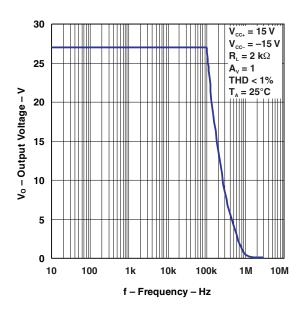
CMRR vs FREQUENCY



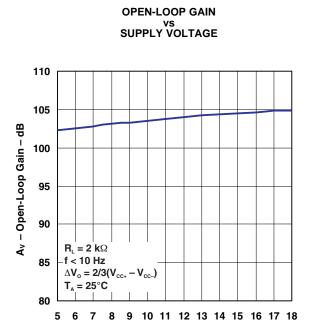
PSSR vs FREQUENCY



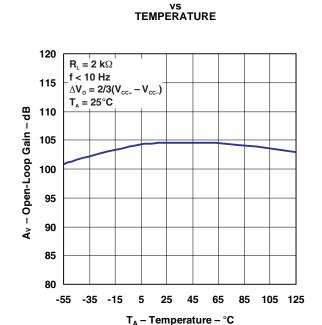

GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE

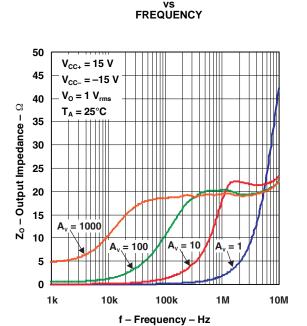

GAIN BANDWIDTH PRODUCT vs TEMPERATURE

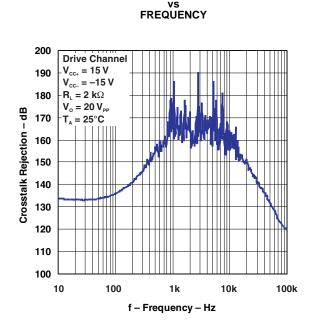
OUTPUT VOLTAGE vs SUPPLY VOLTAGE


OUTPUT VOLTAGE vs FREQUENCY

OPEN-LOOP GAIN

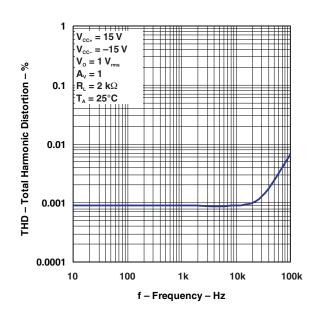


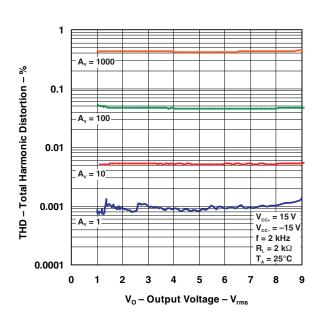

TYPICAL CHARACTERISTICS (continued)

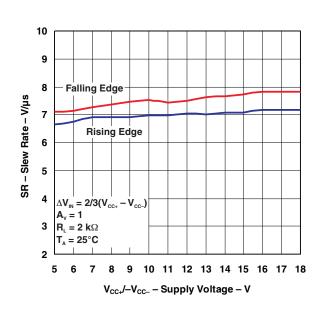


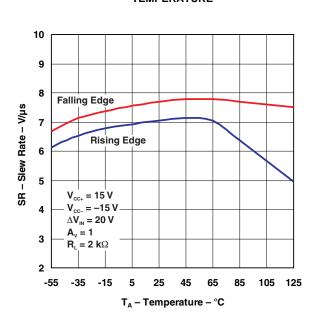
V_{cc+}/-V_{cc-} - Supply Voltage - V

OUTPUT IMPEDANCE

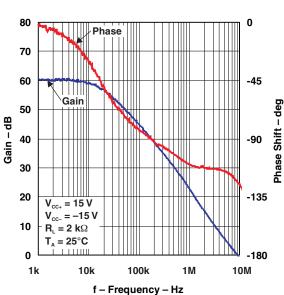



CROSSTALK REJECTION

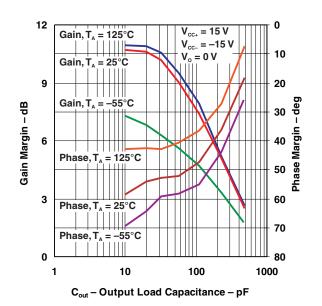

TOTAL HARMONIC DISTORTION VS FREQUENCY

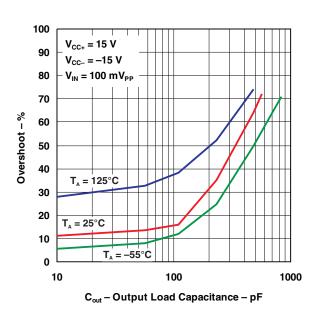

TOTAL HARMONIC DISTORTION VS OUTPUT VOLTAGE

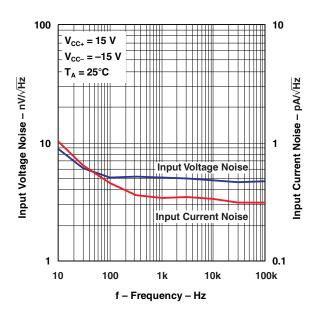
SLEW RATE vs SUPPLY VOLTAGE



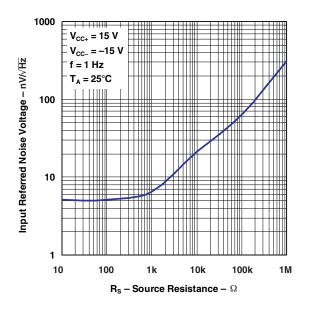
SLEW RATE vs TEMPERATURE



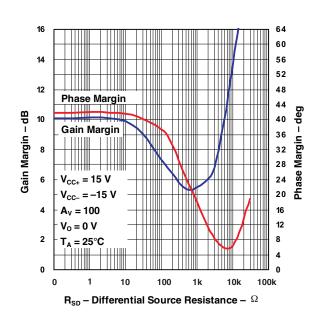


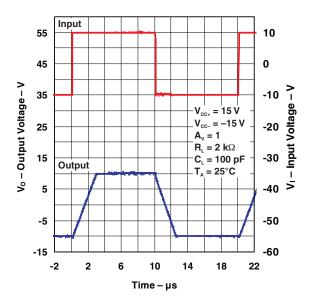

GAIN AND PHASE MARGIN
VS
OUTPUT LOAD CAPACITANCE

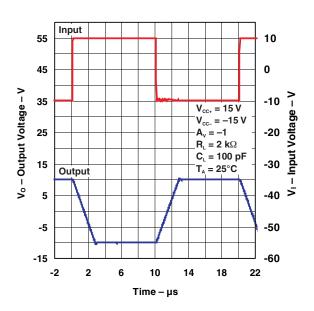
OVERSHOOT
vs
OUTPUT LOAD CAPACITANCE



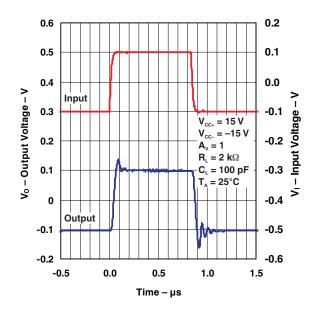
INPUT VOLTAGE AND CURRENT NOISE
vs
FREQUENCY



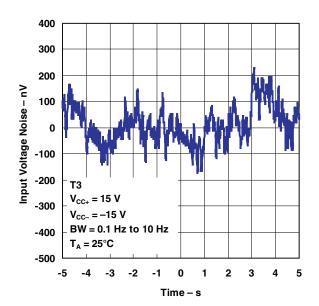

INPUT REFERRED NOISE VOLTAGE vs SOURCE RESISTANCE


GAIN AND PHASE MARGIN vs DIFFERENTIAL SOURCE RESISTANCE

LARGE SIGNAL TRANSIENT RESPONSE (A_V = 1)



LARGE SIGNAL TRANSIENT RESPONSE $(A_V = -1)$



SMALL SIGNAL TRANSIENT RESPONSE

LOW_FREQUENCY NOISE

APPLICATION INFORMATION

Output Characteristics

All operating characteristics are specified with 100-pF load capacitance. The MC33078 can drive higher capacitance loads. However, as the load capacitance increases, the resulting response pole occurs at lower frequencies, causing ringing, peaking, or oscillation. The value of the load capacitance at which oscillation occurs varies from lot to lot. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem (see Figure 2).

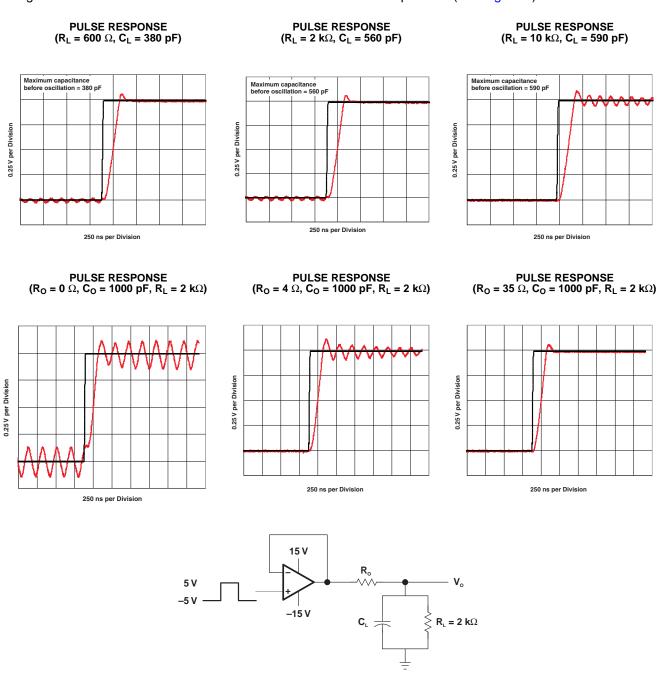


Figure 2. Output Characteristics

www.ti.com 29-Jun-2023

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
MC33078D	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	M33078	
MC33078DGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MYU	Samples
MC33078DGKRG4	LIFEBUY	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MYU	
MC33078DGKT	LIFEBUY	VSSOP	DGK	8	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MYU	
MC33078DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	M33078	Samples
MC33078DRE4	LIFEBUY	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	M33078	
MC33078P	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	MC33078P	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

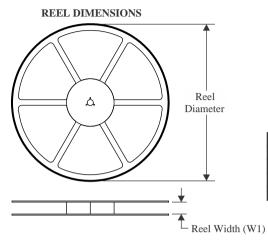
www.ti.com 29-Jun-2023

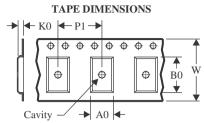
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF MC33078:

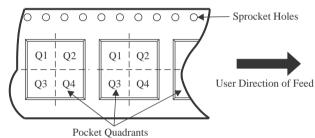
● Enhanced Product : MC33078-EP


NOTE: Qualified Version Definitions:


• Enhanced Product - Supports Defense, Aerospace and Medical Applications

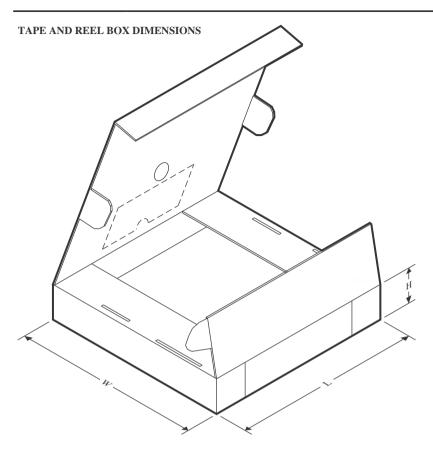
PACKAGE MATERIALS INFORMATION

www.ti.com 5-Apr-2023


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

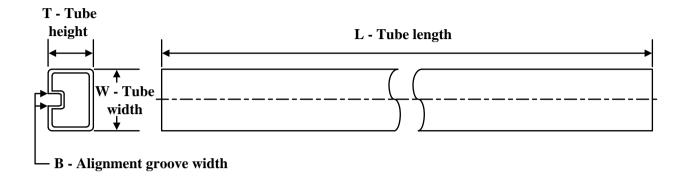


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MC33078DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.3	1.3	8.0	12.0	Q1
MC33078DGKT	VSSOP	DGK	8	250	180.0	12.4	5.3	3.3	1.3	8.0	12.0	Q1
MC33078DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Apr-2023


*All dimensions are nominal

Device	Package Type Package Drawing		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MC33078DGKR	VSSOP	DGK	8	2500	346.0	346.0	35.0
MC33078DGKT	VSSOP	DGK	8	250	200.0	183.0	25.0
MC33078DR	SOIC	D	8	2500	340.5	336.1	25.0

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Apr-2023

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
MC33078D	D	SOIC	8	75	506.6	8	3940	4.32
MC33078D	D	SOIC	8	75	507	8	3940	4.32
MC33078P	Р	PDIP	8	50	506	13.97	11230	4.32

SMALL OUTLINE INTEGRATED CIRCUIT

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

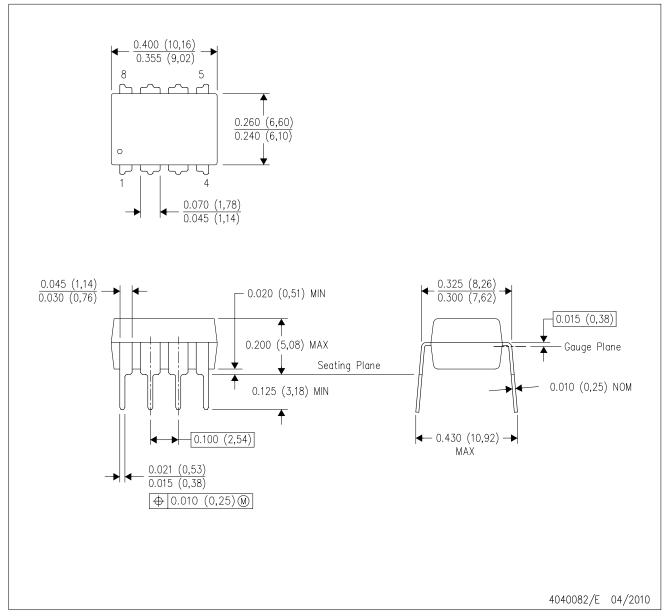
SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

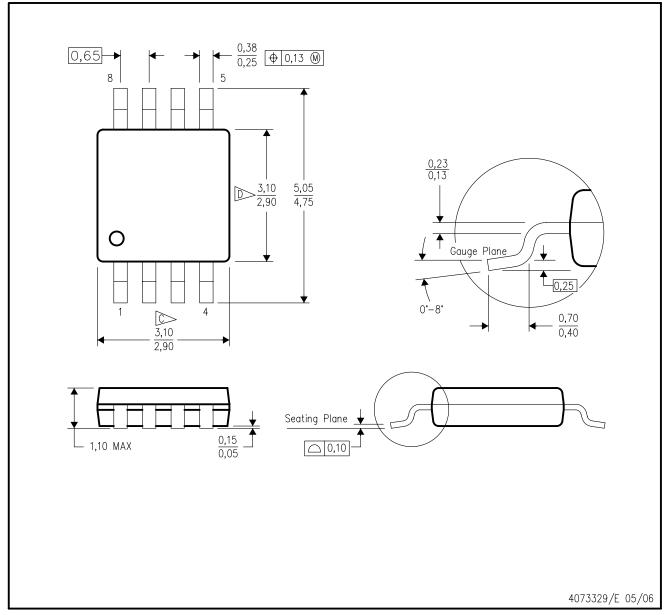
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

P (R-PDIP-T8)

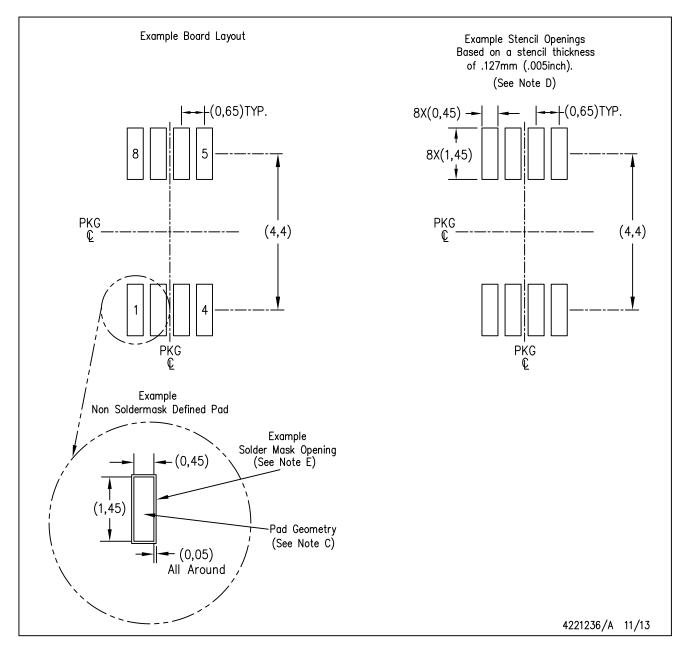
PLASTIC DUAL-IN-LINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated