SLLS132C - SEPTEMBER 1991 - REVISED MAY 1995

- Meets or Exceeds the Requirements of ANSI EIA/TIA-422-B, EIA/TIA-423-B, and RS-485
- Meets or Exceeds the Requirements of ITU Recommendations V.10, V.11, X.26, and X.27
- Designed for Multipoint Bus Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Common-Mode Input Voltage Range of -12 V to 12 V
- Input Sensitivity ... ±200 mV
- Input Hysteresis . . . 50 mV Typ
- High Input Impedance . . . 12 k Ω Min
- Operates From Single 5-V Supply
- Low Supply-Current Requirement 27 mA Max

description

The SN75ALS173 is a monolithic quadruple differential line receiver with 3-state outputs. It is designed to meet the requirements of ANSI Standards EIA/TIA-422-B, EIA/TIA-423-B, RS-485, and several ITU recommendations. Advanced low-power Schottky technology provides high speed without the usual power penalty. The four receivers have an ORed pair of enables in common. Either G high or \overline{G} low enables all of the receivers. The device features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ± 200 mV over a common-mode input voltage range of -12 V to 12 V.

The SN75ALS173 is characterized for operation from 0°C to 70°C.

DIFFERENTIAL	ENA	BLES	OUTPUT
A – B	G	G	Y
	н	Х	Н
$V_{ID} \ge 0.2 V$	Х	L	Н
– 0.2 V < V _ח < 0.2 V	н	Х	?
-0.2 v < v[D < 0.2 v	Х	L	?
	н	Х	L
$V_{ID} \le -0.2 V$	Х	L	L
Х	L	Н	Z
Opon Circuit	н	Х	Н
Open Circuit	Х	L	Н

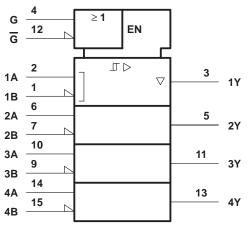
FUNCTION TABLE (each receiver)

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

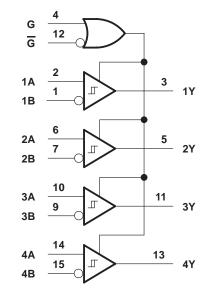
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1995, Texas Instruments Incorporated

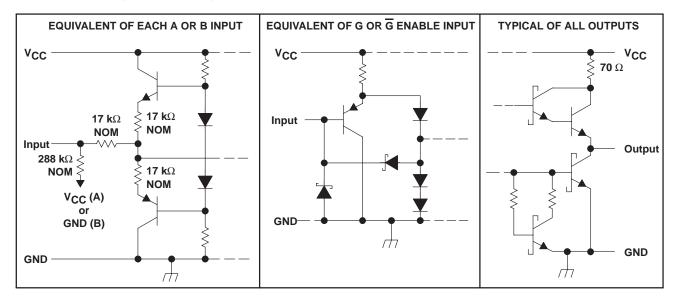

1

N OR NST PACKAGE (TOP VIEW)									
1B [1A [1Y [2Y [2A [2B [GND]	1 2 3 4 5 6 7 8	16 15 14 13 12 11 10 9	V _{CC} 4B 4A 4Y G 3Y 3A 3B						

[†] The NS package is only available left-end taped and reeled (order device SN75ALS173 NSLE).


SLLS132C - SEPTEMBER 1991 - REVISED MAY 1995

logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematics of inputs and outputs

SLLS132C - SEPTEMBER 1991 - REVISED MAY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1) Input voltage, V _I (A or B inputs)	
Differential input voltage, VID (see Note 2)	
Enable input voltage, V _I	
Low-level output current, I _{OL}	50 mA
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.

	DISSIPATION RATING TABLE										
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING								
N	1150 mW	9.2 mW/°C	736 mW								
NS	625 mW	5.0 mW/°C	400 mW								

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
Common-mode input voltage, V_{IC}				±12	V
Differential input voltage, V_{ID}				±12	V
High-level input voltage, VIH	G, <u>G</u>	2			V
Low-level input voltage, VIL	G, <u>G</u>			0.8	V
High-level output current, IOH				-400	μA
Low-level output current, IOL				8	mA
Operating free-air temperature, TA		0		70	°C

SLLS132C - SEPTEMBER 1991 - REVISED MAY 1995

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted) (see Note 3)

	PARAMETER		TE	ST CONDITIONS		MIN	TYP [†]	MAX	UNIT
VIT+	Positive-going input threshold voltage							200	mV
V_{IT-}	Negative-going input threshold voltage					-200‡			mV
V _{hys}	Hysteresis voltage (V _{IT+} – V _{IT} _)						50		mV
VIK	Input clamp voltage	G, <u>G</u>	lj = - 18 mA					-1.5	V
VOH	High-level output voltage		V _{ID} = 200 mV,	$I_{OH} = -400 \ \mu A$,	See Figure 1	2.7			V
VOL	Low-level output voltage		$V_{ID} = -200 \text{ mV},$	I _{OL} = 8 mA,	See Figure 1			0.45	V
IOZ	High-impedance-state output current	$V_{O} = 0.4 V \text{ to } 2.4$	4 V	-			±20	μΑ	
1.			$V_{I} = 12 V$		V _I = 12 V			1	
1	Line input current	_	Other input at 0 \	1	$V_{I} = -7 V$			-0.8	mA
Ι _{ΙΗ}	High-level input current	G, <u>G</u>	V _{IH} = 2.7 V					20	μΑ
۱ _{IL}	Low-level input current	G, <u>G</u>	V _{IL} = 0.4 V					-100	μΑ
ri	Input resistance					12			kΩ
los	Short-circuit output current		See Note 4			-15		-85	mA
1			No load,	Outputs enabled			16	24	
CC	ICC Supply current (total package)		No load,	Outputs disabled			18	27	mA

[†] All typical values are at $V_{CC} = 5$ V and $T_A = 25^{\circ}C$.

[‡] The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold voltage levels only.

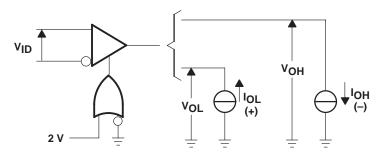
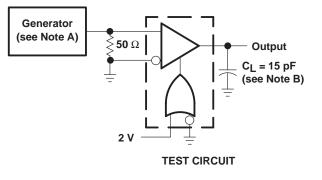
NOTES: 3. Refer to ANSI Standard RS-485 for exact conditions.

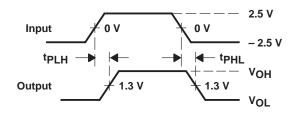
4. The duration of the short circuit should not cause the maximum package power dissipation to be exceeded.

switching characteristics, V_{CC} = 5 V, C_L = 15 pF, T_A = 25°C

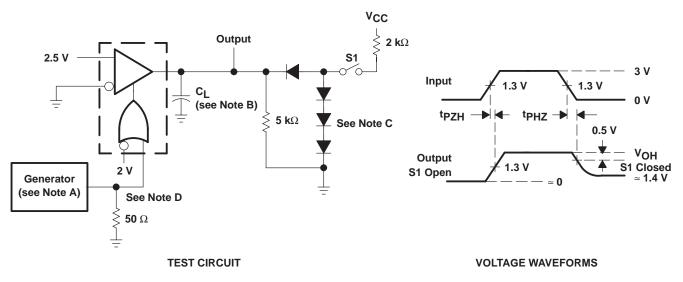
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PHL	Propagation delay time, high- to low-level output	$V_{ID} = -2.5 \text{ V to } 2.5 \text{ V},$	9	18	27	ns
tPLH	Propagation delay time, low- to high-level output	See Figure 2	9	18	27	ns
^t PZH	Output enable time to high level	See Figure 3	4	12	18	ns
tPZL	Output enable time to low level	See Figure 4	6	13	21	ns
^t PHZ	Output disable time from high level	See Figure 3	10	21	27	ns
t _{PLZ}	Output disable time from low level	See Figure 4	8	15	25	ns

PARAMETER MEASUREMENT INFORMATION


Figure 1. V_{OH}, V_{OL}

SLLS132C - SEPTEMBER 1991 - REVISED MAY 1995


PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

Figure 2. Test Circuit and Voltage Waveforms

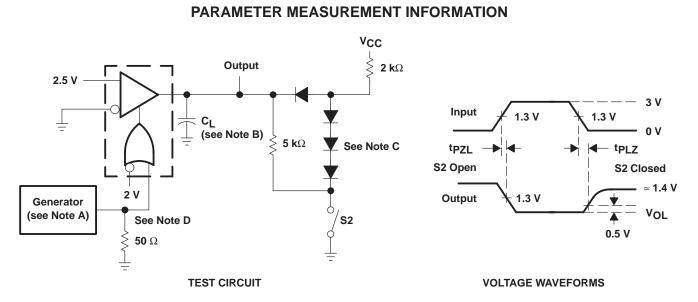


Figure 3. Test Circuit and Voltage Waveforms

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle = 50%, $t_f \le 6$ ns, $t_f \le 6$ ns, $Z_O = 50 \Omega$.
 - B. CL includes probe and jig capacitance.
 - C. All diodes are 1N916 or equivalent.
 - D. To test the active-low enable \overline{G} , ground G and apply an inverted input waveform to \overline{G} .

SLLS132C - SEPTEMBER 1991 - REVISED MAY 1995

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle = 50%, $t_{f} \le 6$ ns, $t_{f} \le 6$ ns, $Z_{O} = 50 \Omega$.
 - B. CL includes probe and jig capacitance.
 - C. All diodes are 1N916 or equivalent.
 - D. To test the active-low enable \overline{G} , ground G and apply an inverted input waveform to \overline{G} .

Figure 4. Test Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device		Package Type		Pins	-		Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN75ALS173N	LIFEBUY	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN75ALS173N	
SN75ALS173NSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	75ALS173	Samples
SN75ALS173NSRG4	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	75ALS173	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

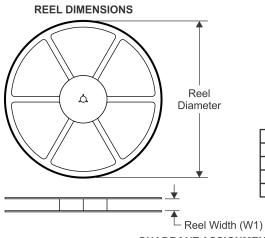
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

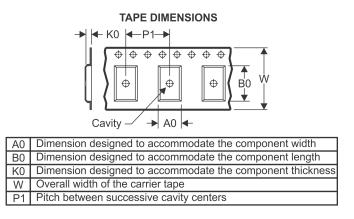
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

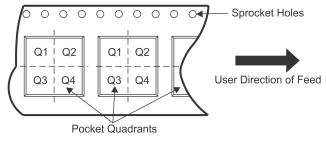
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

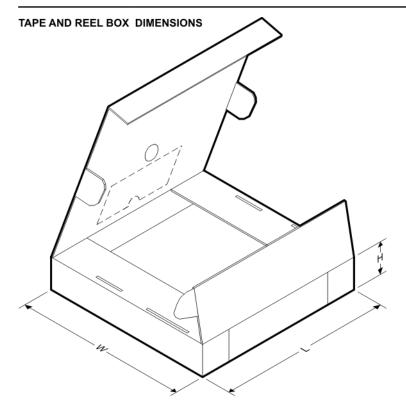
Texas Instruments


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions	are nominal	

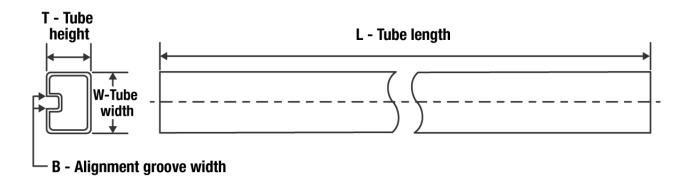

Device	•	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75ALS173NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Jan-2022

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN75ALS173NSR	SO	NS	16	2000	367.0	367.0	38.0	

www.ti.com

5-Jan-2022

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN75ALS173N	N	PDIP	16	25	506	13.97	11230	4.32

MECHANICAL DATA

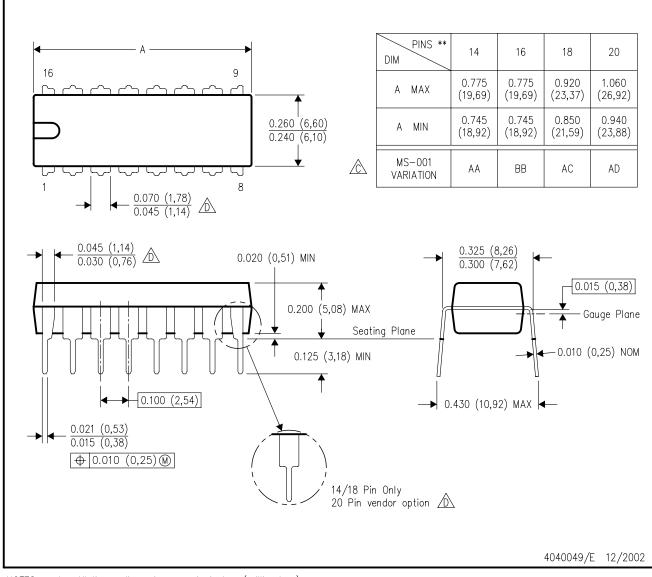
PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN


- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

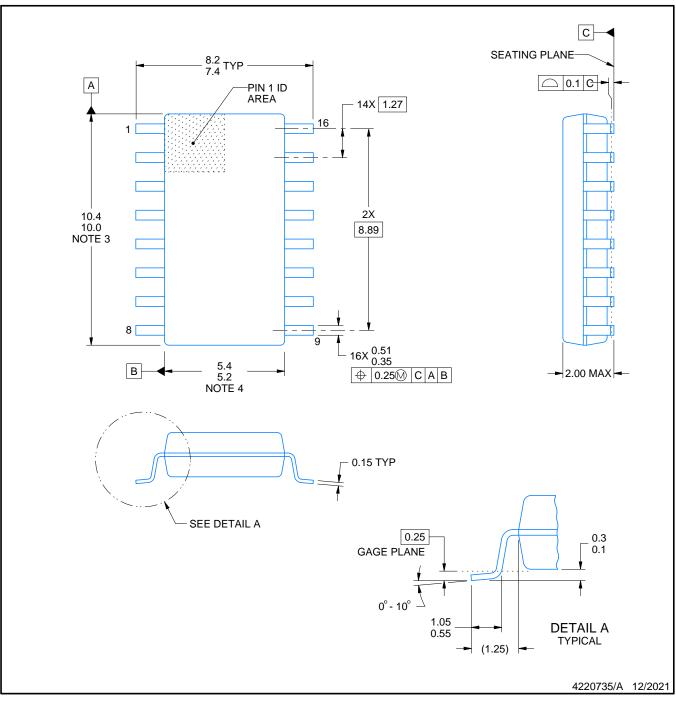
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


NS0016A

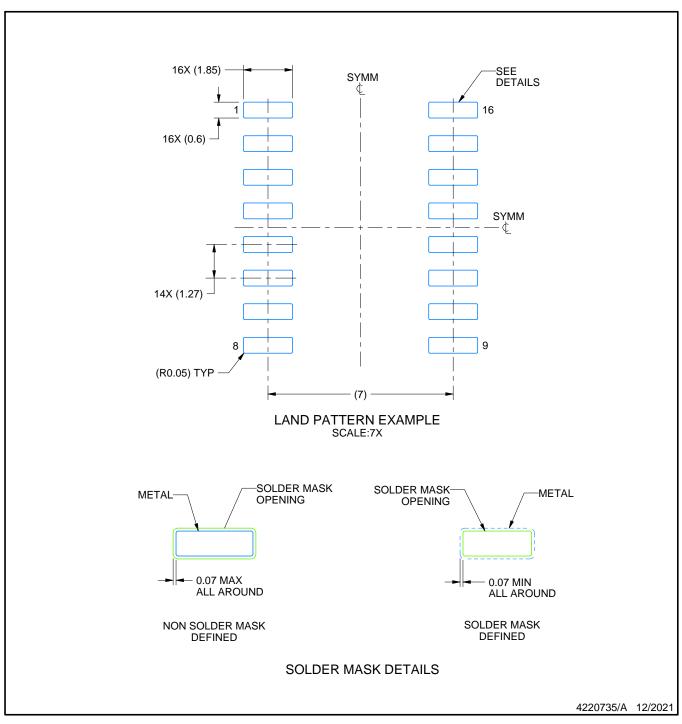
PACKAGE OUTLINE

SOP - 2.00 mm max height

SOP

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- Per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.



NS0016A

EXAMPLE BOARD LAYOUT

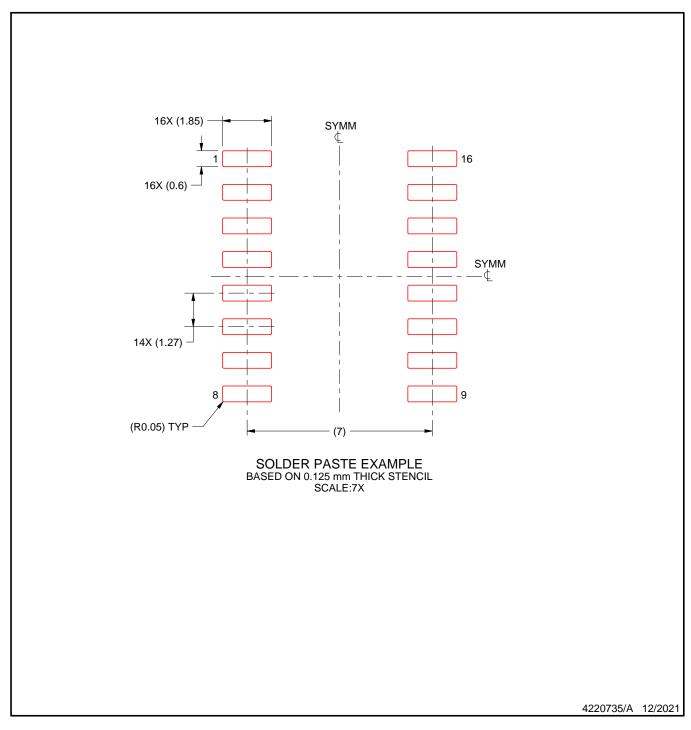
SOP - 2.00 mm max height

SOP

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NS0016A

EXAMPLE STENCIL DESIGN

SOP - 2.00 mm max height

SOP

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated