150-mW STEREO AUDIO POWER AMPLIFIER

FEATURES

- 150-mW Stereo Output
- PC Power Supply Compatible
- Fully Specified for 3.3-V and 5-V Operation
- Operation to 2.5 V
- Pop Reduction Circuitry
- Internal Midrail Generation
- Thermal and Short-Circuit Protection
- Surface-Mount Packaging
- PowerPAD ${ }^{\text {TM }}$ MSOP
- SOIC
- Pin Compatible With LM4880 and LM4881 (SOIC)

D OR DGN PACKAGE
(TOP VIEW)

DESCRIPTION

The TPA122 is a stereo audio power amplifier packaged in either an 8 -pin SOIC, or an 8 -pin PowerPADTM MSOP package capable of delivering 150 mW of continuous RMS power per channel into $8-\Omega$ loads. Amplifier gain is externally configured by means of two resistors per input channel and does not require external compensation for settings of 1 to 10.

THD +N when driving an $8-\Omega$ load from 5 V is 0.1% at 1 kHz , and less than 2% across the audio band of 20 Hz to 20 kHz . For $32-\Omega$ loads, the THD +N is reduced to less than 0.06% at 1 kHz , and is less than 1% across the audio band of 20 Hz to 20 kHz . For $10-\mathrm{k} \Omega$ loads, the THD +N performance is 0.01% at 1 kHz , and less than 0.02% across the audio band of 20 Hz to 20 kHz .

TYPICAL APPLICATION CIRCUIT

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	PACKAGED DEVICES		MSOP
	SMALL OUTLINE (1) (D)	MSOP (1) (DGN)	

(1) The D and DGN packages are available in left-ended tape and reel only (e.g., TPA122DR, TPA122DGNR).

Terminal Functions

TERMINAL		I/O	
NAME	NO.	DESCRIPTION	
BYPASS	3	I	Tap to voltage divider for internal mid-supply bias supply. Connect to a $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ low ESR capacitor for best performance.
GND	4	I	GND is the ground connection.
IN1-	2	I	IN1- is the inverting input for channel 1.
IN2-	6	I	IN2- is the inverting input for channel 2.
SHUTDOWN	5	I	Puts the device in a low quiescent current mode when held high
V_{DD}	8	I	V_{DD} is the supply voltage terminal.
$\mathrm{V}_{\mathrm{O}} 1$	1	O	$\mathrm{V}_{\mathrm{O}} 1$ is the audio output for channel 1.
$\mathrm{V}_{\mathrm{O}} 2$	7	O	$\mathrm{V}_{\mathrm{O}} 2$ is the audio output for channel 2.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

		UNIT
V_{DD}	Supply voltage	6 V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
	Continuous total power dissipation	Internally limited
T_{J}	Operating junction temperature range	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
	Lead temperature $1,6 \mathrm{~mm}$ (1/16 inch) from case for 10 seconds	$260^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$\mathbf{T}_{\mathbf{A}} \leq \mathbf{2 5}{ }^{\circ} \mathbf{C}$ POWER RATING	DERATING FACTOR ABOVE $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{T}_{\mathbf{A}}=\mathbf{7 0}{ }^{\circ} \mathbf{C}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=\mathbf{8 5}{ }^{\circ} \mathbf{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW
DGN	$2.14 \mathrm{~W}^{(1)}$	$17.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	1.37 W	1.11 W

(1) See the Texas Instruments document, PowerPAD Thermally Enhanced Package Application Report (SLMA002), for more information on the PowerPAD package. The thermal data was measured on a PCB layout based on the information in the section entitled Texas Instruments Recommended Board for PowerPAD of that document.

TPA122
INSTRUMENTS
www.ti.com

RECOMMENDED OPERATING CONDITIONS

		MIN	MAX
V_{DD}	Uupply voltage	2.5	5.5
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	V	
V_{IH}	High-level input voltage, (SHUTDOWN)	-40	85
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage, $(\mathrm{SHUTDOWN})$	${ }^{\circ} \mathrm{C}$	

DC ELECTRICAL CHARACTERISTICS
at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX
V_{OO}	Output offset voltage			10
USRR	Power supply rejection ratio	$\mathrm{V}_{\mathrm{DD}}=3.2 \mathrm{~V}$ to 3.4 V	mV	
I_{DD}	Supply current	$\mathrm{V}_{\mathrm{DD}}=2.5, S H U T D O W N=0 \mathrm{~V}$	83	dB
$\mathrm{I}_{\mathrm{DD}(\mathrm{SD})}$	Supply current in SHUTDOWN mode	$\mathrm{V}_{\mathrm{DD}}=2.5, S H U T D O W N=\mathrm{V}_{\mathrm{DD}}$	1.5	3
Z_{I}	Input impedance		mA	

AC OPERATING CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=8 \Omega$

PARAMETER	TEST CONDITIONS	MIN	TYP
P_{O}	Output power (each channel)	THD $\leq 0.1 \%$	$70^{(1)}$
THD +N	Total harmonic distortion + noise	$\mathrm{P}_{\mathrm{O}}=70 \mathrm{~mW}, 20 \mathrm{~Hz}-20 \mathrm{kHz}$	mW
$\mathrm{B}_{\mathrm{OM}} \quad$ Maximum output power BW	$\mathrm{G}=10, \mathrm{THD}<5 \%$	2%	
	Phase margin	Open loop	>20
	Supply ripple rejection	$\mathrm{f}=1 \mathrm{kHz}$	58°
	$\mathrm{f}=1 \mathrm{kHz}$	68	kHz
	Channel/channel output separation	$\mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW}$	86
SNR	Signal-to-noise ratio		100
$\mathrm{~V}_{\mathrm{n}}$	Noise output voltage	9.5	dB

(1) Measured at 1 kHz

DC ELECTRICAL CHARACTERISTICS

at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT	
V_{OO}	Output offset voltage			10	mV	
PSRR	Power supply rejection ratio	$\mathrm{V}_{\mathrm{DD}}=4.9 \mathrm{~V}$ to 5.1 V	76		dB	
I_{DD}	Supply current	SHUTDOWN $=0 \mathrm{~V}$	1.5	3	mA	
$\mathrm{I}_{\mathrm{DD}(\mathrm{SD})}$	Supply current in SHUTDOWN mode	SHUTDOWN = V_{DD}	60	100	$\mu \mathrm{A}$	
$\\|_{\text {IH }} \mid$	High-level input current (SHUTDOWN)	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$		1	$\mu \mathrm{A}$	
\|lıl	Low-level input current (SHUTDOWN)	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$		1	$\mu \mathrm{A}$	
Z_{1}	Input impedance		>1		$\mathrm{M} \Omega$	

AC OPERATING CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=8 \Omega$

PARAMETER	TEST CONDITIONS	MIN	TYP
P_{O}	Output power (each channel)	THD $\leq 0.1 \%$	UNIT
THD +N	Total harmonic distortion + noise	$\mathrm{P}_{\mathrm{O}}=150 \mathrm{~mW}, 20 \mathrm{~Hz}-20 \mathrm{kHz}$	2%
$\mathrm{~B}_{\mathrm{OM}}$	Maximum output power BW	$\mathrm{G}=10, \mathrm{THD}<5 \%$	>20
	Phase margin	Open loop	$50^{(1)}$
	Supply ripple rejection ratio	$\mathrm{f}=1 \mathrm{kHz}$	mW
	$\mathrm{f}=1 \mathrm{kHz}$	68	
	Channel/channel output separation	$\mathrm{P}_{\mathrm{O}}=150 \mathrm{~mW}$	86
SNR	Signal-to-noise ratio		100
$\mathrm{~V}_{\mathrm{n}}$	Noise output voltage	9.5	dB

(1) Measured at 1 kHz

AC OPERATING CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=32 \Omega$

PARAMETER	TEST CONDITIONS	MIN	TYP
P_{O}	Output power (each channel)	THD $\leq 0.1 \%$	$40^{(1)}$
THD +N	Total harmonic distortion + noise	$\mathrm{P}_{\mathrm{O}}=30 \mathrm{~mW}, 20 \mathrm{~Hz}-20 \mathrm{kHz}$	0.5%
$\mathrm{~B}_{\mathrm{OM}}$	Maximum output power BW	$\mathrm{G}=10, \mathrm{THD}<2 \%$	>20
	Phase margin	Open loop	58°
	$\mathrm{f}=1 \mathrm{kHz}$	68	
	Supply ripple rejection	$\mathrm{f}=1 \mathrm{kHz}$	kHz
	Channel/channel output separation	$\mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW}$	86
SNR	Signal-to-noise ratio		100
$\mathrm{~V}_{\mathrm{n}}$	Noise output voltage	9.5	dB

(1) Measured at 1 kHz

AC OPERATING CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=32 \Omega$

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
P_{O}	Output power (each channel)	THD 0.1%	$40^{(1)}$		mW
THD + N	Total harmonic distortion + noise	$\mathrm{P}_{\mathrm{O}}=60 \mathrm{~mW}, 20 \mathrm{~Hz}-20 \mathrm{kHz}$	0.4\%		
B_{OM}	Maximum output power BW	$\mathrm{G}=10, \mathrm{THD}<2 \%$	> 20		kHz
	Phase margin	Open loop	56°		
	Supply ripple rejection	$\mathrm{f}=1 \mathrm{kHz}$	68		dB
	Channel/channel output separation	$\mathrm{f}=1 \mathrm{kHz}$	86		dB
SNR	Signal-to-noise ratio	$\mathrm{P}_{\mathrm{O}}=150 \mathrm{~mW}$	100		dB
V_{n}	Noise output voltage		9.5		$\mu \mathrm{V}$ (rms)

(1) Measured at 1 kHz

TPA122

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
THD+N	Total harmonic distortion plus noise	vs Frequency	$\begin{gathered} 1,2,4,5,7,8,10,11,13 \\ 14,16,17,34,36 \end{gathered}$
		vs Output power	3, 6, 9, 12, 15, 18
	Supply ripple rejection	vs Frequency	19, 20
V_{n}	Output noise voltage	vs Frequency	21, 22
	Crosstalk	vs Frequency	23-26, 37, 38
	Mute attenuation	vs Frequency	27, 28
	Open-loop gain and phase margin	vs Frequency	29, 30
	Output power	vs Load resistance	31, 32
	Phase	vs Frequency	39-44
I_{DD}	Supply current	vs Supply voltage	33
SNR	Signal-to-noise ratio	vs Voltage gain	35
	Closed-loop gain	vs Frequency	39-44
	Power dissipation/amplifier	vs Output power	45, 46

Figure 1.

Figure 3.
TOTAL HARMONIC DISTORTION + NOISE FREQUENCY

Figure 5.

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

Figure 4.
TOTAL HARMONIC DISTORTION + NOISE OUTPUT POWER

Figure 6.

TPA122

Figure 7.

Figure 9.

TOTAL HARMONIC DISTORTION + NOISE FREQUENCY

Figure 8.
TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

Figure 10.

TOTAL HARMONIC DISTORTION + NOISE OUTPUT POWER

Figure 12.
TOTAL HARMONIC DISTORTION + NOISE
FREQUENCY

Figure 14.

TPA122

Figure 17.

Figure 19.

Figure 21.

Figure 20.

Figure 22.

TPA122

Figure 23.
CROSSTALK
vs
FREQUENCY

Figure 25.

CROSSTALK
FREQUENCY

Figure 24.
CROSSTALK
FREQUENCY

Figure 26.

MUTE ATTENUATION
FREQUENCY

Figure 27.
Figure 28.

Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

SIGNAL-TO-NOISE RATIO VOLTAGE GAIN

Figure 35.

TOTAL HARMONIC DISTORTION + NOISE VS FREQUENCY

Figure 34.
TOTAL HARMONIC DISTORTION + NOISE FREQUENCY

Figure 36.

Figure 37.

Figure 38.

Figure 39.

Figure 40.

Figure 41.

Figure 42.

Figure 43.

Figure 44.

Figure 45.

Figure 46.

APPLICATION INFORMATION

GAIN SETTING RESISTORS, $\mathbf{R}_{\mathbf{F}}$ and $\mathbf{R}_{\mathbf{l}}$

The gain for the TPA122 is set by resistors R_{F} and R_{l} according to Equation 1 .

$$
\begin{equation*}
\text { Gain }=-\left(\frac{R_{F}}{R_{\mathrm{I}}}\right) \tag{1}
\end{equation*}
$$

Given that the TPA122 is an MOS amplifier, the input impedance is high. Consequently, input leakage currents are not generally a concern, although noise in the circuit increases as the value of R_{F} increases. In addition, a certain range of R_{F} values is required for proper start-up operation of the amplifier. Taken together, it is recommended that the effective impedance seen by the inverting node of the amplifier be set between $5 \mathrm{k} \Omega$ and $20 \mathrm{k} \Omega$. The effective impedance is calculated in Equation 2.

$$
\begin{equation*}
\text { Effective Impedance }=\frac{R_{F} R_{I}}{R_{F}+R_{I}} \tag{2}
\end{equation*}
$$

As an example, consider an input resistance of $20 \mathrm{k} \Omega$ and a feedback resistor of $20 \mathrm{k} \Omega$. The gain of the amplifier would be -1 and the effective impedance at the inverting terminal would be $10 \mathrm{k} \Omega$, which is within the recommended range.
For high-performance applications, metal film resistors are recommended because they tend to have lower noise levels than carbon resistors. For values of R_{F} above $50 \mathrm{k} \Omega$, the amplifier tends to become unstable due to a pole formed from R_{F} and the inherent input capacitance of the MOS input structure. For this reason, a small compensation capacitor of approximately 5 pF should be placed in parallel with R_{F}. In effect, this creates a low-pass filter network with the cutoff frequency defined in Equation 3.

$$
\begin{equation*}
\mathrm{f}_{\mathrm{C}(\text { lowpass })}=\frac{1}{2 \pi R_{F} \mathrm{C}_{\mathrm{F}}} \tag{3}
\end{equation*}
$$

For example, if R_{F} is $100 \mathrm{k} \Omega$ and C_{F} is 5 pF , then $f_{c(l o w p a s s)}$ is 318 kHz , which is well outside the audio range.

INPUT CAPACITOR C

In the typical application, an input capacitor, C_{l}, is required to allow the amplifier to bias the input signal to the proper dc level for optimum operation. In this case, C_{\mid}and R_{\mid}form a high-pass filter with the corner frequency determined in Equation 4.

$$
\begin{equation*}
\mathrm{f}_{\mathrm{c}(\text { highpass })}=\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{\mathrm{l}}} \tag{4}
\end{equation*}
$$

The value of C_{l} is important to consider, as it directly affects the bass (low-frequency) performance of the circuit. Consider the example where R_{1} is $20 \mathrm{k} \Omega$ and the specification calls for a flat bass response down to 20 Hz . Equation 4 is reconfigured as Equation 5.

$$
\begin{equation*}
C_{1}=\frac{1}{2 \pi R_{1} f_{c}(\text { highpass })} \tag{5}
\end{equation*}
$$

In this example, $\mathrm{C}_{\boldsymbol{l}}$ is $0.4 \mu \mathrm{~F}$, so one would likely choose a value in the range of $0.47 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$. A further consideration for this capacitor is the leakage path from the input source through the input network $\left(R_{l}, C_{1}\right)$ and the feedback resistor $\left(\mathrm{R}_{\mathrm{F}}\right)$ to the load. This leakage current creates a dc offset voltage at the input to the amplifier that reduces useful headroom, especially in high-gain applications (>10). For this reason a low-leakage tantalum or ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor should face the amplifier input in most applications, as the dc level there is held at $\mathrm{V}_{\mathrm{DD}} / 2$, which is likely higher than the source dc level. Note that it is important to confirm the capacitor polarity in the application.

APPLICATION INFORMATION (continued)

POWER SUPPLY DECOUPLING, $\mathbf{C}_{\text {s }}$

The TPA122 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to ensure that the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also prevents oscillations for long lead lengths between the amplifier and the speaker. The optimum decoupling is achieved by using two capacitors of different types that target different types of noise on the power supply leads. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically $0.1 \mu \mathrm{~F}$, placed as close as possible to the device V_{DD} lead, works best. For filtering lower frequency noise signals, a larger aluminum electrolytic capacitor of $10 \mu \mathrm{~F}$ or greater placed near the power amplifier is recommended.

MIDRAIL BYPASS CAPACITOR, C_{B}

The midrail bypass capacitor, C_{B}, serves several important functions. During start-up, C_{B} determines the rate at which the amplifier starts up. This helps to push the start-up pop noise into the subaudible range (so low it can not be heard). The second function is to reduce noise produced by the power supply caused by coupling into the output drive signal. This noise is from the midrail generation circuit internal to the amplifier. The capacitor is fed from a 160-k Ω source inside the amplifier. To keep the start-up pop as low as possible, the relationship shown in Equation 6 should be maintained.

$$
\begin{equation*}
\frac{1}{\left(C_{B} \times 160 k \Omega\right)} \leq \frac{1}{\left(C_{1} R_{1}\right)} \tag{6}
\end{equation*}
$$

As an example, consider a circuit where C_{B} is $1 \mu \mathrm{~F}, \mathrm{C}_{\mid}$is $1 \mu \mathrm{~F}$, and R_{\mid}is $20 \mathrm{k} \Omega$. Inserting these values into Equation 6 results in: $6.25 \leq 50$ which satisfies the rule. Bypass capacitor, C_{B}, values of $0.1-\mu \mathrm{F}$ to $1-\mu \mathrm{F}$ ceramic or tantalum low-ESR capacitors are recommended for the best THD and noise performance.

OUTPUT COUPLING CAPACITOR, C_{c}

In the typical single-supply, single-ended (SE) configuration, an output coupling capacitor $\left(\mathrm{C}_{\mathrm{C}}\right)$ is required to block the dc bias at the output of the amplifier, thus preventing dc currents in the load. As with the input coupling capacitor, the output coupling capacitor and impedance of the load form a high-pass filter governed by Equation 7.

$$
\begin{equation*}
f_{c}=\frac{1}{2 \pi R_{L} C_{C}} \tag{7}
\end{equation*}
$$

The main disadvantage, from a performance standpoint, is that the typically small load impedances drive the low-frequency corner higher. Large values of C_{C} are required to pass low frequencies into the load. Consider the example where a C_{C} of $68 \mu \mathrm{~F}$ is chosen and loads vary from 32Ω to $47 \mathrm{k} \Omega$. Table 1 summarizes the frequency response characteristics of each configuration.

Table 1. Common Load Impedances vs Low Frequency Output Characteristics in SE Mode

$\mathbf{R}_{\mathbf{L}}$	$\mathbf{C}_{\mathbf{C}}$	LOWEST FREQUENCY
32Ω	$68 \mu \mathrm{~F}$	73 Hz
$10,000 \Omega$	$68 \mu \mathrm{~F}$	0.23 Hz
$47,000 \Omega$	$68 \mu \mathrm{~F}$	0.05 Hz

As Table 1 indicates, headphone response is adequate and drive into line level inputs (a home stereo for example) is good.
The output coupling capacitor required in single-supply, SE mode also places additional constraints on the selection of other components in the amplifier circuit. With the rules described earlier still valid, add the following relationship:

$$
\begin{equation*}
\frac{1}{\left(C_{B} \times 160 k \Omega\right)} \leq \frac{1}{\left(C_{1} R_{1}\right)} \ll \frac{1}{R_{L} C_{C}} \tag{8}
\end{equation*}
$$

USING LOW-ESR CAPACITORS

Low-ESR capacitors are recommended throughout this application. A real capacitor can be modeled simply as a resistor in series with an ideal capacitor. The voltage drop across this resistor minimizes the beneficial effects of the capacitor in the circuit. The lower the equivalent value of this resistance, the more the real capacitor behaves like an ideal capacitor.

5-V VERSUS 3.3-V OPERATION

The TPA122 was designed for operation over a supply range of 2.5 V to 5.5 V . This data sheet provides full specifications for $5-\mathrm{V}$ and $3.3-\mathrm{V}$ operation because these are considered to be the two most common standard voltages. There are no special considerations for $3.3-\mathrm{V}$ versus $5-\mathrm{V}$ operation as far as supply bypassing, gain setting, or stability. The most important consideration is that of output power. Each amplifier in the TPA122 can produce a maximum voltage swing of $\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$. This means, for $3.3-\mathrm{V}$ operation, clipping starts to occur when $\mathrm{V}_{(\text {(PP })}=2.3 \mathrm{~V}$, as opposed to $\mathrm{V}_{(\text {(PP) }}=4 \mathrm{~V}$ for $5-\mathrm{V}$ operation. The reduced voltage swing subsequently reduces maximum output power into the load before distortion begins to become significant.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TPA122D	ACTIVE	SOIC	D	8	75	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TPA122	Samples
TPA122DGN	ACTIVE	HVSSOP	DGN	8	80	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AAE	Samples
TPA122DGNR	ACTIVE	HVSSOP	DGN	8	2500	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AAE	Samples
TPA122DR	ACTIVE	SOIC	D	8	2500	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TPA122	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TeXAS

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { K0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
TPA122DGNR	HVSSOP	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPA122DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPA122DGNR	HVSSOP	DGN	8	2500	358.0	335.0	35.0
TPA122DR	SOIC	D	8	2500	350.0	350.0	43.0

TUBE

B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T $(\boldsymbol{\mu m})$	B (mm)
TPA122D	D	SOIC	8	75	505.46	6.76	3810	4

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES:
PowerPAD is a trademark of Texas Instruments.

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-187.

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 15X

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
9 . Size of metal pad may vary due to creepage requirement.

SOLDER PASTE EXAMPLE
EXPOSED PAD 9:
100\% PRINTED SOLDER COVERAGE BY AREA
SCALE: 15X

STENCIL THICKNESS	SOLDER STENCIL OPENING
0.1	1.76×2.11
0.125	$1.57 \times 1.89($ SHOWN $)$
0.15	1.43×1.73
0.175	1.33×1.60

NOTES: (continued)
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
11. Board assembly site may have different recommendations for stencil design.

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed . 006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.

SOLDER MASK DETAILS

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

