










**TPIC1021A-Q1** ZHCSQ24C - AUGUST 2007 **REVISED MAY 2022** 

# TPIC1021A-Q1 LIN 物理接口

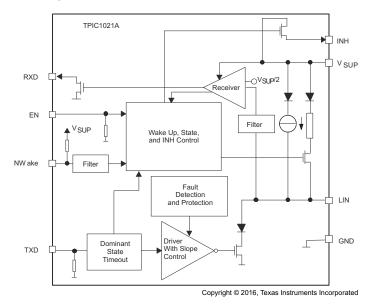
# 1 特性

- 符合 LIN 物理层规范修订版本 2.0,并符合适用于 LIN 的 SAEJ2602 推荐实践要求
- LIN 总线速度高达 LIN 指定的最大值 20kbps
- 睡眠模式:超低电流消耗,支持来自 LIN 总线、唤 醒输入(外部开关)或主机 MCU 的唤醒事件
- 支持高速接收
- LIN 引脚提供 ±12kV (人体放电模型) ESD 保护
- LIN 引脚可处理 40V 至 40V 的电压
- 可在汽车环境中耐受瞬态损伤 (ISO 7637)
- 7V至 27V的直流电源扩展工作电压范围(LIN规 范 7V 至 18V)
- 使用 5V 或者 3.3V I/O 引脚连接到 MCU
- 显性状态超时保护
- RXD 引脚上的唤醒请求
- 外部稳压器控制(INH 引脚)
- 适用于 LIN 响应器应用的集成上拉电阻器和串联二
- 低电磁辐射 (EME)、高电磁抗扰度 (EMI)
- 针对电池短路或接地短路提供总线端子短路保护
- 热保护
- 系统级接地断开失效防护
- 系统级接地漂移运行
- 未供电节点不会干扰网络
- 支持类似 ISO9141 (K-Line) 的功能

# 2 应用

• 车载网络

# 3 说明


TPIC1021A 是本地互连网络 (LIN) 物理接口,此接口 集成了具有唤醒和保护特性的串行收发器。LIN 总线是 一根单线制双向总线,通常用于低速车载网络,数据传 输速率在 2.4kbps 和 20kbps 之间。TPIC1021A 通过 LIN 物理层规范修订版 2.0 中概述的限流波形整型驱动 器将 TXD 上的 LIN 协议输出数据流转换为 LIN 总线信 号。接收器对来自 LIN 总线上的数据流进行转换并通 过 RXD 将此数据流输出。LIN 总线共有两种状态:显 性状态(电压接近接地)和隐性状态(电压接近电 池)。在隐性状态下, LIN 总线被 TPIC1021A 的内部 上拉电阻器 (30kΩ)

和串联二极管拉高,所以响应器应用无需外部上拉元 件。按照 LIN 规范,"指挥官"应用需要一个外部上 拉电阻器 (1kΩ) 加上一个串联二极管。

#### 器件信息

| 器件型号         | <b>封装</b> <sup>(1)</sup> | 封装尺寸(标称值)       |
|--------------|--------------------------|-----------------|
| TPIC1021A-Q1 | SOIC (8)                 | 4.90mm × 3.91mm |

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。



功能方框图



# **Table of Contents**

| 1 特性                                           | 1  | 10.1 Overview                           | 11               |
|------------------------------------------------|----|-----------------------------------------|------------------|
| . · · · <u>· · · · · · · · · · · · · · · ·</u> |    | 10.2 Functional Block Diagram           | <mark>11</mark>  |
|                                                |    | 10.3 Feature Description                | 11               |
| 4 Revision History                             |    | 10.4 Device Functional Modes            | 13               |
| 5 说明(续)                                        |    | 11 Application and Implementation       | 17               |
| 6 Device Comparison Table                      |    | 11.1 Application Information            | 17               |
| 7 Pin Configuration and Functions              |    | 11.2 Typical Application                | 18               |
| 8 Specifications                               |    | 11.3 Power Supply Recommendations       | 19               |
| 8.1 Absolute Maximum Ratings                   |    | 11.4 Layout                             | 19               |
| 8.2 ESD Ratings                                |    | 12 Device and Documentation Support     | <mark>2</mark> 1 |
| 8.3 Recommended Operating Conditions           |    | 12.1 接收文档更新通知                           | 21               |
| 8.4 Thermal Information                        |    | 12.2 支持资源                               | <mark>2</mark> 1 |
| 8.5 Electrical Characteristics                 |    | 12.3 Trademarks                         | <mark>2</mark> 1 |
| 8.6 Typical Characteristics                    |    | 12.4 Electrostatic Discharge Caution    | <mark>2</mark> 1 |
| 9 Parameter Measurement Information            |    | 12.5 术语表                                | 21               |
| 9.1 Test Circuit                               | 10 | 13 Mechanical, Packaging, and Orderable |                  |
| 10 Detailed Description                        |    | Information                             | 21               |
| •                                              |    |                                         |                  |

**4 Revision History** 注:以前版本的页码可能与当前版本的页码不同

| - | 5. 好时放弃的英语可能与当时放弃的英语行的                                           |      |
|---|------------------------------------------------------------------|------|
| С | hanges from Revision B (February 2016) to Revision C (May 2022)  | Page |
| • | 将提到的所有旧术语实例更改为"指挥官"和"响应者"                                        | 1    |
|   |                                                                  |      |
| С | hanges from Revision A (June 2009) to Revision B (February 2016) | Page |

# 5 说明(续)

在睡眠模式下,即使唤醒电路保持工作状态,TPIC1021A 也需要低静态电流,从而支持通过 LIN 总线进行远程唤醒或者通过 NWake 或 EN 引脚进行本地唤醒。

TPIC1021A 设计用于在恶劣的汽车环境中运行。该器件可处理从 40V 向下至接地的 LIN 总线电压摆幅,并且可在 -40V 的电压下运行。该器件还可在接地漂移或电源电压断开的情况下防止反馈电流经 LIN 流向电源输入。它还特有欠压,过热,和接地故障保护。一旦发生故障情况,此输出便会立即关闭并在故障情况被解决之前一直保持关闭状态。

# **6 Device Comparison Table**

The TPIC1021A is pin-to-pin compatible to the TPIC1021 device. The TPIC1021A is an enhanced LIN transceiver, including enhanced immunity to RF disturbances. See 表 6-1 for a summary of the differences between the two devices.

表 6-1. TPIC1021A vs TPIC1021 Differences

| & U-1. TFIC 102 IA VS TFIC 102 I Differences                                     |                                                                                                                                                                                               |                                                                                                                                          |  |  |  |  |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| SPECIFICATION                                                                    | TPIC1021A                                                                                                                                                                                     | TPIC1021                                                                                                                                 |  |  |  |  |
| LIN termination                                                                  | Weak current pullup in sleep mode                                                                                                                                                             | High $\Omega$ in low-power mode                                                                                                          |  |  |  |  |
| LIN receiver                                                                     | Enhanced high-speed receive capable                                                                                                                                                           | High-speed receive capable                                                                                                               |  |  |  |  |
| LIN leakage current (unpowered device): 7 V < LIN < 12 V, V <sub>SUP</sub> = GND | <5 μ A at 12 V (max)                                                                                                                                                                          | <10 µ A at 12 V (typ)                                                                                                                    |  |  |  |  |
| LIN bus wakeup                                                                   | Remote wakeup through recessive-to-dominant transition on LIN bus where dominant bus state is held for at least t <sub>LINBUS</sub> time followed by a transition back to the recessive state | Remote wakeup through recessive-to-dominant transition on LIN bus where dominant bus state is held for at least t <sub>LINBUS</sub> time |  |  |  |  |
| Low-power current                                                                | <30 µ A at 12 V (max)                                                                                                                                                                         | <50 μ A at 14 V (max)                                                                                                                    |  |  |  |  |
| INH pin                                                                          | Enhanced driving of bus commander termination through lower R <sub>on</sub>                                                                                                                   | Driving of bus commander termination                                                                                                     |  |  |  |  |



# 7 Pin Configuration and Functions

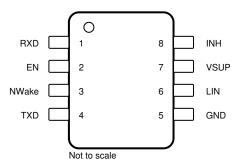



图 7-1. D Package, 8-Pin SOIC (Top View)

表 7-1. Pin Functions

|     | PIN              | TYPE(1) | DESCRIPTION                                                                                 |  |  |
|-----|------------------|---------|---------------------------------------------------------------------------------------------|--|--|
| NO. | NAME             | 1176    | DESCRIP HON                                                                                 |  |  |
| 1   | RXD              | 0       | RXD output (open drain) interface reporting state of LIN bus voltage                        |  |  |
| 2   | EN               | I       | nable input                                                                                 |  |  |
| 3   | NWake            | I       | High voltage input for device wakeup                                                        |  |  |
| 4   | TXD              | I       | TXD input interface to control state of LIN output                                          |  |  |
| 5   | GND              | G       | Ground                                                                                      |  |  |
| 6   | LIN              | I/O     | LIN bus single-wire transmitter and receiver                                                |  |  |
| 7   | V <sub>SUP</sub> | Р       | Device supply voltage (connected to battery in series with external reverse blocking diode) |  |  |
| 8   | INH              | 0       | Inhibit controls external voltage regulator with inhibit input                              |  |  |

(1) G = Ground, I = Input, O = Output, P = Power

# 8 Specifications

### 8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

|                      |                                                                              | MIN   | MAX                    | UNIT |
|----------------------|------------------------------------------------------------------------------|-------|------------------------|------|
| V <sub>SUP</sub> (2) | Supply line supply voltage <sup>(3)</sup>                                    | 0     | 40                     | V    |
| V <sub>NWake</sub>   | NWake dc and transient input voltage (through 33-k $\Omega$ serial resistor) | - 0.3 | 40                     | V    |
| V <sub>INH</sub>     | INH voltage                                                                  | - 0.3 | V <sub>SUP</sub> + 0.3 | V    |
|                      | Logic pin input voltage (RXD, TXD, EN)                                       | - 0.3 | 5.5                    | V    |
| V <sub>LIN</sub>     | LIN dc-input voltage                                                         | - 40  | 40                     | V    |
| I <sub>NWake</sub>   | NWake current <sup>(4)</sup>                                                 |       | - 3.6                  | mA   |
|                      | Thermal shutdown                                                             |       | 200                    | °C   |
|                      | Thermal shutdown hysteresis                                                  |       | 25                     | °C   |
| T <sub>J</sub>       | Junction temperature                                                         | - 40  | 150                    | °C   |
| T <sub>stg</sub>     | Storage temperature                                                          | - 40  | 165                    | °C   |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

# 8.2 ESD Ratings

|                    |                         |                                                                       |                                   | VALUE  | UNIT |
|--------------------|-------------------------|-----------------------------------------------------------------------|-----------------------------------|--------|------|
|                    |                         |                                                                       | All pins except 3 and 6           | ±4000  |      |
| \ <u>\</u>         | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/<br>IEDEC JS-001 <sup>(1)</sup> | Pin 3                             | ±11000 | V    |
| V <sub>(ESD)</sub> | Electrostatic discharge |                                                                       | Pin 6                             | ±12000 | V    |
|                    |                         | Charged-device model (CDM), per JEDEC specifi                         | cation JESD22-C101 <sup>(2)</sup> | ±1500  |      |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

### 8.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

|                  |                     | MIN  | MAX | UNIT |
|------------------|---------------------|------|-----|------|
| T <sub>SUP</sub> | Supply voltage      | 7    | 27  | V    |
| T <sub>AMB</sub> | Ambient temperature | - 40 | 125 | °C   |

<sup>(2)</sup> All voltage values are with respect to GND.

<sup>(3)</sup> The device is specified for operation in the range of V<sub>SUP</sub> from 7 V to 27 V. Operating the device above 27 V may significantly raise the junction temperature of the device and system level thermal design requires consideration.

<sup>(4)</sup> If due to ground shifts,  $V_{NWake} \le V_{GND} - 0.3 \text{ V}$ , thus the current into NWake must be limited through a serial resistance.

<sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



### 8.4 Thermal Information

|                        |                                              | TPIC1021 |      |  |
|------------------------|----------------------------------------------|----------|------|--|
|                        | THERMAL METRIC <sup>(1)</sup>                | D (SOIC) | UNIT |  |
|                        |                                              | 8 PINS   |      |  |
| R <sub>θ JA</sub>      | Junction-to-ambient thermal resistance       | 145      | °C/W |  |
| R <sub>θ JC(top)</sub> | Junction-to-case (top) thermal resistance    | 61.9     | °C/W |  |
| R <sub>θ JB</sub>      | Junction-to-board thermal resistance         | 55.5     | °C/W |  |
| ψ JT                   | Junction-to-top characterization parameter   | 14.3     | °C/W |  |
| ψ JB                   | Junction-to-board characterization parameter | 55       | °C/W |  |

<sup>(1)</sup> For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

# 8.5 Electrical Characteristics

 $V_{SUP}$  = 7 V to 27 V,  $T_A$  = -40°C to 125°C (unless otherwise noted)

|                  | PARAMETER                                 | TEST CONDITIONS                                                                                                                                                                                                                       | MIN                  | TYP <sup>(1)</sup> | MAX                    | UNIT       |
|------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|------------------------|------------|
| SUPPLY           |                                           |                                                                                                                                                                                                                                       |                      |                    |                        |            |
|                  | Operational supply voltage <sup>(2)</sup> | Device is operational beyond the LIN 2.0 defined nominal supply line voltage range of 7 V < V <sub>SUP</sub> < 18 V                                                                                                                   | 7                    | 14                 | 27                     |            |
|                  | Nominal supply line voltage               | Normal and standby modes                                                                                                                                                                                                              | 7                    | 14                 | 18                     | V          |
|                  | Normal supply line voltage                | Sleep mode                                                                                                                                                                                                                            | 7                    | 12                 | 18                     |            |
|                  | V <sub>SUP</sub> undervoltage threshold   |                                                                                                                                                                                                                                       |                      | 4.5                | 6.2                    |            |
|                  |                                           | Normal mode, EN = High, Bus dominant (total bus load where R <sub>LIN</sub> $\geqslant$ 500 $\Omega$ and C <sub>LIN</sub> $\leqslant$ 10 nF (see $\boxtimes$ 9-1) <sup>(3)</sup> , INH = V <sub>SUP</sub> , NWake = V <sub>SUP</sub>  |                      | 1.2                | 7.5                    | mA         |
|                  |                                           | Standby mode, EN = Low, Bus dominant (total bus load, where R <sub>LIN</sub> $\geqslant$ 500 $\Omega$ and C <sub>LIN</sub> $\leqslant$ 10 nF (see $\boxtimes$ 9-1) <sup>(3)</sup> , INH = V <sub>SUP</sub> , NWake = V <sub>SUP</sub> |                      | 1                  | 2.1                    | mA         |
| loo              | Supply current                            | Normal mode, EN = High, Bus recessive, LIN = V <sub>SUP</sub> , INH = V <sub>SUP</sub> , NWake = V <sub>SUP</sub>                                                                                                                     |                      | 450                | 775                    | A          |
| I <sub>CC</sub>  | оцруу синен                               | Standby mode, EN = Low, Bus recessive, LIN = V <sub>SUP</sub> , INH = V <sub>SUP</sub> , NWake = V <sub>SUP</sub>                                                                                                                     |                      | 450                | 775                    | μ <b>Α</b> |
|                  |                                           | Sleep mode, EN = 0, $7 \text{ V} < \text{V}_{\text{SUP}} \leqslant 12 \text{ V}, \text{LIN} = \text{V}_{\text{SUP}}, \\ \text{NWake} = \text{V}_{\text{SUP}}$                                                                         |                      | 15                 | 30                     | μ <b>А</b> |
|                  |                                           | Sleep mode, EN = 0,<br>$12 \text{ V} < \text{V}_{\text{SUP}} < 27 \text{ V}, \text{LIN} = \text{V}_{\text{SUP}},$<br>$\text{NWake} = \text{V}_{\text{SUP}}$                                                                           |                      |                    | 50                     | μ <b>А</b> |
| RXD OUTP         | UT PIN                                    |                                                                                                                                                                                                                                       |                      |                    | '                      |            |
| Vo               | Output voltage                            |                                                                                                                                                                                                                                       | - 0.3                |                    | 5.5                    | V          |
| I <sub>OL</sub>  | Low-level output current, open drain      | LIN = 0 V, RXD = 0.4 V                                                                                                                                                                                                                | 3.5                  |                    |                        | mA         |
| I <sub>IKG</sub> | Leakage current, high-level               | LIN = V <sub>SUP</sub> , RXD = 5 V                                                                                                                                                                                                    | - 5                  | 0                  | 5                      | μА         |
| TXD INPUT        | PIN                                       |                                                                                                                                                                                                                                       |                      |                    |                        |            |
| V <sub>IL</sub>  | Low-level input voltage                   |                                                                                                                                                                                                                                       | - 0.3                |                    | 0.8                    | V          |
| V <sub>IH</sub>  | High-level input voltage                  |                                                                                                                                                                                                                                       | 2                    |                    | 5.5                    | V          |
| V <sub>IT</sub>  | Input threshold hysteresis voltage        |                                                                                                                                                                                                                                       | 30                   |                    | 500                    | mV         |
|                  | Pulldown resistor                         |                                                                                                                                                                                                                                       | 125                  | 350                | 800                    | kΩ         |
| I <sub>IL</sub>  | Low-level input current                   | TXD = Low                                                                                                                                                                                                                             | - 5                  | 0                  | 5                      | μА         |
| LIN PIN (RE      | EFERENCED TO V <sub>SUP</sub> )           |                                                                                                                                                                                                                                       |                      |                    |                        |            |
| V <sub>OH</sub>  | High-level output voltage                 | LIN recessive, TXD = High,<br>I <sub>O</sub> = 0 mA, V <sub>SUP</sub> = 14 V                                                                                                                                                          | V <sub>SUP</sub> - 1 |                    |                        | V          |
| V <sub>OL</sub>  | Low-level output voltage                  | LIN dominant, TXD = Low,<br>I <sub>O</sub> = 40 mA, V <sub>SUP</sub> = 14 V                                                                                                                                                           | 0                    |                    | 0.2 × V <sub>SUP</sub> | V          |

Submit Document Feedback

# 8.5 Electrical Characteristics (continued)

 $V_{SUP} = 7 \text{ V to } 27 \text{ V}, T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C (unless otherwise noted)}$ 

|                        | PARAMETER                                 | TEST CONDITIONS                                                                                                                                                                                                                                                                                             | MIN                     | TYP <sup>(1)</sup>     | MAX                      | UNIT       |
|------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|--------------------------|------------|
| R <sub>RESPONDER</sub> | Pullup resistor to V <sub>SUP</sub>       | Normal and standby modes                                                                                                                                                                                                                                                                                    | 20                      | 30                     | 60                       | kΩ         |
|                        | Pullup current source to V <sub>SUP</sub> | Sleep mode, V <sub>SUP</sub> = 14 V, LIN = GND                                                                                                                                                                                                                                                              | - 2                     |                        | - 20                     | μА         |
| IL                     | Limiting current                          | TXD = 0 V                                                                                                                                                                                                                                                                                                   | 45                      | 160                    | 250                      | mA         |
| I <sub>LKG</sub>       | Leakage current                           | LIN = V <sub>SUP</sub>                                                                                                                                                                                                                                                                                      | - 5                     | 0                      | 5                        |            |
| _                      |                                           | 7 V < LIN ≤ 12 V, V <sub>SUP</sub> = GND                                                                                                                                                                                                                                                                    |                         |                        | 5                        | μА         |
| I <sub>LKG</sub>       | Leakage current, loss of supply           | 12 V < LIN < 18 V, V <sub>SUP</sub> = GND                                                                                                                                                                                                                                                                   |                         |                        | 10                       |            |
| V <sub>IL</sub>        | Low-level input voltage                   | LIN dominant                                                                                                                                                                                                                                                                                                |                         |                        | 0.4 × V <sub>SUP</sub>   |            |
| V <sub>IH</sub>        | High-level input voltage                  | LIN recessive                                                                                                                                                                                                                                                                                               | 0.6 × V <sub>SUP</sub>  |                        |                          |            |
| V <sub>IT</sub>        | Input threshold voltage                   |                                                                                                                                                                                                                                                                                                             | 0.4 × V <sub>SUP</sub>  | 0.5 × V <sub>SUP</sub> | 0.6 × V <sub>SUP</sub>   | V          |
| V <sub>hys</sub>       | Hysteresis voltage                        |                                                                                                                                                                                                                                                                                                             | 0.05 × V <sub>SUP</sub> |                        | 0.175 × V <sub>SUP</sub> |            |
| V <sub>IL</sub>        | Low-level input voltage for wake-up       |                                                                                                                                                                                                                                                                                                             |                         |                        | 0.4 × V <sub>SUP</sub>   |            |
| EN PIN                 |                                           |                                                                                                                                                                                                                                                                                                             |                         |                        |                          |            |
| V <sub>IL</sub>        | Low-level input voltage                   |                                                                                                                                                                                                                                                                                                             | - 0.3                   |                        | 0.8                      | V          |
| V <sub>IH</sub>        | High-level input voltage                  |                                                                                                                                                                                                                                                                                                             | 2                       |                        | 5.5                      | V          |
| V <sub>hys</sub>       | Hysteresis voltage                        |                                                                                                                                                                                                                                                                                                             | 30                      | ,                      | 500                      | mV         |
|                        | Pulldown resistor                         |                                                                                                                                                                                                                                                                                                             | 125                     | 350                    | 800                      | kΩ         |
| I <sub>IL</sub>        | Low-level input current                   | EN = Low                                                                                                                                                                                                                                                                                                    | - 5                     | 0                      | 5                        | μ <b>А</b> |
| INH PIN                |                                           |                                                                                                                                                                                                                                                                                                             |                         |                        |                          |            |
| Vo                     | DC output voltage                         |                                                                                                                                                                                                                                                                                                             | - 0.3                   |                        | V <sub>SUP</sub> + 0.3   | V          |
| R <sub>on</sub>        | On state resistance                       | Between V <sub>SUP</sub> and INH, INH = 2-mA drive,<br>Normal or standby mode                                                                                                                                                                                                                               |                         | 35                     | 85                       | Ω          |
| I <sub>IKG</sub>       | Leakage current                           | Low-power mode, 0 < INH < V <sub>SUP</sub>                                                                                                                                                                                                                                                                  | - 5                     | 0                      | 5                        | μА         |
| NWake PIN              |                                           |                                                                                                                                                                                                                                                                                                             |                         |                        |                          |            |
| V <sub>IL</sub>        | Low-level input voltage                   |                                                                                                                                                                                                                                                                                                             | - 0.3                   |                        | V <sub>SUP</sub> - 3.3   | .,         |
| V <sub>IH</sub>        | High-level input voltage                  |                                                                                                                                                                                                                                                                                                             | V <sub>SUP</sub> - 1    |                        | V <sub>SUP</sub> + 0.3   | V          |
|                        | Pullup current                            | NWake = 0 V                                                                                                                                                                                                                                                                                                 | - 45                    | - 10                   | - 2                      |            |
| I <sub>IKG</sub>       | Leakage current                           | V <sub>SUP</sub> = NWake                                                                                                                                                                                                                                                                                    | - 5                     | 0                      | 5                        | μА         |
| THERMAL SHU            | ITDOWN                                    |                                                                                                                                                                                                                                                                                                             |                         |                        |                          |            |
|                        | Thermal shutdown junction                 |                                                                                                                                                                                                                                                                                                             |                         | 190                    |                          | °C         |
|                        | temperature                               |                                                                                                                                                                                                                                                                                                             |                         |                        |                          |            |
| D1                     | Duty cycle 1 <sup>(4)</sup>               | $ \begin{array}{l} TH_{REC(max)} = 0.744 \times V_{SUP}, \ TH_{DOM(max)} = \\ 0.581 \times V_{SUP}, \\ V_{SUP} = 7 \ V \ to \ 18 \ V, \\ t_{BIT} = 50 \ \mu \ s \ (20 \ kbps), \\ D1 = t_{Bus\_rec(min)} / \ (2 \times t_{BIT}). \\ See \ \ 8 \ -1 \end{array} $                                            | 0.396                   |                        |                          |            |
| D2                     | Duty cycle 2 <sup>(4)</sup>               | $ \begin{aligned} & TH_{REC(min)} = 0.422 \times V_{SUP}, \ TH_{DOM(min)} = 0.284 \\ & \times V_{SUP}, \\ & V_{SUP} = 7.6 \ V \ to \ 18 \ V, \\ & t_{BIT} = 50 \ \mu \ s \ (20 \ kbps), \\ & D2 = t_{Bus\_rec(max)} / \ (2 \times t_{BIT}). \\ & See \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                   |                         |                        | 0.581                    |            |
| D3                     | Duty cycle 3 <sup>(4)</sup>               | $\begin{split} &TH_{REC(max)} = 0.778 \times V_{SUP},  TH_{DOM(max)} = \\ &0.616 \times V_{SUP}, \\ &V_{SUP} = 7 \text{ V to } 18 \text{ V}, \\ &t_{BIT} = 96 \ \mu \text{ s } (10.4 \text{ kbps}), \\ &D3 = t_{Bus\_rec(min)} / \ (2 \times t_{BIT}). \\ &\text{See} \ \boxtimes \ 8\text{-}1 \end{split}$ | 0.417                   |                        |                          |            |

# 8.5 Electrical Characteristics (continued)

 $V_{SUP} = 7 \text{ V}$  to 27 V,  $T_A = -40^{\circ}\text{C}$  to 125°C (unless otherwise noted)

|                            | PARAMETER                                                                | TEST CONDITIONS                                                                                                                                                                                                                                                                    | MIN | TYP <sup>(1)</sup> | MAX  | UNIT       |
|----------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|------|------------|
| D4                         | Duty cycle 4 <sup>(4)</sup>                                              | $ \begin{array}{l} TH_{REC(min)} = 0.389 \times V_{SUP}, \ TH_{DOM(min)} = 0.251 \\ \times V_{SUP}, \\ V_{SUP} = 7.6 \ V \ to \ 18 \ V, \\ t_{BIT} = 96 \ \ \mu \ s \ (10.4 \ kbps), \\ D4 = t_{Bus\_rec(max)} / \ (2 \times t_{BIT}). \\ See \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ |     |                    | 0.59 |            |
| t <sub>rx_pdr</sub>        | Receiver rising propagation delay time                                   | R <sub>RXD</sub> = 2.4 kΩ, C <sub>RXD</sub> = 20 pF<br>See ⅓ 8-2<br>See ⅓ 9-1                                                                                                                                                                                                      |     |                    | 6    |            |
| t <sub>rx_pdf</sub>        | Receiver falling propagation delay time                                  | R <sub>RXD</sub> = 2.4 kΩ, C <sub>RXD</sub> = 20 pF<br>See 图 8-2<br>See 图 9-1                                                                                                                                                                                                      |     |                    | 6    |            |
| t <sub>rx_sym</sub>        | Symmetry of receiver propagation delay time                              | rising edge with respect to falling edge ( $t_{rx\_sym}$ = $t_{rx\_pdf}$ - $t_{rx\_pdr}$ )<br>$R_{RXD}$ = 2.4 k $\Omega$ , $C_{RXD}$ = 20 pF<br>See $\boxtimes$ 8-2<br>See $\boxtimes$ 9-1                                                                                         | - 2 |                    | 2    | μ <b>s</b> |
| t <sub>NWake</sub>         | NWake filter time for local wakeup                                       | See № 10-4                                                                                                                                                                                                                                                                         | 25  | 50                 | 150  |            |
| t <sub>LINBUS</sub>        | LIN wake-up filter time<br>(dominant time for wakeup<br>through LIN bus) | See 图 10-3                                                                                                                                                                                                                                                                         | 25  | 50                 | 150  |            |
| t <sub>DST</sub>           | Dominant state time-out <sup>(5)</sup>                                   |                                                                                                                                                                                                                                                                                    | 5.5 |                    | 20   | ms         |
| t <sub>go_to_operate</sub> |                                                                          | See 图 10-2 to 图 10-3                                                                                                                                                                                                                                                               |     | 0.5                | 1    | μs         |

- (1) Typical values are given for  $V_{SUP}$  = 14 V at 25°C, except for low power mode where typical values are given for  $V_{SUP}$  = 12 V at 25°C.
- (2) All voltages are defined with respect to ground; positive currents flow into the TPIC1021A device.
- (3) In the dominant state, the supply current increases as the supply voltage increases due to the integrated LIN responder termination resistance. At higher voltages the majority of supply current is through the termination resistance. The minimum resistance of the LIN responder termination is 20 kΩ, so the maximum supply current attributed to the termination is:
  I<sub>SUP</sub> (dom) max termination \* (V<sub>SUP</sub> (V<sub>LIN\_Dominant</sub> + 0.7 V) / 20 kΩ
- (4) Duty cycles: LIN driver bus load conditions (C<sub>LINBUS</sub>, R<sub>LINBUS</sub>): Load1 = 1 nF, 1 kΩ; Load2 = 10 nF, 500 Ω. Duty cycles 3 and 4 are defined for 10.4-kbps operation. The TPIC1021A also meets these lower data rate requirements, while it is capable of the higher speed 20-kbps operation as specified by Duty cycles 1 and 2. SAEJ2602 derives propagation delay equations from the LIN 2.0 duty cycle definitions, for details see the SAEJ2602 specification.
- (5) Dominant state time-out limits the minimum data rate to 2.4 kbps.

Submit Document Feedback

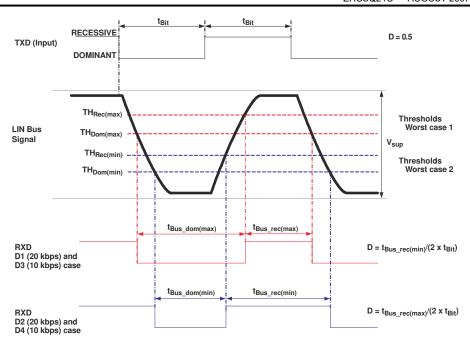



图 8-1. Definition of Bus Timing Parameters

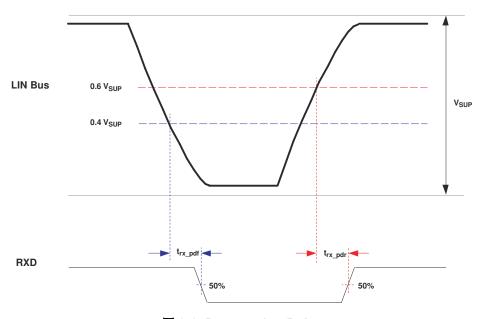
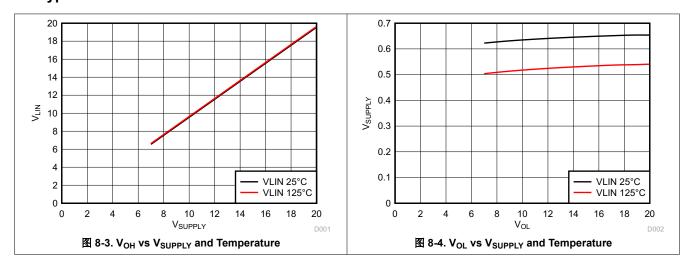



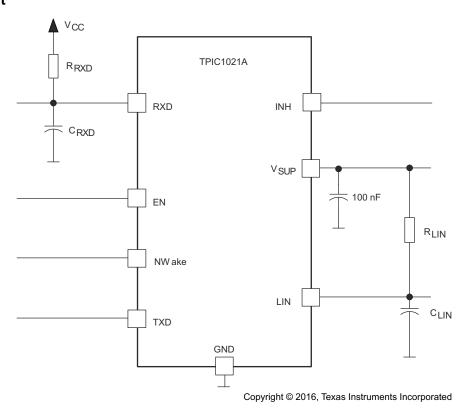

图 8-2. Propagation Delay

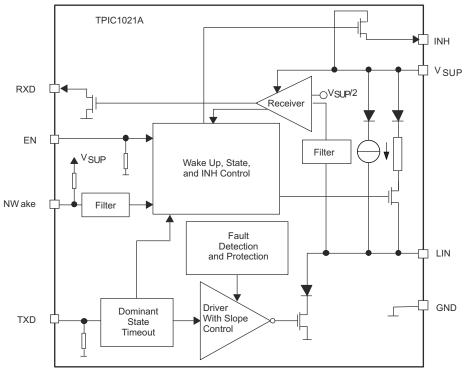
# 8.6 Typical Characteristics



# **9 Parameter Measurement Information**

# 9.1 Test Circuit





图 9-1. Test Circuit for AC Characteristics

# 10 Detailed Description

### 10.1 Overview

The TPIC1021A is a LIN (Local Interconnect Network) physical layer transceiver which integrates a serial transceiver with wake-up and protection features. The LIN bus is a single-wire, bidirectional bus that typically is used in low speed in vehicle networks with data rates that range from 2.4 kbps to 20 kbps.

# 10.2 Functional Block Diagram



Copyright © 2016, Texas Instruments Incorporated

### 10.3 Feature Description

### 10.3.1 Local Interconnect Network (LIN) Bus

This I/O pin is the single-wire LIN bus transmitter and receiver.

#### 10.3.1.1 Transmitter Characteristics

The driver is a low-side transistor with internal current limitation and thermal shutdown. There is an internal 30-  $k\Omega$  pullup resistor with a serial diode structure to  $V_{SUP}$ , so no external pullup components are required for LIN responder mode applications. An external pullup resistor of 1  $k\Omega$ , plus a series diode to  $V_{SUP}$  must be added when the device is used for commander node applications.

Voltage on LIN can go from -40-V to 40-V dc without any currents other than through the pullup resistance. There are no reverse currents from the LIN bus to supply  $(V_{SUP})$ , even in the event of a ground shift or loss of supply  $(V_{SUP})$ .

The LIN thresholds and ac parameters are LIN Protocol Specification Revision 2.0 compliant.

During a thermal shutdown condition, the driver is disabled.

#### 10.3.1.2 Receiver Characteristics

The receiver's characteristic thresholds are ratio-metric with the device supply pin. Typical thresholds are 50%, with a hysteresis between 5% and 17.5% of supply.

The receiver is capable of receiving higher data rates (>100 kbps) than supported by LIN or SAEJ2602 specifications. This allows the TPIC1021A to be used for high-speed downloads at end-of-line production or other applications. The actual data rates achievable depend on system time constants (bus capacitance and pullup resistance) and driver characteristics used in the system.

#### 10.3.2 Transmit Input (TXD)

TXD is the interface to the MCU's LIN protocol controller or SCI/UART used to control the state of the LIN output. When TXD is low, the LIN output is dominant (near ground). When TXD is high, the LIN output is recessive (near battery). The TXD input structure is compatible with microcontrollers with 3.3-V and 5-V I/O. TXD has an internal pulldown resistor.

#### 10.3.2.1 TXD Dominant State Time-Out

If TXD is inadvertently driven permanently low by a hardware or software application failure, the LIN bus is protected by TPIC1021A's dominant state time-out timer. This timer is triggered by a falling edge on TXD. If the low signal remains on TXD for longer than  $t_{DST}$ , the transmitter is disabled, thus allowing the LIN bus to return to the recessive state and communication to resume on the bus. The timer is reset by a rising edge on TXD.

### 10.3.3 Receive Output (RXD)

RXD is the interface to the MCU's LIN protocol controller or SCI/UART, which reports the state of the LIN bus voltage. LIN recessive (near battery) is represented by a high level on RXD and LIN dominant (near ground) is represented by a low level on RXD. The RXD output structure is an open-drain output stage. This allows the TPIC1021A to be used with 3.3-V and 5-V I/O microcontrollers. If the microcontroller's RXD pin does not have an integrated pullup, an external pullup resistor to the microcontroller I/O supply voltage is required.

#### 10.3.3.1 RXD Wake-up Request

When the TPIC1021A has been in low-power mode and encounters a wake-up event from the LIN bus or NWake pin, RXD goes low, while the device enters and remains in standby mode (until EN is reasserted high and the device enters normal mode).

### 10.3.4 Supply Voltage (V<sub>SUP</sub>)

 $V_{SUP}$  is the TPIC1021A device power supply pin.  $V_{SUP}$  is connected to the battery through an external reverse battery blocking diode. The characterized operating voltage range for the TPIC1021A is from 7 V to 27 V.  $V_{SUP}$  is protected for harsh automotive conditions up to 40 V.

The device contains a reset circuit to avoid false bus messages during undervoltage conditions when  $V_{SUP}$  is less than  $V_{SUP}$  UNDER.

### 10.3.5 Ground (GND)

GND is the TPIC1021A device ground connection. The TPIC1021A can operate with a ground shift as long as the ground shift does not reduce  $V_{SUP}$  below the minimum operating voltage. If there is a loss of ground at the ECU level, the TPIC1021A does not have a significant current consumption on LIN bus.

#### 10.3.6 Enable Input (EN)

EN controls the operation mode of the TPIC1021A (normal or sleep mode). When EN is high, the TPIC1021A is in normal mode allowing a transmission path from TXD to LIN and from LIN to RXD. When EN is low the device is put into sleep mode and there are no transmission paths available. The device can enter normal mode only after being woken up. EN has an internal pulldown resistor to ensure the device remains in low-power mode even if EN floats.

Submit Document Feedback

#### 10.3.7 NWake Input (NWake)

NWake is a high-voltage input used to wake up the TPIC1021A from low-power mode. NWake is usually connected to an external switch in the application. A low on NWake that is asserted longer than the filter time  $(t_{NWAKE})$  results in a local wakeup. NWake provides an internal pullup source to  $V_{SUP}$ .

# 10.3.8 Inhibit Output (INH)

INH is used to control an external voltage regulator that has an inhibit input. When the TPIC1021A is in normal operating mode, the inhibit high-side switch is enabled and the external voltage regulator is activated. When TPIC1021A is in low-power mode, the inhibit switch is turned off, which disables the voltage regulator. A wake-up event on for the TPIC1021A returns INH to  $V_{SUP}$  level. INH can also drive an external transistor connected to an MCU interrupt input.

# 10.4 Device Functional Modes

#### 10.4.1 Operating States

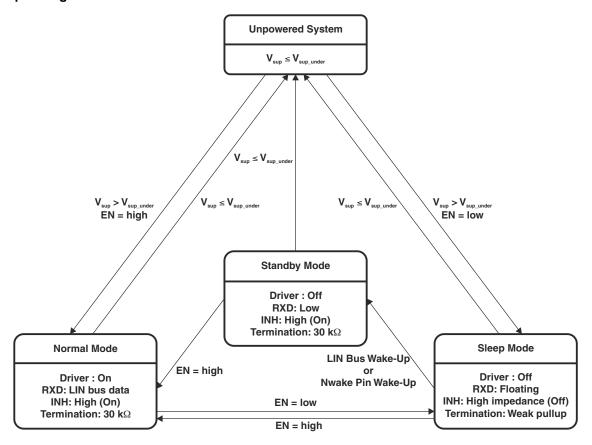



图 10-1. Operating States Diagram

表 10-1. Operating Modes

| MODE    | EN   | RXD          | LIN BUS<br>TERMINATION | INH            | TRANSMITTER | COMMENTS                                         |
|---------|------|--------------|------------------------|----------------|-------------|--------------------------------------------------|
| Sleep   | Low  | Floating     | Weak current pullup    | High impedance | Off         |                                                  |
| Standby | Low  | Low          | 30 kΩ (typical)        | High           | Off         | Wake-up event detected, waiting on MCU to set EN |
| Normal  | High | LIN bus data | 30 kΩ (typical)        | High           | On          | LIN transmission up to 20 kbps                   |

#### 10.4.1.1 Normal Mode

This is the normal operational mode, in which the receiver and driver are active, and LIN transmission up to the LIN specified maximum of 20 kbps is supported. The receiver detects the data stream on the LIN bus and outputs it on RXD for the LIN controller, where recessive on the LIN bus is a digital high, and dominate on the LIN bus is digital low. The driver transmits input data on TXD to the LIN bus. Normal mode is entered as EN transitions high while the TPIC1021A is in sleep or standby mode.

### 10.4.1.2 Sleep Mode

Sleep mode is the power saving mode for the TPIC1021A and the default state after power up (assuming EN is low during power up). Even with the extremely low current consumption in this mode, the TPIC1021A can still wake up from LIN bus through a wake-up signal, a low on NWake, or if EN is set high. The LIN bus and NWake are filtered to prevent false wake-up events. The wake-up events must be active for their respective time periods  $(t_{\text{LINBUS}}, t_{\text{NWake}})$ .

The sleep mode is entered by setting EN low.

While the device is in sleep mode, the following conditions exist:

- The LIN bus driver is disabled and the internal LIN bus termination is switched off (to minimize power loss if LIN is short circuited to ground). However, the weak current pullup is active to prevent false wake-up events in case an external connection to the LIN bus is lost.
- · The normal receiver is disabled.
- · INH is high impedance.
- EN input, NWake input, and the LIN wake-up receiver are active.

#### 10.4.1.2.1 Wake-Up Events

There are three ways to wake up the TPIC1021A from sleep mode:

- Remote wakeup through recessive (high) to dominant (low) state transition on LIN bus. The dominant state
  must be held for t<sub>LINBUS</sub> filter time and then the bus must return to the recessive state (to eliminate false
  wakeups from disturbances on the LIN bus or if the bus is shorted to ground).
- Local wakeup through a low on NWake, which is asserted low longer than the filter time t<sub>NWake</sub> (to eliminate false wakeups from disturbances on NWake)
- · Local wakeup through EN being set high

### 10.4.1.3 Standby Mode

This mode is entered whenever a wake-up event occurs through LIN bus or NWake while the TPIC1021A is in sleep mode. The LIN bus responder termination circuit and INH are turned on when standby mode is entered. The application system powers up once INH is turned on, assuming the system is using a voltage regulator connected through INH. Standby mode is signaled through a low level on RXD.

When EN is set high while the TPIC1021A is in standby mode the device returns to normal mode and the normal transmission paths from TXD to LIN bus and LIN bus to RXD are enabled.

Product Folder Links: TPIC1021A-Q1

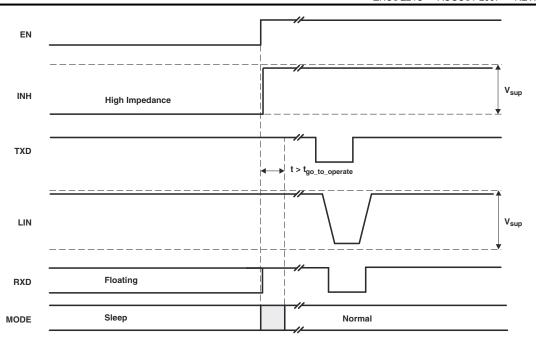



图 10-2. Wakeup Through EN

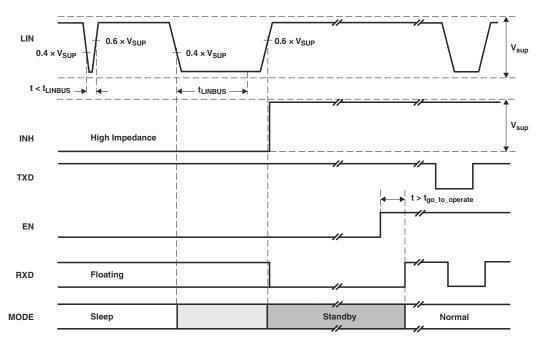



图 10-3. Wakeup Through LIN



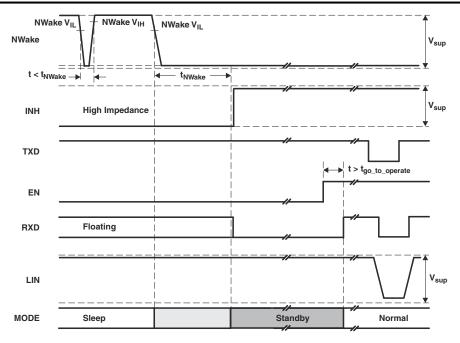
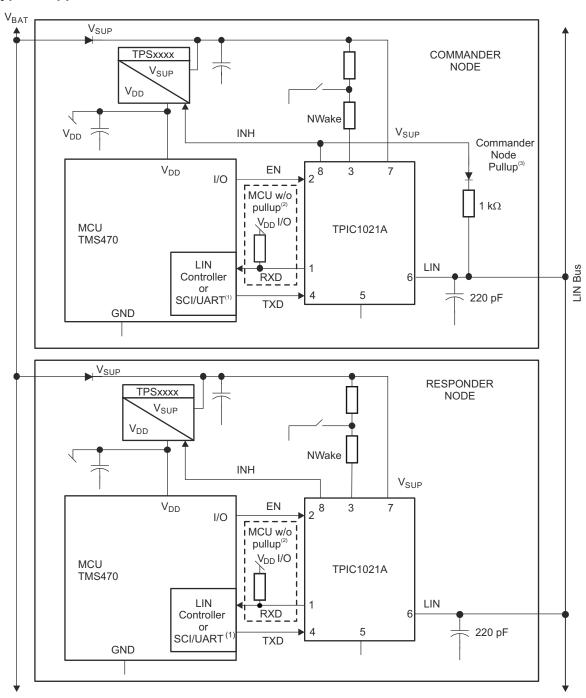



图 10-4. Wakeup Through NWake



# 11 Application and Implementation

### 备注


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

# 11.1 Application Information

The TPIC1021A can be used as both a responder device and a commander device in a LIN network. It comes with the ability to support both remote wake-up requests and local wake-up requests.



# 11.2 Typical Application



- A. RXD on MCU or LIN responder has internal pullup, no external pullup resistor is required.
- B. RXD on MCU or LIN responder without internal pullup, requires external pullup resistor.
- c. Commander node applications require an external 1-k $\Omega$  pullup resistor and serial diode.

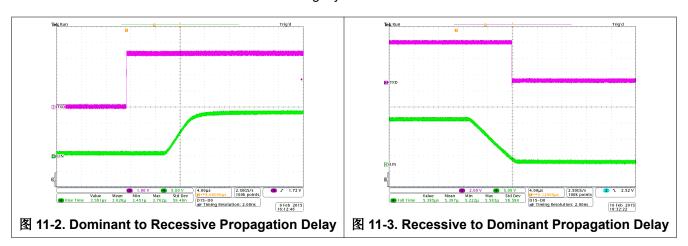
图 11-1. Typical Application Schematic

### 11.2.1 Design Requirements

For this application example, use these requirements:

- 1. RXD on MCU or LIN Responder has internal pullup, no external pullup resistor is required.
- 2. RXD on MCU or LIN Responder without internal pullup, requires external pullup resistor.
- 3. Commander Node applications require an external 1-k $\Omega$  pullup resistor and serial diode.

### 11.2.2 Detailed Design Procedure


The RXD output structure is an open-drain output stage. This allows the TPIC1021A to be used with 3.3-V and 5-V I/O microcontrollers. If the RXD pin of the microcontroller does not have an integrated pullup, an external pullup resistor to the microcontroller I/O supply voltage is required.

The  $V_{SUP}$  pin of the device must be decoupled with a 100-nF capacitor as close to the supply pin of the device as possible.

The NWAKE pin is a high voltage wake-up input to the device. If this pin is not being used it must be tied to  $V_{SUP}$ .

# 11.2.3 Application Curves

§ 11-2 and 
§ 11-3 show the propagation delay from the TXD pin to the LIN pin for both the recessive to dominant and dominant to recessive states under lightly loaded conditions.



# 11.3 Power Supply Recommendations

The TPIC1021A was designed to operate directly off car battery, or any other DC supply ranging from 7 V to 27 V. A 100-nF decoupling capacitor must be placed as close to the  $V_{SUP}$  pin of the device as possible.

# 11.4 Layout

# 11.4.1 Layout Guidelines

- Pin 1 is the RXD output of the TPIC1021A. It is an open-drain output and requires an external pullup resistor
  in the range of 1 to 10 k Ω to function properly. If the micro-processor paired with the transceiver does not
  have an integrated pullup, and external resistor must be placed between RXD and the regulated voltage
  supply for the micro-processor.
- Pin 2 is the EN input pin for the device that is used to place the device in low power sleep mode. If this feature is not used on the device, the pin must be pulled high to the regulated voltage supply of the microprocessor through a series 1-k  $\Omega$  to 10-k  $\Omega$  series resistor. Additionally, a series resistor may be placed on the pin to limit the current on the digital lines in the case of an overvoltage fault.
- Pin 3 is a high-voltage local wake-up input pin. The device is typically externally controlled by a normally
  open switch tied between NWAKE and ground. When the momentary switch is pressed the NWAKE pin is
  pulled to ground signaling a local wake-up event. A series resistor between VBATT and the switch, and



NWAKE and the switch must be placed to limit current. If the NWAKE local wake-up feature is not used, the pin can be tied to  $V_{SUP}$  through a 1-k  $\Omega$  to 10-k  $\Omega$  pullup resistor.

- Pin 4 is the transmit input signal to the device. A series resistor can be placed to limit the input current to the device in the case of an overvoltage on this pin. Also a capacitor to ground can be placed close to the input pin of the device to filter noise.
- Pin 5 is the ground connection of the device. This pin must be tied to a ground plane through a short trace with the use of two vias to limit total return inductance.
- Pin 6 is the LIN bus connection of the device. For responder applications a 220-pF bus capacitor is implemented. For commander applications an additional series resistor and blocking diode must be placed between the LIN pin and the V<sub>SUP</sub> pin.
- Pin 7 is the supply pin for the device. A 100-nF decoupling capacitor must be placed as close to the device as possible.
- Pin 8 is a high-voltage output pin that may be used to control the local power supplies. If this feature is not used the pin may be left floating.

#### 备注

All ground and power connections must be made as short as possible and use at least two vias to minimize the total loop inductance.

### 11.4.2 Layout Example

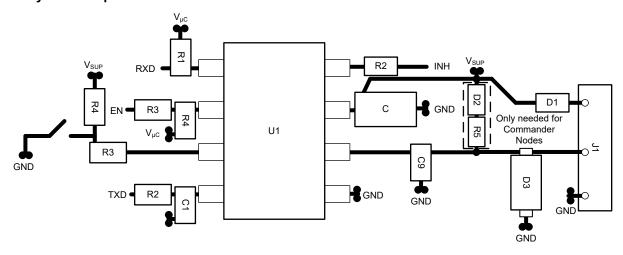



图 11-4. TPIC1021A-Q1 Layout

Product Folder Links: TPIC1021A-Q1

Submit Document Feedback

# 12 Device and Documentation Support

# 12.1 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

# 12.2 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

#### 12.3 Trademarks

TI E2E<sup>™</sup> is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

### 12.4 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

### 12.5 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

# 13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 17-Feb-2022

#### PACKAGING INFORMATION

| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp      | Op Temp (°C) | Device Marking (4/5) | Samples |
|------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|----------------------|---------|
|                  |        |              |                    |      |                |              | (6)                           |                    |              |                      |         |
| TPIC1021AQDRQ1   | NRND   | SOIC         | D                  | 8    | 2500           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -40 to 125   | T1021A               |         |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

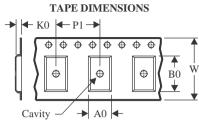
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

**Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

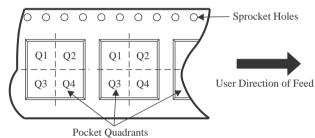
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

# **PACKAGE MATERIALS INFORMATION**

www.ti.com 3-Jun-2022

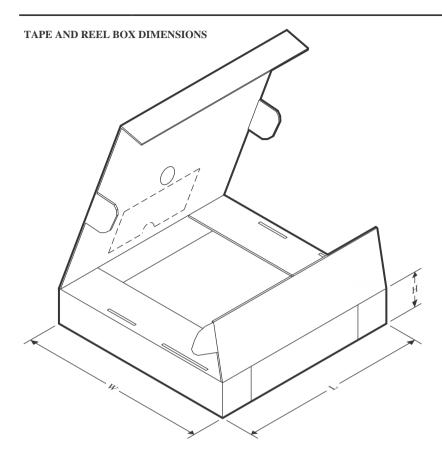

# TAPE AND REEL INFORMATION





| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




#### \*All dimensions are nominal

| Device         |      | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|----------------|------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TPIC1021AQDRQ1 | SOIC | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |

# **PACKAGE MATERIALS INFORMATION**

www.ti.com 3-Jun-2022



### \*All dimensions are nominal

| Device         | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |  |
|----------------|--------------|-----------------|------|------|-------------|------------|-------------|--|
| TPIC1021AQDRQ1 | SOIC         | D               | 8    | 2500 | 356.0       | 356.0      | 35.0        |  |



SMALL OUTLINE INTEGRATED CIRCUIT



# NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.



SMALL OUTLINE INTEGRATED CIRCUIT



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



SMALL OUTLINE INTEGRATED CIRCUIT



#### NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



# 重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司