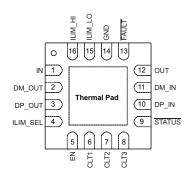


TPS2543-Q1

ZHCSAZ2 - MARCH 2013


带负载检测功能的 USB 充电端口控制器和电源开关

查询样品: TPS2543-Q1

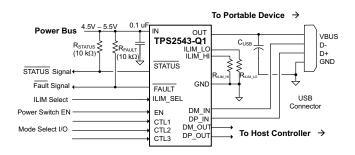
特性

- 符合汽车应用要求
- 具有符合 AEC-Q100 的下列结果:
 - 器件温度 1 级: -40℃ 至 125℃ 的环境运行温 度范围
 - 器件人体模型 (HBM) 静电放电 (ESD) 分类等级
 H2
 - 器件充电器件模型 (CDM) ESD 分类等级 C5
- 符合 USB 电池充电规范 1.2 的 D+/D- 充电下游端
 口 (CDP) / 专用充电端口 (DCP) 模式
- 符合中国电信业标准 YD/T 1591-2009 的 D+/D- 短 接模式
- 通过自动选择来支持非 BC1.2 充电模式
 - D+/D-分配器模式 2.0V/2.7V 和 2.7/2.0V
- 支持睡眠模式充电和鼠标/键盘唤醒
- 针对 S4/S5 充电中的电源控制和所有充电模式内端
 口电源管理的负载检测
- 与 USB 2.0 和 3.0 电源开关要求兼容
- 集成型 73mΩ(典型值)高侧金属氧化物半导体场 效应晶体管 (MOSFET)
- 可调电流限制高达 3A (典型值)
- 工作电压范围: 4.5V 至 5.5V
- 最大器件电流
 - 当器件被禁用时为 2µA
 - 当器件被启用时为 260µA
- 与 TPS2543 插槽和物料清单 (BOM) 兼容
- 采用 16 引脚四方扁平无引线 (QFN) (3 x 3) 封装

TPS2453-Q1 RTE 封装和典型应用图

• 符合 UL 规范且 CB 档案编号E169910

应用范围


- USB 端口(主机和集线器)
- 笔记本和台式机
- 汽车娱乐信息系统

说明

TPS2543-Q1 是一款具有集成的 USB 2.0 高速数据线路 (D+/D-) 开关的 USB 充电端口控制器和电源开关。 TPS2453-Q1 在 D+/D- 上提供电气签名以支持器件特性部分中所列出的充电体系。德州仪器 (TI) 使用 TPS2453-Q1 来测试常见手机、平板电脑和媒体器件的充电以确保与 BC1.2 和非 BC1.2 兼容器件的兼容性。

除了为常见器件充电,TPS2453-Q1 还支持两个特殊 的电源管理特性,即通过STATUS引脚实现的电源唤醒 和端口电源管理 (PPM)。电源唤醒可在 S4/S5 充电过 程中实现电源控制,而 PPM 能够在多端口应用中管理 端口电源。此外,TPS2453-Q1 还支持带有鼠标/键 盘(只适用于低速)的系统唤醒(通过 S3)。

TPS2453-Q1 73mΩ 配电开关用于有可能遇到高电容 负载和短路的应用。两个可编程电流阀值为设置电流 限值和负载检测阀值提供了灵活性。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TPS2543-Q1

ZHCSAZ2 -MARCH 2013

www.ti.com.cn

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

$T_A = T_J$	PACKAGE	DEVICE	TOP-SIDE MARKING
–40°C to 125°C	QFN16	TPS2543-Q1	2543Q

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range, voltages are referenced to GND (unless otherwise noted)

		LIMIT	UNIT
	IN, EN, ILIM_LO, ILIM_HI, FAULT, STATUS, ILIM_SEL, CTL1, CTL2, CTL3, OUT	-0.3 to 7	.,
Voltage range	IN to OUT	-7 to 7	V
	DP_IN, DM_IN, DP_OUT, DM_OUT	–0.3 to (IN + 0.3) or 5.7	
Input clamp current	DP_IN, DM_IN, DP_OUT, DM_OUT	±20	mA
Continuous current in SDP or CDP mode	DP_IN to DP_OUT or DM_IN to DM_OUT	±100	mA
Continuous current in BC1.2 DCP mode	DP_IN to DM_IN	±50	mA
Continuous output current	OUT	Internally limited	
Continuous output sink current	FAULT, STATUS	25	mA
Continuous output source current	ILIM_LO, ILIM_HI	Internally limited	mA
COD ration	HBM	2000	V
ESD rating	CDM	500	v
Operating junction temperature, T_J		-40 to Internally limited	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL INFORMATION

		TPS2543-Q1	
	THERMAL METRIC ⁽¹⁾	RTE	UNITS
		16 PINS	
θ _{JA}	Junction-to-ambient thermal resistance ⁽²⁾	53.4	
θ _{JCtop}	Junction-to-case (top) thermal resistance ⁽³⁾	51.4	
θ _{JB}	Junction-to-board thermal resistance ⁽⁴⁾	17.2	8 0 AM
Ψ _{JT}	Junction-to-top characterization parameter ⁽⁵⁾	3.7	°C/W
Ψ _{JB}	Junction-to-board characterization parameter ⁽⁶⁾	20.7	
θ _{JCbot}	Junction-to-case (bottom) thermal resistance ⁽⁷⁾	3.9	

(1) 有关传统和新的热 度量的更多信息,请参阅IC 封装热度量应用报告, SPRA953。(2) 在 JESD51-2a 描述的环境中,按照 JESD51-7 的指定,在一个 JEDEC 标准高 K 电路板上进行仿真,从而获得自然 对流条件下的结至环 境热阻。

通过在封装顶部模拟一个冷板测试来获得结至芯片外壳(顶部)的热阻。 不存在特定的 JEDEC 标准测试,但 可在 ANSI SEMI 标准 G30-(3) 88 中能找到内容接近的说明。

(4) 按照 JESD51-8 中的说明,通过 在配有用于控制 PCB 温度的环形冷板夹具的环境中进行仿真,以获得结板热阻。

(5) 结至顶部特征参数, ψ_{JT},估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中 描述的程序从仿真数据中 提取出该参 数以便获得 θ_{JA}。

·结至电路板特征参数, Ψ_{JB},估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中 描述的程序从仿真数据中 提取出该 (6) 参数以便获得 θ_{JA}。 通过在外露(电源)焊盘上进行冷板测试仿真来获得 结至芯片外壳(底部)热阻。 不存在特定的 JEDEC 标准 测试,但可在 ANSI SEMI

(7) 标准 G30-88 中能找到内容接近的说明。

ZHCSAZ2 -MARCH 2013 RECOMMENDED OPERATING CONDITIONS

voltages are referenced to GND (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{IN}	Input voltage, IN	4.5		5.5	V
	Input voltage, logic-level inputs, EN, CTL1, CTL2, CTL3, ILIM_SEL	0		5.5	V
	Input voltage, data line inputs, DP_IN, DM_IN, DP_OUT, DM_OUT	0		V _{IN}	V
V _{IH}	High-level input voltage, EN, CTL1, CTL2, CTL3, ILIM_SEL	1.8			V
V _{IL}	Low-level input voltage, EN, CTL1, CTL2, CTL3, ILIM_SEL			0.8	V
	Continuous current, data line inputs, SDP or CDP mode, DP_IN to DP_OUT, DM_IN to DM_OUT			±30	mA
	Continuous current, data line inputs, BC1.2 DCP mode, DP_IN to DM_IN			±15	mA
I _{OUT}	Continuous output current, OUT	0		2.5	А
	Continuous output sink current, FAULT, STATUS	0		10	mA
R _{ILIM_XX}	Current-limit set resistors	16.9		750	kΩ
TJ	Operating virtual junction temperature	-40		125	°C

ELECTRICAL CHARACTERISTICS

Unless otherwise noted: $-40 \le T_J \le 125^{\circ}$ C, $4.5V \le V_{IN} \le 5.5 V$, $V_{EN} = V_{IN}$, $V_{ILIM_SEL} = V_{IN}$, $V_{CTL1} = V_{CTL2} = V_{CTL3} = V_{IN}$. R $\overline{_{FAULT}} = R \overline{_{STATUS}} = 10 \text{ k}\Omega$, $R_{ILIM_HI} = 20 \text{ k}\Omega$, $R_{ILIM_LO} = 80.6 \text{ k}\Omega$. Positive currents are into pins. Typical values are at 25°C. All voltages are with respect to GND.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER	SWITCH					
		T _J = 25°C, I _{OUT} = 2 A		73	84	
R _{DS(on)}	On resistance ⁽¹⁾	$-40^{\circ}C \le T_{J} \le 85^{\circ}C$, $I_{OUT} = 2 \text{ A}$		73	105	mΩ
		$-40^{\circ}C \le T_{J} \le 125^{\circ}C$, $I_{OUT} = 2 \text{ A}$		73	120	
t _r	OUT voltage rise time	$V_{IN} = 5 \text{ V}, \text{ C}_{L} = 1 \mu\text{F}, \text{ R}_{L} = 100 \Omega \text{ (see Figure 23 and } \mu\text{F})$	0.7	1.0	1.60	
t _f	OUT voltage fall time	Figure 24)	0.2	0.35	0.5	ms
t _{on}	OUT voltage turn-on time	$V_{IN} = 5V$, $C_L = 1 \ \mu$ F, $R_L = 100 \ \Omega$ (see Figure 23 and		2.7	4	
t _{off}	OUT voltage turn-off time	Figure 25)		1.7	3	ms
I _{REV}	Reverse leakage current	$V_{OUT} = 5.5 \text{ V}, V_{IN} = V_{EN} = 0 \text{ V}, -40 \le T_J \le 85^{\circ}\text{C},$ Measure I _{OUT}			2	μA
DISCHA	RGE				·	
R _{DCHG}	OUT discharge resistance	V _{OUT} = 4 V, V _{EN} = 0 V	400	500	630	Ω
t _{DCHG}	OUT discharge hold time	Time V _{OUT} < 0.7 V (see Figure 26)	205	310	450	ms

(1) Pulse-testing techniques maintain junction temperature close to ambient temperature; Thermal effects must be taken into account separately.

ZHCSAZ2 -MARCH 2013

www.ti.com.cn

ELECTRICAL CHARACTERISTICS (continued)

Unless otherwise noted: $-40 \le T_J \le 125^{\circ}C$, $4.5V \le V_{IN} \le 5.5 V$, $V_{EN} = V_{IN}$, $V_{ILIM_SEL} = V_{IN}$, $V_{CTL1} = V_{CTL2} = V_{CTL3} = V_{IN}$. R $\overline{_{FAULT}} = R \overline{_{STATUS}} = 10 \text{ k}\Omega$, $R_{ILIM_HI} = 20 \text{ k}\Omega$, $R_{ILIM_LO} = 80.6 \text{ k}\Omega$. Positive currents are into pins. Typical values are at 25°C. All voltages are with respect to GND.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
EN, ILIN	ISEL, CTL1, CTL2, CTL3 INPUTS					
	Input pin rising logic threshold voltage		1	1.35	1.70	V
	Input pin falling logic threshold voltage		0.85	1.15	1.45	
	Hysteresis ⁽²⁾			200		mV
	Input current	Pin voltage = 0 V or 5.5 V	-0.5		0.5	μA
ILIMSEL	CURRENT LIMIT					
		$V_{ILIM_SEL} = 0 V, R_{ILIM_LO} = 210 k\Omega$	205	240	275	
		$V_{ILIM_SEL} = 0 V, R_{ILIM_LO} = 80.6 k\Omega$	575	625	680	
I _{OS}	OUT short circuit current limit $^{(3)}$	$V_{ILIM_SEL} = 0 V, R_{ILIM_LO} = 22.1 k\Omega$	2120	2275	2430	mA
		$V_{ILIM_SEL} = V_{IN}, R_{ILIM_HI} = 20 \text{ k}\Omega$	2340	2510	2685	
		$V_{ILIM_SEL} = V_{IN}, R_{ILIM_HI} = 16.9 \text{ k}\Omega$	2770	2970	3170	
t _{IOS}	Response time to OUT short- circuit ⁽²⁾	$V_{IN} = 5.0 \text{ V}, \text{ R} = 0.1\Omega$, lead length = 2 inches (see Figure 27)		1.5		μs
SUPPLY	CURRENT				•	
I _{IN_OFF}	Disabled IN supply current	$V_{EN} = 0 \text{ V}, V_{OUT} = 0 \text{ V}, -40 \le T_J \le 85^{\circ}\text{C}$		0.1	2	μA
		$V_{CTL1} = V_{CTL2} = V_{IN}, V_{CTL3} = 0 V \text{ or } V_{IN}, V_{ILIM_SEL} = 0 V$		155	210	
	Enchlad IN current	$V_{CTL1} = V_{CTL2} = V_{IN}, V_{CTL3} = 0V, V_{ILIM_SEL} = V_{IN}$		175	230	
I _{IN_ON}	Enabled IN supply current	$V_{CTL1} = V_{CTL2} = V_{IN}, V_{CTL3} = VIN, V_{ILIM_SEL} = V_{IN}$		185	240	μA
		$V_{CTL1} = 0V, V_{CTL2} = V_{CTL3} = V_{IN}$		205	260	
UNDER	VOLTAGE LOCKOUT					
V _{UVLO}	IN rising UVLO threshold voltage		3.9	4.1	4.3	V
	Hysteresis ⁽²⁾			100		mV
FAULT						
	Output low voltage	$I_{\overline{FAULT}} = 1 \text{ mA}$			100	mV
	Off-state leakage	$V \overline{FAULT} = 5.5 V$			1	μA
	Over current FAULT rising and falling deglitch		5	8.2	12	ms
STATUS	5					
	Output low voltage	I _{STATUS} = 1 mA			100	mV
	Off-state leakage	$V \overline{\text{STATUS}} = 5.5 V$			1	μA
THERM	AL SHUTDOWN					
	Thermal shutdown threshold		155			
	Thermal shutdown threshold in current-limit		135			°C
	Hysteresis ⁽²⁾			20		

(2) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's product warranty. Pulse-testing techniques maintain junction temperature close to ambient temperature; Thermal effects must be taken into account

(3) separately.

XAS RUMENTS

www.ti.com.cn

ZHCSAZ2 -MARCH 2013

ELECTRICAL CHARACTERISTICS, HIGH-BANDWIDTH SWITCH

Unless otherwise noted: $-40 \le T_J \le 125^{\circ}C$, $4.5 V \le V_{IN} \le 5.5 V$, $V_{EN} = V_{IN}$, $V_{ILIM_SEL} = V_{IN}$, $V_{CTL1} = V_{CTL2} = V_{CTL3} = V_{IN}$. R $_{\overline{FAULT}} = R \overline{_{STATUS}} = 10 \text{ k}\Omega$, $R_{ILIM_HI} = 20 \text{ k}\Omega$, $R_{ILIM_LO} = 80.6 \text{ k}\Omega$, Positive currents are into pins. Typical values are at 25°C. All voltages are with respect to GND.

	PARAMETER	TEST CONDITIONS	MIN T	ΥP	MAX	UNIT
HIGH-BA	ANDWIDTH ANALOG SWITCH				· · · · ·	
	DP/DM switch on resistance	$V_{DP/DM_OUT} = 0 V, I_{DP/DM_IN} = 30 mA$		2	4	Ω
	DP/DM SWICH ON TESISTance	$V_{DP/DM_OUT} = 2.4 \text{ V}, I_{DP/DM_IN} = -15 \text{ mA}$		3	6	12
	Switch resistance mismatch between	$V_{DP/DM_OUT} = 0 V, I_{DP/DM_IN} = 30 mA$	0	.05	0.15	Ω
	DP / DM channels	$V_{DP/DM_OUT} = 2.4 \text{ V}, I_{DP/DM_IN} = -15 \text{ mA}$	0	.05	0.15	Ω
	DP/DM switch off-state capacitance $^{(1)}$, $^{(2)}$	V_{EN} = 0 V, $V_{\text{DP/DM}_{\text{IN}}}$ = 0.3 V, V_{ac} = 0.6 $V_{\text{pk-pk}},$ f = 1 MHz		3		pF
	DP/DM switch on-state capacitance ⁽³⁾ , ⁽²⁾	$V_{DP/DM_{IN}} = 0.3 V$, $V_{ac} = 0.6 V_{pk-pk}$, f = 1 MHz		5.4		pF
O _{IRR}	Off-state isolation ⁽²⁾	V _{EN} = 0 V, f = 250 MHz		33		dB
X _{TALK}	On-state cross channel isolation ⁽²⁾	f = 250 MHz		52		dB
	Off state leakage current	$V_{EN} = 0 \text{ V}, V_{DP/DM_IN} = 3.6 \text{ V}, V_{DP/DM_OUT} = 0 \text{ V},$ measure I_{DP/DM_OUT}		0.1	1.5	μA
BW	Bandwidth (-3dB) ⁽²⁾	$R_L = 50 \Omega$		2.6		GHz
t _{pd}	Propagation delay ⁽²⁾		0	.25		ns
t _{SK}	Skew between opposite transitions of the same port $\left(t_{PHL}-t_{PLH}\right)^{(2)}$			0.1		ns

The resistance in series with the parasitic capacitance to GND is typically 250 Ω . (1)

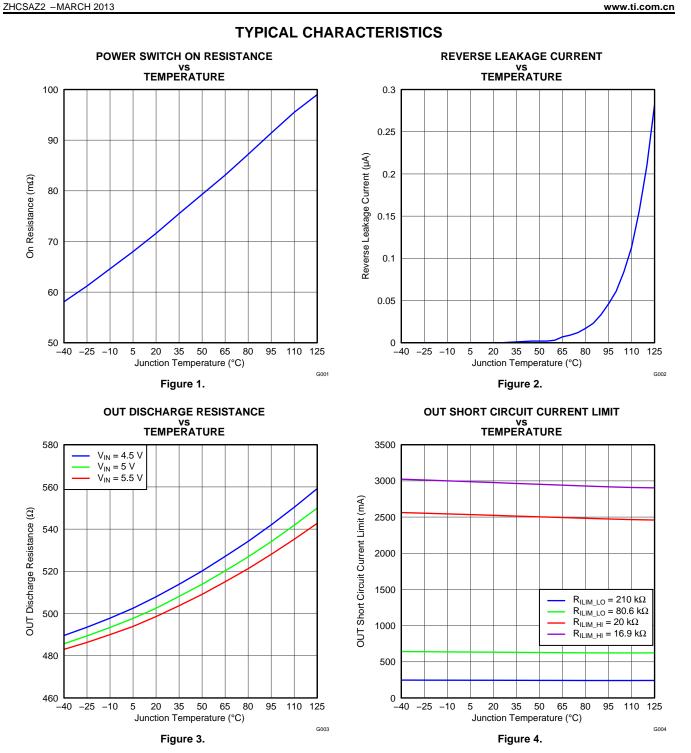
These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's (2)product warranty. The resistance in series with the parasitic capacitance to GND is typically 150 Ω

(3)

ZHCSAZ2 -MARCH 2013

www.ti.com.cn

ELECTRICAL CHARACTERISTICS, CHARGING CONTROLLER

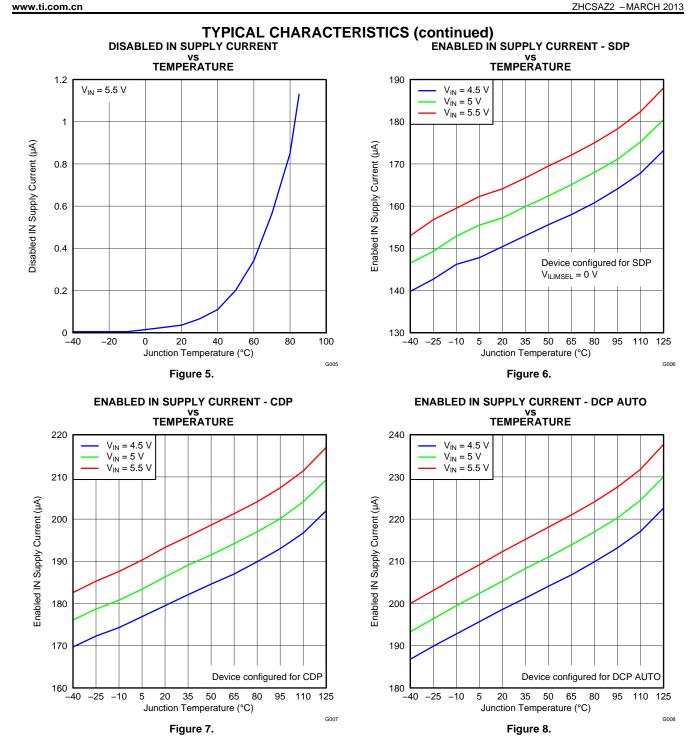

Unless otherwise noted: $-40 \le T_J \le 125^{\circ}$ C, $4.5 \ V \le V_{IN} \le 5.5 \ V$, $V_{EN} = V_{IN}$, $V_{ILIM_SEL} = V_{IN}$, $V_{CTL1} = 0 \ V$, $V_{CTL2} = V_{CTL3} = V_{IN}$. R FAULT = R $\overline{_{STATUS}} = 10 \ k\Omega$, $R_{ILIM_HI} = 20 \ k\Omega$, $R_{ILIM_LO} = 80.6 \ k\Omega$, Positive currents are into pins. Typical values are at 25°C. All voltages are with respect to GND.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
SHORTED	MODE (BC1.2 DCP)	VCTL1 = VIN, VCTL2 = VCTL3 = 0V					
	DP_IN / DM_IN shorting resistance			125	200	Ω	
DIVIDER1	IODE						
	DP_IN Divider1 output voltage		1.9	2.0	2.1	V	
	DM_IN Divider1 output voltage		2.57	2.7	2.84	V	
	DP_IN output impedance		8	10.5	12.5	kΩ	
	DM_IN output impedance		8	10.5	12.5	kΩ	
DIVIDER2 MODE		IOUT = 1A			•		
	DP_IN Divider2 output voltage		2.57	2.7	2.84	V	
	DM_IN Divider2 output voltage		1.9	2.0	2.1	V	
	DP_IN output impedance		8	10.5	12.5	kΩ	
	DM_IN output impedance		8	10.5	12.5	kΩ	
CHARGING	DOWNSTREAM PORT	VCTL1 = VCTL2 = VCTL3 = VIN					
V _{DM_SRC}	DM_IN CDP output voltage	V _{DP_IN} = 0.6 V, -250 μA < I _{DM_IN} < 0 μA	0.5	0.6	0.7	V	
V_{DAT_REF}	DP_IN rising lower window threshold for V _{DM_SRC} activation		0.25		0.4	V	
	Hysteresis ⁽¹⁾			50		mV	
V _{LGC_SRC}	DP_IN rising upper window threshold for V _{DM_SRC} de-activation		0.8		1	V	
	hysteresis ⁽¹⁾			100		mV	
I _{DP_SINK}	DP_IN sink current	$V_{DP_{IN}} = 0.6 V$	40	70	100	μA	
LOAD DET	ECT – NON POWER WAKE	VCTL1 = VCTL2 = VCTL3 = VIN					
I _{LD}	IOUT rising load detect current threshold		635	700	765	mA	
	hysteresis ⁽¹⁾			50		mA	
t _{LD_SET}	Load detect set time		140	200	275	ms	
	Load detect reset time		1.9	3	4.2	S	
LOAD DET	ECT – POWER WAKE	VCTL1 = VCTL2 = 0V, VCTL3 = VIN					
I _{OS_PW}	Power wake short circuit current limit		32	55	78	mA	
	I _{OUT} falling power wake reset current detection threshold		23	45	67	mA	
	Reset current hysteresis ⁽¹⁾			5		mA	
	Power wake reset time		10.7	15	20.6	S	

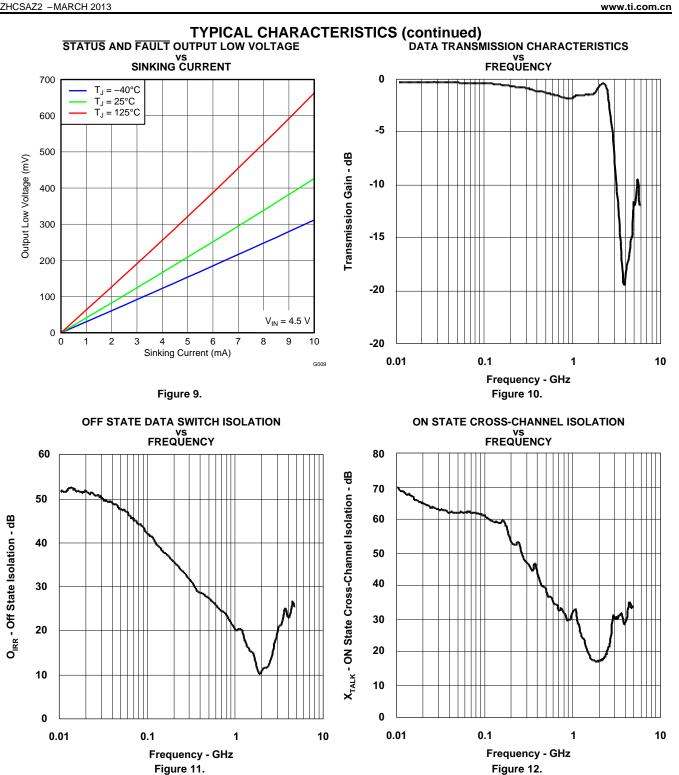
(1) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's product warranty.

EXAS STRUMENTS

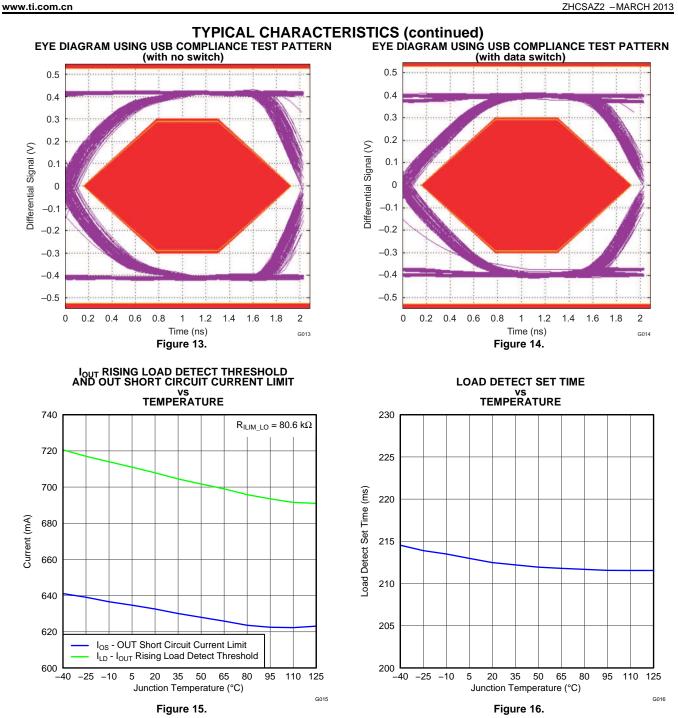
ZHCSAZ2 -MARCH 2013



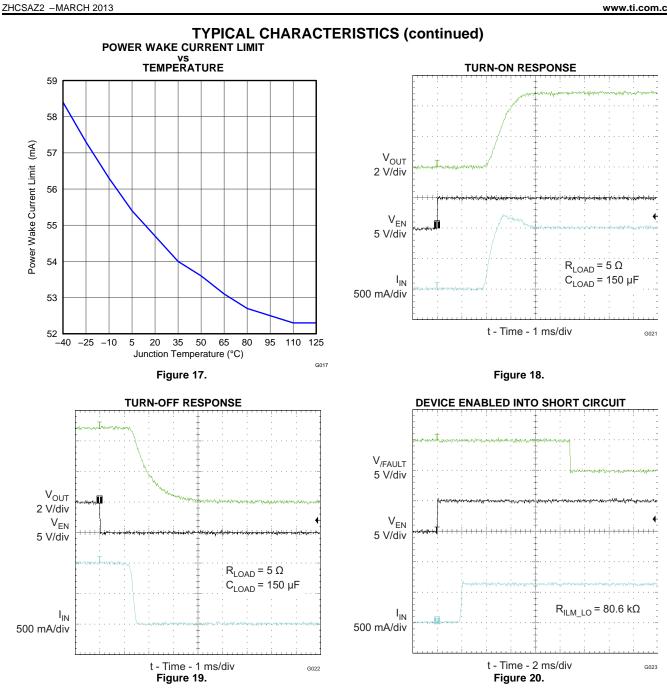
Copyright © 2013, Texas Instruments Incorporated


TPS2543-Q1

ZHCSAZ2 - MARCH 2013

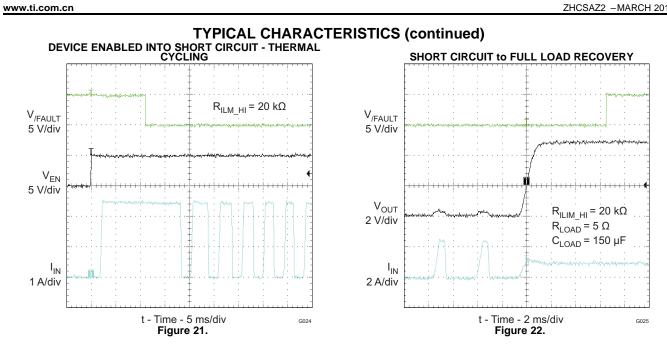

EXAS NSTRUMENTS

ZHCSAZ2 -MARCH 2013


ZHCSAZ2 - MARCH 2013

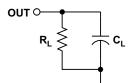
Copyright © 2013, Texas Instruments Incorporated

EXAS NSTRUMENTS


www.ti.com.cn

TPS2543-Q1

ZHCSAZ2 -MARCH 2013



ZHCSAZ2 -MARCH 2013

www.ti.com.cn

PARAMETER MEASUREMENT DESCRIPTION

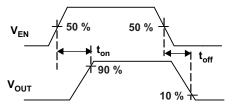


Figure 25. Enable Timing, Active High Enable

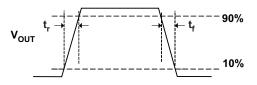


Figure 24. Power-On and Off Timing

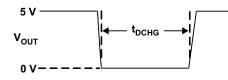


Figure 26. OUT Discharge During Mode Change

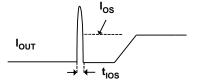
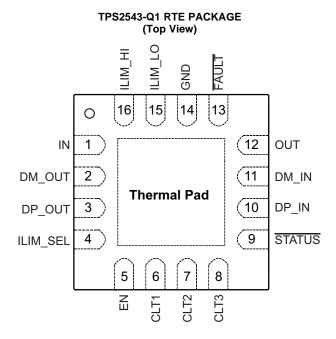
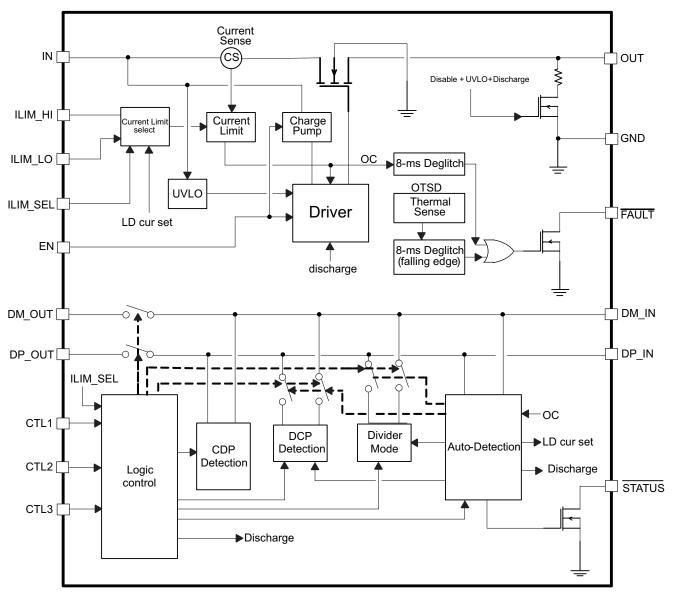



Figure 27. Output Short Circuit Parameters

ZHCSAZ2 - MARCH 2013

DEVICE INFORMATION

PIN FUNCTIONS


NO.	NAME	TYPE ⁽¹⁾	DESCRIPTION
1	IN	Р	Input voltage and supply voltage; connect 0.1 μF or greater ceramic capacitor from IN to GND as close to the device as possible
2	DM_OUT	I/O	D- data line to USB host controller
3	DP_OUT	I/O	D+ data line to USB host controller
4	ILIM_SEL	I	Logic-level input signal used to control the charging mode, current limit threshold, and load detection; see the control truth table. Can be tied directly to IN or GND without pull-up or pull-down resistor.
5	EN	I	Logic-level input for turning the power switch and the signal switches on/off; logic low turns off the signal and power switches and holds OUT in discharge. Can be tied directly to IN or GND without pull-up or pull-down resistor.
6	CTL1	I	
7	CTL2	I	Logic-level inputs used to control the charging mode and the signal switches; see the control truth table. Can be tied directly to IN or GND without pull-up or pull-down resistor.
8	CTL3	I	
9	STATUS	0	Active-low open-drain output, asserted in load detection conditions
10	DP_IN	I/O	D+ data line to downstream connector
11	DM_IN	I/O	D- data line to downstream connector
12	OUT	Р	Power-switch output
13	FAULT	0	Active-low open-drain output, asserted during over-temperature or current limit conditions
14	GND	Р	Ground connection
15	ILIM_LO	I	External resistor connection used to set the low current-limit threshold and the load detection current threshold. A resistor to ILIM_LO is optional; see Current-Limit Settings in DETAILED DESCRIPTION.
16	ILIM_HI	I	External resistor connection used to set the high current-limit threshold
NA	PowerPAD		Internally connected to GND; used to heat-sink the part to the circuit board traces. Connect to GND plane.

(1) G = Ground, I = Input, O = Output, P = Power

Texas Instruments

www.ti.com.cn

ZHCSAZ2 -MARCH 2013

TPS2543-Q1 FUNCTIONAL BLOCK DIAGRAM

ZHCSAZ2 - MARCH 2013

DETAILED DESCRIPTION

Overview

The following overview references various industry standards. It is always recommended to consult the most upto-date standard to ensure the most recent and accurate information. Rechargeable portable equipment requires an external power source to charge its batteries. USB ports are a convenient location for charging because of an available 5V power source. Universally accepted standards are required to make sure host and client-side devices operate together in a system to ensure power management requirements are met. Traditionally, host ports following the USB 2.0 specification must provide at least 500mA to downstream client-side devices. Because multiple USB devices can be attached to a single USB port through a bus-powered hub, it is the responsibility of the client-side device to negotiate its power allotment from the host to ensure the total current draw does not exceed 500mA. In general, each USB device is granted 100mA and may request more current in 100mA unit steps up to 500mA. The host may grant or deny based on the available current. A USB 3.0 host port not only provides higher data rate than USB 2.0 port but also raises the unit load from 100mA to 150mA. It is also required to provide a minimum current of 900mA to downstream client-side devices.

Additionally, the success of USB has made the mini-USB connector a popular choice for wall adapter cables. This allows a portable device to charge from both a wall adapter and USB port with only one connector. As USB charging has gained popularity, the 500mA minimum defined by USB 2.0 or 900mA for USB 3.0 has become insufficient for many handset and personal media players which need a higher charging rate. Wall adapters can provide much more current than 500mA/900mA. Several new standards have been introduced defining protocol handshaking methods that allow host and client devices to acknowledge and draw additional current beyond the 500mA/900mA minimum defined by USB 2.0/3.0 while still using a single micro-USB input connector.

The TPS2543-Q1 supports three of the most common USB charging schemes found in popular hand-held media and cellular devices:

- USB Battery Charging Specification BC1.2
- Chinese Telecommunications Industry Standard YD/T 1591-2009
- Divider Mode

YD/T 1591-2009 is a subset of BC1.2 spec. supported by vast majority of devices that implement USB changing. Divider charging scheme is supported in devices from specific yet popular device maker.

BC1.2 lists three different port types as listed below.

- Standard Downstream Port (SDP)
- Charging Downstream Port (CDP)
- Dedicated Charging Port (DCP)

BC1.2 defines a charging port as a downstream facing USB port that provides power for charging portable equipment, under this definition CDP and DCP are defined as charging ports

Table 1 shows the differences between these ports.

PORT TYPE	SUPPORT USB 2.0 COMMUNICATION	MAX. ALLOWABLE CURRENT DRAW BY PORTABLE DEVICE (A)						
SDP (USB 2.0)	Yes	0.5						
SDP (USB 3.0)	Yes	0.9						
CDP	Yes	1.5						
DCP	No	1.5						

Table 1. Operating Modes

Standard Downstream Port (SDP) USB 2.0/USB 3.0

An SDP is a traditional USB port that follows USB 2.0/3.0 protocol and supplies a minimum of 500mA/900mA per port. USB 2.0/3.0 communications is supported, and the host controller must be active to allow charging. TPS2543-Q1 supports SDP mode in system power state S0 when system is completely powered ON and fully operational. For more details on control pin (CTL1-CTL3) settings to program this state please refer to device truth table.

Charging Downstream Port (CDP)

A CDP is a USB port that follows USB BC1.2 and supplies a minimum of 1.5A per port. It provides power and meets USB 2.0 requirements for device enumeration. USB 2.0 communications is supported, and the host controller must be active to allow charging. What separates a CDP from an SDP is the host-charge handshaking logic that identifies this port as a CDP. A CDP is identifiable by a compliant BC1.2 client device and allows for additional current draw by the client device.

The CDP hand-shaking process is done in two steps. During step one the portable equipment outputs a nominal 0.6V output on its D+ line and reads the voltage input on its D- line. The portable device concludes it is connected to an SDP if the voltage is less than the nominal data detect voltage of 0.3V. The portable device concludes that it is connected to a Charging Port if the D- voltage is greater than the nominal data detect voltage of 0.3V and optionally less than 0.8V.

The second step is necessary for portable equipment to determine if it is connected to CDP or DCP. The portable device outputs a nominal 0.6V output on its D- line and reads the voltage input on its D+ line. The portable device concludes it is connected to a CDP if the data line being read remains less than the nominal data detect voltage of 0.3V. The portable device concludes it is connected to a DCP if the data line being read is greater than the nominal data detect voltage of 0.3V.

TPS2543-Q1 supports CDP mode in system power state S0 when system is completely powered ON and fully operational. For more details on control pin (CTL1-CTL3) settings to program this state please refer to device truth table.

Dedicated Charging Port (DCP)

A DCP only provides power but does not support data connection to an upstream port. As shown in following sections, a DCP is identified by the electrical characteristics of its data lines. The TPS2543-Q1 emulates DCP in two charging states, namely DCP Forced and DCP Auto as shown in Figure 32. In DCP Forced state the device will support one of the two DCP charging schemes, namely Divider1 or Shorted. In the DCP Auto state, the device charge detection state machine is activated to selectively implement charging schemes involved with the Shorted, Divider1 and Divider2 modes. Shorted DCP mode complies with BC1.2 and Chinese Telecommunications Industry Standard YD/T 1591-2009, while the Divider mode is employed to charge devices that do not comply with BC1.2 DCP standard.

DCP BC1.2 and YD/T 1591-2009

Both standards define that the D+ and D- data lines should be shorted together with a maximum series impedance of 200 Ω . This is shown in Figure 28.

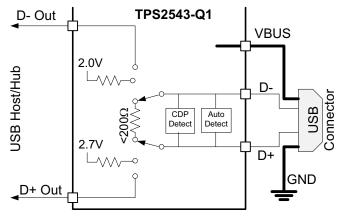


Figure 28. DCP Supporting BC1.2/YD/T 1591-2009

DCP Divider Charging Scheme

There are two Divider charging scheme supported by the device, Divider1 and Divider2 as shown in Figure 29 and Figure 30. In Divider1 charging scheme the device applies 2.0V and 2.7V to D+ and D- data line respectively. This is reversed in Divider2 mode.

ZHCSAZ2 - MARCH 2013

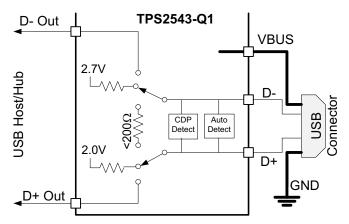


Figure 29. DCP Divider1 Charging Scheme

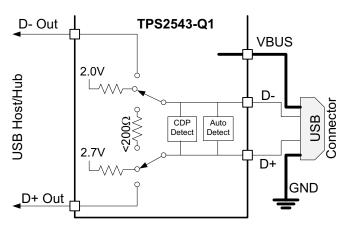


Figure 30. Divider2 Charging Scheme

DCP Auto Mode

As mentioned above the TPS2543-Q1 integrates an auto-detect state machine that supports all the above DCP charging schemes. It starts in Divider1 scheme, however if a BC1.2 or YD/T 1591-2009 compliant device is attached, the TPS2543-Q1 responds by discharging OUT, turning back on the power switch and then moving to BC1.2 DCP mode. It then stays in that mode until the device releases the data line, in which case it goes back to Divider1 scheme. When a Divider1 compliant device is attached the TPS2543-Q1 will stay in Divider1 state.

Also, the TPS2543-Q1 will automatically switch between the Divider1 and Divider2 schemes based on charging current drawn by the connected device. Initially the device will set the data lines to Divider1 scheme. If charging current of >750mA is measured by the TPS2543-Q1 it switches to Divider2 scheme and test to see if the peripheral device will still charge at a high current. If it does then it stays in Divider2 scheme otherwise it will revert to Divider1 scheme.

TEXAS INSTRUMENTS

www.ti.com.cn

ZHCSAZ2 -MARCH 2013

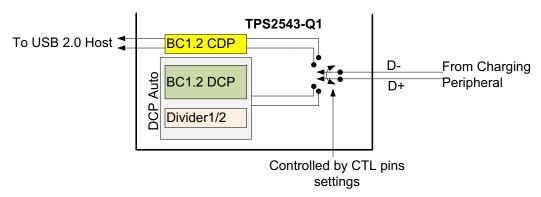


Figure 31. DCP Auto Mode

DCP Forced Shorted / DCP Forced Divider1

In this mode the device is permanently set to one of the DCP schemes (BC1.2/ YD/T 1591-2009 or Divider1) as commanded by its control pin setting per device truth table.

High-Bandwidth Data Line Switch

The TPS2543-Q1 passes the D+ and D- data lines through the device to enable monitoring and handshaking while supporting charging operation. A wide bandwidth signal switch is used, allowing data to pass through the device without corrupting signal integrity. The data line switches are turned on in any of CDP or SDP operating modes. The EN input also needs to be at logic High for the data line switches to be enabled.

NOTE

- 1. While in CDP mode, the data switches are ON even while CDP handshaking is occurring.
- 2. The data line switches are OFF if EN or all CTL pins are held low, or if in DCP mode. They are not automatically turned off if the power switch (IN to OUT) is in current limit.
- 3. The data switches are for USB 2.0 differential pair only. In the case of a USB 3.0 host, the super speed differential pairs must be routed directly to the USB connector without passing through the TPS2543-Q1.
- 4. Data switches are OFF during OUT (VBUS) discharge

Device Operation

www.ti.com.cn

Please refer to the simplified device state diagram in Figure 32. Power-on-reset (POR) holds device in initial state while output is held in discharge mode. Any POR event will take the device back to initial state. After POR clears, device goes to the next state depending on the CTL lines as shown in Figure 32.

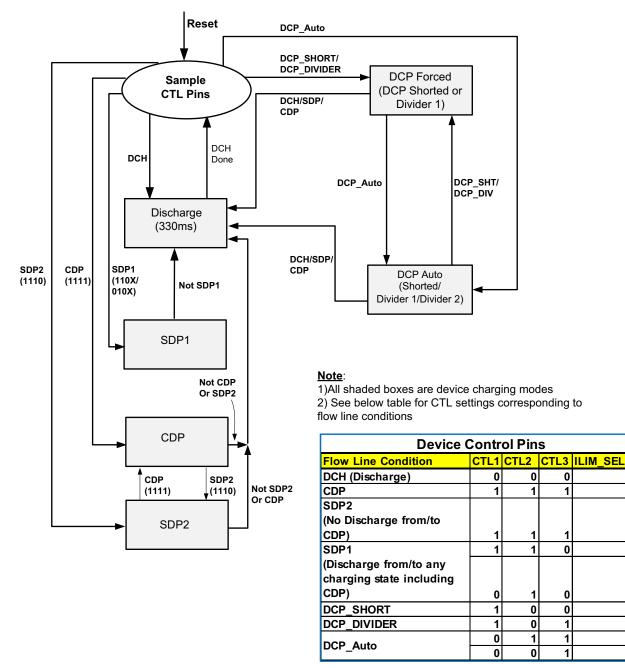


Figure 32. TPS2543-Q1 Charging States

Output Discharge

To allow a charging port to renegotiate current with a portable device, TPS2543-Q1 uses the OUT discharge function. It proceeds by turning off the power switch while discharging OUT, then turning back on the power switch to reassert the OUT voltage. This discharge function is automatically applied as shown in device state diagram.

Х

1

0

Х

Х

Х

Х

Х

Х

Wake on USB Feature (Mouse/Keyboard Wake Feature)

USB 2.0 Background Information

The TPS2543-Q1 data lines interface with USB 2.0 devices. USB 2.0 defines three types of devices according to data rate. These devices and their characteristics relevant to TPS2543-Q1 Wake on USB operation are shown below

Low-speed USB devices

- 1.5 Mb/s
- · Wired mice and keyboards are examples
- No devices that need battery charging
- All signaling performed at 2.0V and 0.8V hi/lo logic levels
- D- high to signal connect and when placed into suspend
- D- high when not transmitting data packets

Full-speed USB devices

- 12 Mb/s
- Wireless mice and keyboards are examples
- Legacy phones and music players are examples
- Some legacy devices that need battery charging
- All signaling performed at 2.0V and 0.8V hi/lo logic levels
- D+ high to signal connect and when placed into suspend
- D+ high when not transmitting data packets

High-speed USB devices

- 480 Mb/s
- Tablets, phones and music players are examples
- Many devices that need battery charging
- Connect and suspend signaling performed at 2.0V and 0.8V hi/lo logic levels
- Data packet signaling performed a logic levels below 0.8V
- D+ high to signal connect and when placed into suspend (same as a full-speed device)
- D+ and D- low when not transmitting data packets

Wake On USB

Wake on USB is the ability of a wake configured USB device to wake a computer system from its S3 sleep state back to its S0 working state. Wake on USB requires the data lines to be connected to the system USB host before the system is placed into its S3 sleep state and remain continuously connected until they are used to wake the system.

The TPS2543-Q1 supports low speed HID (human interface device like mouse/key board) wake function only. There are two scenarios (as listed below) under which wake on HID are supported by the TPS2543-Q1. The specific CTL pin changes that the TPS2543-Q1 will override are shown below. The information is presented as CTL1, CTL2, CTL3. The ILIM_SEL pin plays no role

- 1. 111 (CDP/SDP2) to 011 (DCP-Auto)
- 2. 010 (SDP1) to 011 (DCP-Auto)

Note:

The 110 (SDP1) to 011 (DCP-Auto) transition is not supported. This is done for practical reasons since the transition involves changes to two CTL pins. Depending on which CTL pin changes first, the device will see either a temporary 111 or 010 command. The 010 command is safe but the 111 command will cause an OUT discharge as the TPS2543-Q1 will instead proceed to the 111 state.

TPS2543-Q1 is capable of detecting LS device attachment when TPS2543-Q1 is in SDP or CDP mode. Per USB spec when no device is attached, the D+ and D- lines are near ground level. When a low speed compliant device is attached to the TPS2543-Q1 charging port, D- line will be pulled high in its idle state (mouse/keyboard not activated). However when a FS device is attached the opposite is true in its idle state, i.e. D+ is pulled high and D- remains at ground level.

When a low speed compliant device is attached to the TPS2543-Q1, charging port D- line will be pulled high in its idle state (mouse/keyboard not activated). TPS2543-Q1 will monitor D- data line continuously. Since TPS2543-Q1 does not monitor D+ line it cannot detect the attachment of a FS device. When TPS2543-Q1 is in CDP/SDP mode and system is commanded to go to sleep state, the device CTL setting is also changed. Assuming it is changed to DCP/Auto, 011, having previously detected a low speed HID attachment the device will simply ignore the command to go to DCP/Auto mode and stay in CDP/SDP state to support wake on mouse function. When the USB low speed HID is activated (clicked) while system is in S3 (sleep) mode the high speed switch within the TPS2543-Q1 allows the transfer of signal from the LS HID device to the USB host. The USB host subsequently wakes the system and changes CTL setting of the TPS2543-Q1 back to CDP/SDP state. Activating (clicking) the low speed device makes the D- data line go back low momentarily, this triggers an internal timer within the TPS2543-Q1 to count down. If after ~64ms the CTL lines are still set at 011 (DCP/Auto) the device will immediately switch to DCP/Auto mode and disconnect the mouse from the host. To prevent this, the CTL setting must be made in less then 64 ms after HID device activation otherwise mouse/KB function will be lost.

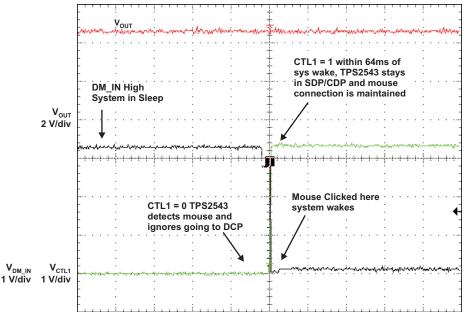


Figure 33. Mouse Wake from Sleep Scope Plot

ZHCSAZ2 -MARCH 2013

Device Truth Table (TT)

Device TT lists all valid bias combinations for the three control pins CTL1-3 and ILIM_SEL pin and their corresponding charging mode. It is important to note that the TT *purposely* omits matching charging modes of the TPS2543-Q1 with global power states (S0-S5) as device is agnostic to system power states. The TPS2543-Q1 monitors its CTL inputs and will transition to whatever charging state it is commanded to go to (except when LS HID device is detected). For example if sleep charging is desired when system is in standby or hibernate state then user must set TPS2543-Q1 CTL pins to correspond to DCP_Auto charging mode per below table. When system is put back to operation mode then set control pins to correspond to SDP or CDP mode and so on.

CTL1	CTL2	CTL3	ILIM_SEL	MODE	CURRENT LIMIT SETTING	STATUS OUTPUT (Active low)	COMMENT
0	0	0	0	Discharge	NA	OFF	
0	0	0	1	Discharge	NA	OFF	OUT held low
0	0	1	0	DCP_Auto	ILIM_HI	OFF	Data Lines Disconnected
0	0	1	1	DCP_Auto	I _{OS_PW} & ILIM_HI ⁽¹⁾	DCP load present ⁽²⁾	Data Lines Disconnected and Load Detect Function Active
0	1	0	0	SDP1	ILIM_LO	OFF	Deta linea como tod
0	1	0	1	SDP1	ILIM_HI	OFF	Data Lines connected
0	1	1	0	DCP_Auto	ILIM_HI	OFF	Data Lines Disconnected
0	1	1	1	DCP_Auto	ILIM_HI	DCP load present ⁽³⁾	Data Lines Disconnected and Load Detect Function Active
1	0	0	0	DCP _Shorted	ILIM_LO	OFF	Device Forced to stay in DCP BC1.2 charging
1	0	0	1	DCP_Shorted	ILIM_HI	OFF	mode
1	0	1	0	DCP / Divider1	ILIM_LO	OFF	Device Forced to stay in DCP Divider1
1	0	1	1	DCP / Divider1	ILIM_HI	OFF	Charging Mode
1	1	0	0	SDP1	ILIM_LO	OFF	
1	1	0	1	SDP1	ILIM_HI	OFF	Data Lines Connected
1	1	1	0	SDP2 ⁽⁴⁾	ILIM_LO	OFF	_
1	1	1	1	CDP ⁽⁴⁾	ILIM_HI	CDP load present ⁽⁵⁾	Data Lines Connected and Load Detect Active

Table 2. Truth Table

(1) TPS2543-Q1 : Current limit (I_{OS}) is automatically switched between I_{OS_PW} and the value set by ILIM_HI according to the Load Detect – Power Wake functionality.

(2) DCP Load present governed by the "Load Detection – Power Wake" limits.

(3) DCP Load present governed by the "Load Detection - Non Power Wake" limits.

(4) No OUT discharge when changing between 1111 and 1110.

(5) CDP Load present governed by the "Load Detection – Non Power Wake" limits and BC1.2 primary detection.

Table 3 can be used as an *aid* to program the TPS2543-Q1 per system states however not restricted to below settings only.

Table 3. Control Pin Settings Matched to System Power States

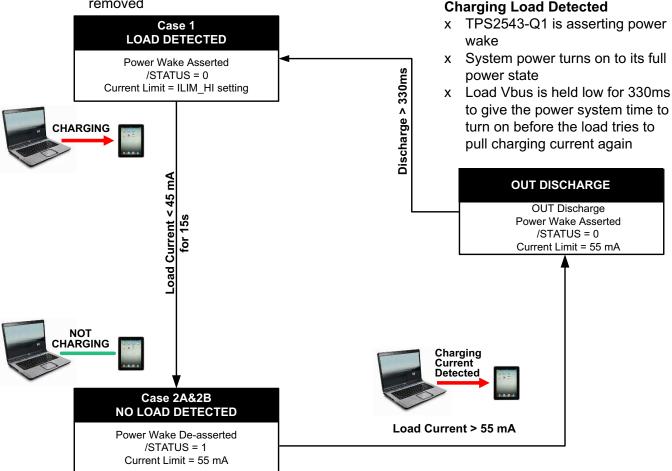
SYSTEM GLOBAL POWER STATE	TPS2543-Q1 CHARGING MODE	CTL1	CTL2	CTL3	ILIM_SEL	CURRENT LIMIT SETTING
S0	SDP1	1	1	0	1 or 0	ILIM_HI / ILIM_LO
S0	SDP2, no discharge to / from CDP	1	1	1	0	ILIM_LO
S0	CDP, load detection with ILIM_LO + 60mA thresholds or if a BC1.2 primary detection occurs	1	1	1	1	ILIM_HI
S4/S5	Auto mode, load detection with power wake thresholds	0	0	1	1	ILIM_HI
S3/S4/S5	Auto mode, no load detection	0	0	1	0	ILIM_HI
S3	Auto mode, keyboard/mouse wake up, load detection with ILIM_LO + 60 mA thresholds	0	1	1	1	ILIM_HI
S3	Auto mode, keyboard/mouse wake-up, no load detection	0	1	1	0	ILIM_HI
S3	SDP1, keyboard/mouse wake-up	0	1	0	1 or 0	ILIM_HI / ILIM_LO

Load Detect

TPS2543-Q1 offers system designers unique power management strategy not available in the <u>industry</u> from similar devices. There are two power management schemes supported by the TPS2543-Q1 via the STATUS pin, they are:

- 1. Power Wake (PW)
- 2. Port Power Management (PPM)

Either feature may be implemented in a system depending on power savings goals for the system. In general Power Wake feature is used mainly in mobile systems like a notebook where it is imperative to save battery power when system is in deep sleep (S4/S5) state. On the other hand Port Power Management feature would be implemented where multiple charging ports are supported in the same system and system power rating is not capable of supporting high current charging on multiple ports *simultaneously*.


Power Wake

Goal of power wake feature is to save system power when system is in S4/S5 state. In S4/S5 state system is in deep sleep and typically running of the battery; so every "mW" in system power savings will translate to extending battery life. In this state the TPS2543-Q1 will monitor charging current at the OUT pin and provide a mechanism via the STATUS pin to switch out the high power DC-DC controller and switch in a low power LDO when charging current requirement is <45mA (typ). This would be the case when no peripheral device is connected at the charging port or if a device has attained its full battery charge and draws <45mA.. Power wake flow chart and description is shown in Figure 34.

Load being Charged

- x TPS2543-Q1 is asserting power wake
- x System power is at its full capability
- x Load can charge at high current
- x TPS2543-Q1 monitors port to detect when charging load is done charging or removed

Charging Load Not Detected.

- x TPS2543-Q1 is not asserting power wake. System power is in a low power state to save energy.
- TPS2543-Q1 monitors port to detect when charging load is attached and tries to charge

Figure 34. Power Wake Flow Chart

Implementing Power Wake in Notebook System

An implementation of power wake in notebook platforms with the TPS2543-Q1 is shown in Figure 35-37. Power wake function is used to select between a high power DC-DC converter and low power LDO (100mA) based on charging requirements. System power saving is achieved when under no charging conditions (the connected device is fully charged or no device is connected) the DC-DC converter is turned-off (to save power since it is less efficient in low power operating region) and the low power LDO supplies standby power to the charging port.

ZHCSAZ2 - MARCH 2013

Power wake is activated in S4/S5 mode (0011 setting, see device truth table), TPS2543-Q1 is charging connected device as shown in Figure 35, STATUS is pulled LO (Case 1) which switches-out the LDO and switches-in the DC-DC converter to handle high current charging.

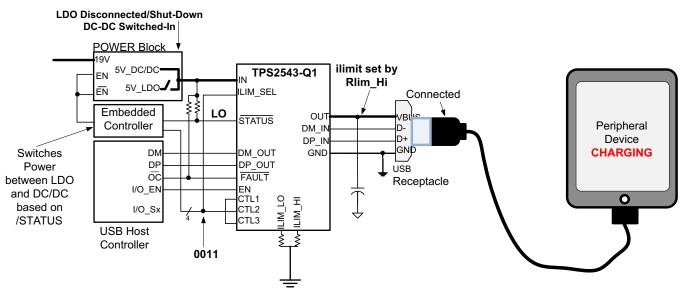


Figure 35. Case 1: System in S4/S5, Device Charging

As shown in Case 2A and Case 2B, when connected device is fully charged or gets disconnected from the charging port, the charging current will fall. If charging current falls to <45m<u>A and stays</u> below this threshold for over 15s, TPS2543-Q1 automatically sets a 55mA internal current limit and STATUS is de-asserted (pulled HI). As shown in Case 2A and Case 2B. This results in DC-DC converter turning off and the LDO turning on. Current limit of 55 mA is set to prevent the low power LDO output voltage from collapsing in case there is a spike in current draw due to device attachment or other activity such as display panel LED turning ON in connected device.

Following Power Wake flow chart (Figure 34) when a device is attached and draws >55 mA of charging current the TPS2543-Q1 will hit its internal current limit. This will trigger the device to assert STATUS (LO) and turn on the DC-DC converter and turn off the LDO. TPS2543-Q1 will discharge OUT for >330ms (typ) to allow the main power supply to turn on. After the discharge the device will turn back on with current limit set by ILIM_HI (Case 1)

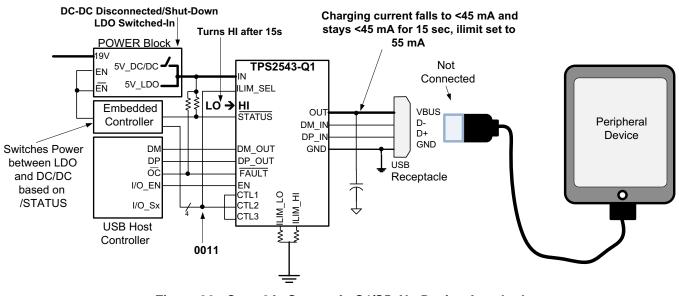


Figure 36. Case 2A: System in S4/S5, No Device Attached

ZHCSAZ2 -MARCH 2013

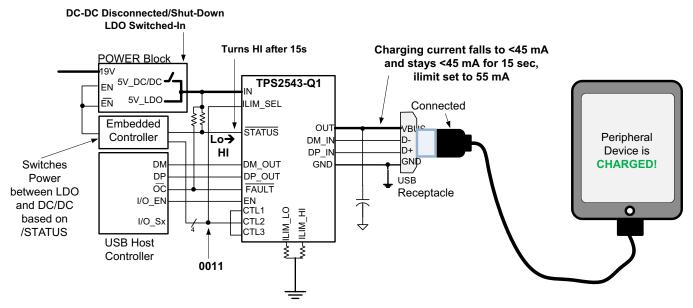


Figure 37. Case 2B: System in S4/S5, Attached Device Fully Charged

Port Power Management (PPM)

PPM is the intelligent and dynamic allocation of power. It is for systems that have multiple charging ports but cannot power them all simultaneously. Goal of this feature are:

- 1. Enhances user experience since user does not have to search for charging port
- 2. Power supply only has to be designed for a reasonable charging load

Initially all ports are allowed to <u>broadcast</u> high current charging, charging current limit is based on ILIM_HI resistor setting. System monitors STATUS to see when high current loads are present. Once allowed number of ports assert STATUS, remaining ports are toggled to a non-charging port. Non-charging ports are SDP ports with current limit based on ILIM_LO. TPS2543-Q1 allows for a system to toggle between charging and non-charging ports either with an OUT discharge or without an OUT discharge.

Benefits of PPM

- Delivers better user experience
- Prevents overloading of system's power supply
- Allows for dynamic power limits based on system state
- Allows every port to potentially be a high power charging port
- Allows for smaller power supply capacity since the loading is controlled

PPM Details

All ports are allowed to broadcast high current charging – CDP or DCP. Current limit is based on ILIM_HI and system monitors STATUS pin to see when high current loads are present. Once allowed number of ports assert STATUS, remaining ports are toggled to a SDP non-charging port. SDP current limit is based on ILIM_LO setting. SDP ports are automatically toggled back to CDP or DCP mode when a charging port de-asserts STATUS.

Based on CTL settings there is a provision for a port to toggle between charging and non-charging ports either with a Vbus discharge or without a Vbus discharge. For example when a port is in SDP2 mode (1110) and its ILIM_SEL pin is toggled to 1 due to another port releasing its high current requirements. The SDP2 port will automatically revert to CDP mode (1111) without a discharge event. This is desirable if this port was connected to a media device where it was syncing data from the SDP2 port; a discharge event would mess-up the syncing activity on the port and cause user confusion.

STATUS trip point is based on the programmable ILIM_LO current limit set point This does not mean STATUS is a current limit – the port itself is using the ILIM_HI current limit. Since ILIM_LO defines the current limit for a SDP port, it works well to use the ILIM_LO value to define a high current load. STATUS asserts in CDP and DCP when load current is above ILIM_LO+60mA for 200 ms. STATUS also asserts in CDP when an attached device does a BC1.2 primary detection. STATUS de-asserts in CDP and DCP when load current is below ILIM_LO+10mA for 3s.

Implementing PPM in a System with Two Charging Ports

Figure 38 shows implementation of two charging ports, each with its own TPS2543-Q1. In this example 5V power supply for the two charging ports is rated at < 3A or <15W max. Both devices have R_{LIM} chosen to correspond to the low (0.9A) and high (1.5A) current limit setting for the port. In this implementation the system can support only one of the two ports at 1.5A charging current while the other port is set to SDP mode and I_{LIMIT} corresponding to 0.9A.

TPS2543

ZHCSAZ2 -MARCH 2013

Texas Instruments

www.ti.com.cn

TPS2543-Q1 Port 1 5V IN EN_1 OUT EN USB Charging FAULT_1 DM IN FAULT Port #1 DP IN S0_S3 STATUS ILIM_LO < ILIM_HI « CTL3 CTL2 GND . 29.8K ≶ ≥ 48.7K CTL1 (1.5A) (0.9A) ILIM SEL \sim 100K TPS2543-Q1 Port 2 5V , IN EN_2 OUT EN USB Charging FAULT_2 DM IN FAULT Port #2 DP IN STATUS ILIM_LO ILIM_HI CTL3 GND -CTL2 29.8K 48.7K Ş CTL1 (1.5A) (0.9A) ILIM SEL \sim 100K

Figure 38. Implementing Port Power Management in a System Supporting Two Charging Ports

Over-Current Protection

When an over-current condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Two possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before VIN has been applied. The TPS2543-Q1 senses the short and immediately switches into a constant-current output. In the second condition, a short or an overload occurs while the device is enabled. At the instant the overload occurs, high currents may flow for nominally one to two microseconds before the current-limit circuit can react. The device operates in constant-current mode after the current-limit circuit has responded. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting. The device will remain off until the junction temperature cools approximately 20°C and will then re-start. The device will continue to cycle on/off until the over-current condition is removed.

30

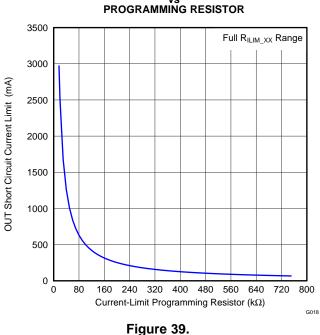
(1)

www.ti.com.cn

Current-Limit Settings

The TPS2543-Q1 has two independent current limit settings that are each programmed externally with a resistor. The ILIM_HI setting is programmed with R_{ILIM_HI} connected between ILIM_HI and GND. The ILIM_LO setting is programmed with RILIM_LO connected between ILIM_LO and GND. Consult the Device Truth Table (Table 2) to see when each current limit is used. Both settings have the same relation between the current limit and the programming resistor.

R_{ILIM LO} is optional and the ILIM_LO pin may be left unconnected if the following conditions are met:


- 1. ILIM_SEL is always set high
- 2. Load Detection Port Power Management is not used
- 3. Mouse / Keyboard wake function is not used

If conditions 1 and 2 are met but the mouse / keyboard wake function is also desired, it is recommended to use $R_{ILIM_LO} < 80.6 \text{ k}\Omega$.

The following equation programs the typical current limit:

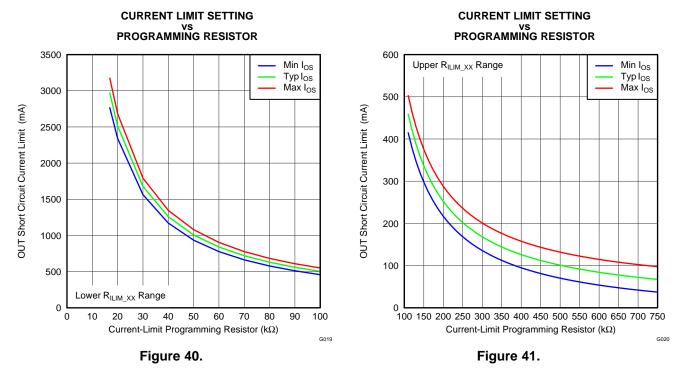
$$I_{OS_{typ}}(mA) = \frac{50,500}{(R_{ILIM XX}(k\Omega) + 0.1)}$$

 $R_{ILIM XX}$ corresponds to either $R_{ILIM HI}$ or $R_{ILIM LO}$ as appropriate.

TYPICAL CURRENT LIMIT SETTING vs PROGRAMMING RESISTOR

TEXAS INSTRUMENTS

ZHCSAZ2 -MARCH 2013


www.ti.com.cn

(3)

Many applications require that the current limit meet specific tolerance limits. When designing to these tolerance limits, both the tolerance of the TPS2543-Q1 current limit and the tolerance of the external programming resistor must be taken into account. The following equations approximate the TPS2543-Q1 minimum / maximum current limits to within a few mA and are appropriate for design purposes. The equations do not constitute part of TI's published device specifications for purposes of TI's product warranty. These equations assume an ideal - no variation - external programming resistor. To take resistor tolerance into account, first determine the minimum / maximum resistor values based on its tolerance specifications and use these values in the equations. Because of the inverse relation between the current limit and the programming resistor, use the maximum resistor value in the I_{OS_min} equation and the minimum resistor value in the I_{OS_min} equation.

$$I_{OS_min}(mA) = \frac{45,661}{(R_{ILIM_XX}(k\Omega) + 0.1)^{0.98422}} - 30$$
(2)

$$I_{OS_{max}}(mA) = \frac{55,039}{(R_{ILIM_{XX}}(k\Omega) + 0.1)^{1.0143}} + 30$$

The traces routing the R_{ILIM_XX} resistors should be a sufficiently low resistance as to not affect the current-limit accuracy. The ground connection for the R_{ILIM_XX} resistors is also very important. The resistors need to reference back to the TPS2543-Q1 GND pin. Follow normal board layout practices to ensure that current flow from other parts of the board does not impact the ground potential between the resistors and the TPS2543-Q1 GND pin.

FAULT Response

The FAULT open-drain output is asserted (active low) during an over-temperature or current limit condition. The output remains asserted until the fault condition is removed. The TPS2543-Q1 is designed to eliminate false FAULT reporting by using an internal deglitch circuit for current limit conditions without the need for external circuitry. This ensures that FAULT is not accidentally asserted due to normal operation such as starting into a heavy capacitive load. Over-temperature conditions are not deglitched and assert the FAULT signal immediately.

The undervoltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO turnon threshold. Built-in hysteresis prevents unwanted oscillations on the output due to input voltage drop from large current surges.

Thermal Sense

The TPS2543-Q1 protects itself with two independent thermal sensing circuits that monitor the operating temperature of the power distribution switch and disables operation if the temperature exceeds recommended operating conditions. The device operates in constant-current mode during an over-current condition, which increases the voltage drop across power switch. The power dissipation in the package is proportional to the voltage drop across the power switch, so the junction temperature rises during an over-current condition. The first thermal sensor turns off the power switch when the die temperature exceeds 135°C and the part is in current limit. The second thermal sensor turns off the power switch when the die temperature exceeds 155°C regardless of whether the power switch is in current limit. Hysteresis is built into both thermal sensors, and the switch turns on after the device has cooled by approximately 20°C. The switch continues to cycle off and on until the fault is removed. The open-drain false reporting output FAULT is asserted (active low) during an over-temperature shutdown condition.

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
TPS2543QRTERQ1	NRND	WQFN	RTE	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2543Q	
TPS2543QRTETQ1	NRND	WQFN	RTE	16	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2543Q	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

RTE 16

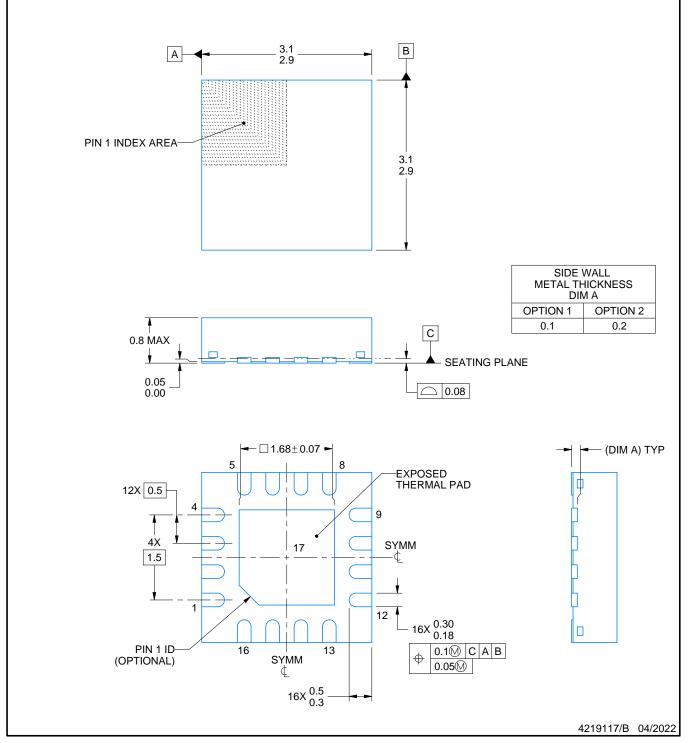

3 x 3, 0.5 mm pitch

GENERIC PACKAGE VIEW

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


RTE0016C

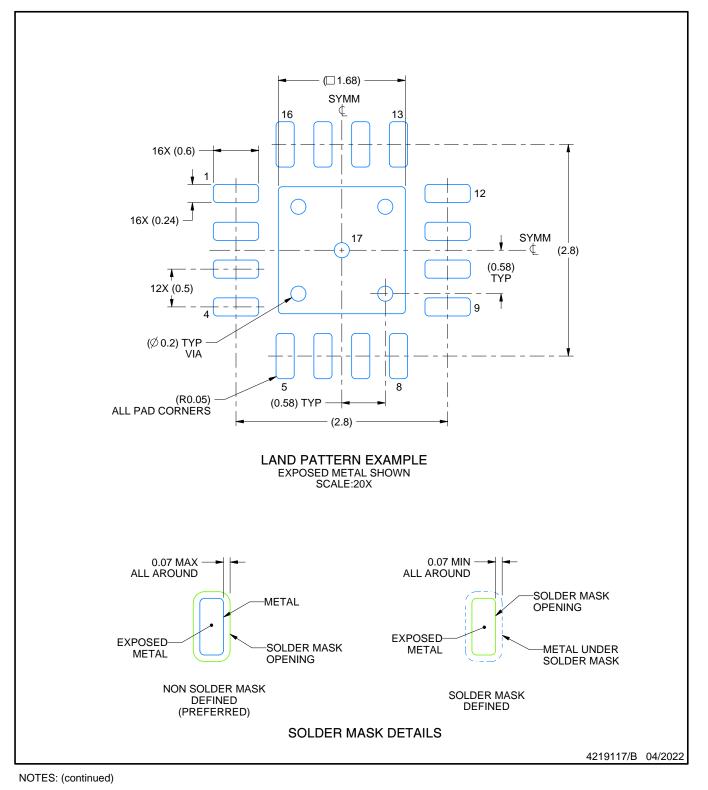
PACKAGE OUTLINE

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



RTE0016C

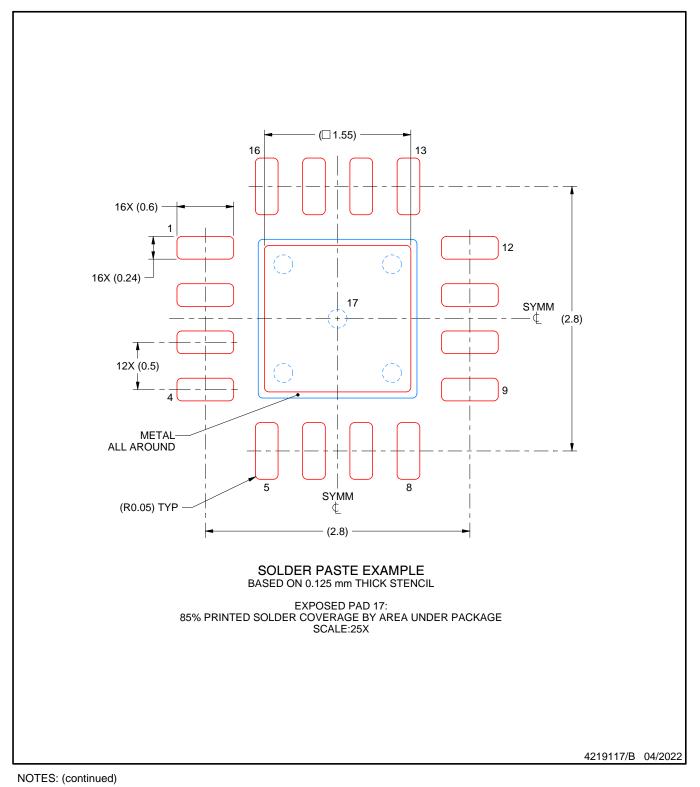
EXAMPLE BOARD LAYOUT

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



RTE0016C

EXAMPLE STENCIL DESIGN

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司