

ZHCS185A - SEPTEMBER 2011 - REVISED JANUARY 2012

度以获得脉宽调制频谱定型的额外的灵活性。

双通道,高压-多级输出完全集成超声波发射机 查询样品: TX517

特性	说明
 输出电压: 差分模式下,高达 200Vpp 峰值输出电流: ±2.5A 多级输出 	TX517 是一款完全集成,双通道,高压发射器。它特别设计用于高要求的医疗超声波应用,此应用要求一个多级高压脉冲波形。此输出级设计传送典型值为±2.5A的峰值输出电流,摆幅200Vpp。
 差分: 17级 单端: 5级 集成: 电平转换器 驱动器 	TX517 是一个完整发射器解决方案,此方案每通道含 低压输入逻辑,电平转换器,栅极驱动器和P通道,N 通道金属氧化物半导体场效应晶体管 (MOSFET)。 TX517 还包含一个 CW 输出级。
 高压输出级 CW 输出 TX 输出更新率 	TX517 采用球状引脚栅格阵列 (BGA) 封装,此封装是 无铅 (RoHS兼容)并且绿色环保。它的额定运行温 度为0℃至 85℃。
 - 最高 100MSPS • 最小外部组件 • 小型封装: 13 x 13mm球状引脚栅格阵列(BGA)封装 	17个电平脉冲发生器芯片: 当与变压器一同使用时,此芯片包含2个5级通道来 形成一个单一17级发射器单元。此器件设计用于驱动 处于不同输出电平上的变送器,而且能调制输出脉冲宽

应用范围

53

- 医疗超声波
- 高压信号生成器

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Texas Instruments

ZHCS185A-SEPTEMBER 2011-REVISED JANUARY 2012

www.ti.com.cn

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGING/ORDERING INFORMATION⁽¹⁾

PACKAGED DEVICES	PACKAGE TYPE	PACKAGE MARKING	TRANSPORT MEDIA, QUANTITY	ECO STATUS ⁽²⁾
TX517IZCQ	BGA-144	TX517	Tray	Pb-Free, Green

(1) NOTE: These Packages conform to Lead-Free and Green Manufacturing Specifications

(2) Eco-Status information: Additional details including specific material content can be accessed at www.ti.com/leadfree

GREEN: Ti defines Green to mean Lead (Pb)-Free and in addition, uses less package materials that do not contain halogens, including bromine (Br), or antimony (Sb) above 0.1% of total product weight.

N/A: Not yet available Lead (Pb)-Free; for estimated conversion dates, go to www.ti.com/leadfree.

Pb-FREE: Ti defines Lead (Pb)-Free to mean RoHS compatible, including a lead concentration that does not exceed 0.1% of total product weight, and, if designed to be soldered, suitable for use in specified lead-free soldering processes.

DEVICE INFORMATION

	BGA-144 PINS TOP VIEW												
	1	2	3	4	5	6	7	8	9	10	11	12	
A	HV2B	GND	HV1B	HV0B	VCWB	EN\	VAAB	NC	NC	INP1B	INN1B	INP2B	A
в	NC	LV1B	LV1B	LV1B	LV1B	LV1B	GND	NC	NC	GND	VAAC	INN2B	В
с	OUTB	LV1B	LV1B	LV1B	LV1B	LV1B	CWINB	VEE	VEE	VEE	VEE	INN0B	с
D	NC	LV1B	LV1B	LV1B	LV1B	LV1B	GNDCWB	VEE	VEE	VEE	VEE	INP0B	D
E	LV2B	LV1B	LV1B	LV1B	LV1B	LV1B	VDDB	VEE	VEE	VEE	VEE	PCLKIN	E
F	LV1B	LV1B	LV1B	LV1B	LV1B	LV1B	LV0B	VEE	VEE	VEE	VEE	GND	F
G	LV1A	LV1A	LV1A	LV1A	LV1A	LV1A	LV0A	VEE	VEE	VEE	VEE	VDD	G
н	LV2A	LV1A	LV1A	LV1A	LV1A	LV1A	VDDA	VEE	VEE	VEE	VEE	CWINA	н
J	NC	LV1A	LV1A	LV1A	LV1A	LV1A	GNDCWA	VEE	VEE	VEE	VEE	INP0A	J
к	OUTA	LV1A	LV1A	LV1A	LV1A	LV1A	GND	VEE	VEE	VEE	VEE	INNOA	к
L	NC	LV1A	LV1A	LV1A	LV1A	LV1A	GND	NC	NC	GND	VAAD	INN2A	L
М	HV2A	GND	HV1A	HV0A	VCWA	PDM\	VAAA	BIAS	NC	INP1A	INN1A	INP2A	М
	1	2	3	4	5	6	7	8	9	10	11	12	

ZHCS185A – SEPTEMBER 2011 – REVISED JANUARY 2012

PIN	FUNCTIONS	

PIN NAME	DESCRIPTION
SUPPLIES	
VAAx	Input Logic Supply (+2.5V)
VDD	+5V Driver Supply
VEE	-5V Driver Supply
HV0A, HV0B	Positive Supply of Low-voltage FET Output stage; Channel A and B
LV0A, LV0B	Negative Supply of Low-voltage FET Output stage; Channel A and B
HV2A, HV2B	Positive Supply of Intermediate voltage FET Output stage; this stage includes an internal de-glitcher circuit.Channel A and B
LV2A, LV2B	Negative Supply of Intermediate voltage FET Output stage; this stage includes an internal de-glitcher circuit.Channel A and B
HV1A, HV1B	Positive Supply of High-voltage FET Output stage; Channel A and B
LV1A, LV1B	Negative Supply of High-voltage FET Output stage; Channel A and B
VCWA, VCWB	Supply connections for CW FET output stage; Channel A and B
GND	Ground connection; Driver
GNDCWA, GNDCWB	Ground connection for CW FET output stage of Channel A and B
BIAS	Connect to VAA (+2.5V); used for internal biasing; high-impedance input
INPUTS	
INP0A, INP0B	Logic input signal for the Low-voltage P-FET stage of channel A and B; Low = ON, High = OFF. Controls HV0A, HV0B. High impedance input.
INNOA, INNOB	Logic input signal for the Low-voltage N-FET stage of channel A and B; Low = OFF, High = ON. Controls LV0A, LV0B. High impedance input.
INP2A, INP2B	Logic input signal for the Intermediate voltage P-FET stage of channel A and B; Low = ON, High = OFF. Controls HV2A, HV2B. High impedance input.
INN2A, INN2B	Logic input signal for the Intermediate Voltage N-FET stage of channel A and B; Low = OFF, High = ON. Controls LV2A, LV2B. High impedance input.
INP1A, INP1B	Logic input signal for the High-voltage P-FET stage of channel A and B; Low = ON, High = OFF. Controls HV1A, HV1B. High impedance input.
INN1A, INN1B	Logic input signal for the High-voltage N-FET stage of channel A and B; Low = OFF, High = ON. Controls LV1A, LV1B. High impedance input.
CWINA	CW gate input signal for A output. An input '1' means that current sinks from OUTA. An input '0' means that current sources from OUTA. This pin directly accesses the output A CW FET gates.
CWINB	CW gate input signal for B output. An input '1' means that current sinks from OUTB. An input '0' means that current sources from OUTB. This pin directly accesses the output B CW FET gates.
ĒN	Logic Input for non-CW path; use the Enable-pin to select between input data being latched or transparent operation. Low = input data will be retimed by the internal (T&H) at the rate of the applied clock at PCLKIN. High = use this mode when operating the TX517 without a clock. When High (1) the input data will bypass the (T&H). This pin is a common control for Channel A and B. High impedance input.
PDM	Power-down control input non-CW path; Low = power-down, High = normal operation. The PDM-pin controls the voltage translation circuits which draw some quiescent power. This pin is a common control for Channel A and B. High impedance input.
PCLKIN	Clock input for usage in latch (T&H) mode. When clock signal is high, the (T&H) circuit is in track mode. When clock signal is low, the (T&H) is in hold mode. This pin is a common clock input for both Channel A and B. High impedance input.
OUTPUTS	
OUTA	Output Channel A
OUTB	Output Channel B

ZHCS185A – SEPTEMBER 2011 – REVISED JANUARY 2012

Instruments

EXAS

www.ti.com.cn

ABSOLUTE MAXIMUM RATINGS

Voltages referenced to Ground potential (GND = 0V); over operating free-air temperature (unless otherwise noted) ⁽¹⁾

		VALUE	UNIT
M	High-Voltage, Positive Supply HV1,2 referred to OUTA/B, see also Max. delta voltage	-0.3 to +80	V
VDS	High-Voltage, Positive Supply HV0 referred to OUTA/B, see also Max. delta voltage	-0.3 to +6	V
	High-Voltage VCWA/B supply referred to GNDCWA/B	-0.3 to +16	V
N/	High-Voltage, Negative Supply LV1,2 referred to OUTA/B, see also Max. delta voltage	-40 to +0.3	V
VDS	High-Voltage, Negative Supply LV0 referred to OUTA/B, see also Max. delta voltage	-6 to +0.3	V
	Max. delta voltage: HV1-LV1 and HV2 – LV2	110	V
	Max. delta voltage: HV0 – LV0	12	V
VDD	Driver Supply, positive	-0.3 to +6	V
VEE	Driver Supply, negative	-6 to +0.3	V
VAA	Logic Supply Voltage	-0.3 to +6	V
	Logic Inputs (INPx, INNx, EN, PDM, PCLKIN, U)	-0.3 to +6	V
	CW inputs (CWINA, CWINB)	-0.3 to +11	V
	Peak Solder Temperature ⁽²⁾	260	°C
ТJ	Maximum junction temperature, any condition ⁽³⁾	150	°C
ТJ	Maximum junction temperature, continuous operation, long term reliability ⁽⁴⁾	125	°C
Tstg	Storage temperature range	-65 to 150	°C
	НВМ	500	V
ESD ratings	CDM	750	V
	MM	200	V

Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may degrade device reliability.
 Device according to the device at these or any other conditions for extended periods may degrade device reliability.

(2) Device complies with JSTD-020D.

(3) The absolute maximum junction temperature under any condition is limited by the constraints of the silicon process.

(4) The absolute maximum junction temperature for continuous operation is limited by the package constraints. Operation above this temperature may result in reduced reliability and/or lifetime of the device.

THERMAL INFORMATION

		TX517		
		BGA (144) (ZCQ) PINS	UNITS	
θ _{JA}	Junction-to-ambient thermal resistance	28		
θ _{JCtop}	Junction-to-case (top) thermal resistance	3.8	°C 1.1/	
θ_{JB}	Junction-to-board thermal resistance	11.3	C/W	
τυΨ	Junction-to-top characterization parameter	0.2		
Power	TA = 25°C	3.57		
Rating ⁽²⁾⁽³⁾ (TJ = 125°C)	TA = 85°C	1.47	W	

(1) 有关传统和新的热度量的更多信息,请参阅 /C 封装热度量 应用报告 SPRA953。

(2) This data was taken with the JEDEC High-K test PCB.

 Power rating is determined with a junction temperature of 125°C. This is the point where distortion starts to substantially increase and long-term reliability starts to be reduced. Thermal management of the final PCB should strive to keep the junction temperature at or below 125°C for best performance and reliability.

ZHCS185A-SEPTEMBER 2011-REVISED JANUARY 2012

www.ti.com.cn

RECOMMENDED OPERATING CONDITIONS

	MIN	TYP	МАХ	UNIT
VAA	2.38	2.5	3.3	V
VDD	4.75	5.0	5.25	V
VEE	-5.25	-5.0	-4.75	V
HV0A, HV0B	0	1.9	5	V
LV0A, LV0B	-5	-1.9	0	V
HV2A, HV2B	0	32	70	V
LV2A, LV2B	-30	-11.9	0	V
HV1A, HV1B	>HV0 and >HV2	61	70	V
LV1A, LV1B	-30	-20.9	<lv0 <lv2<="" and="" td=""><td>V</td></lv0>	V
VCWA, VCWB	0	11	15	V
Maximum DELTA between HV1 to LV1 and HV2 to LV2			100	V
INNx, INPx, EN, PDM, PCLKIN, U	0		VAA	V
INCWA, INCWB	0	5	10	V
INNxx, INPxx input sample rate	1		100	Msps
INNxx, INPXX input unit interval	10		1000	ns
PCLKIN input frequency	1		100	MHz
Ambient Temperature, T _A	0		85	°C

ZHCS185A – SEPTEMBER 2011 – REVISED JANUARY 2012

ELECTRICAL CHARACTERISTICS

All Specifications at: $T_A = 0$ to 85°C, VAA = 2.5V, VDD = 5V, VEE = -5V, HV0 = 1.9V, LV0= -1.9V, HV2 = 32V, LV2=-11.9V, HV1 = +61.1V, LV1= -20.9V, VCW =11V, R_L=100 Ω to GND for OUTA, R_L=100 Ω to GND for OUTB, unless otherwise noted. The parameter results are applicable to both OUTA and OUTB, and they are measured using Non-Latch Mode unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	TEST LEVEL ⁽¹⁾
HV0/LV	0 SIGNAL PATH – DC PERFORMANCE						
	P-CHANNEL						
	Effective resistance, RDSon + Rdiode	HV0 = 2 V, OUTX = -750 mV to -1.25 V	6.5	9.5	13	Ω	A
	Effective resistance variation	Max output power to Min output power, load = 100 Ω to 0 V			12%		С
	Output saturation current	$R_L = 5 \Omega \text{ to } -30 \text{ V}$	-3.1	-1.3	-1	А	А
	Output voltage			1.0		V	С
	N-CHANNEL						
	Effective resistance, RDSon + Rdiode	LV0 = -2V, OUTX = 750 mV to 1.25 V	2.5	5	8.5	Ω	A
	Effective Resistance Variation	Max output power to Min output power, Load = 100 Ω to 0 V			5	%	С
	Output saturation current	$R_L = 5 \Omega$ to +30 V	1.4	1.8	3.1	А	А
	Output voltage			-1.2		V	С
HV0/LV	0 SIGNAL PATH – AC PERFORMANCE						
	Single-tone output frequency		1		100	Msps	В
	2 nd Order harmonic distortion (when using transformer bridge)	f = 5.0 MHz square wave, measured using transformer at secondary coil with RL = 100 Ω		35		dBc	с
t _r	Output rise time	10% to 90% of 0 V to +Vout Figure 8		4.5		ns	С
t _r	Output fall time	10% to 90% of 0 V to -Vout Figure 8		1		ns	С
t _{pr} , t _{pf}	Propagation Delay	Input 50% to Output 50% Figure 8		30		ns	В
HV2/LV	2 SIGNAL PATH – DC PERFORMANCE						
	P-CHANNEL						
	Effective resistance, RDSon + Rdiode	HV2 = 30 V to HV2 = 20 V	4.5	9	12.5	Ω	A
	Effective resistance variation	Max output power to Min output power, load = 100 Ω to 0 V			12%		С
	Output saturation current	HV2 = 60 V; R_L = 5 Ω to GND	-4.1	-2.3	-1.8	А	A
	Output voltage			28.5		V	С
	N-CHANNEL						
	Effective resistance, RDSon + Rdiode	LV2 = -10 V to $LV2 = -12 V$	1.5	4.5	7.5	Ω	A
	Effective resistance variation	Max output power to Min output power, load = 100 Ω to 0 V			4%		С
	Output saturation current	LV2 = -60 V ; R _L = 5 Ω to GND	2.4	3.0	5.0	А	A
	Output Voltage			-10.5		V	С
HV2/LV	2 SIGNAL PATH – AC PERFORMANCE						
	Single-tone Output Frequency		1		100	Msps	В
	2 nd Order harmonic distortion when using transformer bridge	f = 5.0 MHz square wave, measured using transformer at secondary coil with RL = 100 Ω		50		dBc	С
t,	Output rise time	10% to 90% of 0 V to +Vout Figure 8		7.5		ns	С
t _r	Output fall time	10% to 90% of 0 V to -Vout Figure 8		3		ns	С
t _{pr} , t _{pf}	Propagation delay	Input 50% to Output 50% Figure 8		25		ns	В

(1) Test levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.

TX517

www.ti.com.cn

ELECTRICAL CHARACTERISTICS

All Specifications at: $T_A = 0$ to 85°C, VAA = 2.5V, VDD = 5V, VEE = -5V, HV0 = 1.9V, LV0 = -1.9V, HV2 = 32V, LV2 = -11.9V, HV1 = +61.1V, LV1 = -20.9V, VCW = 11V, R_L= 100 Ω to GND for OUTA, R_L= 100 Ω to GND for OUTB, unless otherwise noted. The parameter results are applicable to both OUTA and OUTB, and they are measured using Non-Latch Mode unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	TEST LEVEL ⁽¹⁾	
HV1/LV1 SIGNAL PATH – DC PERFORMANCE								
	P-CHANNEL							
	Effective resistance, RDSon + Rdiode	HV1 = 60 V to HV1 = 50 V	2.5	7	12.5	Ω	А	
	Effective resistance variation	Max output power to Min output power load = 100 Ω to GND			11%		С	
	Output saturation current	HV1 = 60 V; $R_L = 5 \Omega$ to GND	-4.1	-2.5	-2	А	А	
	Output voltage			58		V	С	
	N-CHANNEL							
	Effective resistance, RDSon + Rdiode	LV1 = -20 V to -10 V	1	2	4.5	Ω	А	
	Effective resistance variation	Max output power to Min output power load = 100 Ω to 0 V			3%		С	
	Output saturation current	LV1 = –60 V; $R_L = 5 \Omega$ to GND	2.9	3.4	4.1	А	А	
	Output voltage			-20		V	С	
HV1/LV	1 SIGNAL PATH – AC PERFORMANCE							
	Single-tone output frequency		1		100	Msps	В	
	2 nd Order harmonic distortion (when using transformer bridge)	f = 5.0 MHz square wave, measured using transformer at secondary coil with RL = 100 Ω		60		dBc	С	
t,	Output rise time	10% to 90% of 0 V to +Vout Figure 8		6.5		ns	С	
t _f	Output fall time	10% to 90% of 0 V to –Vout Figure 8		3		ns	С	
t _{pr} , t _{pf}	Propagation Delay	Input 50% to Output 50% Figure 8		25		ns	В	

(1) Test levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.

ELECTRICAL CHARACTERISTICS

All Specifications at: $T_A = 0$ to 85°C, VAA = 2.5V, VDD = 5V, VEE = -5V, HV0 = 1.9V, LV0 = -1.9V, HV2 = 32V, LV2 = -11.9V, HV1 = +61.1V, LV1 = -20.9V, VCW = 11V, R_L= 100 Ω to GND for OUTA, R_L= 100 Ω to GND for OUTB, unless otherwise noted. The parameter results are applicable to both OUTA and OUTB, and they are measured using Non-Latch Mode unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	TEST LEVEL ⁽¹⁾				
CW SIGNAL PATH - DC PERFORMANCE	CW SIGNAL PATH – DC PERFORMANCE									
P-CHANNEL										
Effective resistance, RDSon + Rdiode	VCW = 4.5 Vto 5.5 V	9	21	31	Ω	A				
Effective resistance variation	Max output power to Min output power, load = 100 Ω to 0 V			30%		С				
Output saturation current	$R_L = 5 \Omega \text{ to } -20 \text{ V}$	-0.16	-0.12	-0.06	А	A				
Output voltage			8		V	С				
N-CHANNEL										
Effective resistance, RDSon + Rdiode	OUTX = 1 V to 2 V	9	14	18	Ω	A				
Effective resistance variation	Max output power to Min output power, load = 100 Ω to 0 V			10%		с				
Output saturation current	$R_L = 5 \Omega$ to 20 V	0.29	0.35	0.44	А	A				
Output voltage			30		mV	С				

Test levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.

ZHCS185A – SEPTEMBER 2011 – REVISED JANUARY 2012

www.ti.com.cn

ELECTRICAL CHARACTERISTICS (continued)

All Specifications at: $T_A = 0$ to 85°C, VAA = 2.5V, VDD = 5V, VEE = -5V, HV0 = 1.9V, LV0 = -1.9V, HV2 = 32V, LV2 = -11.9V, HV1 = +61.1V, LV1 = -20.9V, VCW = 11V, R_L= 100 Ω to GND for OUTA, R_L= 100 Ω to GND for OUTB, unless otherwise noted. The parameter results are applicable to both OUTA and OUTB, and they are measured using Non-Latch Mode unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	TEST LEVEL ⁽¹⁾
CW S	IGNAL PATH – AC PERFORMANCE ⁽²⁾						
	Single-tone output frequency		0.5		10	MHz	В
		f = 1MHz, measured using transformer at secondary coil with R_L = 100 Ω		47		dBc	С
	2 nd Order harmonic distortion	f = 5 MHz, measured using transformer at secondary coil with R_L = 100 Ω		33		dBc	С
	Slew Rate + (Positive Edge)	20% to 80% of Voutpp, measured using transformer at		0.6		V/ns	С
	Slew Rate – (Negative Edge)	secondary coil with RL = 100 Ω		0.45		V/ns	С
t _r	Output rise time	10% to 90% of 0 V to +Vout Figure 8		30		ns	С
t _r	Output fall time	10% to 90% of 0 V to -Vout Figure 8		10		ns	С
t _{pr} , t _{pf}	Propagation Delay	Input 50% to Output 50% Figure 8		25		ns	В
	AC-coupled gate drive time constant for P-CHANNEL		10	20	30	μs	С
CW IN	IPUT CHARACTERISTIC						
	High input voltage		1.05			V	В
	Low input voltage				0.35	V	В
	Low input current	CWINX=0V		0	1	μΑ	В
	High input current	CWINX=5.0V		25	40	μA	В
	Input Gate Charge	CWINX = 0 V to 5.0 V or 5.0 V to 0 V		550		рС	С
LOGI	C CHARACTERISTICS - INNXX, INPXX, EN PD	M PCLKIN pins					
		INNxx, INPxx, PCLKIN @ 10 MHz		6			
	Input capacitance	EN\ @ 10 MHz		9		pF	С
		PDM\ @ 10 MHz		4			
	Logic high input voltage	VAA=2.375V to 3.6V	0.55*VAA		VAA	V	В
	Logic low input voltage	VAA=2.375V to 3.6V	0		0.8	V	В
	Logic low input current			0.2	10	μA	В
	Logic high input current			0.2	10	μA	В
	Minimum clock period, tper	Figure 9, PCLKIN	10			ns	В
	Minimum clock high time, tmin	Figure 9, PCLKIN	2.0			ns	В
ts	Setup time	Figure 9, PCLKIN, INNxx, INPxx	0			ns	В
t _h	Hold time	Figure 9, PCLKIN, INNxx, INPxx	1.5			ns	В
OUTP	UT CHARACTERISTIC						
	Output resistance	Power Down Mode (Hi-Z Output) VTEST = 20 V		1		GΩ	С
	Output capacitance	Power Down Mode (Hi-Z Output) @1 to 100 MHZ		165		pF	С
	Leakage current	Power Down Mode (Hi-Z Output) VTEST = 0V		0.001	10	μA	А
INTER	RNAL GATE CHARGE CHARACTERISTICS						
		HV0/LV0 internal FET gates driven from VEE to VDD or VDD to VEE		3.5		nC	С
	Input gate charge ⁽³⁾	HV1/LV1 internal FET gates driven from VEE to VDD or VDD to VEE		4.6		nC	С
		HV2/LV2 internal FET gates driven rom VEE to VDD or VDD to VEE		7		nC	С

(1) Test levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.

(2) TX517 CW outputs are complimentary. Thus a transformer is needed to enable CW output.

(3) Input gate charge is the amount of charge to change the internal FET gates of a given output from either a low to a high state or from a high to a low state. Each gate charge value applies to both the P and N type FET for the given output. These values can be used to estimate the amount of dynamic current that needs to be provided to the VDD and VEE power supplies in order to switch the internal FET's at a given sampling rate.

TX517

www.ti.com.cn

ELECTRICAL CHARACTERISTICS

All Specifications at: $T_A = 0$ to 85°C, VAA = 2.5V, VDD = 5V, VEE = -5V, HV0 = 1.9V, LV0 = -1.9V, HV2 = 32V, LV2 = -11.9V, HV1 = +61.1V, LV1 = -20.9V, VCW = 11V, R_L= 100 Ω to GND for OUTA, R_L= 100 Ω to GND for OUTB, unless otherwise noted. The parameter results are applicable to both OUTA and OUTB, and they are measured using Non-Latch Mode unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	МАХ	UNITS	TEST LEVEL ⁽¹⁾	
POWER SUPPLY							
Total Quiescent Current (PW Mode) Power supply VDD	INPxx = 1, INNxx = 0, PCLKIN= 0 or 1		13	15	mA	А	
Total Quiescent Current (PW Mode) Power supply VEE	INPxx = 1, INNxx = 0, PCLKIN= 0 or 1		-10	-8		mA	А
Total Quiescent Current (PW Mode) Power supply VAA	INPxx = 1, INNxx = 0, PCLKIN= 0 or 1		-3	-2		mA	А
	Input pattern = 10 cycle square wave, 5%	HV0/LV0		17	23		
Power supply VDD	duty cycle at 10 Msps (5 MHz) on noted signal path. Load = transformer and 100	HV1/LV1		18	23	mA	В
	ohm differential load, see Figure 10.	HV2/LV2		20.5	23		
Dunamia Current Consumption (DW/ Made)	Input pattern = 10 cycle square wave, 5%	HV0/LV0	-15	-10			
Power supply VEE	signal path. Load = transformer and 100	HV1/LV1	-15	-10.5		mA	В
	ohm differential load, see Figure 10.	HV2/LV2	-15	-12.5			
Dunamia Current Consumption (DW/ Made)	Input pattern = 10 cycle square wave, 5%	HV0/LV0	-4	-2.3			
Power supply VAA	signal path. Load = transformer and 100	HV1/LV1	-4	-2.5		mA	В
	ohm differential load, see Figure 10.	HV2/LV2	-4	-2.5			
Dynamic Current Consumption (PW Mode) Power supply HV0	Input pattern = 10 cycle square wave, 5% (5 MHz) on noted signal path. Load = trans differential load, see Figure 10.	duty cycle at 10 Msps sformer and 100 ohm		2	4	mA	В
Dynamic Current Consumption (PW Mode) Power supply LV0	Input pattern = 10 cycle square wave, 5% (5 MHz) on noted signal path. Load = trans differential load, see Figure 10.	-3.5	-2		mA	В	
Dynamic Current Consumption (PW Mode) Power supply HV1	Input pattern = 10 cycle square wave, 5% (5 MHz) on noted signal path. Load = trans differential load, see Figure 10.		41	60	mA	В	
Dynamic Current Consumption (PW Mode) Power supply LV1	Input pattern = 10 cycle square wave, 5% (5 MHz) on noted signal path. Load = trans differential load, see Figure 10.	-55	-41		mA	В	
Dynamic Current Consumption (PW Mode) Power supply HV2	Input pattern = 10 cycle square wave, 5% Msps(5 MHz) on noted signal path. Load = ohm differential load, see Figure 10.	duty cycle at 10 - transformer and 100		22	60	mA	В
Dynamic Current Consumption (PW Mode) Power supply LV2	Input pattern = 10 cycle square wave, 5% (5 MHz) on noted signal path. Load = trans differential load, see Figure 10.	duty cycle at 10 Msps sformer and 100 ohm	-35	-22		mA	В
	Input pattern = 10 cycle square wave, 5%	HV0/LV0		0.15 0.25			
Total Power Dissipation for device only (PW Mode)	duty cycle at 10 Msps on noted signal path. Load = transformer and 100 ohm	HV1/LV1		1.1	1.7	W	В
	differential load, see Figure 10.	HV2/LV2		0.6	0.8		
Dynamic Current Consumption (CW Mode) Power supply VCWA + VCWB	Input pattern = 10 cycle square wave, 100 Msps on CW signal path. Load = transform differential load, see Figure 10. EN\ = 0 or 1, PCLKIN = 0 or 1		62	100	mA	В	
Total Power Dissipation for device only (CW Mode)	Input pattern = 10 cycle square wave, 100 Msps (5 MHz) on noted signal path. Load 100 ohm differential load, see Figure 10. EN\ = 0 or 1, PCLKIN = 0 or 1		310	400	mW	В	
Supply (HVx, LVx) Slew Rate Limit					10	V/ms	В
POWER-DOWN CHARACTERISTIC							
Power-Down Dissipation	Power Down Mode (Hi-Z Output) PDM\ = 0, INPxx = 1, INNxx = 0 PCLKIN = 0 or 1			3	15	mW	A

(1) Test levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.

ELECTRICAL CHARACTERISTICS (any level to any level transitions – 17 level output, 289 unique transitions⁽¹⁾)

All Specifications at: $T_A = 0^{\circ}C$ to 85°C, VAA = 2.5V, VDD = 5V, VEE = -5V, HV0 = 1.9V, LV0= -1.9V, HV2 = 32V, LV2 = -11.9V, HV1 = +61.1V, LV1 = -20.9V, VCW = 11V, R_L= 100 Ω to GND for OUTA, R_L=100 Ω to GND for OUTB, unless otherwise noted.

PARAMETER	CONDITIONS	MIN TYP		S TEST LEVEL ⁽²⁾
POWER UP/DOWN TIMING				
Power down time		100	ns	С
Power up time		100	ns	С
HVX/LVX SIGNAL PATH – AC PERFORMANCE			·	
Mean normalized output rise time	10% to 90% of 0 to 1, 20MHz	5	ns	С
Mean delay (relative to clock edge of 1 st sample)	0-20 MHz	23	ns	С
Delay standard deviation	0-20 MHz	1.2	ns	С
Phase standard doviation	5 MHz	0.01	cycle	s C
	20 MHz	0.03	cycle	s C
Coin standard deviation	5 MHz	4	%	С
Gain Standard deviation	20 MHz	8	%	С

(1) These parameters are measured on the differential output starting from 1 of 17 possible states to every other possible state. Therefore, 17X17 = 289 unique transitions.

(2) Test levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.

ZHCS185A – SEPTEMBER 2011 – REVISED JANUARY 2012

TYPICAL CHARACTERISTICS

All Specifications at: $T_A = 25^{\circ}$ C, VAA = +2.5V, VDD = +5V. VEE = -5V, HV0 = 1.9V, LV0 = -1.9V, HV2 = 32V, LV2 = -11.9V, HV1 = +61.1V, LV1 = -20.9V, VCW = 11V, R_L = 100 Ω to GND for OUTA, R_L = 100 Ω to GND for OUTB, unless otherwise noted.

Figure 1. 17-level Outputs with 10ns Pulse Width (100MSPS)

Figure 2. 17-level Outputs with 20ns Pulse Width (50MSPS)

TX517

ZHCS185A-SEPTEMBER 2011-REVISED JANUARY 2012

www.ti.com.cn

TYPICAL CHARACTERISTICS (continued)

All Specifications at: $T_A = 25^{\circ}$ C, VAA = +2.5V, VDD = +5V. VEE = -5V, HV0 = 1.9V, LV0 = -1.9V, HV2 = 32V, LV2 = -11.9V, HV1 = +61.1V, LV1 = -20.9V, VCW = 11V, R_L = 100 Ω to GND for OUTA, R_L = 100 Ω to GND for OUTB, unless otherwise noted.

Figure 4. 3-level Outputs with 100ns Pulse Width (10MSPS)

APPLICATION INFORMATION

Table 1. Truth Table

Description	EN	PDM	PCLKIN	CWINA	CWINB	INPxx ⁽¹⁾	INNxx ⁽¹⁾
Power Down (Hi-Z Output)	1	0	x ⁽²⁾	0	0	1	0
CW Mode	х	0	х	0/1	1/0	1	0
Non-Latch Mode	1	1	х	0	0	0/1	0/1
Latch Mode	0	1	0/1	0	0	0/1	0/1

⁽¹⁾ The logic device driving the inputs of the TX517 should include means to prevent a 'shoot-thru' fault condition. Any input combination that would result in an INP-input to be Low (0) and an INN-input to be High (1) at the same time on the same output (OUTA or OUTB) could result in permanent damage to the TX517. See also disallowed logic state table. Table 3 is provided for an example of how to properly drive the TX517 data inputs INPxx and INNxx.

(2) X = don't care state. However, in order to prevent excessive power consumption it is recommended that all unused inputs be tied off to a logic high or logic low. The logic inputs to the device have no internal tie-off's.

Description	EN	PDM	PCLKIN	CWINA	CWINB	INPxA	INNxA	INPxB	INNxB				
Disallowed mode 1 ⁽¹⁾	х	х	х	х	х	0	1	x	х				
Disallowed mode 2 ⁽¹⁾	х	х	х	х	х	х	х	0	1				
Disallowed mode 3 ⁽²⁾	х	0	х	х	х	х	1	x	х				
Disallowed mode 4 ⁽²⁾	х	0	х	х	х	х	х	x	1				
Disallowed mode 5 ⁽²⁾	х	0	х	х	х	0	х	x	х				
Disallowed mode 6 ⁽²⁾	х	0	х	х	х	х	х	0	х				
Disallowed mode 7 ⁽³⁾	0	х	0	х	х	х	х	х	х				

Table 2. Disallowed Logic States

(1) This logic state causes a 'shoot-thru' fault condition that could result in permanent damage to the TX517.

(2) This logic state causes a high power consumption condition in the internal logic circuitry of the TX517 and could result in a long term reliability failure of the TX517.

(3) This disallowed logic state is only valid for DC conditions. i.e. it is not allowed to keep PCLKIN at a low logic state when EN\ is at a low logic state. This causes a high power consumption condition in the internal logic circuitry of the TX517. However, it is acceptable to drive EN\ low and drive PCLKIN with a clock waveform under the recommended operating conditions for PCLKIN.

Table 3. Example Input Data Set of a 17-Level Output⁽¹⁾

Output Level	INP0A	INP2A	INP1A	INP1B	INP2B	INP0B	INN0A	INN2A	INN1A	INN1B	INN2B	INN0B
8	0	0	1	0	0	0	0	0	0	1	0	0
7	0	0	1	0	0	0	0	0	0	0	1	0
6	0	0	1	0	0	1	0	0	0	0	0	1
5	0	1	0	0	0	0	0	0	0	1	0	0
4	0	1	0	0	0	0	0	0	0	0	1	0
3	0	1	0	0	0	1	0	0	0	0	0	1
2	1	0	0	0	0	0	1	0	0	1	0	0
1	1	0	0	0	0	0	1	0	0	0	1	0
0	1	0	0	0	0	1	1	0	0	0	0	1
-1	0	0	0	0	0	1	0	1	0	0	0	1
-2	0	0	0	0	0	1	0	0	1	0	0	1
-3	1	0	0	0	1	0	1	0	0	0	0	0
-4	0	0	0	0	1	0	0	1	0	0	0	0
-5	0	0	0	0	1	0	0	0	1	0	0	0
-6	1	0	0	1	0	0	1	0	0	0	0	0
-7	0	0	0	1	0	0	0	1	0	0	0	0
-8	0	0	0	1	0	0	0	0	1	0	0	0
off state	0	0	0	0	0	0	0	0	0	0	0	0

(1) The levels listed in this table are active high; the P signals need to be inverted before driving the chip. This note is only applicable to THIS particular table ("the example input data set of a 17-level output).

TEXAS INSTRUMENTS

ZHCS185A – SEPTEMBER 2011 – REVISED JANUARY 2012

www.ti.com.cn

Table 4. Power Supplies Sequence

- A. Diodes D1, D2 placeholders only; choose appropriate model (e.g. MMBD3004S)
- B. Load resistor R1, and capacitor C11 usage and values may vary depending on final configuration
- C. Bypass capacitors and values on all supplies are placeholders only. Capacitors between various supply rails may also be necessary.
- D. Inductors (ferrite beads) L1, L2 are optional components
- E. Voltages levels on the voltage supplies correspond to the ones used at simulation

Figure 7. Typical Device Configuration

TX517

ZHCS185A - SEPTEMBER 2011 - REVISED JANUARY 2012

EXAS

NSTRUMENTS

Figure 8. Output Timing Information

ZHCS185A-SEPTEMBER 2011-REVISED JANUARY 2012

www.ti.com.cn

Figure 9. Timing Waveform for Latch Mode

Note A: This signal is supplied by a function generator with the following characteristics: 0 to 2.5V square wave, tr/tf < 3ns, frequency as noted in the electrical characteristics.

Figure 10. Loading for Power Consumption Tests

ZHCS185A - SEPTEMBER 2011 - REVISED JANUARY 2012

REVISION HISTORY

Cł	Changes from Original (September 2011) to Revision A								
•	Fixed duty cycle typo, changed duty cycle from 5% to 100% for "Dynamic Current Consumption (CW Mode) Power supply VCWA + VCWB" in the ELECTRICAL CHARACTERISTICS table.	9							
•	Fixed duty cycle typo, changed duty cycle from 5% to 100% for "Total Power Dissipation for device only (CW Mode)" in the ELECTRICAL CHARACTERISTICS table.	9							

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TX517IZCQ	ACTIVE	NFBGA	ZCQ	144	160	RoHS & Green	Call TI	Level-3-260C-168 HR	0 to 85	TX517I	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Texas Instruments

www.ti.com

TRAY

5-Jan-2022

Chamfer on Tray corner indicates Pin 1 orientation of packed units.

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	K0 (µm)	P1 (mm)	CL (mm)	CW (mm)
TX517IZCQ	ZCQ	NFBGA	144	160	8 x 20	150	315	135.9	7620	15	15	15.45

ZCQ0144A

PACKAGE OUTLINE

NFBGA - 1.87 mm max height

PLASTIC BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.

ZCQ0144A

EXAMPLE BOARD LAYOUT

NFBGA - 1.87 mm max height

PLASTIC BALL GRID ARRAY

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).

ZCQ0144A

EXAMPLE STENCIL DESIGN

NFBGA - 1.87 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司